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Abstract. CRAFT is a lightweight block cipher, designed to provide efficient protection
against differential fault attacks. It is a tweakable cipher that includes 32 rounds to
produce a ciphertext from a 64-bit plaintext using a 128-bit key and 64-bit public
tweak. In this paper, compared to the designers’ analysis, we provide a more detailed
analysis of CRAFT against differential and zero-correlation cryptanalysis, aiming to
provide better distinguishers for the reduced rounds of the cipher. Our distinguishers
for reduced-round CRAFT cover a higher number of rounds compared to the designers’
analysis. In our analysis, we observed that, for any number of rounds, the differential
effect of CRAFT has an extremely higher probability compared to any differential trail.
As an example, while the best trail for 11 rounds of the cipher has a probability
of at least 2−80, we present a differential with probability 2−49.79, containing 229.66

optimal trails, all with the same optimum probability of 2−80. Next, we use a
partitioning technique, based on optimal expandable truncated trails to provide a
better estimation of the differential effect on CRAFT. Thanks to this technique, we
are able to find differential distinguishers for 9, 10, 11, 12, 13, and 14 rounds of the
cipher in single tweak model with the probabilities of at least 2−40.20, 2−45.12, 2−49.79,
2−54.49, 2−59.13, and 2−63.80, respectively. These probabilities should be compared
with the best distinguishers provided by the designers in the same model for 9 and 10
rounds of the cipher with the probabilities of at least 2−54.67 and 2−62.61, respectively.
In addition, we consider the security of CRAFT against the new concept of related
tweak zero-correlation (ZC) linear cryptanalysis and present a new distinguisher
which covers 14 rounds of the cipher, while the best previous ZC distinguisher covered
13 rounds. Thanks to the related tweak ZC distinguisher for 14 rounds of the cipher,
we also present 14 rounds integral distinguishers in related tweak mode of the cipher.
Although the provided analysis does not compromise the cipher, we think it provides
a better insight into the designing of CRAFT.
Keywords: Lightweight block cipher · differential · zero-correlation · tweakable cipher
· MILP · SAT · CRAFT.

1 Introduction
Lightweight cryptography received extensive attention over the last decade, motivated by
the emergent growth of resource-constrained devices such as RFID tags and IoT edge devices.
To address this demand, several lightweight primitives have been proposed by researchers,
to just name some, SKINNY [BJK+16], PRESENT [BKL+07], MIBS [ISSK09], SIMON [BSS+15],
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SPECK [BSS+15], Quark [AHMN13] and PHOTON [GPP11]. In this direction, recently, the
NIST lightweight cryptography competition also announced its second-round candidates.
Among lightweight primitives, (tweakable) block ciphers received more attention and many
nice designs have already been proposed, each of which targets different applications.

On the other hand, Side-Channel Analysis (SCA) attacks, such as power/time analysis
and fault analysis, target implementation of ciphers and protecting a cipher against
them requires extra cost, e.g., extra area. Given the constraints of target applications
of lightweight block ciphers, it may not be possible to protect them using conventional
approaches, e.g., protecting using hardware redundancy for fault analysis which commonly
requires double area compared to the unprotected cipher. Hence, several researches have
aimed to provide efficient protection against SCA from design. More precisely, they
selected a component to design cipher such that they can provide efficient protection
against a specific attack,e.g., LS-Designs [GLSV14], FRIT [SBD+18], ZORRO [GGNS13]
and Fides [BBK+13].

In this direction, to provide efficient protection against differential fault analysis,
Beierle et al. proposed CRAFT [BLMR19], which is a tweakable lightweight block cipher (A
tweakable block cipher maps a n-bit plaintext to a n-bit ciphertext using a k-bit secret
key and a t-bit tweak). In addition, they supported their design by extensive analysis
against known attacks, e.g., differential cryptanalysis, impossible differential cryptanalysis,
linear cryptanalysis, zero-correlation cryptanalysis, and so on. Their analysis shows that
the cipher provides desired security against these attacks. However, there is still room
for third-party analysis. In addition, related tweak zero-correlation [ADG+19] is a new
concept which has been proposed after the publication of CRAFT, hence, the security of
the cipher against this attack is worth an investigation. Moreover, due to the nature of
differential cryptanalysis, which requires to search over a very large space of all possible
trails, it should be always possible to improve the previous analysis by using advanced
search approaches. Hence, in this paper, we tackle the detailed security analysis of CRAFT
against the above-mentioned analyses. The paper’s contribution is summarized as follows
(also, Table 1 shows a comparison of our results with previous ones for CRAFT):

1. We present 14 rounds zero-correlation distinguishers for the cipher in the related
tweak mode. It should be compared with the 13-round distinguisher proposed by
the designers, however, in the single tweak mode.

2. Given the related tweak ZC distinguisher for 14 rounds of the cipher and following
the connection between zero-correlation and integral distinguisher [SLR+15], we also
present 14 rounds integral distinguishers in the related tweak mode of the cipher.

3. Thanks to the advanced automated search models based on CryptoSMT [Köl19]
and MILP [MWGP11, SHW+14b, SHW+14a], we are able to improve the designers’
lower bounds for differential cryptanalysis. More precisely, while the designers’
lower bound on the probability of differential for 9 and 10 rounds of the cipher
are least 2−54.67 and 2−62.61, respectively, we are able to present 9, 10, 11, 12, 13,
and 14 rounds of the differential in single-tweak model with the probabilities of
at least 2−40.20, 2−44.89, 2−49.79, 2−54.48, 2−59.13, and 2−63.80, respectively, that
improve the previous lower bounds significantly . We make our implementations of
the attacks and our modeling of algorithms in MILP and SAT freely available at:
https://github.com/hadipourh/craftanalysis.

4. We also show some typos in the designers’ analysis which could be useful for later
studies. For example, we show that two out of 12 zero-correlation masks for 13
rounds of CRAFT, that are provided by the designers, are not valid. We also provide
exact trails, with non zero-correlation, for those masks. A similar result is also
presented for their proposed impossible differential trails.

https://github.com/hadipourh/craftanalysis
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Table 1: Summary of the main results of attacks on CRAFT. Where ST , RT and RK
denotes single tweak mode, related tweak mode and related key mode respectively and RTi
denotes RT mode that is started with TKi. In addition, D, TD, LH, ID, INT and ZC
denote differential effect, truncated differential, linear hull, impossible differential, integral,
and zero-correlation cryptanalysis, respectively. For example, RT0-D denotes differential
effect of CRAFT in related tweak mode, starting with TK0.

Attack ] Rounds Probability Reference

ST -D

10 2−62.61 [BLMR19]
10 2−44.89

this paper
11 2−49.79

12 2−54.48

13 2−59.13

14 2−63.80

ST -TD 12 2−36 [MA19]
ST -LH 14 2−62.12 [BLMR19]
RT0-D 15 2−55.14

[BLMR19]
RT1-D 16 2−57.18

RT2-D 17 2−60.14

RT3-D 16 2−55.14

ST -ID 13 -
ST -INT 13 -
ST -ZC 13 -
RT -ZC 14 - this paper
RT -INT 14 - this paper
RK-D 32 2−32 [EY19]
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Table 2: Notation.

Symbol Meaning
⊕ XOR operation.
|| Concatenation of bits.
% modulo operation.
T The 64-bit tweak input.
K The 128-bit master key.
TKi The main tweaks that are made based on the T and K (i = 0, 1, 2, 3).
TKi

i%4 The 64-bit round tweakey which is used in round Ri (i = 0, . . . , 31) and
TKi

i%4[j] represents the j-th cell (j = 0, . . . , 15) of TKi
i%4.

Xi The internal state before the Mix-Columns (MC) at round Ri (i =
0, . . . , 31) and Xi[j] represents the j-th cell (j = 0, . . . , 15) of Xi.

Y i The internal state before the PermuteNibbles (PN) at round Ri (i =
0, . . . , 31) and Y i[j] represents the j-th cell (j = 0, . . . , 15) of Y i.

Zi The internal state before the S-boxes (SB) at round Ri (i = 0, . . . , 31)
and Zi[j] represents the j-th cell (j = 0, . . . , 15) of Zi.

ΓS The linear mask of state S and ΓS[j] represents the j-th cell (j = 0, . . . , 15)
of ΓS. When the state S is Xi, Y i or Zi we denote ΓS with ΓXi, ΓY i
or ΓZi respectively.

∆S The differential in state S.
〈·, ·〉 Inner product.
0̄ Zero vector.
∗ An arbitrary value from F4

2.
Y Hexadecimal representation of arbitrary value Y ∈ F4

2, where we are
using typewriter style.

The rest of the paper is organized as follows: in Section 2, we present the required
preliminaries and also briefly describe CRAFT. In Section 3, we present the zero-correlation
analysis in related tweak mode. Differential effect analysis of the cipher is described in
Section 4. Section 5 presents our investigation results on some of the designers security
claims and points out some of their typos. Finally, we conclude the paper in Section 6.

