
Arcula:

A Secure Hierarchical Deterministic Wallet

for Multi-asset Blockchains

Adriano Di Luzio∗, Danilo Francati, and Giuseppe Ateniese

Stevens Institute of Technology, USA
{adiluzio,dfrancat,gatenies}@stevens.edu

December 10, 2019

Abstract

This work presents Arcula, a new design for hierarchical deterministic wallets that
brings identity-based addresses to the blockchain. Arcula is built on top of provably secure
cryptographic primitives. It generates all its cryptographic secrets from a user-provided
seed and enables the derivation of new public keys based on the identities of users, without
requiring any secret information. Unlike other wallets, it achieves all these properties while
being secure against privilege escalation. We formalize the security model of hierarchical
deterministic wallets and prove that an attacker compromising an arbitrary number of users
within an Arcula wallet cannot escalate his privileges and compromise users higher in the
access hierarchy. Our design works out-of-the-box with any blockchain that enables the
verification of signatures on arbitrary messages. We evaluate its usage in a real-world scenario
on the Bitcoin Cash network.

Keywords. Hierarchical Deterministic Wallet; Hierarchical Key Assignment; Bitcoin;
Blockchain.

1 Introduction

In recent years, the adoption of blockchain-based crypto-systems grew at an exponential rate.
At their core, these systems create a decentralized and democratic financial world where users
exchange their assets without relying on any central authority and where transactions get
delivered to the destination in a handful of seconds, by spending cents of a dollar in fees. For
these reasons, these systems attracted the interest of financial operators, banks, (decentralized)
exchanges, and e-commerce marketplaces that aim to increase the security and the usability of
their systems, reduce their business costs, and prepare for the financial market of the future.
With the adoption of these systems at scale, however, we face a new set of technological and
financial hurdles that we have never experienced before: (1) How to secure the digital assets
of a commercial company? (2) How to handle the delegation and separation of responsibilities
within the enterprise’s chain of command? (3) And how to enable a third-party (e.g., an auditor)
to evaluate past transactions of the company, and (4) to gather the list of its assets on the
blockchain?

∗The author is also a PhD Candidate at Sapienza University of Rome, Italy.

In this work, we aim at solving these challenges, and we focus on hierarchical deterministic
wallets. Similarly to how we keep our coins and our bills in a physical wallet, a blockchain wallet
holds all our crypto-assets (e.g., our Bitcoins, Ethers, and other coins). In particular, wallets
hold the cryptographic keys that allow us to spend these coins. Our goal is to design a wallet
that is cryptographically secure and easy to use: We specifically tackle the use cases of the
legacy and future blockchain-based crypto-systems and, in turn, the needs of the large-scale
enterprises that rely on them. The wallet that we aim to design is hierarchical and deterministic.
This means that: 1) The users can securely organize their keys in a hierarchy that reflects, for
example, the subdivision in departments of a company. This way, the managers of a company
can spend funds on behalf of their departments, but each department can only spend its own
funds. 2) The wallet deterministically generates every cryptographic key by starting from an
initial seed (e.g., a pseudorandom sequence derived from a mnemonic phrase). As a result, the
users can reliably recover all their keys even in the case of total loss (e.g., after a hardware
failure or a natural disaster).

To this end, we present Arcula, a hierarchical deterministic wallet named after the small casket
where ancient Romans used to store their jewels. We build Arcula on a deterministic variation of
hierarchical key assignment schemes (HKAs), a popular cryptographic primitive that has been
studied for more than 20 years. Arcula implements arbitrarily complex access hierarchies, allows
for their dynamic modifications, and can incorporate temporal capabilities into the generation
and storage of keys. In addition, Arcula ties the identities of users to their public signing keys
without requiring additional secret information — bringing to fruition identity-based hierarchical
cryptography (e.g., signatures) within the blockchain ecosystem. Unlike other wallets, Arcula
achieves these properties while being formally secure against privilege escalation. It relies on
simple cryptographic primitives and does not depend on any particular digital signature scheme.
As a consequence, Arcula is compatible with any blockchain that enables the verification of
signatures on arbitrary messages. We show its implementation in action in Bitcoin Cash, a fork
of the original Bitcoin crypto-system.

The rest of this work is organized as follows. In Section 2 we describe the properties of
hierarchical deterministic wallets and their applications. Section 3 and Section 4 respectively
discuss the related work and introduce the notation and the cryptographic primitives that we
use throughout the paper. Section 5 formalizes the security model of hierarchical deterministic
wallets. Section 6 and Section 7 describe our design of Arcula and show it in action in the real
world. Lastly, Section 8 concludes the paper.

2 Hierarchical Deterministic Wallets

A hierarchical deterministic wallet (HDW) enables a user to securely generate and store the
cryptographic keys associated with her coins. Blockchain-based crypto-systems typically rely on
digital signatures and pairs of secret and public signing keys: Users spend their assets by signing
a transaction with the secret key; the others verify the authenticity of the signature through the
public key. Public keys can be derived from the corresponding secret keys, but not vice-versa.
On a high level, a hierarchical deterministic wallet holds a collection of secret signing keys.

An HDW deterministically generates its keys by starting from an initial seed provided by the
user. As long as the user remembers the seed, she will be able to recover her keys, even in case
of wallet loss. Besides, an HDW also organizes the keys under an access hierarchy, where each
element represents a group of users and associated a pair of signing keys to them. The privileges
of users depend on their level in the hierarchy. Users with higher privileges (i.e., higher in the
hierarchy), must be able to derive the keys of users on lower levels and in turn, to sign messages
(i.e., transactions) on their behalf. Users on lower levels, however, should not be able to escalate

2

their privileges along the hierarchy, not even when colluding with others. Finally, an HDW
should also provide an additional fundamental property: It must be possible to deterministically
generate every public key of the wallet by starting from a master public key (depending on
the user seed), without requiring any secret information in the process. As we shall see, this
requirement enables a set of creative use cases for HDW (e.g., public auditing of blockchain
assets, and generation of new keys in untrusted environments).

2.1 Properties

In more detail, let ski be the secret signing key of a user vi of a hierarchy and let pki be the
corresponding public key. Let skj and pkj be, respectively, the secret and public keys associated
with a descendant vj of vi (i.e., a user with lower privileges in the hierarchy). A hierarchical
deterministic wallet shall have the following properties:

Property 2.1 (Security against privilege escalation). For any set of colluding descendants of vi
it is computationally infeasible to recover the secret key ski of vi.

Property 2.2 (Deterministic secret derivation). For each descendant vj of vi, the secret keys
skj is deterministically generated by using the secret information of vi. If vj has the highest
privileges in the hierarchy, then her secret information are generated from a user-provided seed.

Property 2.3 (Public-key derivation). The public key pkj of each descendant vj of vi is
deterministically generated only using public information; the generation process does not
require the secret key ski or any other secret information.

The three properties, together, define the ideal hierarchical deterministic wallet. Property 2.1
guarantees the security of the wallet: Colluding users cannot escalate their privileges to recover
the secret keys of others higher in the hierarchy. Property 2.2 ensures that all secrets are
deterministically generated along the hierarchical path that links the most privileged users to
their descendants, and so on. Property 2.3 requires the public keys to be dynamically derivable
without requiring any private information. As we will see, in the past, this property proved to
be particularly hard to achieve while also guaranteeing the security of the underlying wallets.
Nonetheless, it is crucially important as it enables the novel applications of HDW within the
blockchain that we discuss in Section 2.2. Finally, we note that every wallet in which the public
derivation property holds, inevitably reveals the relation between the public keys of the wallet,
making it impossible to achieve any privacy-related notion, e.g., unlinkability of transactions.
We discuss this issue in Section 7.5.

2.2 Applications

Hierarchical deterministic wallets enable different use cases, inspired by both well established and
innovative financial applications that specifically tackle the needs of enterprises, governments,
and financial institutions. Individual users will also find HDW useful, leveraging their increased
security and their deterministic reliability and, if they choose so, to achieve unlinkability of their
transactions.

We discuss the benefits of HDW for individuals in Section 7.5. Here, instead, we focus on
the applications of HDW at scale, that target (hundreds of) thousands of customers distributed
across the world.

Enterprises: In enterprises (e.g., financial institutions, or exchanges), the hierarchy of a
deterministic wallet might reflect the underlying chain of command or the subdivision in
regions, departments, and teams. It allows managers to distribute funds among different

3

branches and ensure fiscal responsibility. In particular, each branch can manage its funds
but are not allowed to spend those of other units. The deterministic generation of keys
simplifies the management of secrets and guarantees a reliable recovery of the wallet, even
in case of catastrophic loss. Cryptocurrency exchanges that manage the keys of hundreds
of thousands of users might find this feature particularly useful: Through the HDW, they
generate pairs of keys that take into account the hierarchy of users and then rely on the
master seed to handle their recovery. Finally, the property of public-key derivation enables
enterprises to comply with financial laws and regulations without jeopardizing the security
of their infrastructure: E.g. it allows a (possibly untrusted) auditor to inspect the funds
that they hold by starting from the master public key and deriving all the public keys in
the wallet without relying on any additional secret information.

e-commerce: An HDW is distinctly beneficial to an e-commerce marketplace. Marketplaces,
such as Amazon, typically advertise and sell products to buyers. They also allow third-
party vendors to do the same. Cryptocurrencies could help manage the payment flow
to these vendors. When selling an item to a buyer, the marketplace generates a fresh
payment address for each crypto-coin that it supports. As soon as the buyer transfers the
required coins to one of the addresses and the blockchain confirms the transaction, the
item gets shipped. The generation of fresh payment addresses leverages the properties of
public-key derivation: Since it does not require any private information, it can take place
in an untrusted environment (e.g., a web server exposed to the internet) and allows the
e-commerce owner to derive the corresponding secret keys only when actually spending the
funds (e.g., by deriving them offline starting from an intermediate key of the wallet). Even
if an attacker compromises the webserver, he will not discover any secret keys, and thus
funds received before the attack remain safe and intact. In addition, public-key derivation
allows buyers or auditors to check the authenticity of the payment addresses since anyone
can generate them from the public key of the marketplace.

Decentralized Finance (DeFi): Decentralized Finance has recently started replacing many of
the existing traditional financial tools (e.g., loans and futures) with open-source alternatives
based on the blockchain and its smart contracts. With DeFi, HDW can unleash their full
potential: The execution of smart contracts, indeed, cannot rely on any secret information
as both the source code and the processing inputs are stored in the clear on the public
blockchain. By combining HDW and public derivation, a DeFi smart contract can
autonomously derive the public key of the recipient of a transaction (e.g., a user that will
receive interests on a loan, or the employee of a company that will receive a percentage of
its shares). The process could take place on the blockchain and does not require manual
interactions. In turn, HDW and DeFi lay the foundations of a modern, democratic, and
decentralized financial world.

2.3 Threats and Security Model

We divide the set of possible threats to the security of hierarchical deterministic wallet in three
security levels that we describe according to increasing requirements of trust.

Untrusted Environment: This level is entirely untrusted. It refers, for example, to the
executing environment of a DeFi smart contract that relies on public key derivation
(Property 2.3) to generate fresh addresses to deliver payments.

Hot Environment: This level is semi-trusted. At this stage, the users can access their own
secret keys and derive those of their descendants. An attacker that compromises a user

4

Seed

Untrusted	Enviroment

Hot	EnviromentCold	Storage

Figure 1: A glance at the deterministic generation of secrets and identity-based public key
derivation within Arcula. The users l1 to l5 at the bottom of the figure create a hierarchy, encoded
as a directed acyclic graph. Arcula starts by deriving a pair of master keys (msk,mpk) from the
seed. The users are unequivocally identified by concatenating the master public key mpk with
their identities (e.g., l5). The master secret key msk allows the deterministic generation of secrets,
so that every secret transitively depends on the initial seed. The hierarchical deterministic key
assignment at the core of Arcula relies on the msk and enables users with higher privileges to
derive the secrets of their descendants (e.g., enabling l1 to start from her secret information and
derive the secret key sk4 of l4). Finally, Arcula associates secret keys to their corresponding
identities by providing each user with a certificate signed by the msk: cert4, e.g., associates l4
with the secret key sk4. This approach enables Arcula to flexibly add new users to the hierarchy
without requiring secret information. The user l5 was dynamically added to the hierarchy, and
her public key was obtained through identity-based derivation, but she still does not have any
secret information associated with her. This means that she can receive funds (e.g., on the
blockchain) and that the certificate and her secret information will only be required when she
will spend them.

of the hot environment will compromise, in turn, only her descendants in the hierarchy
(Property 2.1).

Cold Storage: This is the most trusted level of the security model, holding the seed used
to generate every key within the wallet deterministically. It typically corresponds to an
offline location (e.g., a hardware token used to instantiate the wallet) that is physically
secured (e.g., in a safe). An attacker that compromises the cold storage has full access to
the wallet and to every asset that it holds.

