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Abstract. TRIFLE is a Round 1 candidate of the NIST Lightweight Cryptog-
raphy Standardization process. In this paper, we present an interesting 1-round
iterative differential characteristic of the underlying block cipher TRIFLE-BC
used in TRIFLE, which holds with probability of 2−3. Consequently, it allows to
mount distinguishing attack on TRIFLE-BC for up to 43 (out of 50) rounds with
data complexity 2124 and time complexity 2124. Most importantly, with such an
iterative differential characteristic, the forgery attack on TRIFLE can reach up to
21 (out of 50) rounds with data complexity 263 and time complexity 263. Finally,
to achieve key recovery attack on reduced TRIFLE, we construct a differential
characteristic covering three blocks by carefully choosing the positions of the
iterative differential characteristic. As a result, we can mount key-recovery attack
on TRIFLE for up to 11 rounds with data complexity 263 and time complexity
2104. Although the result in this paper cannot threaten the security margin of
TRIFLE, we hope it can help further understand the security of TRIFLE.
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1 Introduction

With the development of the emerging areas like sensor networks, healthcare,
distributed control systems, the Internet of Things, and cyber physical systems, where
highly-constrained devices are interconnected, typically communicating wirelessly
with one another, and working in concert to accomplish some task, new requirements
for cryptographic algorithms start to appear. The new requirements covers such aspects
as energy, power, area and throughput. Consequently, recent years have witnessed
many new designs of lightweight block ciphers, hash functions and stream ciphers
like PRESENT [7], KATAN [8], PICCOLO [20], PHOTON [12], SIMON/SPECK [4],
Midori [2], SKINNY [5], Plantlet [16], and QARMA [1], just to name a few. The
main reason why there is a demand for lightweight designs lies in that conventional
cryptographic algorithms designed for desktop/server environments cannot fit into
constrained device. To standardize lightweight cryptographic algorithms that are
suitable for use in constrained environments, the National Institute of Standards and
Technology (NIST) started a public lightweight cryptography competition project in
as early as 2013 and initiated the call for submissions in 2018, with the hope to



select a lightweight cryptographic standard by combining the efforts of both academia
and industry. The 56 Round 1 candidates of the NIST Lightweight Cryptography
Standardization project became public on April 18, 2019. Since the publication, the
cryptanalysis has started. For instance, a probability 1 iterative differential characteristic
in the SNEIK permutation was identified in [18], which was quickly exploited to mount
forgery attack on full SNEIKEN [13]. As a response for this attack, the designer of
SNEIK has updated SNEIK accordingly. Very recently, Eichlseder et al. also showed a
forgery attack on FlexAEAD [11].

Since there exist several advanced cryptanalysis techniques to evaluate the security
of a primitive, the resistance against differential attack [6], linear attack [15], integral
attack [14,22,23], cube attack [10] and many other attack methods have been well
analyzed by the designers for most submitted primitives. The feasibility of efficient
security evaluation against classical cryptanalysis is owing to the emerging automatical
cryptanalysis techniques to model the corresponding attacks [17,19,21,24,25] and solve
with existing state-of-the-art solvers.

TRIFLE is one of the Round 1 candidates [9]. It is an Authenticated Encryption
with Associated Data (AEAD) algorithm, which is constructed based on the underlying
block cipher TRIFLE-BC. TRIFLE employs a MAC-then-Encrypt type paradigm,
where CBC style authentication is done on the nonce, associated data and the plaintext
to generate the tag. This tag is then used as a random IV in an output feedback
mode of encryption to generate the ciphertext. The authors make a security claim for
TRIFLE under the IND-CPA and INT-CTXT security model, which requires that the
data complexity cannot exceed 264 and time complexity cannot exceed 2128. In other
words, the total number of blocks (among all messages and associated data) processed
through the underlying block cipher for a fixed master key at the online phase cannot
exceed 264. Moreover, the designers claim that the linear transform in TRIFLE-BC
can provide the maximal diffusion. However, as will be shown, an iterative differential
characteristic with hamming weight 1 is identified for TRIFLE-BC. Although such an
iterative differential characteristic cannot be exploited to mount distinguishing attack
on full TRIFLE-BC, we can attack 43 out of 50 rounds of TRIFLE-BC, revealing
the powerful effect of such an iterative differential characteristic. In a word, when
taking into account the combination of the S-box and linear transform in TRIFLE-BC,
an interesting and surprising iterative differential characteristic with hamming weight
1 is identified, which holds with probability 2−3. Some related analytical results are
presented in Table 1.