2 Preliminaries
In this section, we present the required preliminaries and a brief description of CRAFT.

2.1 Notations
The notation used in the paper is summarized in Table 2.

2.2 A brief description of CRAFT

CRAFT is a 64-bit lightweight block cipher which supports 128-bit key and 64-bit tweak and
its round function is composed of involutory building blocks. It takes a 64-bit plaintext
m = m0‖m1‖ · · · ‖m14‖m15 to initiate a 4 × 4 internal state IS = I0‖I1‖ · · · ‖I14‖I15 as
follows, where Ii,mi ∈ F4

2:

IS =


I0 I1 I2 I3
I4 I5 I6 I7
I8 I9 I10 I11
I12 I13 I14 I15

 =


m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15
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Table 3: The S-box used in CRAFT in hexadecimal form.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Figure 1: A round of CRAFT

Then, the internal state is going through 32 rounds Ri, i ∈ 0, · · · , 31, to generate
a 64-bit ciphertext. As is depicted in Figure 1, each round, excluding the last round,
includes five functions, i.e., a binary MixColumn (MC), the round dependent combining
with round constant AddRoundConstants (ARC), the round dependent mixing with the
sub-tweakey AddTweakey (ATK), a nibble-based permutation PermuteNibbles (PN), and
the substitution layer S-box (SB). The last round only includes MC, ARC and ATK, i.e.,
R31 = ATK31◦ARC31◦MC, while for any 0 ≤ i ≤ 30, Ri = SB◦PN ◦ATKi◦ARCi◦MC.

MC is a multiplication of internal state by the following binary matrix:

MC =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


After MC, in each round i two round dependent constant nibbles ai = (ai3, ai2, ai1, ai0)

and bi = (bi2, bi1, bi0) are XOR-ed with I4 and I5 respectively (ai0 and bi0 are the least
significant bits). A 4-bit LFSR and a 3-bit LFSR are used to update a and b for each round.
Those LFSRs are initialized by values (0001) and (001), respectively and are updated to
ai+1 = (ai1 ⊕ ai0, ai3, ai2, ai1), and bi+1 = (bi1 ⊕ bi0, bi2, bi1) from i-th round to i+ 1-th round.

After AddRoundConstants (ARC), a 64-bit round tweakey is XOR-ed with IS. The
tweakey schedule of CRAFT is rather simple. Given the secret keyK = K0‖K1 and the tweak
T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys TK0 = K0 ⊕ T , TK1 = K1 ⊕ T ,
TK2 = K0⊕Q(T ) and TK3 = K1⊕Q(T ) are generated, where given T = T0‖T1‖ · · · ‖T14
‖T15, Q(T ) = T12‖T10‖T15‖T5‖T14‖T8‖T9‖T2‖T11‖T3‖T7‖T4‖T6‖T0‖T1‖T13. Then at the
round Ri, TKi

i%4 is XOR-ed with the IS, where the rounds start from i = 0.
The next function is PermuteNibbles (PN) which is applying an involutory permutation P

over nibbles of IS, where given IS = I0‖I1‖ · · · ‖I14‖I15, P (IS) = I15‖I12‖I13‖I14‖I10‖I9
‖I8‖I11‖I6‖I5‖I4‖I7‖I1‖I2‖I3‖I0.

The final function is a non-linear 4 × 4-bit S-box which has been borrowed from
MIDORI [BBI+15]. The table representation of the S-box is given in Table 3.
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Figure 2: r rounds of CRAFT when r < 32

3 Related tweak zero-correlation and integral cryptanalysis
In this section, we apply the related tweak zero-correlation attack [ADG+19] to a reduced-
round version of CRAFT. In the zero-correlation cryptanalysis of a tweakable block cipher
EK(P, T ), e.g. CRAFT, tweak bits can also be involved into the linear combination of input
bits. Hence, in this case, when one looks for a linear hull with zero correlation, input mask
consists of two components, one for plaintext, and another one for (master)-tweak. The
correlation of a linear approximation with input mask (α1, α2), and output mask β, is
calculated as follows:

corr((α1, α2), β) = 2 Pr (〈α1, P 〉 ⊕ 〈α2, T 〉 ⊕ 〈β,EK(P, T )〉 = 0)− 1,

where the probability is taken over the all values of P , and T .
CRAFT has a linear twekey-scheduling LK : F64

2 →
(
F64

2
)32, to map the tweak to the sub-

tweakeys. The generated sub-tweakeys are then XORed to the internal states of the cipher
as depicted in Figure 2. For a linear trail with input-output masks ((α1, α2), β), and inter-
nal linear masks Γ = (ΓX0,ΓY 0,ΓZ0,ΓX1,ΓY 1,ΓZ1, . . . ,ΓXr−1,ΓY r−1,ΓZr−1,ΓXr),
covering r rounds of CRAFT, correlation can be calculated as follows:

CΓ =
r−1∏
i=0

corr((ΓXi,ΓTKi
i%4),ΓXi+1),

According to the rule of propagation of linear masks through XOR, linear mask ΓY i
must be the same as the linear mask ΓTKi

i%4, for all 0 ≤ i ≤ r − 1. According to the
tweakey-scheduling of CRAFT, which is a linear mapping, the linear masks ΓY i, for all
0 ≤ i ≤ r − 1, should satisfy the following relation:

α2 = L(ΓY 0, . . . ,ΓY r−1) :=
r−1⊕
i=0,
i%4<2

ΓY i ⊕
r−1⊕
i=0,
i%4≥2

Q−1 (ΓY i) .
In other words, there is a linear relation between nibbles of linear masks ΓY i, for

0 ≤ i ≤ r − 1, as follows:

α2[j] =
r−1⊕
i=0,
i%4<2

ΓY i[j]⊕
r−1⊕
i=0,
i%4≥2

ΓY i[Q−1(j)], for all 0 ≤ j ≤ 15.
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The correlation of a linear hull, with the input linear masks (α1, α2) and the output
linear mask β, can be calculated as follows:

corr((α1, α2), β) =
∑

ΓX0=α1,ΓXr=β,
(ΓX1,··· ,ΓXr−1)∈(F64

2 )r−1

α2=L(ΓY 0,...,ΓY r−1)

CΓ.

The additional constraint α2 = L(ΓY 0, . . . ,ΓY r−1), which is induced by the tweakey-
scheduling, introduces additional restriction on linear trails that are included in a linear
hull. Hence, the probability of achieving a zero-correlation is higher than the single tweak
zero-correlation cryptanalysis, where the tweakey-scheduling is not considered.

In the related tweak cases, the zero-correlation linear hull behavior of CRAFT is dependent
on the starting round, i.e., the index of RTi, (i = 0, 1, 2, 3). Hence, we investigated the
security of CRAFT against the related tweak zero-correlation attack in RT0, RT1, RT2 and
RT3 modes. To find the related tweak zero-correlation trails, we modeled CRAFT in MILP
to find a zero-correlation mask for RTi and proved it manually. As a result, in the case
of RT0, we found a 14-round zero-correlation linear hull for CRAFT, where the number of
forward and backward rounds are both 7. With respect to Figure 3, active linear masks are
applied to two cells X0[4] and X0[12] at the input, and the active linear mask is applied
to cell X14[4] in the state at the output. Then, we focus on the tweak cell labeled 11,
where it is depicted by using a red frame in Figure 3. In the following section, based on
the given active linear mask in the master tweak T , we present a 14-round related tweak
zero-correlation for CRAFT:

ΓT =
r−1⊕
i=0,
i%4<2

ΓTKi
i%4 ⊕

r−1⊕
i=0,
i%4≥2

Q−1 (ΓTKi
i%4
)

=


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 8
∗ ∗ ∗ ∗

 .

Note that the permutation Q operated on TKi
i%4, when i = 2, 3, 6, 7, 10, 11. Based on

Figure 3, we have ΓT [11] = ΓTK5
1 [11]⊕ ΓTK6

2 [8] (the XOR of red frames) and so,

ΓTK5
1 [11]⊕ ΓTK6

2 [8] = 8. (1)

We denote the Linear Approximation Table of CRAFT S-box by LAT and LAT [i][j] is the
element of i-th row and j-th column of it and LAT [i] is defined as the set LAT [i] = {j ∈
F4

2|LAT [i][j] 6= 0} (see Table 4). Now, based on the properties of PN and SB operations
of 5-th round, we have

ΓX6[0] ∈ LAT [ΓY 5[15]], (2)

Due to the MC operation on the active cells of column 3 of state X5 in the input of 5-th
round, we have

ΓY 5[15] = ΓY 5[11]

and so, based on (Equation 2), we have

ΓX6[0] ∈LAT [ΓY 5[11]] = LAT [ΓTK5
1 [11]]. (3)

Now, due to the MC operation on the active cells of column 0 of state X6, we have

ΓTK6
2 [8] =ΓX6[0]

(Equation 3)
∈ LAT [ΓTK5

1 [11]]. (4)
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Figure 3: Related tweak zero-correlation of 14-round CRAFT in TK0 mode
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Therefore, based on (Equation 1) and (Equation 4), ΓTK5
1 [11] and ΓTK6

2 [8] must satisfy
the following conditions: {

ΓTK5
1 [11]⊕ ΓTK6

2 [8] = 8,
ΓTK6

2 [8] ∈ LAT [ΓTK5
1 [11]].

