
Forgery Attacks on FlexAE and FlexAEAD

Maria Eichlseder, Daniel Kales, and Markus Schofnegger

Graz University of Technology, Austria
{firstname.lastname}@iaik.tugraz.at

Abstract. FlexAEAD is one of the round-1 candidates in the ongoing
NIST Lightweight Cryptography standardization project. In this note,
we show several forgery attacks on FlexAEAD with complexity less than
the security bound given by the designers, such as a block reordering
attack on full FlexAEAD-128 with estimated success probability about
2−54. Additionally, we show some trivial forgeries and point out domain
separation issues.

Keywords: authenticated encryption · forgery attack · NIST LWC

1 Introduction

FlexAEAD [11] is one of the round-1 candidate algorithms of the ongoing NIST
Lightweight Cryptography (LWC) standardization project [12]. The FlexAEAD
family of authenticated encryption (AEAD) algorithms is based on the previously
published authenticated encryption design FlexAE [8,9,10]. Compared to FlexAE,
FlexAEAD was modified to also handle associated data blocks, and the generation
of the ciphertext blocks was amended by an additional call to their internal keyed
permutation to better resist reordering attacks.

In this note, we show that all proposed variants of FlexAEAD are vulnerable
against different forgery attacks with complexity below the claimed security level:

1. Forgery based on reordering the associated data blocks.
2. Forgery based on truncating the ciphertext.
3. Forgery based on reordering the ciphertext blocks.

These attacks work despite several countermeasures included by the designers
against such reordering attacks when developing FlexAEAD based on FlexAE.
Our two main observations are (1) that the designers’ rationale to combine
the mode with a non-ideal primitive and rely on multiple encryption to hide
distinguishing properties is not sound, and (2) that the attacks can be made
significantly more efficient by taking advantage of the strong clustering effect of
the sparse differential characteristics permitted by the non-ideal primitive. We
also discuss applicability to the original FlexAE design, as well as several domain
separation problems in FlexAEAD. Where possible, we propose fixes.

This note was originally posted on NIST’s LWC mailing list [3]. Independent
observations on this list include an iterated truncated differential attack and
Yoyo distinguisher on the underlying block cipher [13,14] and a trivial padding
domain separation attack for associated data [7] also mentioned in Section 4.1.

2 Description of FlexAE and FlexAEAD

In this section, we summarize the construction of FlexAEAD [11].

The main building block of FlexAE and FlexAEAD is a keyed permutation
PFK . PFK is an Even-Mansour construction with whitening keys KA,KB , where
the master key is K = KA || KB. The inner permutation is built using a
nibble shuffling layer reminiscent of Tree-Structured SPNs [6] and several parallel
applications of the 8-bit AES S-Box [1]. The full construction of PFK is given in
Figure 1. For a more detailed description of the building blocks, we refer to the
NIST submission document [11].

Input

KA K = KA || KB

Block Shuffle Layer

L R

S-Box Layer

S-Box Layer

S-Box Layer

State

KB

Output

R
ep

ea
t
r

ti
m

es
.

Fig. 1: Keyed permutation PFK [11], with r ∈ {5, 6, 7} for
FlexAEAD-{64, 128, 256}.

PFK is used with four different keys in the FlexAEAD construction. These
four keys are derived from a master key K∗ by applying PFK∗ three times to
an initial state of 0n, iterating this process to generate enough bits for the four
subkeys K0,K1,K2,K3. A base counter is generated by applying PFK3

to the
nonce. This base counter is then used to generate the sequence (S0, . . . , Sn+m−1)
by repeatedly applying the increment step INC32 to the base counter, which
treats each 32-bit block of the base counter as an 32-bit little-endian integer and
increases it by one. PFK3 is then again applied to the result of INC32, yielding

the block S0. Further blocks Si can be generated by calling INC32 on the base
counter i+ 1 times before finally applying PFK3

, as shown in Figure 2a.