Table 1: The analytical results of TRIFLE

Attack Type Target Rounds Data Time Ref.

Distinguishing attack TRIFLE-BC 43 2124 2124 Section 4.1
Forgery attack TRIFLE 21 263 263 Section 4.2

Key-recovery attack TRIFLE 11 263 2104 Section 4.3
Key-recovery attack TRIFLE-BC 44 2126 2126 Section 4.3
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Organization This paper is organized as follows. The notations and the description of
TRIFLE are given in Section 2. Then, we reveal the iterative differential characteristic
of TRIFLE-BC in section 3. The application of this iterative differential characteristic
on distinguishing attack, forgery attack and key-recovery attack is detailed in Section 4.
Finally, we conclude the paper in Section 5.

2 Preliminaries

In this section, we give a description of the notations and the primitive TRIFLE.

2.1 Notation

For a better understanding of this paper, some notations are given below.

1. W represents the internal state of TRIFLE-BC.
2. W i represents the input state of the i-th round of RIFLE-BC where (0 ≤ i ≤ 49).
3. W i

s/W
i
p respectively represent the internal state after SubNibbles/BitPermutaion

in the i-th round of TRIFLE-BC.
4. ∆W i/∆W i

s/∆W i
p respectively represent the xor difference of W i, W i

s and W i
p.

5. Z[i] represents the i-th bit of Z (Z can be W i, W i
s, W i

p · · ·). Z[0] denotes the least
significant bit of Z.

6. Z[ j ∼ i] represents the j-th bit to the i-th bit of Z (Z can be W i, W i
s, W i

p · · ·). For
example, Z[1 ∼ 0] denotes the two bits Z[1] and Z[0].

7. ≫ and ⊕ respectively represent the logic operation: rotate right and exclusive or.
8. A||B represents the concatenation of A and B.

2.2 Specification of TRIFLE

TRIFLE is a block cipher based authenticated encryption mode with block size n = 128
that receives an encryption key K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, an associated data
A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs and returns a ciphertext C ∈ {0, 1}|M|

and a tag T ∈ {0, 1}128, where |M| represents the length of M in number of bits.
The underlying block cipher is denoted by TRIFLE-BC. TRIFLE employs a MAC-
then-Encrypt type paradigm, where CBC style authentication is done on the nonce,
associated data and the plaintext to generate the tag. This tag is then used as a random IV
in an output feedback mode of encryption to generate the ciphertext. The construction
of TRIFLE is depicted in Fig. 1, where Prefix is a constant to represent whether
the associated data A and message M are empty. Besides, OZP is the function that
applies optional 10∗ padding on n bits, i.e., OZP(X) = 0n−|X|−1||1||X when |X| < n, and
OZP(X) = X, if |X| = n. More details of TRIFILE can be found at [9].

The underlying block cipher TRIFLE-BC (EK in Fig. 1) used in TRIFLE receives a
128-bit plaintext P and a 128-bit key K = (K7||K6||...||K0), where Ki ∈ F16

2 (0 ≤ i ≤ 7).
The internal state of TRIFLE-BC W can be viewed as 32 4-bit nibbles. The block cipher
TRIFLE-BC is composed of 50 rounds and each round consists of four consecutive
operations SubNibbles, BitPermutation, AddRoundKey and AddRoundConst, as
specified in the following. More details can be found at [9].
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Fig. 1: The construction of TRIFLE

SubNibbles TRIFLE-BC uses an invertible 4-bit S-box and applies it to every nibble
of the internal state. The specification of this S-box can be found at Table 4. The
corresponding Differential Distribution Table (DDT) can be found at Table 2.

BitPermutation TRIFLE-BC uses an optimal bit permutation to create maximal
diffusion. This permutation maps bits from bit position i of the cipher state to bit
position P(i), where P(i) = i/4 + (i mod 4) × 32. The bit mapping table can be seen
at Table 3.