These conditions are equivalent to finding an input mask x (x = ΓTK5
1 [11]) and an output

mask y (y = ΓTK6
2 [8]), such that: {

x⊕ y = 8,
LAT [x][y] 6= 0.

Note that, by referring to linear approximation table of CRAFT S-box, we observe there is
no input/output mask that satisfies these conditions (see Table 4).

Table 4: Linear approximation table of CRAFT S-box.

x/y 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 2 -2 0 2 0 -2 0 2 0 4 -2 0 -2
2 0 4 0 0 4 0 0 0 -4 0 0 0 0 4 0 0
3 0 2 0 2 -2 0 2 4 2 -4 -2 0 0 2 0 2
4 0 -2 4 -2 2 0 -2 0 -2 -4 -2 0 0 -2 0 2
5 0 0 0 0 0 0 0 0 0 0 -4 -4 0 0 4 -4
6 0 2 0 2 -2 0 2 -4 -2 0 -2 0 -4 -2 0 2
7 0 0 0 4 0 0 -4 0 0 0 0 -4 0 0 -4 0
8 0 -2 -4 2 -2 0 -2 0 -4 -2 0 2 2 0 2 0
9 0 0 0 -4 -4 0 0 0 -2 2 -2 -2 2 2 -2 2
A 0 2 0 -2 -2 -4 -2 0 0 -2 4 -2 -2 0 2 0
B 0 0 0 0 0 -4 0 -4 2 -2 -2 2 2 2 -2 -2
C 0 4 0 0 0 0 -4 0 2 2 -2 2 2 -2 2 2
D 0 -2 4 2 -2 0 -2 0 0 2 0 2 -2 4 2 0
E 0 0 0 0 0 4 0 -4 2 -2 2 -2 2 2 2 2
F 0 -2 0 2 2 -4 2 0 0 2 0 -2 2 0 2 4

We also searched the zero-correlation linear hulls for each cases RT1, RT2, and RT3.
For RT1, we could not find a zero-correlation linear hull covering more than 13 rounds,
but for both RT2, and RT3, we found new zero-correlation linear hulls covering 14 rounds
of CRAFT.

The activity patterns of linear masks, for the obtained zero-correlation linear hulls in
cases RT2, and RT3 are as follows:

0000 γ000 0000 0000 14-round-RT2−−−−−−−−−→ 0000 0δ00 0000 0000,

0000 0γ00 0000 0000 14-round-RT3−−−−−−−−−→ 0000 δ000 0000 0000,

where in both cases, ΓT = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗, and γ, and δ are non-zero elements
in F4

2.

3.1 Linking zero-correlation linear hull to integral
The following theorems show how to convert a zero-correlation linear hull to an integral
distinguisher.

Theorem 1. [SLR+15] Let F : Fn2 → Fn2 be a function, and A be a subspace of Fn2 and
β ∈ Fn2 \ {0}. Suppose that (α, β) is a zero-correlation linear approximation for any α ∈ A,
then for any λ ∈ Fn2 , 〈β, F (x+ λ)〉 is balanced on the following set

A⊥ = {x ∈ Fn2 |〈α, x〉 = 0, α ∈ A}.
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The following theorem shows that the input masks should not necessarily form a
subspace.

Theorem 2. [SLR+15] A nontrivial zero-correlation linear hull of a block cipher always
implies the existence of an integral distinguisher.

The number of the required data to verify whether 〈β, F (x + λ) in Theorem 1, and
Theorem 2, is balanced over A⊥, is equal to the cardinality of A⊥ which is 2dim(A⊥).
Therefore, if the input-size of F is n bits, and the dimension of the subspace A is m,
the data complexity of the corresponding integral distinguisher is 2n−m. Considering the
tweak in the zero-correlation linear hull on a general tweakable block cipher may expand
the domain space form n to n+ t, when n, and t, are data-size and tweak-size respectively
[ADG+19], but considering tweak in our related-tweak zero-correlation linear hulls for
CRAFT increases the domain space n only by 4.

The CRAFT’s tweakey scheduling algorithm never mixes the different nibbles, and as
mentioned above, the tweak, excluding the nibble T [11], is independent of the obtained
linear hull in our zero-correlation linear hulls for all cases RT0, RT2, and RT3, and it
actually can take any (arbitrary) constants. Therefore, the domain space of our zero-
correlation linear hulls is 64 + 4 = 68 bits instead of 128 bits. In other words, to evaluate
the correlation of the obtained linear hull in the online phase, an arbitrary constant is
taken for those nibbles labeled by ∗, and the inputs are chosen so that the vector consisting
of 17 remaining nibbles, take all the possible values, since the correlation of our linear
hulls is equal to zero, independent of those nibble labeled by ∗.

Suppose that we denote the 14 rounds of CRFAT starting with RT0, as follows:

EK : F64
2 × F64

2 → F64
2

(P, T ) 7→ EK(P, T ),

where P and T denote plaintext and tweak, respectively. We also denote the function
obtained by fixing 15 nibbles of tweak, excluding the cell 11, by an arbitrary value from
F60

2 in function Ek by F , which is actually a function from F64
2 × F4

2 to F64
2 . Let M be the

set of all input masks in our zero-correlation linear hull in case RT0, as follows:

M := {(γ0, . . . , γ15, γ) ∈ (F4
2)17|γ4 = γ12 6= 0, γ = 8, γi = 0 for all i 6= 4, 12},

where (γ0, . . . , γ15) corresponds to input mask for plaintext, and γ corresponds to the input
mask for T [11]. Although, M is not a subspace of F68

2 , for each α = (γ0, . . . , γ15, γ) ∈M , if
A = {0̄, α}, then A is a subspace of dimension 1 of F68

2 . Suppose that β is chosen from the
set of output masks of our zero-correlation linear hull for 14 rounds of CRAFT in case RT0
which is depicted in Figure 3. Thus, based on Theorem 1, for each λ ∈ F68

2 , 〈β, F (x+λ)〉 is
balanced over A⊥. Since dim(A⊥) = 67, the data complexity of the integral distinguisher
corresponding to the zero-correlation linear hull covering 14 rounds, in case RT0 is equal
to 267. For more details, A, A⊥ can be displayed as follows:

A = {0̄, (0, . . . , 0, c4, 0, . . . , 0, c12, 0, 0, 0, 8)},

where c4 = c12 are non-zero constants from F 4
2 , and,

A⊥ = {(x0, . . . , x15, t11) ∈ (F4
2)17|〈c4, x4〉 ⊕ 〈c12, x12〉 ⊕ 〈8, t11〉 = 0}.

The required data for our integral distinguisher must be taken form A⊥, such that
(x0, . . . , x15) corresponds to the plaintext and t11 corresponds to cell 11 of tweak. To
generate the vectors of A⊥, we can choose an arbitrary value for t11 at first, and then
choose a suitable value for (x0, . . . , x15), such that vector (x0, . . . , x15, t11) is in A⊥. Since,
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there are 24 possible values for t11, and for each of them there are 263 plaintexts, the total
data complexity is 267.

The zero-correlation linear hulls covering 14 rounds of CRAFT in the related-tweak model
for cases RT2, and RT3 can also be converted to the integral distinguishers in a similar
manner. In case RT2, we apply any same linear mask to two cells 4, and 12, and apply
zero linear masks to the remaining 14 nibbles. We also apply linear mask 0 to the cell 11
of tweak. In contrast to case RT0, the set of all input masks in case RT2 is a subspace
of F68

2 with dimension 4 which is again denoted by A. Thereby, dim(A⊥) = 68− 4 = 64,
and the data complexity of the corresponding integral distinguisher is equal to 264, or
equivalently, 24 tweaks, and for each of them 260, plainetexts are required. The integral
distinguishers share the same input linear mask, and the cell 5 of the output is balanced.
Due to the high similarity between zero-correlation linear hulls for cases RT2, and RT3,
the data complexity of the related-tweak integral distinguisher corresponding to case RT3
is exactly the same as the case RT2, and has the same input, and output linear masks as
the zero-correlation linear hulls obtained for 14 rounds in case RT3.

4 Differential effect cryptanalysis
The designers of CRAFT provided extensive security analysis against differential and linear
cryptanalysis [BLMR19, See Table 5]. They have provided the minimum number of active
S-boxes for differential/linear cryptanalysis in single and differential related tweak mode. In
addition, they have provided their analysis for differential effect (resp. linear hull) of round
reduced CRAFT. In single tweak mode (ST-mode), they presented a differential distinguisher
for 9 and 10 rounds of the cipher with the lower bounds of probabilities 2−54.67 and 2−62.61,
respectively. For related tweak mode (RT-mode), depending on the starting round based
on the TK value, they have presented 15, 16, 17, and 16 rounds differential distinguisher
when the cipher is started from round 0, 1, 2, and 3, respectively (denoted as RT0, RT1,
RT2 and RT3 respectively). The probability of the presented distinguisher are 2−55.14,
2−57.18, 2−60.14, and 2−55.14, respectively.