Public Nonce

PFK3

INC32

PFK3

Si

c
a
ll

i+
1
ti
m
e
s

(a) Generation of the sequence S.

Public Nonce

PFK3

INC32

PFK3

S0

INC32

PFK3

S1

∆in

∆out

(b) Differential ∆in → ∆out.

Fig. 2: Counter-based differences in the generation of the sequence S.

The sequence S0, . . . , Sn−1, Sn, . . . , Sn+m−1 is then used to mask the asso-
ciated data blocks A0, . . . , An−1 and plaintext blocks P0, . . . , Pm−1, as well as
intermediate results of the ciphertext generation process. This construction is
inspired by the IAPM mode of operation [4,5]. To compute the tag T , PFK0

is
applied to the Xor of the intermediate results after the first application of PFK2

to each masked block, plus a constant indicating whether the last plaintext block
was a full or a partial block. The full construction is illustrated in Figure 3.

A0

S0

PFK2

st0

· · ·

· · ·

An−1

Sn−1

PFK2

stn−1

P0

Sn

PFK2

stn

PFK1

Sn

PFK0

C0

· · ·

· · ·

· · ·

Pm−1

Sn+m−1

PFK2

stn+m−1

PFK1

Sn+m−1

PFK0

Cm−1

const.

PFK0

MSB

T

Fig. 3: The FlexAEAD mode for authenticated encryption (simplified, from [11]).

3 Forgery Attacks on FlexAE and FlexAEAD

In this section, we first propose a differential characteristic for PFK3
. Then, we

show how to apply the resulting counter differential to obtain several forgery
attacks on FlexAEAD-64, FlexAEAD-128, FlexAEAD-256, and FlexAE.

3.1 Differential Characteristic for the Counter Sequence

Recall the generation of the sequence S, as shown in Figure 2a. The intermediate
state is updated by calling INC32, incrementing each 32-bit block of the state.
Consider the difference between two states Si and Si+1: The only difference
between the input to the final call to PFK3

is one additional call to INC32. A
little-endian addition by 1 behaves like an Xor operation with probability 1

2
(exactly when the least significant bit of the state is zero). Therefore, the call
INC32 behaves like an Xor with a probability of 2−2 (2−4, 2−8) for FlexAEAD-64
(FlexAEAD-128, FlexAEAD-256). This process is shown in Figure 2b.

Using an input difference of ∆in = 01000000 01000000 for FlexAEAD-64
(repeated twice for FlexAEAD-128 and four times for FlexAEAD-256), we consider
the following differential characteristics for PF given in Figure 4. In the following,
we always denote the input difference of this characteristic as ∆in and the
output difference as ∆out. Under the Markov assumption, the probability of these
differential characteristics is 2−66 (Figure 4a for FlexAEAD-64), 2−79 (Figure 4b
for FlexAEAD-128), and 2−108 (Figure 4c for FlexAEAD-256), respectively. Note
that the Markov assumption is clearly not well-suited for this keyless construction
with limited diffusion.

The round function construction is very prone to clustering of character-
istics, as illustrated by the corresponding partially truncated characteristics
in Figure 5, where * denotes a nibble with an unspecified difference, xx is an
arbitrary fixed nonzero difference, and zz is the high-probability S-box output
difference with P[xx → zz] = 2−6. Using the estimate that P[11 → **] = 1,
P[{**, *0, 0*} → *0] = P[{**, *0, 0*} → 0*] = 2−4, and P[** → xx] = 2−8,
we obtain estimated probabilities of 2−46 (FlexAEAD-64), 2−54 (FlexAEAD-128),
and 2−70 (FlexAEAD-256). Furthermore, these clusters work not only for a fixed
starting difference of 01 in the least significant byte of each counter, but for any
single-nibble differences {01, 03, 07, 0f}. As a consequence, the transition from
modular difference +1 in each counter to a suitable Xor-difference works with
high success probability close to 1. A more precise probability estimate could be
obtained using tools such as semi-truncated characteristics [2] and exploiting the
lack of round keys, but we expect a very similar result. Practical experiments on
up to 3 rounds confirm this estimate, see Section 4.4.