AddRoundKey The round key is xored with the interal state (W[4i + 1],W[4i + 2])
(0 ≤ i ≤ 31). Specifically, suppose the 128-bit Ki = (Ki

7||K
i
6||...||K

i
0) (0 ≤ i ≤ 49)

represents the key used in the i−th round. Then, at round i, the key addition is proceeded
as follows.

U i[31]||...||U i[0]← Ki
4||K

i
5,

V i[31]||...||V i[0]← Ki
1||K

i
0,

W[4 j + 2]← W[4 j + 2] ⊕ U i[ j] (0 ≤ j ≤ 31),
W[4 j + 1]← W[4 j + 1] ⊕ V i[ j] (0 ≤ j ≤ 31).

As can be seen, we can also denote the i-th round key by (U i,V i), where U i ∈ F32
2

and V i ∈ F32
2 . After key addition, the round key used for next round is generated as

follows, which is similar to the one used in GIFT-128 [3].

Ki+1
7 ||...||K

i+1
0 ← Ki

1 ≫ 2||Ki
0 ≫ 12||Ki

7||...||K
i
2.
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Table 2: DDT of S-box of TRIFLE-BC

∆in/∆out 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 2 2 0 2 0 4 2 2 0
2 0 2 0 0 0 2 0 0 0 4 0 2 2 2 2 0
3 0 2 2 0 2 2 0 4 0 2 0 2 0 0 0 0
4 0 0 2 4 0 0 0 2 0 2 2 2 0 2 0 0
5 0 0 0 0 0 4 2 2 0 2 2 0 0 2 0 2
6 0 0 2 2 2 0 0 2 2 0 2 0 0 0 4 0
7 0 0 2 2 4 0 0 0 0 2 0 2 2 0 0 2
8 0 0 0 2 2 2 4 2 0 0 0 2 0 0 2 0
9 0 2 2 0 0 0 0 0 2 0 2 4 2 2 0 0
a 0 0 0 2 0 2 0 0 0 0 4 2 2 0 2 2
b 0 2 4 0 0 0 2 0 0 2 0 0 2 2 0 2
c 0 2 0 0 2 2 2 0 2 0 0 0 0 4 2 0
d 0 4 0 2 0 0 2 0 2 0 0 0 2 0 2 2
e 0 0 0 2 2 0 2 2 4 2 0 0 0 0 0 2
f 0 2 2 0 2 2 0 0 2 0 2 0 0 0 0 4

Table 3: The TRIFLE-BC BitPermutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 32 64 96 1 33 65 97 2 34 66 98 3 35 67 99

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 36 68 100 5 37 69 101 6 38 70 102 7 39 71 103

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 40 72 104 9 41 73 105 10 42 74 106 11 43 75 107

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 44 76 108 13 45 77 109 14 46 78 110 15 47 79 111

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P(i) 16 48 80 112 17 49 81 113 18 50 82 114 19 51 83 115

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P(i) 20 52 84 116 21 53 85 117 22 54 86 118 23 55 87 119

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P(i) 24 56 88 120 25 57 89 121 26 58 90 122 27 59 91 123

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P(i) 28 60 92 124 29 61 93 125 30 62 94 126 31 63 95 127
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AddRoundConst The 6-bit round constant is xored with the following 6 internal state
bits: W[23], W[19], W[15], W[11], W[7] and W[3]. Besides, a constant bit 1 is added to
in the most significant bit W[127]. The 6-bit round constant is generated with the same
6-bit affine LFSR used in SKINNY [5].

Table 4: The S-box of TRIFLE-BC

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) 0 c 9 7 3 5 e 4 6 b a 2 d 1 8 f

2.3 Security Claim of TRIFLE

The designers of TRIFLE make a security claim for TRIFLE under IND-CPA and INT-
CTXT security mode, as shown in Table 5. The data complexity of the attack quantifies
the online resource requirements, and includes the total number of blocks (among all
messages and associated data) processed through the underlying block cipher for a fixed
master key. Therefore, the data complexity of our forgery attack and key-recovery attack
are both below 264. Note that the security claims are valid in nonce-misuse scenario as
well.