In Sections 2.4 and 3, we analyze our construction and the related work under the spotlight of
this security model.

2.4 Arcula at First Glance

Figure 1 provides an overview of the design of Arcula, our hierarchical deterministic wallet.
Arcula starts from the seed to deterministically generate a master pair of secret and public
keys (msk,mpk). After the initial instantiation, the seed and the master secret key can be
safely moved to cold storage. The master public key uniquely identifies the wallet and will
be used in the public key derivation process. In more detail, Arcula generates the public key

5

Table 1: Comparison between Arcula and the existing state-of-the-art solutions.

Security to
Privilege Escalation

(Property 2.1)

Public Key
Derivation

(Property 2.3)

Deterministic
Generation

(Property 2.2)
Hierarchy

BIP32 [21] No Yes Yes Tree
Hardened BIP32 [21] Yes No Yes Tree

Gutoski and Stebila [16] No Bounded Yes Tree
Fan et al. [12] No Yes Yes Tree

Poulami et al. [9] − − − No
Goldfeder et al. [15] − − − No
Gennaro et al. [13] − − − No

Dikshit and Singh [11] − − − No

Arcula (Section 6) Yes Yes Bounded DAG

of i-th user of the hierarchy by concatenating the master public key mpk and her identity li
(e.g., a numerical index or a bit string). As a result, public-key derivation in Arcula can be
executed, by design, in any untrusted environment. The master secret key msk allows, instead,
to deterministically generate the secret keys ski corresponding to the users of the hierarchy.
In particular, Arcula generates the secret keys by relying on deterministic hierarchical key
assignment: A provably secure cryptographic scheme through which we assign a derivation key
to every user of the hierarchy, that, in turn, they will use to derive their own secret key and
those of their descendants. The private key generation should be executed in the context of the
hot environment, as compromising a single user will lead to compromising every descendant.
Finally, Arcula explicitly associates secret keys to their corresponding identity-based public keys
through a certificate certi, signed by the master secret key msk, that links the public identity li
(top of Figure 1) to the secret key ski generated by the deterministic key assignment scheme
(bottom of Figure 1).

The identity-based approach that we realized with Arcula provides several advantages: First,
it solves the problem of distributing a public key for each user of the hierarchy and of associating,
off the blockchain, to the identity of an individual. In addition, it allows for generating an
unbounded number of addresses for receiving transactions. On the other hand, Arcula relies
on certificates signed by the master secret key to associate the secret key of a user with their
identity, to which the transaction was addressed. The users only require these certificates when
they sign a transaction for the first time: This means that their creation can be delayed until
that moment and that it can happen entirely offline.

3 Related Work

Bitcoin Improvement Proposal 32 (BIP32) defines the state of the art implementation of
hierarchical deterministic wallets [21]. In short, let g be the generator point of an Elliptic Curve.
A private key ski is associated with its public key pki = gski . Let H be a hash function; the
descendants’ private keys skj is defined as:

skj = H(pki‖j) + ski (1)

6

The corresponding public keys pkj , instead:

pkj = gskj

pkj = gH(pki‖j)+ski

pkj = gH(pki‖j) · gski

pkj = gH(pki‖j) · pki (2)

Equations (1) and (2) satisfy the properties of deterministic generation and public derivation
(Properties 2.2 and 2.3). However, Equation (1) creates a privilege escalation vulnerability where
the knowledge of a descendant private key skj and the parent public key pki allows recovering
the parent private key ski:

ski = skj − H(pki‖j) mod q

This privilege escalation vulnerability has been discussed extensively [21, 6, 7, 16]. In the context
of our threat model, there is no distinction between the cold storage and the hot environment,
since compromising any node leads to compromising the entire wallet.

BIP32 addresses this issue by designing a hardened key derivation method that generates a
descendant private key skhj as follows:

skhj = H(ski‖i) + ski mod q (3)

The hardened derivation solves the privilege escalation vulnerability but looses the public key
derivation (i.e., trades Property 2.3 for Property 2.1). Generating a hardened public key pkhj
now requires the parent secret key ski:

pkhj = gsk
h
j = gH(ski‖j)+ski = gH(ski‖j) · pki

In Table 1 we compare Arcula, our hierarchical deterministic wallet, with (hardened) BIP32
and the related works. BIP32 does not satisfy the security to privilege escalation property. The
hardened version of BIP32, instead, fails in deriving public keys without requiring additional
secrets. Gutoski and Stebila [16] propose an HDW strengthens the security of BIP32. Their design
splits each secret key into n shares, distributed to the descendants of the user; reconstructing the
secret key requires at least m shares. This solution provides weaker security than Property 2.1,
because m colluding descendants of a user can recover the original secret key (as opposed to
preventing any set of colluding descendants from escalating their privileges). In addition, they
support Property 2.3 by publishing the public keys of all the users in the wallet. They do not
allow the generation of fresh public keys, and their derivation is bounded to the number of
published keys. Fan et al. [12] develop an HDW based on Schnorr signatures and trapdoor hash
functions that enables the users to sign new transactions without accessing their private keys. A
generic user can sign transactions on behalf of its descendants only after authorization by the
root of the hierarchy that needs to reveal her the master private trapdoor key. As a result, any
authorized user is able not only to sign new transactions on behalf of its descendants but also of
all the users of the hierarchy. Compromising a single authorized user leads to revealing every
secret stored in the wallet — the cold storage and hot environment of our threat model overlap,
and the scheme is not secure against privilege escalation. Poulami et al. [9] provide a formal
definition of non-hierarchical deterministic wallets and show a set of modifications that make
ECDSA-based deterministic wallets provably secure. Goldfeder et al. [15] and subsequently
Gennaro et al. [13] propose a non-hierarchical deterministic wallet where the secret key is shared
among n parties, and at least t of them are required to sign a transaction. Dikshit and Singh [11]
extend the threshold-based ECDSA signatures to assign different weights to the participants of

7

the protocol. These works deal with non-hierarchical deterministic wallets, and they do not aim
at achieving Properties 2.1 to 2.3 (depending on the hierarchical structure of the wallet).

Arcula, on the other hand, is the only solution secure against privilege escalation that, at the
same time, enables identity-based unbound public key derivation. Spending the coins addressed
to one of its users, however, requires the creation of a certificate that associates their identities
to their keys. For this reason, Property 2.2 and, more precisely, spending coins within Arcula, is
bound to the generation of a certificate, signed by the master secret key, that authorizes the
users. The deterministic generation of secret keys, instead, relies on an unbound hierarchical
key assignment. This approach provides some significant advantages and enables a set of novel
use cases: Users (e.g., enterprises, or smart contracts in decentralized finance) rely on the
identity-based derivation to generate in untrusted environments fresh public keys and addresses
on which they will securely receive coins. The certificates will only be required before spending
these coins, and their generation can happen entirely offline (e.g., in cold storage).

Finally, Arcula differentiates itself from the other solutions by supporting a complex access
hierarchy — e.g., a directed acyclic graph (DAG) — instead of a tree. Many of our novel use
cases require more complex hierarchies. Consider, for instance, two or more departments of a
company that collaborate on a project. They share a common budget and need to spend from it
without revealing their own secret key. The access hierarchy encoding this context would derive
a single node, the budget, as a successor of multiple others (the departments). Equations (1)
to (3) cannot handle hierarchies where a node has more than one predecessor—constraining
BIP32 only to implement access hierarchy that forms a tree. The hierarchical key assignment
scheme at the core of Arcula, instead, supports complex hierarchies and, in addition, it allows us
to dynamically modify the hierarchy (e.g., by deleting an intermediate node) and to incorporate
temporal capabilities (e.g., key expiration) into the wallet.

4 Preliminaries

4.1 Notation

We use the notation [n] = {1, . . . , n}. Uppercase boldface letters (such as X) are used to denote
random variables, lowercase letters (such as x) to denote concrete values, calligraphic letters
(such as X) to denote sets, and sans serif letters (such as A) to denote algorithms. Algorithms
are modeled as (possibly interactive) Turing machines; if algorithm A has access to some oracle
O, we often write QO for the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; |X | represents the cardinality of the set X .
When x is chosen randomly in X , we write x←$X . We write y = A(x) to denote a run of the
algorithm A on input x and output y; if A is randomized, y is a random variable and A(x; r)
denotes a run of A on input x and (uniform) randomness r. We write y←$A(x) to denote a
run of the randomized algorithm A over the input x and uniform randomness. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the input size).

Throughout the paper, we denote by λ ∈ N the security parameter and we implicitly assume
that every algorithm takes as input the security parameter. A function ν : N→ [0, 1] is called
negligible in the security parameter λ if it vanishes faster than the inverse of any polynomial
in λ, i.e., ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We write negl(λ) to denote an
unspecified negligible function in the security parameter.

4.2 Signature Scheme

A signature scheme with message space M is made of the following polynomial-time algorithms.

8

KGen(1λ): The randomized key generation algorithm takes the security parameter and outputs
a secret and a public key (sk, pk).

Sign(sk,m): The randomized signing algorithm takes as input the secret key sk and a message
m ∈M, and produces a signature σ.

Vrfy(pk,m, σ): The deterministic verification algorithm takes as input the public key pk, a
message m, and a signature σ, and it returns a decision bit.

A signature scheme is correct if honestly generated signatures always verify correctly.

Definition 4.1 (Correctness of signatures). A signature scheme Π = (KGen,Sign,Vrfy) with
message space M is correct if ∀λ ∈ N and ∀m ∈M, the following holds:

Pr[Vrfy(pk,m,Sign(sk,m))] = 1,

where (sk, pk)←$KGen(1λ).

For security we are interested in existential unforgeability, i.e, it must be infeasible to forge
a valid signature on a new fresh message.

Definition 4.2 (Unforgeability of signatures). A signature scheme Π = (KGen,Sign,Vrfy) is
existentially unforgeable under chosen-message attacks if for all PPT adversaries A:

Pr
[
Geuf

Π,A(λ) = 1
]
≤ negl(λ) ,

where Geuf
Π,A(λ) is the following experiment:

Setup: The challenger runs (sk, pk)←$KGen(1λ) and gives pk to A.

Query: The adversary has access to a signing oracle OSign(·). On input m, the challenger
computes and returns σ←$Sign(sk,m). Let QSign denote the the messages queried to the
signing oracle.

Forgery: The adversary outputs (m,σ). If m 6∈ QSign, and Vrfy(pk,m, σ) = 1, output 1, else
output 0.

5 Security Model of Hierarchical Deterministic Wallet

One of the contributions of this work is to formalize, for the first time, the security model of
hierarchical deterministic wallets (HDW). We define a hierarchical deterministic wallet over 5
algorithms (Set,DPub,DPriv, Sign,Vrfy), where: 1) Set deterministically instantiates the wallet
by generating the public parameters pp and a set of the derivation key di, one for each node
vi ∈ V of the hierarchy. 2) DPriv and DPub are responsible of the derivation of signing and
public keys (Properties 2.2 and 2.3). DPriv derives the signing key skj of a node vj , descendent
of vi, by using the derivation key di associated to vi; DPub derives the corresponding public
key pkj by using the only the public parameters pp. 3) Sign and Vrfy take inspiration from the
standard signing and verification algorithms of a digital signature scheme.

Concretely, let G = (V,E) be a directed acyclic graph (DAG) representing an access hierarchy.
We define the set of descendants Desc(vi) = {vj | vi w vj } of node vj to be the set of nodes vj
such that there exists a direct path w from vi to vj in G. A hierarchical deterministic wallet
Π = (Set,DPub,DPriv,Sign,Vrfy), defined over a seed space S and message space M is defined
in the following way:

9

Set(1λ, G, S): The deterministic setup algorithm takes as input a security parameter, an access
graph G = (V,E), and an initial seed S ∈ S, and outputs the public parameters pp and a
set of derivation keys {di}vi∈V .

DPub(pp, vi): The deterministic public derivation algorithm takes as input the public parameters
pp, a target node vi, and outputs the public key pki associated to node vi.

DPriv(pp, di, vi, vj): The deterministic private derivation algorithm takes as input the public
parameters pp, the derivation key di of node vi, and a target node vj ∈ Desc(vi), and
outputs the secret key skj associated to node vj .

Sign(ski,m): The randomized signing algorithm takes as input a message m ∈M, and a secret
key ski, and outputs a signature σ.

Vrfy(pki,m, σ): The deterministic verification algorithm takes as input a public key pki, a
message m, and a signature σ, and outputs a decisional bit b.