3.2 Forgery Attacks for FlexAEAD using the Counter Difference

We can now use these differentials ∆in → ∆out in the counter sequence to mount
forgery attacks on the full FlexAEAD-64, FlexAEAD-128, and FlexAEAD-256
schemes. In the following, we describe several different approaches.

0100000001000000

0011000000000000

00000000
S S S S

00110000

00400000
S S S S

00400000

0040000000100000
S S S S

S

S

0000410000000000

00000000
S S S S

00004100

0000e000
S S S S

0000e000

0000e00000004000
S S S S

S

S

00000000e4000000

0a000000
S S S S

0a000000

0a000000
S S S S

00000000

0a00000000000000
S S S S

S

S

00a0000000000000

00000000
S S S S

00a00000

00600000
S S S S

00600000

0060000000400000
S S S S

S

S

0000640000000000

00000000
S S S S

00006400

00002000
S S S S

00002000

000020000000d400
S S S S

S

S

(a) F-64: 2−66

01000000010000000100000001000000

00110000000000000011000000000000

0011000000000000
S S S S S S S S

0000000000000000

0000000000000000
S S S S S S S S

0011000000000000

00000000000000000050000000000000
S S S S S S S S

S

S

00000500000000000000000000000000

0000000000000000
S S S S S S S S

0000050000000000

0000e00000000000
S S S S S S S S

0000e00000000000

0000e000000000000000400000000000
S S S S S S S S

S

S

00000000e40000000000000000000000

0000000000000000
S S S S S S S S

00000000e4000000

000000000a000000
S S S S S S S S

000000000a000000

000000000a0000000000000004000000
S S S S S S S S

S

S

000000000000000000a4000000000000

0050000000000000
S S S S S S S S

0050000000000000

0050000000000000
S S S S S S S S

0000000000000000

00500000000000000000000000000000
S S S S S S S S

S

S

00005000000000000000000000000000

0000000000000000
S S S S S S S S

0000500000000000

0000060000000000
S S S S S S S S

0000060000000000

000006000000000000000c0000000000
S S S S S S S S

S

S

00000000006c00000000000000000000

0000000000000000
S S S S S S S S

00000000006c0000

0000000000330000
S S S S S S S S

0000000000330000

00000000003300000000000000a00000
S S S S S S S S

S

S

(b) FlexAEAD-128: 2−79

0100000001000000010000000100000001000000010000000100000001000000

0011000000000000001100000000000000110000000000000011000000000000

00a00000000000000011000000000000
S S S S S S S S S S S S S S S S

00b10000000000000000000000000000

00a00000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000011000000000000

00a000a0000000000000
S S S S S S S S S S S S S S S S

S S

S

S

0000a00000000000000000000000000000000a00000000000000000000000000

00007000000000000000000000000000
S S S S S S S S S S S S S S S S

0000d000000000000000000000000000

00007000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000000000000000000

00007000
S S S S S S S S S S S S S S S S

S

S

000000007000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000700000000000000000000000

00000000050000000000000000000000
S S S S S S S S S S S S S S S S

00000000050000000000000000000000

0000000005000000000000000000000000000000080000000000000000000000
S S S S S S S S S S S S S S S S

S

S

0000000000000000005800

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000058000000000000

00000000000000000009000000000000
S S S S S S S S S S S S S S S S

00000000000000000009000000000000

0000000000000000000900000000000000000000000000000002000000000000
S S S S S S S S S S S S S S S S

S

S

0000000000000000000000000000000000000092000000000000000000000000

0000000f000000000000000000000000
S S S S S S S S S S S S S S S S

0000000f000000000000000000000000

0000000f000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000000000000000000