Table 5: Security claim of TRIFLE by the designers

Security Mode Data Complexity Time Complexity
IND-CPA 264 2128

INT-CTXT 264 2128

3 1-Round Iterative Differential Characteristic of TRIFLE-BC

The 1-round iterative differential characteristic of TRIFLE-BC is found with an MILP
method based on Sun et al’s work [21]. Actually, even without such an MILP-based
method, such a result can be obtained as well if taking a detailed look at the Differential
Distribution Table (DDT) and the BitPermutation. The 1-round iterative differential
characteristic ∆W i → ∆W i+1 is

∆W i = 0x0000 0000 0000 0000 0000 0400 0000 0000,

∆W i+1 = 0x0000 0000 0000 0000 0000 0400 0000 0000,
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which holds with probability of 2−3. An illustration can be seen in Fig. 2.
The correctness of this differential can be seen as follows. Based on DDT, the

following difference propagation ∆W i → ∆W i
s will hold with probability of 2−3.

∆W i = 0x0000 0000 0000 0000 0000 0400 0000 0000,

∆W i
s = 0x0000 0000 0000 0000 0000 0200 0000 0000.

As can be observed, ∆W i
s[41] = 1 and ∆W i

s[ j] = 0 (0 ≤ j ≤ 127, j , 41). According to
the definition of BitPermutation in Table 3, we have

∆W i
p[42] = ∆W i

s[41] = 1,

∆W i
p[ j] = 0 (0 ≤ j ≤ 127, j , 42).

Consequently,

∆W i+1 = ∆W i
p = 0x0000 0000 0000 0000 0000 0400 0000 0000.

Fig. 2: The s-round iterative differential characteristic. The gray box represents the
active s-box and the blue box represents the inactive s-box.

4 Application

With the 1-round iterative differential characteristic, we can mount distinguishing attack
on reduced TRIFLE-BC, forgery attack on reduced TRIFLE and key-recovery attack on
reduced TRIFLE. The details of the three attacks will be presented as follows.
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4.1 Distinguishing Attack on Reduced TRIFLE-BC

Since there is a 1-round iterative differential characteristic holding with probability of
2−3, an intuitive way is to construct an n-round distinguisher holding with probability of
3−3n. Indeed, the distinguisher can be better. Instead of starting from the input difference
∆it and ending at the output difference ∆it for the n-round differential, where

∆it = 0x0000 0000 0000 0000 0000 0400 0000 0000,

we can start from the input difference ∆st and end at the output difference ∆en so that
the difference propagation in the first round (∆st → ∆it) and the last round (∆it → ∆end)
can hold with the highest probability. According to DDT, the choice for ∆st and ∆en is

∆st = 0x0000 0000 0000 0000 0000 0b00 0000 0000,

∆en = 0x0000 0000 0000 0000 0000 0400 0000 0400.

The reason is that both S (b ⊕ x) ⊕ S (x) = 2 and S (4 ⊕ x) ⊕ S (x) = 3 (x ∈ F4
2) hold with

probability 2−2. In other words, for the n-round differential characteristic ∆st → ∆en, the
iterative differential characteristic ∆it → ∆it is located in the intermediate n − 2 rounds.
As a result, the n-round differential characteristic ∆st → ∆en will hold with probability
of 22−3n. With such an n−round differential characteristic, we can mount distinguishing
attack on n-round TRIFLE-BC with data complexity 23n−2 and time complexity 23n−2.
Thus, the distinguishing attack can reach up to 42 (out of 50) rounds of TRIFLE-BC.

Indeed, since there is no whitening key used in TRIFLE-BC, we can peel off the
SubNibbles and BitPermutation operations in the first round. In other words, we start
the distinguishing attack from the state W0

p. In this way, we can increase the above
distinguisher by one more round. Thus, we can mount distinguishing attack on (n + 1)-
round TRIFLE-BC with data complexity 23n−2 and time complexity 23n−2. Thus, the
distinguishing attack can reach up to 43 (out of 50) rounds of TRIFLE-BC, whose time
complexity and data complexity are both 2124.