A hierarchical deterministic wallet is correct if any user can derive the private and public key
of its descendants and create a valid signature on behalf of them. This means that any node vi
can derive the signing key skj of any node vj ∈ Desc(vi) and produce, in turn, a valid signature
σ on behalf of vj (i.e., that passes the verification process against the public key pkj obtained
through public key derivation).

Definition 5.1 (Correctness of HDW). A hierarchical deterministic wallet Π = (Set,DPub,DPriv,
Sign,Vrfy), with seed space S and message space M, is correct if for every DAG G = (V,E),
∀vi, vj ∈ V, ∀vj ∈ Desc(vi),∀S ∈ S, ∀m ∈M the following conditions holds:

Pr
[
Vrfy(pkj ,m,Sign(skj ,m)) = 1

]
≥ 1− negl(λ) ,

where (pp, {di}vi∈V) = Set(1λ, G, S), skj = DPriv(pp, di, vi, vj), and pkj = DPub(pp, vj).

The security of a hierarchical deterministic wallet draws inspiration from existentially
unforgeable signatures. We allow an attacker to corrupt an arbitrary number of users in the
hierarchy—by corrupting a user; the attacker implicitly corrupts also all her descendants. In
addition, the attacker also has access to a signing oracle, that returns signatures on arbitrary
messages from any uncorrupted node. We challenge the attacker to forge a signature for a new
message on behalf of an uncorrupted node.

Definition 5.2 (Hierarchical existential unforgeability of HDW). A hierarchical deterministic
wallet is hierarchically existentially unforgeable under chosen-message attacks if for every DAG
G = (V,E) and PPT adversary A the following condition holds:

Pr
[
Gheuf

Π,A (λ,G) = 1
]
≤ negl(λ) ,

where experiment Gheuf
Π,A (λ,G) is defined in the following way:

Setup: The challenger samples a random S←$S and executes (pp, {di}vi∈V) = Set(1λ, G, S).
It gives the public parameters pp to A.

Query: The adversary A has access to the following oracles:

OCorr(·): On input vi ∈ V , the challenger answers by giving di to A. Let QCorr denote the
set of nodes vi that A corrupted, including their descendants Desc(vi).

10

OSign(·, ·): On input (m, vi) ∈ M × V , the challenger returns σ←$Signski(m) where
ski = DPriv(pp, d0, v0, vi). Let QSign denote the pairs (m, vi) for which A queried the
oracle OSign.

Forgery: A outputs a forgery (vi,m, σ). If Vrfypki(m,σ) = 1 where pki = DPub(pp, vi) and
vi /∈ QCorr, (m, vi) /∈ QSign, return 1; otherwise return 0.

6 Arcula: A Secure Hierarchical Deterministic Wallet

Arcula, the design that we present in this paper, satisfies the properties of HDW formalized
by Definitions 5.1 and 5.2. It is provably secure against key recovery; it deterministically derives
the private information from an initial seed; and it enables identity-based public key derivation.
It achieves such result by relying on two fundamental intuitions: Securely and deterministically
generating a set of keys for the users of a hierarchy and then explicitly associating these keys with
their identities. By doing so, Arcula provides a groundbreaking design that brings identity-based
cryptography to the blockchain, tackles explicitly novel use cases and applications, and stands
on more than 20 years of research in how to securely distribute keys to the users in a hierarchy.

At its core, indeed, Arcula derives the keys of the users by relying on a deterministic version
of hierarchical key assignment schemes (HKA): A provably secure process that, precisely as
it happens in an HDW, takes as input a hierarchy of users and assigns a secret key to every
user, so that users with higher privileges can derive the keys of those with fewer privileges.
To the best of our knowledge, hierarchical key assignment schemes have never been leveraged
before implementing an HDW. As a result, one of the contributions of this work is to bind
together, for the first time, these seemingly unrelated fields of research. In addition, hierarchical
key assignment schemes provide several advantages: They’re highly efficient and have been
extensively studied in the past; they enable Arcula to implement arbitrarily complex hierarchies,
to integrate temporal capabilities into the wallet, and to support the dynamic addition or removal
of users to the hierarchy.

The following sections first provide a brief background on (deterministic) hierarchical key
assignment schemes and then describe, in detail, our construction of Arcula.

6.1 Deterministic Hierarchical Key Assignment

A hierarchical key assignment scheme [3] assigns a set of cryptographic keys to a set of users in
a hierarchy. The hierarchy, encoded as a directed acyclic graph, represents the access rights of
users: A path from a node vi to a node vj implies that the user vi has higher privileges than vj
and can assume the same access rights of vj . An efficient hierarchical key assignment scheme
(HKA) enforces the access hierarchy while minimizing the number of keys distributed to the
users.

Typically, HKA schemes sample the cryptographic secrets that they assign at random. Our
goal, however, is to leverage an HKA at the core of our wallet, where each secret is deterministically
derived from a seed provided by the user. To do so, we propose a deterministic modification of
the HKA developed by Atallah et al. [3] that is secure under key indistinguishability (and as a
consequence guarantees Property 2.1 by design).

A Deterministic Hierarchical Key Assignment (DHKA) scheme with seed space S is composed
of the following polynomial-time algorithms:

Set(1λ, G, S): The deterministic setup algorithm takes as input the security parameter, a DAG
G = (V,E), and an initial seed S ∈ S, and outputs two mappings: 1) a public mapping
Pub : V ∪ E → {0, 1}∗, associating a public label li to each node vi in G and a public

11

information yij to each edge (vi, vj) ∈ E; 2) a secret mapping Sec : V → {0, 1}λ × {0, 1}λ,
associating a secret information Si and a cryptographic key xi to each node vi in G. (No
secret information is associated to the edges).

Derive(G,Pub, vi, vj , Si): The deterministic derivation algorithm takes as input the access graph
G, the public information Pub, a source node vi, a target node vj , and the secret information
Si of node vi. It outputs the cryptographic key xj associated to node vj if vj ∈ Desc(vi).

Informally, the correctness of a DHKA scheme requires that every user must be able to
derive, correctly, the secret key of any other user lower in the hierarchy. Its security definition,
instead, requires that even if an attacker corrupts an arbitrary number of descendants of a node,
he cannot distinguish its secret key from a uniformly random string. We formalize the security
model and the construction of our DHKA in Appendix B.

6.2 Constructing Arcula from DHKA and signatures

Arcula, our implementation of a hierarchical deterministic wallet, relies on deterministic hi-
erarchical key assignment schemes (DHKA) and digital signatures. This section details our
construction, that we describe through the (Set,DPub,DPriv, Sign,Vrfy) algorithms that define
a hierarchical deterministic wallet. The Set algorithm instantiates the scheme, starting from the
initial seed to deterministically generate a pair of master public and secret keys (msk,mpk). The
master keys respectively serve two purposes: To identify the users of the wallet and to assign a
pair of signing keys (ski, pki) to each of them. We generate the signing keys through the key
indistinguishable DHKA scheme of Section 6.1, so that users can sign transactions on behalf of
their descendants while guaranteeing the security of their keys against privilege escalation. In
more detail, the DHKA assigns to each user vi a derivation key di that allows them to generate
their own signing keys ski and to derivate those of their descendants. We set the master secret
key to the derivation key of the user v0 with highest privileges in the hierarchy1, i.e., msk = d0.
The master public key mpk, on the other hand, unequivocally identifies the wallet. We set it
to the public signing key of v0 (mpk = pk0), and we combine it with the identifiers of users to
achieve public key derivation. In particular, we identify a user vi of the wallet by concatenating
the master public key mpk with the public label li associated with her. Finally, the Set algorithm
binds the identifies of users to their signing key pair (ski, pki) through a certificate, signed by the
master secret key msk2, that explicitly authorizes the signing key ski to spend the coins destined
to vi. The DPriv and DPub algorithms respectively derive the signing keys (through the DHKA
scheme) and the corresponding public keys (by combining the master public key mpk and the
node identifiers). Finally, the Sign and the Vrfy algorithms handle the creation and verification
of digital signatures. Any node vi runs the Sign algorithm with its signing key ski to create a
signature and the Vrfy algorithm checks that there exists a certificate authorizing ski to spend
funds on behalf of the node vi (identified by the label li) under the master secret key msk.

On the blockchain, the master public key mpk and the public label li of a user form her address
for receiving payments. The users spend funds by signing transactions through their signing
key ski and by presenting, at the same time, the certificate that associates their keys to their
identity and that authorizes them to spend funds. This approach provides several advantages.
Receiving funds does not require the certificate—the identity-based public key derivation allows
us to generate the address of any destination node without any private information. Users only

1If there exist multiple users with maximum privileges it is always possible to modify the structure of the DAG
and add a minimal node that does not correspond to any real user, does not change the hierarchical ordering of
the others, and has the highest privileges. We describe the modification in detail in Appendix B.

2The master secret key msk deterministically generates the (master) signing key sk0, that we use to sign the
certificates.

12

require their certificate when spending funds for the first time, i.e., when signing a transaction
through their secret key ski, and the creation of the certificate can happen entirely offline (i.e.,
in cold storage). In addition, the signing keys (ski, pki) can also provide users with unlinkability
of their transactions. As we describe in Section 7.5, users that do not need the identity-based
public key derivation can directly leverage the signing public key pki as a pseudonym address on
which to receive funds and then spend them through the corresponding private key ski.

Construction 1. Let Γ = (SetΓ,DeriveΓ) and Σ = (KGenΣ,SignΣ,VrfyΣ) be respectively a
DHKA and a signatures signature scheme. We build Arcula in the following way:

Set(1λ, G, S): On input the security parameter, a DAG G = (V,E), and a seed S ∈ S the
algorithm proceeds as follows:

1. Compute (Pub, Sec) = SetΓ(1λ, G, S).

2. For each node vi ∈ V :

(a) Let (Si, xi) = Sec(vi) and set di = Si.

(b) (ski, pki) = KGenΣ(1λ;xi).

3. Output pp = (G,Pub,{certi}vi∈V , pk0) and {di}vi∈V where certi←$SignΣ(sk0, (pki, li))
for vi ∈ V , and li = Pub(vi).

DPub(pp, vj): On input the public parameters pp = (G,Pub,{certi}vi∈V , pk0) and a node vj ∈ V ,

the algorithm returns pkj = (pk0, lj) where lj = Pub(vj).

DPriv(pp, di, vi, vj): On input the public parameters pp = (G,Pub,{certi}vi∈V , pk0), the deriva-
tion key di = Si, and two nodes vi, vj ∈ V such that vj ∈ Desc(vi), the algorithm
runs xj = DeriveΓ(G,Pub, vi, vj , Si) and (skj , pkj) = KGenΣ(1λ;xj). Finally, it returns

skj = (skj , pkj , certj).

Sign(ski,m): On input a signing key ski = (ski, pki, certi) and a message m, the algorithms
returns σ = (pki, σ

′, certi) where σ′←$SignΣ(ski,m).

Vrfy(pki,m, σ): On input a public key pki = (pk0, li), a message m, and a signature σ =
(pki, σ

′, certi), the algorithms returns 1 if VrfyΣ(pk0, (pki, li), certi) = 1 and VrfyΣ(pki,m, σ
′) =

1; otherwise it returns 0.

Remark. Arcula shares a significant number of similarities with identity-based hierarchical
signature schemes [14]. Its design, indeed, associates a pair of signing keys to the identity of
a user and allows her to sign messages on behalf of her descendants. We point out, however,
some fundamental differences. Most hierarchical identity-based signature schemes leverage a
conspicuous number of public parameters and rely on bilinear mappings. This makes them
unpractical to use in the existing blockchains: The underlying protocols should efficiently handle
the bilinear mappings, and the public parameters that define the instantiation of the scheme
should be stored on the blockchain itself. Our design of Arcula, on the other hand, explicitly
takes into consideration the characteristics and the limitations of blockchain systems: We do not
rely on bilinear mappings, and we only store a small portion of the public parameters pp (one
certificate per transaction, typically a single group element) on the blockchain.

The correctness of the scheme comes directly from the correctness of the underlying primitives.
As for security, we establish the following result whose proof appears in Appendix E.

13

Theorem 6.1. Let Γ = (SetΓ,DeriveΓ) and Σ = (KGenΣ,SignΣ,VrfyΣ) be respectively a de-
terministic hierarchical key assignment and a signature scheme. If Γ is key indistinguishable
(Definition B.2) and Σ is existentially unforgeable (Definition 4.2), then the HDW Π from
Construction 1 is hierarchically existentially unforgeable (Definition 5.2).