Table 5: Optimum differential/linear trails for reduced CRAFT in different model, where
for each model, the upper row determines the minimum number of active S-boxes and the
lower row shows the − log2 P , and also P denotes the probability of the best-found trail.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Linear 1 2 4 6 10 14 20 26 32 36 40 44 48 52 56 60 64
− log2 2 4 8 12 20 28 40 52 64 72 80 88 96 104 112 120 128
ST Diff. 1 2 4 6 10 14 20 26 32 36 40 44 48 52 56 60 64
− log2 2 4 8 12 20 28 40 52 64 72 80 88 96 104 112 120 128

RT0 Diff. 0 1 2 4 6 12 14 19 22 25 27 32 36 38 40 46 49
− log2 1 2 4 8 12 24 28 38 44 50 54 64 72 76 80 92 98

RT1 Diff. 0 1 2 5 7 10 15 18 22 24 28 32 35 38 43 45 46
− log2 1 2 4 10 14 20 30 36 44 48 56 64 70 76 86 90 92

RT2 Diff. 0 1 2 4 6 12 16 19 21 24 27 30 34 39 41 42 44
− log2 1 2 4 8 12 24 32 38 42 48 54 60 68 78 82 84 88

RT3 Diff. 0 1 2 5 7 10 15 18 21 24 28 31 34 38 39 41 47
− log2 1 2 4 10 14 20 30 36 42 48 56 62 68 76 78 82 94

To verify their results, first, we developed an automated tool, based on MILP and
CryptoSMT. In the ST-mode, we reached the same number of active S-boxes, but an
interesting observation was finding trails with optimum probability for any number of
round and in any analysis mode, i.e., all S-boxes are activated by the maximum possible
probability, i.e., 2−2 in differential/linear cryptanalysis (we only found a typo for their
report of 17 rounds of RT1, which was reported to be 44 S-boxes, while it should be
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46). Table 5 represents the minimum number of active S-boxes and also the maximum
probability of a single trail for the different number of rounds in different mode of analysis.

Next, we evaluated the differential effect of the cipher in ST-mode. To enumerate the
differential trails in a differential effect of CRAFT, similar to previous works [LWR16, KLT15],
we used the following approach to enumerate all the solutions in a SAT solver:

1. Build the CNF model for the problem, ask the solver to give one solution x if it
exists.

2. Add a new condition to the current CNF model in order to remove x.

3. Ask the solver to give a solution, repeat step 2 until the solver returns unsatisfiable.

4.1 Differential effect
In this section, we evaluated the differential effect behavior of CRAFT, by fixing the input
and output difference and try to find a better differential probability. We observed that
for input/output differences that satisfies a trail with minimum number of active S-boxes,
there are many trails with optimum probability and all of them have an identical truncated
pattern. While finding an estimation of the real differential behavior of a cipher could be
a very time consuming task in general, this observation motivated us to use the following
steps to provide a lower bound on the differential probability of CRAFT for different number
of rounds:

1. Using MILP, find a truncated differential trail with the minimum number of active
S-boxes.

2. Verify the correctness of the truncated differential trail by finding at least one trail
that matches the found truncated patterns.

3. Based on the found trail, develop the constraints for CryptoSMT, to limit the search
to the truncated pattern with fixed input/output in the previous step.

CryptoSMT, supports primitives with S-boxes [AK18], but it uses a naive approach to
encode S-boxes. In the SMT model generated by CryptoSMT, input and output differences
of each n-bit S-box, are represented by n binary variables x = (x0, . . . , xn−1), and y =
(y0, . . . , yn−1), respectively. It also introduces additional variables p = (p0, . . . , pn−1) for
each S-box S, representing the probability of the transition x S−→ y, which are linked to
the Pr{x S−→ y}, by the following relation:

wt(p0, . . . , pn−1) = − log2(Pr{x S−→ y}),

where wt(p0, . . . , pn−1) denotes the Hamming weight of binary code p0 . . . p3, and is called
the weight of the transition x→ y. For example, the entries of {2−3, 2−2, 2−1, 1} can be
encoded as follows:

Pr 2−3 2−2 2−1 1
p0p1p2p3 0111 0011 0001 0000

In order to generate the constraints of each S-box, CryptoSMT first finds the set of
all 3n-tuple (a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1) ∈ F3n

2 corresponding to the non-zero
entries of DDT. Therefore, each 3n-tuple out of the obtained set corresponds to an invalid
assignment for (x0, . . . , xn−1, y0, . . . , yn−1, p0, . . . , pn−1).



Hosein Hadipour, Sadegh Sadeghi, Majid M. Niknam, and Nasour Bagheri 13

Then CryptoSMT generates a CNF for each S-box, as a constraint which is sat-
isfiable if and only if the assignment corresponds to a valid trail. In order to gen-
erate the CNF of each S-box, it considers all invalid assignments. If an assignment
(a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1) is an impossible one, then the following clause is
added to the CNF:

C =L(a0, x0) ∨ · · · ∨ L(an−1, xn−1)∨
L(b0, y0) ∨ · · · ∨ L(bn−1, yn−1)∨
L(c0, p0) ∨ · · · ∨ L(cn−1, pn−1),

where

L(si, ti) =
{
ti if si = 0
¬ti if si = 1,

to exclude the invalid assignment (a,b,c), from the solution space. For ex-
ample, if (1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), is an invalid assignment for the variables
(x0, . . . , x3, y0, . . . , y3, p0, . . . , p3), then the following clause is added to the CNF of the
S-box in the SMT model.

(¬x0 ∨ x1 ∨ ¬x2 ∨ ¬x3 ∨ y0 ∨ y1 ∨ y2 ∨ y3 ∨ p0 ∨ p1 ∨ p2 ∨ p3).

By considering all invalid assignments, the CNF modeling the differential behaviour of a
n-bit S-box is as follows:

m∧
i=1

n−1∨
j=0

Lj(si, ti)

 .

The entries in the DDT of a 4-bit S-box with differential uniformity 4, including
CRAFT’s S-box, only take four possible values, which are 0, 2, 4, and 16; therefore, the
possible differential probabilities are 0, 2−3, 2−2, and 1, respectively. In contrast to the
CryptoSMT’s encoding, which always uses four variables to encode the probabilities of a
given 4-bit S-box, the CRAFT’s S-box probabilities can be encoded via only three binary
variables denoted as p0, p1, p2, such that wt(p0, p1, p2) = − log2(p).

With the aim of optimizing the CryptoSMT’s method for encoding the differential
behavior of the CRAFT’s S-box, we use a different method than the CryptoSMT’s original
method, which can be easily generalized for an arbitrary n-bit S-box. We first generate
the truth table of the following 11-bit boolean function [SWW18]:

f(x, y, p) = 0 if Pr{x→ y} = 0,

f(x, y, p) =
{

1 p = (1, 1, 1)
0 o.w

if Pr{x→ y} = 2−3,

f(x, y, p) =
{

1 p = (0, 1, 1)
0 o.w

if Pr{x→ y} = 2−2,

f(x, y, p) =
{

1 p = (0, 0, 0)
0 o.w

if Pr{x→ y} = 1,

where x = (x0, . . . , x3), and y = (y0, . . . y3) denote the input and the output differences,
and p = (p0, p1, p2) is used to encode Pr{x→ y} = 2−wt(p). To generate the constraints
that model the differential behavior of S-box, we use the minimized product-of-sum
representation of the above boolean function, which can be obtained via the Quine-
McCluskey[Qui52, Qui55, MJ56], and Espresso algorithm [BHMSV84] implemented at the
off-the-shelf program Logic Friday[Log19]. The minimized product-of-sum representation
of the above boolean function for the CRAFT’s S-box is represented in Appendix A.
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Following the above steps, we were able to accelerate the time of differential search for
reduced rounds CRAFT. For instance, using the un-opimized CryptoSMT, finding a bound
for differential of 11 rounds of CRAFT costed 86379s on a personal computer (Intel Core
(TM)i-5, 8 Gig RAM, running Ubuntu 18.04 LTS), were we reached 2−58.7704 based on
2458966 trails (all with optimum probability of 2−80). After optimizing CryptoSMT as
above, we reached the identical probability much faster. A comparison of the search time
to find the best single differential characteristic for reduced rounds variants of CRAFT is
provided in Table 8, and Table 9 of Appendix A. Based on this approach, for 9 rounds of
CRAFT, we find the following input/output difference with the differential probability of
2−44.37, where the least significant nibble appears in the left most position:

7F0F 7F00 0000 7F00
9-round; Pr ≥ 2−44.37

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00DF.