Remark The designers of TRIFLE [9] have used the MILP method [21] to find
the best differential characteristics for up to 10 rounds and list their corresponding
probability. The best differential characteristics for r (4 ≤ r ≤ 10) rounds all hold
with probability of 22−3r. In fact, according to the DDT, we can observe that all the
difference transactions (1 → 8, 2 → 1, 4 → 2, 8 → 4) through an S-box hold with
probability 2−3. Since the linear transform is only a bit permutation, one can always
construct 128 such differential characteristics, where only one bit is active in the input
of each round, thus explaining why the solver returns such a result. Among all of them,
the one-round iterative differential characteristic is unique and can be easily utilized to
mount forgery attack, as will be detailed below.

4.2 Forgery Attack on Reduced TRIFLE

The overview of our forgery attack on n-round TRIFLE is illustrated in Fig. 3, where

∆it = 0x0000 0000 0000 0000 0000 0400 0000 0000.
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Specifically, insert difference at the nonce N and the first associated data block A0 so that
∆N = ∆it and ∆A0 = ∆it. In this way, ∆CS = ∆N ⊕ ∆A0 = 0. Then, if the output difference
of the second block equals to ∆it, a collision of the tag T is found. Therefore, the success
probability to mount the forgery attack on n-round TRIFLE is equal to the probability
of the n-round differential characteristic ∆it → ∆it, which holds with probability 2−3n.
The procedure of our forgery attack is as follows. Since the data complexity cannot
exceed 264, we set the message M empty.

Step 1: The attacker randomly choose a nonce N and a 128-bit associated data A. Then,
he sends an encryption query (A,M,N) and receives (C,T ).

Step 2: The attacker then sends an decryption query (A ⊕ ∆it,C,T,N ⊕ ∆it). If the
decryption succeeds, a forgery is achieved. Otherwise, return Step 1 until the
decryption succeeds.

Therefore, we can mount forgery attack on TRIFLE for up to 21 rounds. The
corresponding data complexity and time complexity are both 263. Note that a generic
forgery attack on full TRIFLE will require 264 queries. Therefore, our forgery attack on
21 rounds of TRIFLE only slightly outperforms the generic attack. For forgery attack
on smaller rounds r (1 ≤ r ≤ 20), the data and time complexity are both 23r. Since the
designers claim that TRIFLE is a nonce misuse resistant primitive, the same nonce can
be reused. Thus, we can efficiently construct a forgery under the same master key with
only one query after the above forgery attack procedure succeeds. Specifically, once we
know (A,M,N) and (A⊕ ∆it,M,N ⊕ ∆it) can generate the same tag T , where M is empty,
we can randomly choose another value for A′ and send an encryption query (A′,M,N)
to receive (C′,T ′). Then, we can always know that (A′ ⊕ ∆it,C′,T ′,N ⊕ ∆it) is a valid
forgery.

Fig. 3: Overview of forgery attack

4.3 Key-recovery Attack on Reduced TRIFLE

In this section, we present a key-recovery attack on reduced TRIFLE under the classical
differential attack framework. Similarly, we firstly give an overview of our attack in
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Fig. 4. Different from the forgery attack, we expect there is difference in the input to the

Fig. 4: Overview of key-recovery attack

last block to generate the tag. Therefore, we set ∆N , ∆it so that ∆CS , 0 and ∆T , 0.
However, to make the best use of the iterative differential characteristic, we have to
ensure that the 1-round differential characteristic ∆N → ∆it and ∆N ⊕ ∆it = ∆CS →

∆it is possible. Actually, similar case has been discussed in the distinguishing attack.
According to DDT, we set the choice for ∆N as

∆N = 0x0000 0000 0000 0000 0000 0f00 0000 0000.

Then, ∆CS will be

∆CS = 0x0000 0000 0000 0000 0000 0b00 0000 0000.

In this way, the 1-round differential characteristic ∆N → ∆it and ∆CS → ∆it will hold
with probability of 2−3 and 2−2 respectively.

Suppose the aim is to mount key-recovery attack on r rounds of TRIFLE.
Then, at the last block to generate the tag, we guess the last two round keys
(Ur−1,Vr−1,Ur−2,Vr−2) and compute backward to observe the input difference of the
two active S-boxes in the (r − 2)-th round. In this case, the differential used for the key-
recovery attack is equivalent to a (2r − 2)-round differential (∆N → ∆en), as depicted in
Fig. 5. The value of ∆en is the same as defined in Section 4.2, as shown below.