In the context of the security model that we defined in Section 2.3, Arcula’s public derivation
belongs to the Untrusted Environment—it merely relies on the concatenation of two public
values, the master public key mpk and the identifier li of node vi. Redeeming coins requires,
instead, the Hot Environment. The certificate certi that associates vi to its public key pki
is a public parameter of the wallet, but we require the node’s corresponding private signing
key ski to sign a new transaction. Compromising the secrets of node vi leads to compromising
all its descendants, but none of the other nodes. Finally, the master secret key msk and the
related signing key sk0 must be safely kept in Cold Storage. We leverage these keys in the
setup phase to prepare the authorization certificate certi of vi and, for this reason, it is critical
to the security of the wallet: An attacker can use it to forge a certificate that associates any pair
of keys to any target node and spend, in turn, the coins held in the entire wallet.

To summarize, Arcula defines a hierarchical deterministic wallet that benefits from the
following properties:

1. Is secure against privilege escalation (Property 2.1).

2. Generates every cryptographic key from an initial seed (Property 2.2).

3. Enables identity-based public-key derivation so that users can dynamically derive new
public keys without accessing their own private keys (see Property 2.3).

4. Enables secret-key derivation so that users can sign transactions on behalf of their descen-
dants.

5. Does not rely on any particular digital signature scheme.

6. The DHKA at the core of Arcula is secure under key indistinguishability and handles
any directed acyclic graph encoding a partially ordered hierarchy. In addition, it allows
dynamic modifications to the hierarchy (i.e., by adding or removing nodes, as we detail
in Appendix C) and controlling the key assignment according to some temporal constraints
(Appendix D).

7 Arcula in the real world

With Arcula, we design a future-proof HDW that brings identity-based signatures to the
blockchain item and that, at the same time, is also suitable to the most widely used crypto-
systems of today. We aim to join theory and practice, to create a wallet that fulfills our current
and future needs in the crypto-coins space.

For this reason, we constrain our design with as few cryptographic assumptions as possible.
Arcula works with any existentially unforgeable signature scheme and only requires the verification
of a signature on an arbitrary message (i.e., the certificate that associates the signing key to
their corresponding user). This design makes it immediately compatible with the Ethereum
blockchain, which implements a Turing-complete language, and with all the forks based on
Bitcoin that allow the signature verification of arbitrary messages (e.g., Bitcoin Cash). The
original Bitcoin implementation, instead, does not allow such operation (in fact, it goes as far
as disabling the operations of string concatenation and integer multiplication that, initially, it
allowed).

14

In this section, we show how Arcula performs in the real world, and we show how to spend and
receive funds, out of the box, on the Bitcoin Cash blockchain. Next, we discuss the modifications
that would make it compatible with the original Bitcoin protocol and how it is possible to disable
public derivation to obtain unlinkability of transactions.

7.1 Technical Implementation

Our open-source implementation of Arcula is available online.3 We instantiate the underlying
DHKA leveraged by Arcula with the pseudorandom function Fk(x) = H(k‖x) (where H(x) is the
hash function SHA3-256(x)) and the authenticated AES256 with Galois/Counter Mode (GCM)
as the symmetric encryption scheme. We generate a hierarchal deterministic wallet based on the
tree defined in BIP43 and BIP44 [18, 19], where the keys to different crypto-coins correspond
to different subtrees, and each branch of the subtrees is a chain associated to a single account
that contains multiple receiving addresses. We obtain an initial seed S of 512 bits by following
the specification of BIP39 [20] that generates a seed from a random mnemonic sequence. We
generate the wallet that we use in our tests by fixing the randomness of the mnemonic generation
process to the result of the operation H(correct horse battery staple).

7.2 Arcula in Bitcoin Cash

A Bitcoin transaction is a cryptographically signed statement that transfers some coins from a
sender to a receiver. The sender of the coins signs the transaction through her secret key to
spend, in turn, the coins destined to the corresponding public key. Every transaction specifies
a locking and an unlocking script. These scripts respectively state the necessary conditions
to spend, in a future transaction, the coins being transferred (i.e., their locking condition)
and provide the information required to redeem them (i.e., to unlock them as a result of a
past transaction). Both scripts are written through a stack-based language that allows simple
mathematical operations, stack manipulations, and enables simple cryptographic primitives (i.e.
computing the result of a hash function and verifying a signature).

A typical Bitcoin locking script specifies the address of the receiver (usually through the
hash of its public key) and requires him to provide a valid signature to redeem the coins being
transferred. More in detail, the locking and unlocking scripts of a standard Bitcoin transaction
are defined as follows. Uppercase monospace words indicate operations of the Bitcoin scripting
language, while angular brackets enclose variable inputs.

Locking: OP DUP OP HASH160 <H(pk)> OP EQUALVERIFY OP CHECKSIG

Unlocking: <σ> <pk>

Together, these scripts ensure that the public key pk provided in the unlocking script is the
pre-image of the hash H(pk) (the Bitcoin address) contained in the locking script; then, verify
the validity of the transaction signature σ under the public key pk.

In Arcula, instead, we identify the nodes of our wallet vi according to the master public
key mpk = pk0 and to their public label li. For this reason, an Arcula address is simply the
concatenation of the byte representations of these values that we encode in the locking script.
The unlocking script, on the other hand, contains the certificate certi←$SignΣ(sk0, (pki, li)) and
associating the signing public key pki to the node vi with label li, and a signature σ of the
transaction verifiable through the public signing key pki. With Arcula, the locking and the
unlocking scripts respectively become:

3 Available at https://github.com/aldur/Arcula.

15

https://github.com/aldur/Arcula

Table 2: The script bytes sizes of a transaction to a standard Bitcoin address and to an Arcula
address.

Address type Locking Script Unlocking Script Total

Standard 24 106 130
Arcula 43 179 222

Locking: OP DUP OP TOALTSTACK OP CAT <mpk> OP CHECKDATASIGVERIFY

OP FROMALTSTACK OP CHECKSIG

Unlocking: <σ> <certi> <pki>

The two scripts: 1) Verify that the certificate certi is a valid signature of the message (pki, li)
under the master public key mpk; 2) verify the validity of the transaction signature σ under
the signing public key pki. In particular, the locking script checks the validity of the certificate
through the operation OP CHECKDATASIGVERIFY, which allows the stack-based scripting language
to validate a signature of an arbitrary message (the concatenation of mpk and li obtained through
the operation OP CAT). The scripting language of the original Bitcoin does not implement such
an operation yet. Nonetheless, a significant portion of the Bitcoin community believes that its
adoption would provide substantial benefits to the entire system, e.g., by enabling third-parties
to store and verify independent messages on the blockchain. For this reason, many Bitcoin forks
(Bitcoin Cash, Bitcoin Ultimate, and Blockstream, to name a few), that aim at modernizing
the protocol and at improving the stack-based language used in scripts, now implement this
operation.

In our experiments, we focus, as an example, on Bitcoin Cash—the sixth cryptocurrency by
market capitalization at the time of writing—and we evaluate Arcula on its test blockchain. We
first create a transaction4 that locks 0.5 BCH (the Bitcoin Cash crypto-coin) to a node of our
wallet of Section 7.1, identified through the master public key mpk (also in the locking script)
and the integer label 3. Next, we redeem the coins through a second transaction that provides
the transaction signature σ computed using the signing key ski, an appropriate certificate certi
signed by the master secret key, and the public signing key pki. We create both the signature
and the certificate through the ECDSA signatures scheme on the secp256k1 elliptic curve used
in Bitcoin, and we encode the integer label li of the node vi with 4 bytes.

7.3 Transaction Costs

To study the costs of Bitcoin transactions to an Arcula address, we analyze the amount of storage
that they require on the blockchain. Every Bitcoin transaction devolves a small amount of fees
to the system to incentive its inclusion in the next block of the chain. Fees are usually measured
in coins per byte, and, for this reason, the size of a transaction on the Bitcoin wire protocol is
directly related to the amount of fees that it should pay to be included in the blockchain. In
particular, the length of the locking and unlocking scripts influences directly the final transaction
cost. Table 2 compares the sizes, in bytes, of the locking and unlocking scripts of standard
Bitcoin transactions and to an address of our wallet. Every operation of the stack-based scripting
language is encoded with a single byte; a standard Bitcoin address is the result of a hash function
that outputs 20 bytes; the ECDSA signature and the public key in the unlocking script require,
respectively, 73 and 33 bytes. By summing these values up, we find that the locking script of a
transaction to a standard Bitcoin address is 24 bytes long (4 script operations plus the receiver

4The transcripts of the transactions are available, respectively, at https://bit.ly/2UI62tt and https:

//bit.ly/2UoQNGI.

16

https://bit.ly/2UI62tt
https://bit.ly/2UoQNGI
https://bit.ly/2UoQNGI

address) while the unlocking scripts take 106 bytes (the ECDSA signature and its associated
public key). In Arcula, on the other hand, the locking script encodes 6 operations, the identifier
of a node (that we encode with 4 bytes), and the cold storage public key (33 bytes, as opposed
to its 20 bytes hash), for a total of 43 bytes. The unlocking script, instead, contains two ECDSA
signatures (one for the transaction and one for the certificate) and the signing public key; as a
result, it is 179 bytes long. Overall, the size of the locking and unlocking scripts for a transaction
to an Arcula address is 222 bytes, 70% longer than the standard address counterparts.

In particular, the Bitcoin users aim at minimizing the size of the locking script, as its
associated fees will be paid by the sender of the transaction, e.g., the customer of an online
service, and the service providers usually aim at minimizing these costs. Bitcoin solves this issue
through the pay to script hash mechanism, proposed in BIP16 [1], that reduces the size of any
locking script to a constant at the cost of longer unlocking scripts. The intuition is that instead
of specifying the full locking script, the users can constrain the coins of a transaction by locking
them to the hash of the original script; then, in the unlocking script, they can provide both the
pre-image of the hash, i.e., the full locking script, and its required inputs. This approach brings
several advantages. First, any locking script can be expressed with a constant byte size that
results in a fixed cost for the sender. Second, it hides the details of the locking script until the
users reveal the pre-image of the hash in an unlocking script, i.e. when they redeem the coins
sent by the transaction. Finally, the Bitcoin protocol proposes a way to encode the pay to script
hash locking scripts into standard Bitcoin addresses, so that exchanging transactions of this
kind is entirely transparent to the software used by the sender. By using the pay to script hash
mechanism, any user can send a transaction to an Arcula address through her favorite Bitcoin
wallet, in a transparent way that does not require any specific software modification to it. More
in details, an Arcula pay to script hash transaction is defined as follows, where the script that
we input to the hash function is the locking script of a transaction to an Arcula address that we
have seen before:

Script: OP DUP OP TOALTSTACK OP CAT <mpk> OP CHECKDATASIGVERIFY

OP FROMALTSTACK OP CHECKSIG

Locking: OP HASH160 <H(Script)> OP EQUAL

Unlocking: <σ> <certi> <pki> <Script>

The pay to script hash mechanism reduces to 22 bytes (2 operations and a 20 bytes hash) the
size of the locking script and, equivalently, the amount of fees that users have to spend to send
funds to an Arcula address. The size of the unlocking script, on the other hand, affects the fees
that the users of Arcula need to pay when spending their coins. In particular, when using pay to
script hash, this amount of fees is slightly larger than the one required for a traditional Bitcoin
transaction. In many cases, however, the benefits that arise with Arcula justify the increase in
the transaction cost. An e-commerce marketplace, as an example, can leverage Arcula’s public
key derivation to dynamically derive new addresses (e.g., one for each product of her catalog)
in an entirely untrusted environment (e.g., an online web-server) while keeping every signing
keys at rest in trusted storage. As a result, the provider obtains the flexibility of handling
incoming payments on dynamic addresses and minimizes the risk of losing the coins associated
with them. When compared with the financial costs associated with this risk, the additional fees
required by the Arcula transactions are negligible. The public key derivation also brings other
significant benefits. Many financial regulations require, indeed, companies to be accountable
for all the payments that they receive. With Arcula, an auditor can reach this goal by merely
inspecting the blockchain while looking for any address that contains the master public key
mpk that identifies the company. Finally, many enterprises leverage m-of-n signatures, where

17

redeeming a transaction requires m valid signatures among n authorized public keys. Their goal
is to enforce the internal structure of the company (e.g., so that either managers or employees
can sign transactions) or to divide the responsibility of spending coins evenly. The unlocking
scripts of m-of-n transactions have considerable size: They contain m signatures and n public
keys. By leveraging Arcula and enforcing an appropriate hierarchy that reflects their internal
structure, these companies could reduce the size of the unlocking scripts to only two signatures
(the transaction signature and the certificate) and two public keys (the master and signing public
keys).