The above differential contains 810592 trails, all with probability 2−64 that have been
found in 5417s on the above mentioned PC. It has an advantage of 210.3 compared to the
distinguisher provided by the designers for the same number of rounds. It should be noted
that the presented bound is only the lower bound, given that we limited our searches to
optimum trails and a specific truncated differential pattern. In addition, given a truncated
differential pattern that minimizes the number of active S-boxes for a specific number
of rounds, different trails with different input/output can be presented that satisfy the
optimum probability. In the above search, we randomly selected one of them (the first
optimum trail which is found by the tool) and bounded its lower-bound of differential.
However, it may be possible to find a better bound for that number of rounds using another
input/output difference or considering other possibilities too, e.g., non-optimum patterns.
For example, for 9 rounds, we changed all active nibbles of the input and the output
differences of the above-mentioned trail to A (it is represented in hexadecimal format) and
observed a considerable improvement. To be more precise, for the bellow difference we
found 2024500 optimum trails, before interrupting the run due to the RAM limitation:

AA0A AA00 0000 AA00
9-round; Pr ≥ 2−43.051

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA.

In the case of 10 rounds, with the input difference “0AAA 00AA 0000 00AA” and the output
difference “0A00 0000 0000 00AA", using a G9 Hp server with 32 Gig RAM and Windows
10 x64 as the operating system, we were able to observe 3513898 optimal trails in 4 days,
before interrupting the run, which provides the probability of the 10-round distinguisher
to be at least 2−50.2554.

Although the above mentioned approach provides advantage over naive search, using
the same computer system, to extend this approach to more number of rounds, e.g., 12
rounds and more, it was very time consuming. Hence, we used another approach. We
observed that it is possible to come up with expendable truncated trails for even ( started
from 8) and odd (started from 9) rounds of the cipher. Interestingly, this trails match the
optimum number of active S-boxes for 9 ≤ r ≤ 17, we did not check for r > 17. Figure 4
and Figure 5 represent the details of the construction of those trails. Moreover, setting
active nibbles of input and output differences of each trail to A, provides us with a valid
optimum trail. Hence, denoting the probability of an optimum trail for r-round of the
cipher by pro,rc , the trail bellow is valid for any even round-r > 8:

0AAA 00AA 0000 00AA
r-round; Pro,r

c = 2−(56+8(r−8))

−−−−−−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA.

For an odd round-r > 8, the differential trail will be as follows:

AA0A AA00 0000 AA00
r-round; Pro,r

c = 2−(64+8(r−9))

−−−−−−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA.
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(c) Eout

Figure 4: An expendable truncated trail for even rounds, where Ein and Eout denote the
first 4 and the last 4 rounds, respectively and Em is a repeatable 2-round truncated trail
that can be used as much as required. For example, to design a 10-round trail, this stage is
repeated once in the current trail. The Cyan-colored cells are inactive due to cancellation
after MC step, white-colored cells are inactive, and {Gray, Orange, Green} colors are active
cells in different stages of the cipher.

Any of Figure 4 and Figure 5 includes three partitions, denoted by Ein,rin , Em,rm and
Eout,rout , where rx is an integer which is used to indicate the number of rounds in a partition.
From now on, Eevenin,rin

, Eevenm,rm
and Eevenout,rout

and Eoddin , Eoddm and Eoddout denote partitions of
the cipher in Figure 4 and Figure 5 respectively, while Eeven/oddin,rin

, Eeven/oddm,rm and Eeven/oddout,rout

denote the their partitions. Hence, to design 10-round and 12-round trails, we respectively
can use the structures Eevenout,4◦Eevenm,2 ◦Eevenin,4 and Eevenout,4◦Eevenm,2 ◦Eevenm,2 ◦Eevenin,4 while to design
9-round and 11-round trails, we can use the structures Eoddout,5◦Eoddin,4 and Eoddout,5◦Eoddm,2◦Eoddin,4,
respectively. It is also possible to use other combinations. For example, we can construct
other 12-round trails as Eevenout,4 ◦ Eevenm,4 ◦ Eevenin,4 , Eevenout,6 ◦ Eevenm,2 ◦ Eevenin,4 and Eevenout,6 ◦ Eevenin,6
also, where Eevenm,4 ≡ Eevenm,2 ◦ Eevenm,2 , Eevenin,6 ≡ Eevenm,2 ◦ Eevenin,4 and Eevenout,6 ≡ Eevenout,4 ◦ Eevenm,2 .

It is worth noting, for the trails presented in Figure 4 and Figure 5, the output
differences (nibbles) of Eevenout and Eoddout are identical and the input differences (nibbles) of
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Figure 5: An expendable truncated trail for odd rounds, where Ein and Eout denote the
first 4 and the last 5 rounds, respectively and Em is a repeatable 2-round truncated trail
that can be used as much as required. For example, to design a 9-round trail, this stage is
omitted.

Eevenin can be matched to the input of Eoddin by two nibbles rotation to right in each row.
On the other hand, from the DDT of the CRAFT’s S-box (Table 6), one can observe

that if x ∈ {5,7,A,D,F}, then we can find at least one entry y ∈ {5,7,A,D,F} such that
s(x) = y with probability 2−2 and for any z /∈ {5,7,A,D,F} the probability of s(x) = z
will be upper-bounded by 2−3. Moreover, we observed that any differential includes trails,
where each active S-box is activated with the probability 2−2, and we were not even able
to count all of them using our computational resources, in the previous approach. These
properties motivated us to do semi-truncated differential search for the different parts of
our models for even and odd rounds, i.e., Eeven/oddin,rin

, Eeven/oddm,rm and Eeven/oddout,rout
in Figure 4

and Figure 5. For semi-truncated differential search, we programmed a model with the
constraints bellow:
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Table 6: Differential distribution table (DDT) of CRAFT S-box.

x/y 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
A 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
B 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
C 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
D 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
E 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
F 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

1. We set any active nibbles in the input of Eeven/oddin,rin
and any active nibbles in the

output of Eeven/oddout,rout
to be A.

2. We limited any active intermediate nibble at the output of Eeven/oddin,,rin
, the in-

put/output of Eeven/oddm,rm and input of Eeven/oddout,rout
to be in the set {5,7,A,D,F}.

3. We find the differential probability of all possible outputs of Eeven/oddin,rin
, all possible

inputs and outputs of Eeven/oddm,rm and all possible inputs of Eeven/oddout,rout
, concerns the

above constraints up to where our programs could compute.

For those constrains, it is trivial that we have only one possible difference for the input
of Eeven/oddin,rin

and one possible difference for the output of Eeven/oddout,rout
. To determine possible

output-differences of Eevenin,4 , we should consider the pattern before the last MC, i.e., X4,
and after the last MC, i.e., Y 4. It can be seen that to satisfy the truncated differential
pattern, we should have X4[14] = X4[10] 6= X4[6]. Hence, there are only 5× 5× 4 = 100
possible values for Y 4 or outputs of Eevenin,4 . A similar argument can be provided for the
input/output differences of Eeven/oddm,rm , and the input differences of Eeven/oddout,rout

. Therefore,
there are only 100 × 100 possible values for input/output differences of Eeven/oddm,rm and
100 possible values for input/output differences of Eeven/oddout,rout

. In the next step, we need
to determine the differential probability of any possible input/output differences for any
partition of the cipher. We provide a horizontal vector containing 100 probabilities for
Eevenin,4 , a matrix containing 100 × 100 probabilities for Eeven/oddm,rm and a vertical vector
containing 100 probabilities for Eeven/oddout,rout

. Given those probabilities, we can calculate the
differential probability of any trail, it will be just multiplication of those joint probability
vectors/matrices, which can be done very efficiently. To this end, we determined the joint
probabilities vectors/matrices of all cipher’s partitions of Figure 4 and Figure 5. The joint
probability horizontal vector of Eevenin,4 includes 76 non-zero entries (out of 100) and it is
identical to the joint probability vector derived for Eoddin,4. The joint probability vertical
vectors of both Eevenout,4 and Eoddout,5 include 92 non-zero entries (each out of 100) and the joint
probability matrices derived for Eevenm,2 and Eoddm,2 also include 2734 non-zero entries (each
out of 100× 100). For each possible intermediate entry, e.g., an entry in the Eevenin,4 vector,
we counted all the possible trails from the fixed input difference of Eevenin,4 to that possible
difference of Eevenin,4 , which can be directly used to determine the probability related to that
entry. Next, we used those joint probabilities vectors/matrices to determine the differential
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effect of different round reduced variants of CRAFT; in all cases we extended the number of
rounds by repeating Eeven/oddm,2 as many times as required:

AA0A AA00 0000 AA00
9-round; Pr ≥ 2−40.20

−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

0AAA 00AA 0000 00AA
10-round; Pr ≥ 2−45.12

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

AA0A AA00 0000 AA00
11-round; Pr ≥ 2−49.79

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

0AAA 00AA 0000 00AA
12-round; Pr ≥ 2−54.72

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

AA0A AA00 0000 AA00
13-round; Pr ≥ 2−59.39

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

0AAA 00AA 0000 00AA
14-round; Pr ≥ 2−64.32

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

AA0A AA00 0000 AA00
15-round; Pr ≥ 2−68.99

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA.