∆en = 0x0000 0000 0000 0000 0000 0400 0000 0400.

Consequently, the equivalent (2r − 2)-round differential (∆N → ∆en) will hold with
probability of 22−3(2r−2). Since the data complexity cannot exceed 264, r can be at most
11. In other words, to mount key-recovery attack on 11-round TRIFLE, we can use an
equivalent 20-round iterative differential characteristic as a distinguisher, which holds
with probability 2−58.

Now, we give a detailed description of the phase to recover the key with the
equivalent 20-round differential (∆N → ∆en). According to ∆en, we need to observe
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Fig. 5: Presentation of the differential used for key-recovery attack

the difference ∆W9[43 ∼ 40] and ∆W9[11 ∼ 8]. Before stating the procedure to recover
the key, we firstly explain which bits of the last two round key should be guessed. An
illustration is given in Fig 6 and a detailed description is given below.

– To compute W9[43 ∼ 40], we need to know (W9
p[106],W9

p[74],W9
p[42],W9

p[10]),
which requires the knowledge of (U9[26],U9[18],U9[10],U9[2]).

– To compute (W10[106],W10[74],W10[42],W10[10]), we need to know W10
p [i], where

i ∈ {122, 90, 58, 26, 114, 82, 50, 18, 106, 74, 42, 10, 98, 66, 34, 2}.

Thus, we need to guess U10[ j], where

j ∈ {30, 22, 14, 6, 28, 20, 12, 4, 26, 18, 10, 2, 24, 16, 8, 0}.

– To compute W9[11 ∼ 8], we need to know (W9
p[98],W9

p[66],W9
p[34],W9

p[2]), which
requires the knowledge of (U9[24],U9[16],U9[8],U9[0]).

– To compute (W10[98],W10[66],W10[34],W10[2]), we need to know W10
p [i], where

i ∈ {120, 88, 56, 24, 112, 80, 48, 16, 104, 72, 40, 8, 96, 64, 32, 0}.

According to the definition of AddRoundKey, all the above 16 bits can be directly
deduced from the value of tag. This is because that only partial bits of the internal
states are xored with the round key.

As can be seen from the above explanation, we need to guess 16 + 8 = 24 key bits
in total in order to observe the difference ∆W9[43 ∼ 40] and ∆W9[11 ∼ 8]. Now, we
give the complete procedure to recover the key as follows.

Step 1: Data Collection. The attacker randomly chooses a nonce N and a 128-bit
associated A and an empty message M. Then, he sends an encryption query
(A,M,N) and receives (C,T ). Then, he choose a new nonce N′ = N ⊕∆N and a
new 128-bit associated A′ = A ⊕ ∆it and an empty message M. Then, he sends
an encryption query (A′,M,N′) and receives (C′,T ′). He repeats this step 2t0

times so as to obtain 2t1 valid pairs (T ,T ′) for key recovery phase. A valid pair
(T ,T ′) should satisfy that some bits of ∆T = T ⊕ T ′ are zero, i.e., ∆T [ j] should
be zero, where

0 ≤ j ≤ 127
j < {122, 90, 58, 26, 114, 82, 50, 18, 106, 74, 42, 10, 98, 66, 34, 2}
j < {120, 88, 56, 24, 112, 80, 48, 16, 104, 72, 40, 8, 96, 64, 32, 0}
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Fig. 6: To-be-guessed key bits in the last two rounds

Besides, since W10[i] are computable without knowing the key information,
where

i ∈ {120, 88, 56, 24, 112, 80, 48, 16, 104, 72, 40, 8, 96, 64, 32, 0},

we need to check whether the difference ∆W10 is valid for the obtained (T,T ′),
i.e., among the above 16 bits, only W10[98],W10[66],W10[34] and W10[2] are
allowed to have difference.