7.4 Optimizations and compatibility with Bitcoin

The current implementation of Arcula does not require any modification to the underlying
protocols and blockchains. Nevertheless, we also propose a set of optimizations that, through
minimal modifications to these protocols, reduce both the cost of transactions to Arcula addresses
and the amount of storage required on the blockchain. We begin by noting that any authorization
certificate certi can be used more than once. For this reason, the first optimization that we
propose is to cache the certificate certi as soon as it appears for the first time in an unlocking
script. Then, any subsequent transaction signed by ski could specify a pointer to the certificate
(e.g., with a shorter hash) instead of the certificate itself and, in turn, reduce the size of the
unlocking script. As an example, by pointing to the certificate with a 20 bytes hash, we would
reduce the size of the Arcula locking and unlocking scripts to be roughly 20 bytes longer than
their traditional counterparts. Implementing this optimization requires a new operation in the
scripting language to retrieve the certificate from the cache and to verify its validity. On the
other hand, if we allow for more complex modifications, we can change the signature scheme of
the underlying protocols to reduce these space requirements to their optimal value further—a
single signature per transaction. Arcula can be implemented with a single signature by leveraging
a sanitizable signature scheme [4], i.e. a scheme where an authorized party can modify a fraction
of the message signed without interacting with the original signer. The intuition is to combine
the certificates with the signatures that authorize transactions: Now, the certificate of user vi
that associates her to the signing public key pki also includes an additional modifiable portion
that will be filled with the transaction details. To spend their coins, the users leverage their
sanitizable key to replace the blank transaction with the details that they intend to sign.5 In
their work, Ateniese et al. [4] show how to construct a sanitizable signature scheme by combining
any signature scheme with a chameleon hash function. This construction would allow Arcula to
be used with the traditional Bitcoin blockchain by implementing the sanitizable signatures on
top of the ECDSA signature scheme that it already uses. In addition, it would not change the
expressiveness of the Bitcoin scripting language: Instead of enabling the verification of signatures
on arbitrary messages, it would simply extend the signature verification protocol to account for
the certificate embedded in the sanitized signatures.

7.5 Unlinkability of Transactions

Individual users of hierarchal deterministic wallets are typically not interested in public key
derivation. Differently from enterprises and e-commerce marketplaces, for instance, they simply
rely on HDW to recover their keys in case of hardware failure or catastrophic loss. On the
other hand, they are often interested in achieving unlinkability of their transactions, i.e. in
making sure that multiple transactions sent to their wallet can not be correlated together by
an observer that passively monitors the blockchain. In other words, they typically desire to

5The sanitizable keys can be hierarchically deployed by leveraging a second instance of DHKA.

18

trade the derivation of public keys in an untrusted setting for the ability to receive payments on
uncorrelated pseudonyms.

Arcula allows them to reach this goal. In more detail, these users can ignore the identity-based
public key derivation that Arcula provides (and its associated master public key mpk) and identify
the nodes of the wallet with their public signing key pki. On the blockchain, they can receive
standard transactions (costing standard transaction fees) on the public signing key pki and
then sign new transactions to redeem the coins through the corresponding private key ski. We
generate this pair of keys through a DHKA scheme that is secure under key indistinguishability.
This means that every public signing key in the wallet is unlinkable from the others, because
the DHKA cryptographic keys xi that we use as randomness to generate them are, in turn,
indistinguishable from random strings of the appropriate length. As a result, Arcula provides
a provably secure alternative to the hardened mode of BIP32: Individual users can generate
as many pseudonyms as they need by branching or deepening the DAG that encodes their
hierarchy, and then leverage the DHKA to generate keys and reliably recover them in case of loss.
Note that this modified version of Arcula does not require validation of signatures of arbitrary
messages, enabling its usage with any blockchain system, including Bitcoin.

In addition, Arcula also allows users to achieve unlinkability of transactions while maintaining
identity-based public key derivation. The intuition is to use a chain code c, private to the
environment where we execute the public derivation, to perturb the master secret and public
keys so that they look uncorrelated from the original keys to a passive observer. We perform
the perturbation once for each node in the wallet. As a result, we associate them with a set
of perturbed pairs of keys, labeled (mski,mpki), that we use to sign the certificate certi that
associates their public signing key pki to their identity vi. Now, we can address Bitcoin payments
for the node vi to the i-th perturbation mpki of the master public key mpk, that is uncorrelated
from any other key of the wallet.

More in detail, let g be a generator of the elliptic curve used in Bitcoin’s ECDSA signature
scheme. The master public key is defined as mpk = mpk0 = pk0 = gsk0 . Let c be the secret
chain code and let F be a pseudorandom function. We create the i-th perturbed key mpki of the
master public key mpk as follows:

mpki = gsk0+Fc(li) = gsk0 · gFc(li) = mpk · gFc(li),

where li is the label of node vi. As long as the chain code c is private, this construction ensures
the unlinkability of transactions sent to the perturbed addresses [17].

In Arcula, we modify the Item 3 of Construction 1 to sign the certificates certi←$SignΣ(mski, pki)
with the perturbed secret key mski = sk0 + Fc(li). Note that we remove the label li from the
certificate since now every pair of perturbed keys is uniquely associated with precisely one pair
of signing keys, and the perturbation already takes into explicit consider the label li of node vi.
Finally, we replace the master public key mpk in the locking script with the i-th perturbed key
mpki, that verifies the certificate certi, as follows:

Locking: OP DUP OP TOALTSTACK <mpki> OP CHECKDATASIGVERIFY

OP FROMALTSTACK OP CHECKSIG

Unlocking: <σ> <certi> <pki>

As a result, all the Arcula addresses of the same wallet look uncorrelated when they appear in
the locking script of a transaction. The perturbed private keys mski are effectively equivalent to
the original master secret key: An attacker that compromises any perturbed key can recover
the master secret key and compromise the entire wallet by forging new certificates for key pairs

19

that he controls. For this reason, the perturbed keys shall be kept in cold storage, or better yet,
destroyed after the generation of the corresponding certificate.

To conclude, we briefly discuss how to derive, deterministically, the chain code c. We propose
to assign a different chain code ci to each node vi of the wallet by running our DHKA a second
time: In this way, an attacker that compromises a node in the hierarchy can only uncover the
public identifiers of the nodes in its subtree, but would not gain any knowledge about the others
in the hierarchy.

8 Conclusions

In this work, we presented Arcula, a new hierarchical deterministic wallet (HDW) that brings
identity-based signatures to the blockchain, and that is secure against privilege escalation. We
first developed a key indistinguishable deterministic hierarchical key assignment (DHKA) scheme,
that we use to deterministically generate the set of cryptographic keys at the core of our wallet.
As a result, an attacker that compromises an arbitrary number of users in the hierarchy can
not escalate his privileges and compromise other users higher in the hierarchy. In addition,
our wallet allows us to dynamically derive new addresses for receiving payments in an entirely
untrusted environment, to recover every cryptographic key from an initial seed provided by the
user, and also to spend coins on behalf of users lower in the hierarchy. Our design of Arcula
considers the legacy and future requirements of modern blockchains. In particular, Arcula is
independent of the underlying signature scheme, and it works on top of any protocol that allows
the verification of signatures on an arbitrary message (e.g., Bitcoin Cash or Ethereum). For
these reasons, we hope that the outcomes of this work will be twofold: To provide the secure
and efficient hierarchical deterministic wallet that we need today and to propose a future-proof
design that supports the financial applications and tools of enterprises and companies at scale.

References

[1] Gavik Andresen. BIP16: Pay to script hash, 2012. URL https://github.com/bitcoin/

bips/blob/master/bip-0016.mediawiki. Last visited December 10, 2019.

[2] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Incorporating Temporal
Capabilities in Existing Key Management Schemes. In Computer Security – ESORICS
2007, pages 515–530. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi: 10.1007/
978-3-540-74835-9 34. URL http://link.springer.com/10.1007/978-3-540-74835-9_

34.

[3] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic and
efficient key management for access hierarchies. ACM Trans. Inf. Syst. Secur., 12(3):
18:1–18:43, January 2009. ISSN 1094-9224. doi: 10.1145/1455526.1455531. URL http:

//doi.acm.org/10.1145/1455526.1455531.

[4] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
Signatures. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3679 LNCS, pages
159–177, 2005. ISBN 3540289631. doi: 10.1007/11555827 10. URL http://link.springer.

com/10.1007/11555827_10.

[5] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Provably-
secure time-bound hierarchical key assignment schemes. Journal of Cryptology, 25(2):

20

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
http://link.springer.com/10.1007/978-3-540-74835-9_34
http://link.springer.com/10.1007/978-3-540-74835-9_34
http://doi.acm.org/10.1145/1455526.1455531
http://doi.acm.org/10.1145/1455526.1455531
http://link.springer.com/10.1007/11555827_10
http://link.springer.com/10.1007/11555827_10

243–270, Apr 2012. ISSN 1432-1378. doi: 10.1007/s00145-010-9094-6. URL https:

//doi.org/10.1007/s00145-010-9094-6.

[6] Vitalik Buterin. Deterministic wallets, their advantages and their un-
derstated flaws, 2013. URL https://bitcoinmagazine.com/articles/

deterministic-wallets-advantages-flaw-1385450276/. Last visited December
10, 2019.

[7] Nicolas Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery combination
attacks: On extreme fragility of popular bitcoin key management, wallet and cold storage
solutions in presence of poor rng events. IACR Cryptology ePrint Archive, 2014:848, 2014.

[8] Jason Crampton, Naomi Farley, Gregory Gutin, Mark Jones, and Bertram Poettering.
Cryptographic enforcement of information flow policies without public information via
tree partitions. Journal of Computer Security, 25(6):511–535, 2017. ISSN 0926227X. doi:
10.3233/JCS-16863.

[9] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’19, 2019.

[10] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. New constructions for
provably-secure time-bound hierarchical key assignment schemes. Theoretical Computer
Science, 407(1-3):213–230, 2008. ISSN 03043975. doi: 10.1016/j.tcs.2008.05.021. URL
http://dx.doi.org/10.1016/j.tcs.2008.05.021.

[11] Pratyush Dikshit and Kunwar Singh. Efficient weighted threshold ECDSA for securing
bitcoin wallet. In 2017 ISEA Asia Security and Privacy (ISEASP), volume 2, pages 1–9.
IEEE, jan 2017. ISBN 978-1-5090-5942-3. doi: 10.1109/ISEASP.2017.7976994. URL
http://ieeexplore.ieee.org/document/7976994/.

[12] Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi. Secure
hierarchical bitcoin wallet scheme against privilege escalation attacks. In IEEE Conference
on Dependable and Secure Computing, DSC 2018, Kaohsiung, Taiwan, December 10-13,
2018, pages 1–8. IEEE, 2018. ISBN 978-1-5386-5790-4. doi: 10.1109/DESEC.2018.8625151.
URL https://doi.org/10.1109/DESEC.2018.8625151.

[13] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-Optimal
DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security. In Jianying
Zhou, Moti Yung, and Yongfei Han, editors, Applied Cryptography and Network Security,
volume 2846 of Lecture Notes in Computer Science, pages 156–174. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2016. ISBN 978-3-540-20208-0. doi: 10.1007/978-3-319-39555-5 9.
URL http://link.springer.com/10.1007/978-3-319-39555-5_9.

[14] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng,
editor, Advances in Cryptology — ASIACRYPT 2002, pages 548–566, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg. ISBN 978-3-540-36178-7.

[15] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A. Kroll,
Edward W. Felten, and Arvind Narayanan. Securing bitcoin wallets via a new dsa/ecdsa
threshold signature scheme. Unpublished, 2015.

21

https://doi.org/10.1007/s00145-010-9094-6
https://doi.org/10.1007/s00145-010-9094-6
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
http://dx.doi.org/10.1016/j.tcs.2008.05.021
http://ieeexplore.ieee.org/document/7976994/
https://doi.org/10.1109/DESEC.2018.8625151
http://link.springer.com/10.1007/978-3-319-39555-5_9

[16] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that tolerate
key leakage. In Financial Cryptography and Data Security, pages 497–504. Springer Berlin
Heidelberg, 2015. doi: 10.1007/978-3-662-47854-7 31. URL https://doi.org/10.1007/

978-3-662-47854-7_31.

[17] Gregory Maxwell et al. Deterministic wallets, 2011.

[18] Marek Palatinus and Pavol Rusnak. BIP43: Purpose field for deterministic wallets, 2014.
URL https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki. Last vis-
ited December 10, 2019.

[19] Marek Palatinus and Pavol Rusnak. BIP44: Multi-account hierarchy for determin-
istic wallets, 2014. URL https://github.com/bitcoin/bips/blob/master/bip-0044.

mediawiki. Last visited December 10, 2019.

[20] Marek Palatinus, Pavol Rusnak, Aaron Voisine, and Sean Bowe. BIP39: Mnemonic code
for generating deterministic keys, 2013. URL https://github.com/bitcoin/bips/blob/

master/bip-0039.mediawiki. Last visited December 10, 2019.

[21] Pieter Wuille. BIP32: Hierarchical deterministic wallets, 2012. URL https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki. Last visited December 10, 2019.