Through our analysis we also investigated the truncated differential behavior of optimum
trails of fixed input/output differences. Interestingly, we observed that for any input/output
differences with the optimum trails that we have checked (including the input/output
differences of Figure 4 and Figure 5) the truncated pattern of all optimum trails of a fixed
input/output difference is fixed. To verify this, for a given input/output difference for
which there is an optimum trail, we forced the MILP and also SAT tools to finding an
optimum trail with different truncated patterns. However, for all input/output differences
that we checked, the programs returned infeasible. Hence, for any trail driven from Figure 4
or Figure 5, using our partitioning approach and the way that we have used to determine
the probabilities of intermediate entries, we are able to count the exact number of the
optimum trails for any number of rounds of CRAFT, starting from 9 and for the given
differences; also, we can determine a lower bound of non-optimum trails. In the last column
of Table 7, we reported the values of the optimum trails for the several numbers of the
rounds.

On the other hand, for a fixed input/output difference, changing rin, rm, and rout, has
an influence on the number of non-optimum trails that are considered in the final differential
effect. Hence, although the presented distinguishers are the best known distinguishers for
the round reduced CRAFT in ST-mode, to improve the results more, we also evaluated other
values for rin, rm and rout (it is clear that extending the number of rounds of a partition
increases the computational cost of producing the related joint probabilities matrix/vector).
As a result, for rm = 4 (for even/odd rounds) and rout = 6 (for even rounds) we could
improve the above bounds as follows:

0AAA 00AA 0000 00AA
10-round; Pr ≥ 2−44.89

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

0AAA 00AA 0000 00AA
12-round; Pr ≥ 2−54.48

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

AA0A AA00 0000 AA00
13-round; Pr ≥ 2−59.13

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

0AAA 00AA 0000 00AA
14-round; Pr ≥ 2−63.80

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

AA0A AA00 0000 AA00
15-round; Pr ≥ 2−68.75

−−−−−−−−−−−−−−−→ 0A00 0000 0000 00AA,

where, as it is also depicted in Table 7, for the 14 rounds trail we used the combination
Eevenout,6 ◦ Eevenm,4 ◦ Eevenin,4 . The above distinguishers, to the best of our knowledge, are the
best-known differential distinguishers for CRAFT in ST-model.

It should be noted that we also evaluated the differential effect when rin = 6. However,
it did not give better results.
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Table 7: The values of rin, rm, and rout of the best differential trails of CRAFT that we
have found. Pr denotes the probability of the related trail.

] Rounds rin rm rout Pr ] optimum trails
9 4 - 5 2−40.20 223.32

10 4 - 6 2−44.89 226.49

11 4 2 5 2−49.79 229.66

12 4 2 6 2−54.48 232.83

13 4 4 5 2−59.13 236.00

14 4 4 6 2−63.80 239.18

5 Discussion
Through our analysis, we observed some typos in the designers’ analysis which reporting
them could be useful for later analysis. We already mentioned one of them in Subsection 4.1,
i.e., the minimum number of active S-boxes for 17 rounds in the case of RT1. In addition,
the designers reported 12 zero-correlation masks for 13 rounds of the cipher. Although we
found twelve zero-correlation linear hulls, based on our analysis with both MILP and SAT
approaches, 2 of the reported masks are not valid, which are as follows, where γ and δ are
non-zero masks in F4

2:

0000 00γ0 0000 00γ0 13-round−−−−−→ 0000 δ000 0000 0000,

0000 γ000 0000 γ000 13-round−−−−−→ 0000 00δ0 0000 0000.

In order to verify this claim, for each one of the above linear hulls, a valid linear trail
is displayed in Appendix B. We also found the following new zero-correlation linear hulls
for 13 rounds of CRAFT, in ST-mode:

0000 00γ0 0000 00γ0 13-round−−−−−→ 0000 00δ0 0000 0000,

0000 γ000 0000 γ000 13-round−−−−−→ 0000 δ000 0000 0000.

We also checked the validity of the reported input/output patterns for the impossible
differential covering 13 rounds of CRAFT. We observed that two of the input/output patterns
are not valid in this case too, which are as follows, where γ and δ are non-zero difference
in F4

2:
00γ0 0000 00γ0 0000 13-round−−−−−→ 0000 0000 δ000 0000,

γ000 0000 γ000 0000 13-round−−−−−→ 0000 0000 00δ0 0000.

For each one of the input/output patterns above, one possible differential trail is
displayed in Appendix C, which proves our claim. We also found the following two new
valid impossible differential input/outputs for 13 rounds of CRAFT, in ST-mode:

00γ0 0000 00γ0 0000 13-round−−−−−→ 0000 0000 00δ0 0000,

γ000 0000 γ000 0000 13-round−−−−−→ 0000 0000 δ000 0000.

In the case of RT-model of differential, designers reported the masks bellow:

0000 A000 0000 0000
15-round-RT0; Pr ≥ 2−55.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000

0A0A 00AA 0000 000A
16-round-RT1; Pr ≥ 2−57.18

−−−−−−−−−−−−−−−−−−→ 0000 000A A000 0000,
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0000 0000 0000 0000
17-round-RT2; Pr ≥ 2−60.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000,

0000 0000 0000 AA00
16-round-RT3; Pr ≥ 2−55.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000,

where in all cases, ∆T = 0000 0000 00A0 0000. However, for the provided difference for
RT1, RT2 and RT3, there are no trails for those differences with a reasonable number of
active S-boxes. In addition, if the difference bellow is valid:

0000 0000 0000 0000
17-round-RT2; Pr ≥ 2−60.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000,

then, given that the input difference has no active nibble and in backward direction it first
goes through S-box layers at the first, with probability 1. It is possible to present an 18
round trail for RT1 with the same probability, i.e., 2−60.14. Hence, we also reevaluated
the differential effect of CRAFT in RT-model, with the same ∆T = 0000 0000 00A0 0000.
Our best results are as follows:

0000 A000 0000 0000
15-round-RT0; Pr ≥ 2−55.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000,

000A 000A 0AA0 000A
16-round-RT1; Pr ≥ 2−62.68

−−−−−−−−−−−−−−−−−−→ 0000 0000 0000 0000,

A000 0A00 0000 AA00
17-round-RT2; Pr ≥ 2−60.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000,

0AA0 0000 00A0 0000
16-round-RT3; Pr ≥ 2−55.14

−−−−−−−−−−−−−−−−−−→ 0000 0000 00A0 A000.

It can be seen that we could find other input/output differences for RT2 and RT3 that
have identical probabilities as the probabilities reported by the designers. In the case of
RT0, we received identical differential effect probability as the designers probability, for
the same input/output differences. However, in the case of RT1 we could not find such
differences. This distinction between our result, and those of the designers, in the case of
RT1, motivated us to evaluate the differential effects for 15 and 17 rounds of this mode as
follows :

AAA0 0AA0 000A 0AA0
15-round-RT1; Pr ≥ 2−56.31

−−−−−−−−−−−−−−−−−−→ 0000 0000 0000 000A,

where ∆T = 0000 0000 000A 0000, and,

050A 000A 0AA0 000A
17-round-RT1; Pr ≥ 2−65.34

−−−−−−−−−−−−−−−−−−→ 0000 A000 0000 0000,

where ∆T = 0000 0000 00A0 0000.
It should be noted we also evaluated the security of CRAFT against linear hull, following

the same approach as the differential effect. However, we could not beat the designers’
claim, which is 2−62.12 for 14- rounds of CRAFT in ST-model.

6 Conclusion
In this work, we provided a detailed analysis of CRAFT against differential and related
tweak zero-correlation and integral cryptanalysis. Our related tweak zero-correlation and
integral cryptanalysis, which cover 14 rounds, are the first analysis of CRAFT against this
attack, given that the designers analyzed its security against single tweak zero-correlation
and integral cryptanalysis. While we found 14-round distinguishers in the related tweak
zero-correlation/integral cryptanalysis for cases RT0, RT2, and RT3, we could not find
any related tweak zero-correlation/integral distinguisher for case RT1 for 14-rounds of the
cipher.
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Our differential analysis improved the designers’ results significantly. For example,
the designers’ report include the lower bound of probability of differential effect for 10
rounds of the cipher in single tweak model to be 2−62.61 while we improved this bound
and presented a differential distinguisher for the same number of rounds with probability
2−44.89 and a differential distinguisher for up to 14 rounds, with the probabilities beyond
2−64. This analysis shows that there is a huge gap between the differential effect and
any differential trails in the round reduced CRAFT, similar to some other lightweight block
ciphers already mentioned in [AK18].

Through our differential analysis, we observed that for many fixed input/output
differentials, CRAFT included very strong clusters of high-probable trails that helped us to
improve the probability of our differential distinguishers significantly.

In our differential effect analysis of the even/odd number of rounds, we fixed the
input/output masks for even/odd number of rounds, and provided extendable truncated
differential trails for the cipher and then partitioned those trails to estimate the differential
effect of the whole target rounds. This approach helped us estimate the differential effect
of the cipher more efficiently (in term of time and the used resources), compared to naive
approaches based on counting trails. Thanks to the fixed truncated differential pattern
of CRAFT for all optimum trails of a fixed input/output mask, partitioning works well to
bound its differential effect and we were able to provide the exact number of optimum
trails for a given fixed input/output difference; and for any number of rounds, larger
than 9, it can be done for any other input/output mask. As a future work, it is worth
investigating whether there is any other cipher with the same differential behavior, i.e.,
fixed truncated differential for dominant trails. If there is, then it should be possible to use
the partitioning approach to evaluate its security against differential effect. In addition,
while our bound for the number of optimal trails for any fixed input/output mask is tight,
we were not able to bound the exact number of non-optimum trails for the used masks.
Hence, as another future work, it is possible to improve the reported differential effects
considering some missing non-optimum trails in our analysis.