Step 2: Key-Recovery. The attacker initialize an array CNT of size 224 with zero. Each
row number of the array represents one possible value of the 24 to-be-guessed
key bits. For the collected 2t1 valid pairs (T,T ′), the attacker guess the round
key as follows.
Step 2.1: Independently guess the value of (U10[30],U10[22],U10[14],U10[6]),

(U10[28],U10[20],U10[12],U10[4]), (U10[26],U10[18],U10[10],U2[4])
and (U10[24],U10[16],U10[8],U10[0]) and independently check whether
the difference of W10[107 ∼ 104], W10[74 ∼ 72], W10[43 ∼ 40] and
W10[11 ∼ 8] are valid difference, i.e., only W10[106],W10[74],W10[42]
and W10[10] are allowed to have difference. If they are, record the
corresponding guess. After this step, the attacker is expected to
obtain about 24 possible values for the 16 guessed key bits of U10.
The time complexity of this step is 4 × 24 = 26. For each of the
obtained possible values, the attacker carries out Step 2.2.

Step 2.2: The attacker independently guess the value of U9[i] (i ∈ {26, 18, 10, 2})
and U9[i] (i ∈ {24, 16, 8, 0}). Then, if the guessed value for U9[i]
(i ∈ {26, 18, 10, 2}) and U9[i] (i ∈ {24, 16, 8, 0}) can make W9 equal
to ∆en, the attacker accordingly increase the element by 1 in the row
of CNT while represents the corresponding guessed value for the 24
to-be-guessed key bits.
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Step 3: Determine. After all valid pairs (T,T ′) are used, check the array CNT. It is
expected that the correct guess for the 24 to-be-guessed key bits will correspond
to a row with maximum value.

Since the equivalent 20-round differential holds with probability 2−58 and the data
complexity cannot exceed 264, we choose 262 randomly values for (A,N) and expect to
obtain 24 valid pairs (T,T ′) so that we can further confirm the correctness of the value
for 24 to-be-guessed key bits. In this way, we can recover 24 bits of the key with time
complexity and data complexity 263. The remaining 104 key bits can be guessed by
brute force at the offline phase based on the key scheduling algorithm of TRIFLE-BC.
Thus, the time complexity and data complexity of the key-recovery attack on 11-round
TRIFLE are 2104 and 263 respectively.

Key-Recovery Attack on TRIFLE-BC It is also interesting to investigate the key-
recovery attack on TRIFLE-BC to help further understand the security of TRIFLE-
BC, even though such an attack cannot work for real TRIFLE. Indeed the above key-
recovery strategy can be completely applied to TRIFLE-BC trivially. Thus, we are able
to mount key-recovery attack on TRIFLE-BC for up to 42+2=44 rounds by using the
42-round differential that holds with probability of 2−121. We reduce the number of
rounds of the distinguisher in Section 4.1 so that it can increase our confidence of the
correctness of this attack. Similarly, we prepare 2121+4 = 2125 pairs of plaintext so that
there are 24 valid ciphertext pairs for usage. Therefore, the total complexity of this key-
recovery attack is dominated by the data collection phase, which requires 2126 plaintexts
and 2126 time. We believe that such a key-recovery attack can be improved.

4.4 Experiments

To make the above theoretical results more convincing, we list a forgery (collision)
for 10-round TRIFLE as following to demonstrate the correctness of the iterative
differential characteristic. It is found with the reference implementation of TRIFLE [9].
To make the output in the implementation consistent with this paper, we changed the
output format from the little-endian format to big-endian format.

K = 0x0a0a061117090f121b011a08030e0802,

N = 0x1b050b100d130a060919000415190e19,

A = 0x061e1a0c040104100202161a1b021a09,

M = Empty string,
T = 0x28fa5821bf3278167acaa1b8f6de4603.

N ⊕ ∆it = 0x1b050b100d130a060919040415190e19,

A ⊕ ∆it = 0x061e1a0c040104100202121a1b021a09,

M = Empty string,
T = 0x28fa5821bf3278167acaa1b8f6de4603.
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5 Conclusion

Although the designers claim that linear transform in TRIFLE-BC can provide sufficient
diffusion, we can still find an iterative differential characteristic with hamming weight
1 by taking into account the combination of S-box and linear transform. With such a
low-hamming-weight iterative differential characteristic, we can mount distinguishing
attack on TRIFLE-BC for up to 43 rounds, forgery attack on TRIFLE for up to 21
rounds and key-recovery attack on TRIFLE for up to 11 rounds. We hope our result can
help further understand the security of TRIFLE.
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