A Further Preliminaries

A.1 Pseudorandom Function (PRF) Family

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets. For λ ∈ N, a PRF family {Fk}k∈Kλ is a set of
functions such that Fk : Xλ → Yλ and each function is evaluable by a deterministic polynomial
time algorithm F, i.e., F(k, ·) = Fk(·).

Let Fλ be the set of all functions from Xλ to Yλ. For security, we require that a function
randomly sampled from {Fk}k∈Kλ is indistinguishable by a function randomly sampled from Fλ.

Definition A.1 (Pseudorandomness). A PRF family {Fk}k∈Kλ is pseudorandom if for every
PPT adversary A we have:∣∣∣∣∣Pr

[
Gprf−0

F,A (λ) = 0
]
− Pr

[
Gprf−1

F,A (λ) = 1
]∣∣∣∣∣ ≤ negl(λ) ,

where the two experiments Gprf−0
F,A (λ) and Gprf−1

F,A (λ) are defined in the following way:

Gprf−0
F,A (λ)

k←$Kλ
d←$AFk(·)(1λ)

return d

Gprf−1
F,A (λ)

f ←$Fλ
d←$Af(·)(1λ)

return d

In this paper, we are interested in PRF families such that Kλ = Yλ = {0, 1}λ.

22

https://doi.org/10.1007/978-3-662-47854-7_31
https://doi.org/10.1007/978-3-662-47854-7_31
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

A.2 Symmetric Encryption Scheme

We follow the definition of symmetric encryption scheme provided by Atallah et al. [3]. A
symmetric-key encryption scheme Π = (Gen,Enc,Dec) with message space M is a triple of
polynomial-time algorithm defined in the following way:

Gen(1λ): The randomized key generation algorithm takes as input a security parameter 1λ and
outputs a secret key sk.

Enc(sk,m): The deterministic (possibly randomized) encryption algorithm takes as input a
secret key sk, a message m ∈M, and outputs a ciphertext c.

Dec(sk, c): The deterministic decryption algorithm takes as input a secret key sk, a ciphertext c,
and outputs a message m.

For correctness, we require that honestly generated ciphertexts must decrypt correctly.

Definition A.2 (Correctness of symmetric encryption). A symmetric encryption scheme Π =
(Gen,Enc,Dec) with message space M is correct if ∀λ ∈ N,∀m ∈M:

Pr
[
Dec(sk,Enc(sk,m)) = m

∣∣∣ sk←$Gen(1λ)
]

= 1

For security, we are interested in semantic security: It must be infeasible to distinguish
between an encryption of a message m from one of a random message.

Definition A.3 (Semantic Security). A symmetric encryption scheme Π = (Gen,Enc,Dec) with
message space M is semantically secure if for every PPT adversary A we have:∣∣∣∣∣Pr

[
Gsem

Π,A(λ) = 1
]
− 1

2

∣∣∣∣∣ ≤ negl(λ) ,

where Gsem
Π,A(λ) is defined in the following way:

Setup: The challenger runs sk←$Gen(1λ).

Challenge: The adversary specifies a message m0 ∈ M. The challenger picks a random bit
b∗ ∈ {0, 1}. If b∗ = 0, then it computes c∗←$Enc(sk,m0); otherwise, it sets c∗←$Encsk(m1),
where m1←$M. The challenger returns c∗ to A.

Guess: The adversary outputs a bit b ∈ {0, 1}. If b = b∗ return 1; otherwise return 0.

B Security Model of Deterministic Hierarchical Key Assign-
ment

The correctness of a DHKA scheme requires that any user vi should be able to derive, correctly,
the secret key xj of any user vj ∈ Desc(vj) lower in the hierarchy.

Definition B.1 (Correctness of DHKA). A DHKA Π = (Set,Derive) with seed space S is
correct if for every DAG G = (V,E), ∀λ ∈ N, ∀vi ∈ V , ∀vj ∈ Desc(vi), ∀S ∈ S:

Pr[xj = Derive(G,Pub, vi, vj , Si)] = 1,

where (Pub,Sec) = Set(1λ, G, S), (Si, xi) = Sec(vi), and (Sj , xj) = Sec(vj).

23

We now formalize the security level of the scheme. We adapt the security definition originally
defined by Atallah et al. [3] to account for the determinism in our scheme. We define the set of
ancestors Anc(vi) = {vj | vj w vi} of a node vi to be the set of nodes vj such that there exists
a path w from vj to vi in G.

Definition B.2 (Key Indistinguishability of DHKA). A DHKA Π = (Set,Derive) with seed
space S is key indistinguishable if for every PPT adversary A and every DAG G = (V,E):∣∣∣∣Pr

[
Gsk−ind

Π,A (λ,G) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where Gsk−ind
Π,A (λ,G) is defined in the following way:

Setup: The challenger receives a challenge node v∗ ∈ V from the adversary A. The challenger
samples S←$S, then runs Set(1λ, G, S), and gives the resulting public information Pub to
the adversary A. The challenger samples a random bit b∗←$ {0, 1}: If b∗ = 0, it returns to
A the cryptographic key xv∗ associated to node v∗; otherwise, it returns a random key x̄v∗

of the corresponding length.

Query: The adversary has access to a corrupt oracle OCorr(·). On input vi /∈ Anc(v∗), the
challenger retrieves (Si, xi) = Sec(vi) and sends Si to A.

Guess: The adversary outputs a bit b ∈ {0, 1}. If b = b∗ return 1; otherwise return 0.

Remark. We note that the adversary A depicted in Gsk−ind
Π,A (λ,G) is a static adversary who

chooses the challenge node v∗ before the experiment begins. Ateniese et al. [5, Theorem 1],
however, prove that any hierarchical key assignment scheme secure (in the sense of Gsk−ind

Π,A (λ,G))
against a static attacker is also secure against an adaptive attacker, i.e., against an adversary
that adaptively chooses the challenge node v∗. The authors prove that the two security models
are polynomially equivalent since there exists a reduction between the static and the adaptive
adversaries. The static adversary can simply guess the challenge node v∗ of the adaptive adversary
and abort the simulation if the guess is incorrect. For these reasons, we discuss the security of
any DHKA scheme only in the setting of a static attacker.

B.1 The DHKA scheme

This section describes the implementation of our deterministic hierarchical key assignment
scheme over any DAG G encoding an access hierarchy.

We assume, without loss of generality, that: 1) There exists a unique root node v0 ∈ V of
G, i.e. the most-privileged node of the hierarchy encoded by G that can derive the keys of any
other node. For any DAG G, it is always possible to elect a root node v0. Since G is a DAG, v0

shall be one of the minimal nodes in a topological ordering of G and, equivalently, v0 shall have
no ancestors. If two or more nodes vj have no ancestors, then it is always possible to construct
a new graph G′ = (V ∪{v0} , E ∪{(v0, vj) | vj has no ancestors}) such that the access hierarchy
encoded by G′ is equivalent to the one of G, where the new node v0 in G′ is the root of the graph
(and has no associated users). 2) That every node vj has a fixed parent node in the hierarchy,
i.e. a node vi such that the edge (vi, vj) ∈ E. As an example, we fix the parent node vj of vi to
be the first ancestor of vi in any ordering of the nodes of the graph G (e.g., obtained with a
depth-first-search of the graph) such that (vi, vj) ∈ E.

At a high level, we build on the randomized hierarchical key assignment scheme of Atallah
et al. [3] where each node vi of the hierarchy is identified by a random label li and holds a
random secret information Si, that it will use to generate its own cryptographic key and to

24

derive the keys of the nodes lower in the hierarchy. In our scheme, we modify the original
design so that both the label li and the secret information Si are deterministic. We label each
node through its index6 (i.e., li = vi) and we derive its secret information Si deterministically
(through a pseudorandom function) from the secret information of its parent. We formally define
our implementation of DHKA as follows.

Construction 2. Let {Fk}k∈Kλ and E = (Gen,Enc,Dec) be respectively a family of pseudoran-
dom functions and a symmetric key encryption scheme. Let G = (V,E) be a directed acyclic
graph representing an access hierarchy. We build a DHKA scheme in the following way:

Set(1λ, G, S−1): On input the security parameter, a directed acyclic graph G = (V,E), and an
initial seed S−1, the algorithm proceeds as follows:

1. Compute S0 = FS(11‖l0) for v0 ∈ V , where l0 = v0 and v0 is the root of the directed
acyclic graph G.

2. For each vertex vi ∈ V and vj ∈ V such that vj is the parent of vi, compute
Si = FSj (11‖li) where li = vi.

3. For each vertex vi ∈ V compute ti = FSi(00‖li) and xi = FSi(01‖li).
4. For each edge (vi, vj) ∈ E, compute rij = Fti(10‖lj) and yij←$Encrij (tj‖xj).7

Finally, the algorithm returns the public mapping Pub : V ∪ E → {0, 1}∗ and the secret
mapping Sec : V → {0, 1}λ × {0, 1}λ, defined as:

Pub : vi 7→ li Pub : (vi, vj) 7→ yij

Sec : vi 7→ (Si, xi)

Derive(G,Pub, vi, vj , Si): On input a directed acyclic graph G = (V,E), a public mapping Pub,
two nodes vi, vj ∈ V , and a seed Si, the algorithm proceeds as follows:

1. If there is no path from vi to vj in G, return ⊥;

2. If i = j, retrieve li from Pub and return xj = FSi(01‖li);
3. Otherwise, compute ti = FSi(00‖li) and set ī = i and t̄i = ti; then

(a) Let j̄ be the successor of ī in the path from vi to vj .

(b) Retrieve lj̄ and yīj̄ from Pub

(c) Compute rīj̄ = Ft̄i(10‖lj̄) and tj̄‖xj̄ = Decrīj̄ (yīj̄).

(d) Set ī = j̄ and t̄i = tj̄ .

(e) If j̄ = j then return xj ; otherwise repeat from Item 3a.

The proposed key assignment scheme is entirely deterministic. In particular, it differs from
the design of Atallah et al. at the Items 1 and 2 of the Set algorithm in Construction 2. The
original key assignment scheme draws the values li and Si (respectively, l0 and S0) at random.
In our case, instead, we deterministically derive them from the identifier vi of the node and from
the secret information Sj of its parent vj (respectively, from the seed S).

6We will extend the node labels with a version number when handling dynamic changes to the hierarchy of the
DHKA. We refer the reader to Appendix C for more details.

7We implicitly assume that the PRF output space and the symmetric encryption key space have the same
distribution. In alternative, rij can be used as randomness of key generation algorithm Gen.

25

Computation and space complexity The efficiency of the scheme is linear in time and
space, respectively, to the key derivation distance and the size of the graph. Let w be the shortest
path between vi and vj ∈ Desc(vi): Deriving xj by starting from Si requires |w| invocations F
and |w| invocations of Dec. For space complexity, each node vi in V is required to store a single
secret Si—the private storage required by each node is proportional to the size λ of the security
parameter. On the other hand, the public information holds the mapping between nodes and
labels and the encrypted information associated with each edge. As such, the overall space
required is linear to λ|V | + λ|E|. That said, we note that in our case the mapping between
nodes and labels is the identity function and that we can further reduce the storage requirements
by leveraging the deterministic derivation: Any parent node vj can directly derive the secret
information Si of its descendant vi and, for this reason, we can avoid storing any encrypted
information on the edge that connects them. As a result, we can reduce the size of the encrypted
information on the edges and only store them for any node vi such that there exists an edge
(vi, vj) ∈ E and vi is not the parent of vj and as such cannot deterministically derive the secret
value Sj by starting from its own secret value Si. With this optimization in place, our scheme is
comparable to a tree-based hierarchical key assignment scheme [8] where we store the additional
derivation keys as encrypted information on the edges instead of storing them as secrets within
each node that requires them. Finally, if the key generation and derivation processes happen on
the fly (i.e., when the entire process starts from the seed), then the only private storage required
is proportional to the length of the initial seed S, i.e., to the length of the security parameter λ.

Remark. At first glance, it might seem that fixing the randomness of the Set algorithm of the
HKA by Atallah et al. [3] is sufficient to enforce its determinism. We remark here that such a
solution, alone, does not guarantee this result. When we fix the randomness of the Set algorithm
of the HKA we are implicitly fixing an ordering on the sampling of the secret values Si of each
node vi: Sampling at random Si before Sj, as opposed to sampling Sj before Si, will result in
different secret values assigned to each node. For this reason, the HKA with fixed randomness
would also require additional public information about the ordering of the nodes of the hierarchy.
Our DHKA, instead, deterministically generates the secret values according to the structure of the
hierarchy and not to any ordering of its nodes. This approach allows us to design a deterministic
scheme that does not require any additional public information and that, furthermore, can take
the determinism into account to reduce the amount of encrypted information stored on the edges
of the hierarchy.