The designer stated [BLMR19, Sec. 5.4] "For the key recovery the number of rounds
that can be appended for an RTi differential is at most 4 + i rounds before and 7 rounds
after the differential". However, given that the focus of this paper was to provide better
distinguishers for CRAFT, we have not investigated the key recovery in this paper. Hence,
as a future work, it worth to see how many rounds can be attacked based on the provided
distinguishers in this paper.
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A Supplementary information for optimized CryptoSMT
Let a = (a3, . . . , a0), and b = (b3, . . . , b0) denote the input and output differences respec-
tively, where a0, and b0 are the least significant bits, and p = (p2, p1, p0) is also used
to encode the probability of transition a → b. We use the following CNF to model the
differential behavior of CRAFT’s S-box in the SMT model:
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(¬a1∨a0∨b2∨¬b1∨¬p2)∧(a2∨¬a1∨¬b1∨b0∨¬p2)∧(a3∨a2∨a1∨¬b3∨¬b0)∧(¬a3∨¬a0∨
b3∨b2∨b1)∧(a3∨a1∨a0∨¬b3∨¬b2)∧(¬a3∨¬a2∨b3∨b1∨b0)∧(a2∨¬a1∨b2∨¬b1∨¬p2)∧
(¬a1∨a0∨¬b1∨b0∨¬p2)∧(¬a2∨¬a0∨¬b2∨¬b0∨¬p2)∧(a1∨¬b3∨¬b2∨¬b0)∧(¬a3∨
¬a2∨¬a0∨b1)∧(p1∨¬p0)∧(¬p2∨p0)∧(¬b1∨p0)∧(a2∨¬a0∨b1∨p2)∧(a1∨¬b2∨b0∨p2)∧
(¬b3∨p0)∧(b2∨¬b1∨b0∨¬p2)∧(a1∨b1∨¬b0∨p2)∧(¬a2∨a0∨b1∨p2)∧(¬a3∨b1∨b0∨p2)∧
(¬a2∨¬a0∨b3∨b0∨p2)∧(¬a1∨p0)∧(a2∨a0∨b2∨b1∨b0∨¬p1)∧(a2∨a1∨a0∨p2∨¬p0)∧
(¬a2∨a0∨¬b2∨¬b0∨p2)∧(a1∨b2∨¬b0∨p2)∧(a2∨a0∨¬b2∨¬b0∨¬p2)∧(¬a2∨¬a0∨b2∨
¬b0∨p2)∧(¬a3∨a0∨b2∨¬b0∨p2)∧(a3∨¬a1∨¬b3∨¬b1∨p2)∧(a2∨¬a0∨¬b2∨¬b0∨p2)∧
(¬a1∨b3∨¬b2∨¬b1∨¬b0∨p2)∧(a2∨¬a1∨b3∨b2∨¬b1)∧(¬a1∨a0∨b3∨¬b2∨b1∨¬p2)∧
(a2∨¬a1∨b3∨b1∨¬b0∨¬p2)∧(a1∨¬b2∨¬b1∨¬b0∨¬p2)∧(b3∨b2∨b0∨¬p2)∧(a3∨a2∨
a0∨¬p2)∧(¬a2∨¬a1∨¬a0∨b1∨¬p2)∧(¬a3∨a2∨¬a0∨¬b2∨¬b1∨b0)∧(a2∨a0∨¬b2∨
¬b1∨b0∨p2)∧(¬a2∨¬a1∨a0∨b3∨b0)∧(¬a2∨a0∨¬b3∨b2∨p2)∧(a2∨¬a0∨¬b3∨b0∨p2)∧
(¬a1∨a0∨¬b3∨b2∨¬b0∨¬p2)∧(a2∨¬a1∨¬b3∨¬b2∨b0∨¬p2)∧(¬a0∨¬b3∨¬b2∨b0∨p2)∧
(a3∨¬a2∨a1∨¬b1∨b0∨¬p2)∧(a3∨a1∨¬a0∨b2∨¬b1∨¬p2)∧(¬a2∨¬a0∨b2∨b1∨b0)∧
(a3∨a2∨¬b2∨¬b0∨p2)∧(¬a3∨¬a2∨a1∨a0∨b3∨b2∨¬p2)∧(a3∨a1∨a0∨¬b3∨b1∨¬b0)∧
(a3∨a2∨a1∨¬b3∨¬b2∨b1)∧(¬a3∨a1∨¬a0∨b3∨b1∨b0)∧(¬a3∨¬a2∨a0∨b2∨¬b1∨¬b0)

Similar to the Boolean function which is used to model the differential behaviour of an
Sbox, another Boolean function can be constructed to model the linear behaviour of the
given Sbox, according to the related table of squared correlations. If a = (a3, . . . , a0), and
b = (b3, . . . , b0) denote the input and output linear masks respectively, where a0, and b0 are
the least significant bits, and p = (p3, p2, p1, p0) is used to encode the squared correlation
of transition a → b, we use the following CNF to model the linear behavior of CRAFT’s
S-box in the SMT model:

( p3∨p2)∧(p1∨ p0)∧(p3∨ p2)∧( p2∨p0)∧( b1∨p0)∧(b3∨b2∨b1∨b0∨ p1)∧( b3∨p0)∧
(a3∨a2∨a1∨a0∨ p0)∧(a3∨a1∨b3∨ b0∨p2)∧(a1∨a0∨ b2∨b1∨p2)∧( a1∨p0)∧(a3∨
b3∨ b2∨b1∨ b0)∧( a3∨ a1∨b2∨b1∨p2)∧(a0∨b2∨ b1∨ b0∨p2)∧( a3∨ a0∨ b3∨b0∨p2)∧
(a0∨ b3∨ b2∨ b1∨p2)∧( a0∨b2∨b1∨b0∨p2)∧(a2∨ a0∨ b3∨ b1∨p2)∧(a2∨a1∨b1∨ b0∨
p2)∧ ( a3∨p0)∧ (a3∨ a1∨ b2∨ b1∨ b0∨p2)∧ (a3∨ a1∨ a0∨ b2∨ b1∨p2)∧ ( a3∨ a1∨
b3∨b0∨p2)∧(a2∨ a1∨b3∨ b1∨b0∨p2)∧(a3∨ a2∨ a0∨ p2)∧(a2∨a0∨ b2∨ b1∨p2)∧
(a3∨ a2∨ a1∨b1∨ b0∨p2)∧( a3∨ a2∨a0∨b2∨b0∨p2)∧( a3∨a1∨ a0∨ b2∨ b1∨p2)∧
(a3∨a1∨b3∨ b2∨p2)∧(a3∨ b3∨ b2∨b0∨ p2)∧( a2∨ a0∨b2∨b0∨ p2)∧( a3∨a2∨ a0∨
b3∨ p2)∧( a3∨ a2∨a0∨b3∨ p2)∧( a3∨ a1∨ b3∨b1∨p2)∧( a3∨ b3∨b2∨ b0∨p2)∧( a2∨
b2∨b1∨b0∨p2)∧(a3∨ b3∨b2∨ b0∨ p2)∧(a2∨a0∨b2∨b0∨ p2)∧( a2∨ a0∨ b2∨ b0∨ p2)∧
(a2 ∨ a0 ∨ b2 ∨ b0 ∨ p2) ∧ (a3 ∨ a2 ∨ a0 ∨ b3 ∨ b2 ∨ b0 ∨ p2) ∧ (b3 ∨ b2 ∨ b0 ∨ p2) ∧
( a3∨ a2∨ a1∨ a0∨b3∨ b1∨p2)∧( a2∨a1∨ a0∨b3∨b1∨p2)∧(a2∨ a1∨ a0∨b3∨b2∨
p2)∧ (b3∨ b2∨ b0∨ p2)∧ (a3∨ a2∨ a0∨ b1)∧ ( a2∨a1∨ b3∨ b1∨ b0∨p2)∧ (a3∨a2∨
a0∨ p2)∧(a1∨a0∨ b3∨ b1∨p2)∧(a3∨ a2∨ a1∨ a0∨ b2∨ b0)∧(a3∨ a2∨ a0∨b3∨b2∨
b0)∧( a3∨a2∨ a0∨ b1∨b0∨p2)∧(a2∨a0∨ b3∨ b2∨b0∨p2)∧( a1∨a0∨ b3∨b2∨ b0∨p2)