We conclude this section by establishing the following result.

Theorem B.1. Let {Fk}k∈Kλ and E = (Gen,Enc,Dec) be respectively a pseudorandom function
family and a symmetric encryption scheme. If {Fk}k∈Kλ is pseudorandom (Definition A.1) and
E is semantically secure (Definition A.3), then the DKHA scheme Π from Construction 2 is key
indistinguishable.

Proof. We prove the theorem by contradiction, using a hybrid argument. Let v∗ be the challenge
chosen by an adversary A in the game Gsk−ind

Π,A (λ,G). We define the following hybrid experiments:

G−1: is exactly the game Gsk−ind
Π,A (λ,G).

G0: is the same as G−1, except that the secret S0 of the root node v0 ∈ Anc(v∗) is sampled at
random.

G
(a)
i : is the same as G

(c)
i−1 (for i = 1 is the same as G0), except that ti−1, xi−1 associated to the

node vi−1 ∈ Anc(v∗) and Si of the node vi ∈ Anc(v∗) are sampled at random.

26

G
(b)
i : is the same as G

(a)
i , except that rij associated to the edge (vi, vj) (where vi, vj ∈ Anc(v∗))

is sampled at random.

G
(c)
i : is the same as G

(b)
i , except that yij associated to the edge (vi, vj) (where vi, vj ∈ Anc(v∗))

is an encryption of a random message, i.e., yij←$Encrij (m̂) where m̂ is sampled at random.

Our DHKA is identical to the HKA of Atallah et al. [3], except that the secret Si of a node
vi is computed by evaluating Si = FSj (11‖li) where Sj is the secret of the parent vj of vi (in [3]
each Si is sampled at random). Hence, the proof is analogous to [3, Theorem 5.3] except that
we need to prove that each Si is indistinguishable from random. For this reason, we modify the

game G
(a)
i (defined in [3, Theorem 5.3]) in such a way that the secret Si is sampled at random

too (in addition to ti−1, ki−1). Then, we prove the same result for the root node v0 by adding
an additional game G−1 and by showing G−1 ≈c G0.

Lemma B.1. Let {Fk}k∈Kλ be a secure pseudorandom function, then G−1 ≈c G0.

Proof. We assume that there exists a DAG G = (V,E) and a distinguisher D that has a non-
negligible advantage in distinguishing between G−1 and G0. Then, we build an adversary A
that distinguishes Gprf−0

F,A (λ) and Gprf−1
F,A (λ) as follows:

1. D outputs the challenge v∗.

2. A simulates Set as follows: For the root node v0, set S0 = OF(11||l0). For any other node vj ,
compute Sj as described in Construction 2. Then, for each node vi ∈ V and for each edge
(vi, vj) ∈ E, compute the secret values ti = FSi(00‖li), xi = FSi(01‖li), rij = Fti(10‖lj),
yij←$Encrij (tj‖xj) as described in Construction 2. A sets x0

v∗ = xv∗ and x1
v∗ = x̄v∗ where

x̄v∗ is sampled at random. Finally, A sends Pub and xdv∗ to D where d is a random bit.

3. A answers any OΠ
Corr(vi) query by returning Si.

4. D outputs a bit d′ and A completes the simulation of the experiments G−1 and G0 by
returning 1 if d = d′; otherwise it returns 0.

5. Lastly, D outputs its guess. A outputs any bit b that D outputs.

When A is playing respectively Gprf−0
F,A (λ) and Gprf−1

F,A (λ), then the reduction perfectly

simulates G−1 and G0. Indeed, if A is playing with Gprf−0
F,A (λ) (resp. Gprf−1

F,A (λ)) then, S0 =
OF(11‖l0) (resp. S0 is randomly sampled from {0, 1}∗). In addition, A computes all the secrets
and edge information following Construction 2. As such, the advantage of the attacker A in
distinguishing Gprf−0

F,A (λ) and Gprf−1
F,A (λ) is non negligible. This concludes the proof.

The rest of the proof is analogous to the one of Atallah et al., except that in G
(a)
i we

additionally sample Si at random. We refer to [3, Theorem 5.3] for the proofs that G0 ≈c G
(a)
1

and G
(a)
i ≈c G

(b)
i , G

(b)
i ≈c G

(c)
i , G

(c)
i−1 ≈c G

(a)
i for any i ∈ {2, . . . , |Anc(v∗)| − 1}.

C Handling Dynamic Changes to a Deterministic Key Assign-
ment Access Hierarchy

This section details how to handle dynamic changes to the access hierarchy (e.g., insertion of a
node, or deletion of an edge) of our deterministic key assignment scheme of Appendix B and, in
turn, within Arcula, our hierarchical deterministic wallet of Section 6.

27

Handling dynamic changes to the access hierarchy of the DHKA requires us to consider two
problems. First, how to correctly enforce the hierarchy after the modification (e.g., preventing a
node from accessing a subtree after an edge to that subtree is removed); second, how to deal
with modifications to the structure of G that change the path from the root to any node vi along
which we deterministically derive the secret values Si (e.g., removing the parent of a node).
We solve these problems through the following strategies. First, we modify the graph G by
adding an explicit root node to it, vR, such that there exists an edge between vR and any root
node of G (i.e., any minimal node in a topological ordering of G). More in details, we define
G′ = (V ∪{vR} , E ∪{(vR, vi) | vi has no predecessors in G}). It is easy to prove that both G
and G′ define equivalent access hierarchies.

Next, we associate an additional identifier, that we call version, to each node by including
it in its label. Let Ver : V → N be a public mapping associating an integer wi ∈ N to any
node vi ∈ V . Every node vi initially starts from version wi = 0, and we modify Items 1 and 2
of Construction 2 to account for it when deriving the node label li:

li = vi‖wi

Every time we modify the graph G′ in such a way that it would require updating the secret of a
node vi, we do so by updating its version wi, deterministically computing its new label li, and,
in turn, its new secret Si.

In the remainder of this section, we leverage the version associated to each node to perform
a rekey procedure, defined as follows for every node vh and for every node vp such that vp is the
parent of vh in G′.

1. Increase the version wh of the node vh to a new value wh
′ and update the Ver data

structure. Then, compute a new label l′h = vh‖w′h and update the corresponding entry in
Pub. Finally, compute a new secret S′h = FSp(11‖l′h), a new pair of secret and intermediate
keys x′h = FS′h(01‖l′h) and t′h = FS′h(00‖l′h), and update the Sec mapping.

2. For each incoming edge (vk, vh) of vh, update the public information y′kh←$Encrkh(t′h‖x′h)
stored on the edge to reflect the updated values t′h and x′h.

Finally, we deal with the dynamic modifications of the graph:

Deletion of an edge: Let (vi, vj) ∈ E be the edge that is to be removed from G′. Our goal is
twofold: First, to prevent vi from accessing the cryptographic keys of vj . Second, to make
sure that if the deletion of the edge changes the derivation path from the root vR of the
hierarchy to vj , then the deterministic generation of the secret Sj changes accordingly. We
begin by tackling this last problem. Let vp be the parent node of vj in G′. If vi = vp and if
there is no other edge (vp′ , vj) ∈ E (i.e., there does not exist another predecessor of vj that
is a candidate to become its new parent), then the deletion of the edge (vi, vj) ∈ E results
in disconnecting of vj from the access hierarchy. In that case, we add a connecting edge
(vR, vj) to G′ that creates a single-hop path from the root to vj and allows the deterministic
key derivation of its secret Sj . We note that the addition of this edge does not modify the
access hierarchy, i.e. it does not allow vj to derive the secrets of any node that was not
previously between its descendants Desc(vj).

Next, we prevent vi from accessing the cryptographic keys of vj by performing the rekey
procedure for each node vh ∈ Desc(vj) (this includes vj as well).

Deletion of a node: The deletion of any node vi corresponds to first removing all the incoming
and outgoing edges of vi through the procedure specified above. Then, to removing the
public and secret information associated with vi from the Pub, Sec, and Ver data structures.

28

Insertion of an edge: Let (vi, vj) ∈ E be the edge to be included into G′. We consider two
cases:

• After the addition of the edge vi is the parent of vj in G′. As before, we perform
the rekey procedure for each node vh ∈ Desc(vj) to update their secret values and to
allow the deterministic derivation.

• Otherwise, compute rij = Fti(10‖lj), yij←$Encrij (tj‖xj), and augment Pub to contain
the mapping (vi, vj) 7→ yij .

Insertion of a new node: Let vi be the node to insert, together with a set of new edges in
and out of it. Let vj be the parent of vi. We begin by computing a deterministic public
label li = vi‖wi (where wi = 0) and a deterministic secret value Si = FSj (11‖li); then, we
compute ki = FSi(01‖li) and we augment Pub with the mapping vi 7→ li, Sec with the
mapping vi 7→ (Si, xi), and Ver with the mapping vi 7→ 0. Finally, we proceed to insert
the edges one by one using the edge insertion procedure specified above.

Key Replacement: To replace the cryptographic key xi associated to any node vi, we perform
the rekey procedure for each node vh ∈ Desc(vi).

This approach allows our deterministic key assignment scheme to handle dynamic changes
to its access hierarchy and requires the manager of the key assignment (e.g., a crypto-currencies
exchange) to keep track of the version of the nodes stored within the Ver mapping in addition
to the structure of the graph G. Because of the determinism of our scheme, every change to
a node vj also propagates to all its descendants. As an example, the replacement of its secret
key xj requires incrementing its version wj in the label lj to compute a new secret value and a
new cryptographic key. In turn, this causes the secret information and the cryptographic keys
of all its descendants vi to change as well (because of the deterministic derivation of the secret
values Si = FSj (11‖li)). The cost of such an update depends on the particular application and
the structure of the access hierarchy. If we use the DHKA to handle the keys associated with
traditional Bitcoin transactions, for example, updating the cryptographic key of a node requires
sending its funds to a new address and involves the payment of a transaction fee. Most of the
times, however, we are particularly interested in appending new leaves to the access hierarchy
(e.g., to create a new node for an incoming payment). This operation is a particular case of the
insertion of a new node with a single incoming edge. It never modifies any derivation path, and,
as a consequence, it does not perform the rekey procedure, it does not change any cryptographic
key, and it does not require transactions on the blockchain. Finally, when we use Arcula to
enable the public derivation of addresses, we identify the nodes of the wallet through the master
public key mpk and a label. Both the addition of a new node and the update of the label lj of
an existing node vj result in a new Arcula address (i.e., a locking script that contains a new
label). Spending the funds destined to the new address requires a new certificate, signed by the

master secret key, that associates the new public key pk
′
j (obtained from the new intermediate

key x′h after the rekey procedure) to the new (or updated) label lj .

D Time-Bound Deterministic Hierarchical Key Assignment

A hierarchical key assignment scheme aims at assigning a cryptographic key to every user of
an access hierarchy so that users with higher privileges can autonomously derive the keys of
the others within their subtrees, i.e., with lower privileges in the hierarchy. Many use cases
require constraining these assignments according to some time restrictions. For example, a
service provider aims to provide a user with her cryptographic keys only as long as she pays for

29

her subscription to the service. To achieve this goal, it can leverage a key assignment scheme
that takes time into account, and that enables the users to deriver their cryptographic keys
during a given period only (e.g., one month). This section details how we incorporate these
temporal capabilities into the deterministic hierarchical key assignment scheme of Appendix B
and within Arcula, our design hierarchical deterministic wallet (Section 6).

In the last few years, many researchers focused on how to incorporate temporal capabilities
into HKA schemes [5, 2, 10]. The solutions proposed first modify the hierarchy of the assignment
to consider, at the same time, both the access privileges and the temporal constraints. Then,
assign a set of secrets to the nodes of the augmented hierarchy so that the users can perform the
key derivation according to the time constraints.

We add these constraints to our DHKA by relying on the work of De Santis et al. [10] that
shows how to design a time-bound key-indistinguishable HKA scheme from any provably secure
HKA scheme (and, in particular, from our DHKA). Let G = (V,E) be an access hierarchy and let
T = {t1, t2, . . . , tn} be a sequence of distinct time periods. Each user vi belongs to a node of the
hierarchy for a non-empty contiguous subsequence Ti = {tj , . . . , tk} ⊆ T of time periods.8 Let
P = {Ti}vi∈V be the set of time subsequences Ti when every user vi ∈ V belongs to the hierarchy.
The authors start from the observation that the contiguous subsequences Ti ∈ P implicitly define
a partially ordered hierarchy, where Ti < Tj ⇐⇒ ∀tk ∈ Ti =⇒ tk ∈ Tj , i.e. iff Ti is included in
Tj . They call this relation the interval hierarchy, and they use its minimal representation, where
every node except the leaves has precisely two edges, to augment the original access hierarchy
encoded by the graph G. As a result, they build a new graph, GT = (VT , ET), that enforces
both the access and the interval partially ordered hierarchies. GT contains a copy of the interval
hierarchy for each node in G. A user vi derives the cryptographic key assigned to its descendant
vj for the period tk ∈ Tj by following the path in the augmented graph GT along the copy
of the interval hierarchy related to vj and then through the original access hierarchy encoded
by G. The instantiation of the (D)HKA scheme on the graph GT results in a (deterministic)
time-bound hierarchical key assignment scheme.