CryptoSMT, uses STP[HMS], as the default SMT solver to solve the obtained SMT
problem, but it also supports another SMT solver, called Boolector[NPB15]. Table 8 shows
that, our optimization improves the speed of solving the obtained SMT problem, for both
SMT solvers used in CryptoSMT. Table 9, also shows the impact of our optimization on
the solvers’ run-time for finding an optimum differential trail for r rounds of CRAFT, where
the input, and output differences corresponding to the optimum trail are fixed.
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Table 8: The impact of the CRAFT’s S-box optimization on the solvers’ run-time, where
SW and MW respectively denote start-weight and minimum found weight through the
search for the best single differential characteristic of r rounds of CRAFT in the single tweak
model

r SW MW Optimized Unoptimized
STP Boolector STP Boolector

1 0 2(2−2) 0.36 s 0.52 s 34.2 s 13.53 s
2 2 4(2−4) 0.80 s 1.07 s 75.07 s 29.69 s
3 4 8(2−8) 2.25 s 2.79 s 195.67 s 74.78 s
4 8 12(2−12) 3.25 s 4.18 s 313.44 s 100.83 s
5 12 20(2−20) 10.84 s 13.92 s 831.86 s 234.95 s
6 20 28(2−28) 20.55 s 20.14 s 1249.29 s 296.06 s
7 28 40(2−40) 69.03 s 58.7 s 2703.25 s 512.25 s
8 40 52(2−52) 179.63 s 100.07 s 5526.63 s 664.21 s
9 52 64(2−64) 501.68 s 190.35 s 9739.49 s 831.22 s

Table 9: The impact of the CRAFT’s S-box optimization on the solvers’ run-time, to find an
optimum differential trail with fixed input, and output differences for r rounds of CRAFT

r
Optimized Unoptimized
STP Boolector STP Boolector

8 0.40 s 0.11 s 34.2 s 15.53 s
9 1.44 s 0.66 s 116.56 s 42.91 s
10 1.61 s 1.44 s 130.38 s 49.3 s
11 2.11 s 1.84 s 147.54 s 55.32 s
12 2.53 s 2.07 s 204.66 s 60.55 s
13 2.76 s 2.53 s 266.03 s 68.30 s
14 3.99 s 3.75 s 319.30 s 74.72 s
15 4.13 s 3.78 s 313.45 s 81.16 s
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B Valid linear trails

Table 10: A valid linear trail with weight 124, corresponding to the linear hull
0000 00γ0 0000 00γ0 13-round−−−−−→ 0000 δ000 0000 0000

i ΓXi ΓY i ΓZi w
0 0000 0050 0000 0050 0000 0050 0000 0000 0000 0000 5000 0000 -2
1 0000 0000 A000 0000 0000 0000 A000 0000 0000 00A0 0000 0000 -2
2 0000 00A0 0000 0000 0000 00A0 0000 00A0 000A 0000 A000 0000 -4
3 0005 0000 A000 0000 0005 0000 A005 0005 5000 00A5 0000 0050 -8
4 A000 00AA 0000 00A0 A000 00AA A000 A00A AA00 00A0 A00A 000A -12
5 A500 00A0 500A 0005 A500 00A0 F50A A5A5 5A5A 05FA A000 500A -20
6 A5A5 0A5A A000 F005 A5A5 0A5A 05A5 5FFA A5FF A505 5A0A 5A5A -28
7 AA55 5A0F AA05 F5AA AA55 5A0F 0050 05F0 005F 5000 0A5F A55A -20
8 00A5 A000 0AF5 AAA5 00A5 A000 0A50 0A00 00A0 5A00 00A0 0A50 -12
9 00A0 A500 00A0 05A0 00A0 A500 0000 A000 0A00 0000 05A0 0A00 -8
10 0A00 0000 0AA0 0A00 0A00 0000 00A0 0000 0000 A000 0000 A000 -4
11 0000 A000 0000 A000 0000 A000 0000 0000 0000 0000 00A0 0000 -2
12 0000 0000 00A0 0000 0000 0000 00A0 0000 0000 A000 0000 0000 -2
13 0000 5000 0000 0000 none none none

Table 11: A valid linear trail with weight 124, corresponding to the linear hull
0000 γ000 0000 γ000 13-round−−−−−→ 0000 00δ0 0000 0000

i ΓXi ΓY i ΓZi w
0 0000 5000 0000 5000 0000 5000 0000 0000 0000 0000 0050 0000 -2
1 0000 0000 00F0 0000 0000 0000 00F0 0000 0000 F000 0000 0000 -2
2 0000 F000 0000 0000 0000 F000 0000 F000 0F00 0000 00F0 0000 -4
3 0500 0000 0050 0000 0500 0000 0550 0500 0050 5500 0000 5000 -8
4 00A0 AF00 0000 A000 00A0 AF00 00A0 0FA0 00FA A000 0FA0 0A00 -12
5 005A 5000 05A0 0500 005A 5000 05FA 555A A555 F50A 0050 05A0 -20
6 AFBF FA0A 00B0 0A50 AFBF FA0A AF0F 5FE5 55FE 0FAF 0AFA FBFA -28
7 AAF5 0FA5 0AF5 555A AAF5 0FA5 A000 F00A AF00 00A0 AF05 AF5A -20
8 A500 00A0 550F A5AA A500 00A0 F00F 000A A000 00FF A000 500A -12
9 A000 0055 A000 A005 A000 0055 0000 0050 0005 0000 5005 000A -8
10 000A 0000 A00A 000A 000A 0000 A000 0000 0000 00A0 0000 00A0 -4
11 0000 0050 0000 0050 0000 0050 0000 0000 0000 0000 5000 0000 -2
12 0000 0000 A000 0000 0000 0000 A000 0000 0000 00A0 0000 0000 -2
13 0000 0050 0000 0000
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C Possible differential trails

Table 12: A possible differential trail with weight 124, corresponding to the input/output
pattern 00γ0 0000 00γ0 0000 13-round−−−−−→ 0000 0000 δ000 0000

i ∆Xi ∆Y i ∆Zi w
0 00A0 0000 00A0 0000 0000 0000 00A0 0000 0000 A000 0000 0000 -2
1 0000 F000 0000 0000 0000 F000 0000 0000 0000 0000 00F0 0000 -2
2 0000 0000 00F0 0000 00F0 0000 00F0 0000 0000 F000 0000 0F00 -4
3 0000 F000 0000 0F00 0F00 FF00 0000 0F00 00F0 0000 0FF0 F000 -8
4 00F0 0000 0AF0 A000 AA00 A000 0AF0 A000 0A00 FA00 00A0 A00A -12
5 0F00 FD00 00A0 500F 5FAF AD0F 00A0 500F F500 A000 0DAF FAF5 -20
6 AA00 F000 0A5F FDFA 5DA5 0DFA 0A5F FDFA AFDF 5A0F FD0A DA55 -28
7 5FAA A50A FA0A A57A 00DA 0070 FA0A A57A AA57 0AFA 7000 0DA0 -20
8 DAAD 0AFA D000 0AA0 000D 005A D000 0AA0 00AA 00D0 500A 00D0 -12
9 00AA 00A0 A00A 00A0 A000 0000 A00A 00A0 000A 00AA 0000 000A -8
10 0005 00A5 0000 0005 0000 00A0 0000 0005 5000 0000 A000 0000 -4
11 A000 0000 A000 0000 0000 0000 A000 0000 0000 00A0 0000 0000 -2
12 0000 0050 0000 0000 0000 0050 0000 0000 0000 0000 5000 0000 -2
13 0000 0000 A000 0000

Table 13: A possible differential trail with weight 124, corresponding to the input/output
pattern γ000 0000 γ000 0000 13-round−−−−−→ 0000 0000 00δ0 0000

i ∆Xi ∆Y i ∆Zi w
0 A000 0000 A000 0000 0000 0000 A000 0000 0000 00A0 0000 0000 -2
1 0000 00A0 0000 0000 0000 00A0 0000 0000 0000 0000 A000 0000 -2
2 0000 0000 D000 0000 D000 0000 D000 0000 0000 00D0 0000 000D -4
3 0000 0070 0000 000A 000A 007A 0000 000A A000 0000 700A 00A0 -8
4 D000 0000 D00A 00A0 00AA 00A0 D00A 00A0 000A 00DA A000 0AA0 -12
5 000A 007A A000 05A0 A5AA 05DA A000 05A0 005A 00A0 D50A 5AAA -20
6 007D 00D0 770D ADDA DAAA AD0A 770D ADDA AADD 077D 0DAA AAAD -28
7 AA77 05DA 0AAD F5DA 5500 F000 0AAD F5DA AF5D AA0D 00F0 5005 -20
8 AAAA DA0A 00A0 A00A 0A00 7A00 00A0 A00A AA00 A000 0A70 A000 -12
9 5D00 5000 0DD0 5000 00D0 0000 0DD0 5000 0500 DD00 0000 0D00 -8
10 0700 A700 0000 0700 0000 A000 0000 0700 0070 0000 00A0 0000 -4
11 0050 0000 0050 0000 0000 0000 0050 0000 0000 5000 0000 0000 -2
12 0000 A000 0000 0000 0000 A000 0000 0000 0000 0000 00A0 0000 -2
13 0000 0000 00A0 0000
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