By construction, the number of nodes and edges in GT grows quadratically in the size of T
and in the dimension of G. In turn, the amount of public information required by a generic HKA
scheme on GT grows comparably. As we have seen in Appendix B.1, however, the determinism
of our DHKA scheme allows us to reduce the amount of public information required significantly:
The nodes of the access hierarchy can derive the secret information of their descendants by
leveraging their own secrets and only rely on the public information when a node has two or
more predecessors. In the same way, when we augment the access hierarchy encoded by G to
account for the interval hierarchy into GT , the determinism of the scheme allows us to reduce
the amount of public information required. The augmented hierarchy GT , indeed, stores a
copy of the minimal interval hierarchy for every node of G. Every node of the minimal interval
hierarchy only has a single predecessor and, as a result, does not require any public information
associated with its edges. For this reason, when we leverage our design of DHKA to incorporate
the temporal capabilities into an HKA scheme, the size of the public information required grows
only linearly with the dimension of the access hierarchy G and, in particular, is independent of
the cardinality of T .

To conclude, we show how to incorporate these temporal capabilities into Arcula, our design
of HDW based on DHKA and digital signatures. Our construction provides the users of the
access hierarchy with a certificate and a signing key. The certificate, signed by the master secret
key, authorizes the signing key to spend the coins addressed to their identities. When we add
the temporal capabilities to the DHKA, we assign a different signing key to each user vi for each
time period tj ∈ Ti; then, we provide her with a certificate certi,j for each key. We prevent the

8In [10] the subsequence of time periods of a node vi ∈ V is denoted by λi.

30

users from signing new transactions through an outdated key by adding an expiration date to
these certificates so that they are only valid until the end of the period tj . As a result, every user
vi will require an updated certificate after each time period passes. The stack-based scripting
language of Bitcoin Cash does not allow yet to check for the expiration date of a certificate. For
this reason, our design of time-bound Arcula requires, at the time of writing, a more powerful
scripting language, e.g. an Ethereum smart contract.

E Proof of Theorem 6.1

We prove the theorem by contradiction, using a hybrid argument. Let (vj ,m, σ) be the forgery
returned by A in the game Gheuf

Π,A (λ,G). We define the following hybrid experiments:

G0: is exactly the game Gheuf
Π,A (λ,G).

Gt: is the same as Gt−1, except that the challenger generates at random the signature key pairs
(ski, pki) for the first t nodes in Anc(vj). More in details, let Anc(vj) = {v0, . . . , vt, . . . , vj },
for every vi ∈ {v0, . . . , vt} the challenger generates the signature key pair (ski, pki) by
running KGenΣ(1λ).

The proof idea is to first show, using a hybrid argument, that G0 ≈c G|Anc(vj)|. Hence, a
potential adversary A has the same advantage in both G0 and G|Anc(vj)|, with overwhelming
probability. Then, we show that an adversary A for G|Anc(vj)| implies an adversary A′ for

Geuf
Σ,A′(λ).

Lemma E.1. If Γ is key indistinguishable, then Gt−1 ≈c Gt for every 1 ≤ t ≤ |Anc(vj)|.

Proof. We assume that there exists a DAG G = (V,E) and a distinguisher D that has a non-
negligible advantage in distinguishing between Gt−1 and Gt. Then, we build an adversary A
against the experiment Gsk−ind

Γ,A (λ,G) (defined in Definition B.2) as follows:

1. A samples at random v∗. Let Anc(v∗) = {v0, . . . , vt, . . . , v
∗} be the set of ancestors of v∗

according to an ordering of the nodes of the graph (e.g., a topological sorting). A sends vt
to the challenger and receives Pub and xt .

2. A executes the remaining steps of SetΠ, except that it skips Item 2a and it replaces Item 2b
with the following:

• If vi ∈ {v0, . . . , vt−1}, then compute (ski, pki)←$KGenΣ(1λ).

• Otherwise, if vi = vt, then compute (skt, pkt) = KGenΣ(1λ;xt).

• Otherwise, send a OΓ
Corr(vi) query to the challenger and receive Si = di. Compute

xi = DeriveΓ(G,Pub, vi, vi, Si) and (ski, pki) = KGenΣ(1λ;xi).

Finally, A outputs the public parameters pp = (G,Pub,{certi}vi∈V , pk0).

3. A answers oracle queries in the following way:

• On input vi for OΠ
Corr, A invokes OΓ

Corr(vi) and returns the output.

• On input (m, vi) for OΠ
Sign, A returns σ = (pki, σ

′, certi) where σ′←$SignΣ(ski,m).

4. A receives the forgery (vj ,m, σ). It aborts the simulation if v∗ 6= vj ; otherwise it completes
the simulation by returning the result of VrfyΠ(pkj ,m, σ), where lj = Pub(vj) and pkj =

(pk0, lj).

31

5. A outputs the decisional bit received from D.

Let Eabort be the event that A aborts the simulation. It is easy to see that Pr[¬Eabort] =
Pr[v∗ = vj] = 1

|V | . Let Gsk−ind−b
Γ,A (λ,G) be the key indistinguishability game with bit b. Condi-

tioned on the event ¬Eabort, when A is playing respectively Gsk−ind−0
Γ,A (λ,G) and Gsk−ind−1

Γ,A (λ,G),
then the reduction perfectly simulates Gt−1 and Gt, because D can not corrupt any node
v ∈ Anc(v∗). Hence, the advantage of the attacker A in winning the game Gsk−ind

Γ,A (λ,G) is
non-negligible. This concludes the proof.

Lemma E.2. If Σ is existentially unforgeable, then for every DAG G = (V,E) and PPT

adversary A, Pr
[
G|Anc(vj)|,A(λ,G) = 1

]
≤ negl(λ).

Proof. We assume that there exists a DAG G = (V,E) and an adversary A that has a non-
negligible advantage against G|Anc(vj)|,A(1λ, G). Then, we build an adversary A′ against Geuf

Σ,A′(λ)
as follows:

1. A′ receives pk∗ from the challenger.

2. A′ flips a bit d←$ {0, 1} and samples at random v∗←$V and S←$S.

3. A′ simulates SetΠ. It runs (Pub, Sec) = SetΓ(1λ, G, S). If d = 0, it sets pk0 = pk∗;
otherwise it runs (sk0, pk0) = KGenΣ(1λ;x0) where (S0, x0) = Sec(v0). Lastly, A′ executes
the remaining steps of SetΠ, except that it replaces Item 2b and Item 3 with the following:

Item 2b: A′ proceeds as follow:

• If vi ∈ Anc(v∗) \{v∗}, then compute (ski, pki)←$KGenΣ(1λ).

• If vi = v∗, set pki = pk∗ if d = 1; otherwise run (ski, pki)←$KGenΣ(1λ).

• Otherwise (if vi 6∈ Anc(v∗)), run (ski, pki) = KGenΣ(1λ;xi) where (Si, xi) =
Sec(vi).

Item 3: If d = 1, then retrieve the label li = Pub(vi) and compute certi←$SignΣ(sk0, (pki, li));
otherwise, set certi←$OΣ

Sign((pki, li)).

Finally, A′ sends to A the public parameters pp = (G,Pub,{certi}vi∈V , pk0).

4. A′ answers oracle queries in the following way:

• On input vi for OΠ
Corr, A

′ returns di = Si where (Si, xi) = Sec(vi).

• On input (m, vi) for OΠ
Sign, if d = 1 ∧ vi = v∗, A′ sets σ′←$OΣ

Sign(m); otherwise, it

computes σ′←$SignΣ(ski,m). Lastly, it returns σ = (pki, σ
′, certi).

5. A′ receives the forgery (vj , m̃, σ̃) such that σ̃ = (pk•j , σ
•, cert•j) and aborts the simulation

if v∗ 6= vj ∨ (d = 0 ∧ pk•j = pkj) ∨ (d = 1 ∧ pk•j 6= pkj). Otherwise, if d = 0, it sends the
forgery ((pk•j , lj), cert

•
j) to challenger where lj = Pub(vj); if d = 1 sends (m̃, σ•).

Let Eabort be the event that A′ wins the game Geuf
Σ,A′(λ) and aborts the simulation. First of all,

32

note that:

¬Eabort = ¬
[
v∗ 6= vj ∨ (d = 0 ∧ pk•j = pkj) ∨ (d = 1 ∧ pk•j 6= pkj)

]
=
[
v∗ = vj ∧ ¬(d = 0 ∧ pk•j = pkj) ∧ ¬(d = 1 ∧ pk•j 6= pkj)

]
=
[
v∗ = vj ∧ (d = 1 ∨ pk•j 6= pkj) ∧ (d = 0 ∨ pk•j = pkj)

]
=
[
v∗ = vj ∧ ((d = 0 ∧ d = 1) ∨ (d = 1 ∧ pk•j = pkj)

∨(d = 0 ∧ pk•j 6= pkj) ∨ (pk•j 6= pkj ∧ pk•j = pkj))
]

=
[
v∗ = vj ∧ ((d = 1 ∧ pk•j = pkj) ∨ (d = 0 ∧ pk•j 6= pkj))

]
Let Pr

[
pk•j = pkj

]
= p. We can express Pr[¬Eabort] in the following way:

Pr[¬Eabort] = Pr
[
v∗ = vj ∧ (d = 0 ∧ pk•j 6= pkj) ∨ (d = 1 ∧ pk•j = pkj)

]
= Pr[v∗ = vj] ·

(
Pr
[
d = 0 ∧ pk•j 6= pkj

]
+ Pr

[
d = 1 ∧ pk•j = pkj

])
= Pr[v∗ = vj] ·

(
Pr[d = 0] · Pr

[
pk•j 6= pkj

]
+ Pr[d = 1] · Pr

[
pk•j = pkj

])
=

1

| V |
·
(

1− p
2

+
p

2

)
=

1

2· | V |

Let QΣ
Sign and QΠ

Sign be respectively the set of queries submitted by A′ to OΣ
Sign and the set

of queries submitted by A to OΠ
Sign. Conditioned on ¬Eabort and since A is a valid adver-

sary for Gheuf
Π,A (λ,G), then, with non-negligible probability, VrfyΠ(pkj , m̃, σ̃) = 1 if and only if

VrfyΣ(wpk, (pk•j , lj), cert
•
j) = 1 and VrfyΣ(pk•j , m̃, σ

•) = 1, where pkj = (pk0, lj) and lj = Pub(vj).

Note that A′ outputs a valid forgery for Geuf
Σ,A′(λ) with probability 1

2 :

1. Whenever d = 0, we have pk0 = pk∗ and pk•j 6= pkj . This allows us to conclude that A′

never asked (pk•j , lj) to oracle OΣ
Sign (I.e., (pk•j , lj) 6∈ QΣ

Sign). Hence, ((pk•j , lj), cert
•
j) is a

valid forgery for Geuf
Σ,A′(λ).

2. On the other hand, if d = 1, we have pk•j = pkj = pk∗. Since, A is a valid adversary it
must produces a valid signature for a new fresh message. Hence, we can conclude that
(v∗, m̃) 6∈ QΠ

Sign and (m̃, σ•) is a valid forgery for Geuf
Σ,A′(λ).

This concludes the proof.

By combining Lemma E.1 and Lemma E.2 we have that Construction 1 is hierarchically
existentially unforgeable.

33

	Introduction
	Hierarchical Deterministic Wallets
	Properties
	Applications
	Threats and Security Model
	Arcula at First Glance

	Related Work
	Preliminaries
	Notation
	Signature Scheme

	Security Model of Hierarchical Deterministic Wallet
	Arcula: A Secure Hierarchical Deterministic Wallet
	Deterministic Hierarchical Key Assignment
	Constructing Arcula from DHKA and signatures

	Arcula in the real world
	Technical Implementation
	Arcula in Bitcoin Cash
	Transaction Costs
	Optimizations and compatibility with Bitcoin
	Unlinkability of Transactions

	Conclusions
	Further Preliminaries
	Pseudorandom Function (PRF) Family
	Symmetric Encryption Scheme

	Security Model of Deterministic Hierarchical Key Assignment
	The DHKA scheme

	Handling Dynamic Changes to a Deterministic Key Assignment Access Hierarchy
	Time-Bound Deterministic Hierarchical Key Assignment
	Proof of Theorem 5.1