0000000f00
S S S S S S S S S S S S S S S S

S

S

00000000000000f000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000f00000000000000000

000000000000000a0000000000000000
S S S S S S S S S S S S S S S S

000000000000000a0000000000000000

000000000000000a000000000000000000000000000000040000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000000000000000a400000000000000000000000000000000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000000000000000a4

00000000000000000000000000000050
S S S S S S S S S S S S S S S S

00000000000000000000000000000050

0000000000000000000000000000005000000000000000000000000000000030
S S S S S S S S S S S S S S S S

S

S

(c) FlexAEAD-256: 2−108

Fig. 4: Differential characteristics for full-round PFK in FlexAEAD variants.

0100000001000000

0011000000000000

00000000
S S S S

00110000

00*00000
S S S S

00*00000

00*0000000*00000
S S S S

S

S

0000**0000000000

00000000
S S S S

0000**00

0000*000
S S S S

0000*000

0000*0000000*000
S S S S

S

S

00000000**000000

**000000
S S S S

**000000

0*000000
S S S S

**000000

0*0000000*000000
S S S S

S

S

S

00**000000000000

00000000
S S S S

00**0000

00*00000
S S S S

00*00000

00*0000000*00000
S S S S

S

S

0000**0000000000

00000000
S S S S

0000**00

0000xx00
S S S S

0000xx00

0000xx000000zz00
S S S S

S

S

(a) F-64: 2−46

01000000010000000100000001000000

00110000000000000011000000000000

00**000000000000
S S S S S S S S

00**000000000000

00*0000000000000
S S S S S S S S

00**000000000000

00*000000000000000*0000000000000
S S S S S S S S

S

S

S

0000**00000000000000000000000000

0000000000000000
S S S S S S S S

0000**0000000000

0000*00000000000
S S S S S S S S

0000*00000000000

0000*000000000000000*00000000000
S S S S S S S S

S

S

00000000**0000000000000000000000

0000000000000000
S S S S S S S S

00000000**000000

000000000*000000
S S S S S S S S

000000000*000000

000000000*000000000000000*000000
S S S S S S S S

S

S

000000000000000000**000000000000

00**000000000000
S S S S S S S S

00**000000000000

00*0000000000000
S S S S S S S S

00**000000000000

00*000000000000000*0000000000000
S S S S S S S S

S

S

S

0000**00000000000000000000000000

0000000000000000
S S S S S S S S

0000**0000000000

00000*0000000000
S S S S S S S S

00000*0000000000

00000*000000000000000*0000000000
S S S S S S S S

S

S

0000000000**00000000000000000000

0000000000000000
S S S S S S S S

0000000000**0000

0000000000xx0000
S S S S S S S S

0000000000xx0000

0000000000xx00000000000000zz0000
S S S S S S S S

S

S

(b) FlexAEAD-128: 2−54

0100000001000000010000000100000001000000010000000100000001000000

0011000000000000001100000000000000110000000000000011000000000000

00**00000000000000**000000000000
S S S S S S S S S S S S S S S S

00**00000000000000**000000000000

00*000000000000000*0000000000000
S S S S S S S S S S S S S S S S

00**00000000000000**000000000000

00*000000000000000*000000000000000*000000000000000*0000000000000
S S S S S S S S S S S S S S S S

S S

S S

S S

0000**000000000000000000000000000000**00000000000000000000000000

0000**00000000000000000000000000
S S S S S S S S S S S S S S S S

0000**00000000000000000000000000

0000*000000000000000000000000000
S S S S S S S S S S S S S S S S

0000**00000000000000000000000000

0000*0000000000000000000000000000000*000000000000000000000000000
S S S S S S S S S S S S S S S S

S

S

S

00000000**00

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000**0000000000000000000000

000000000*0000000000000000000000
S S S S S S S S S S S S S S S S

000000000*0000000000000000000000

000000000*0000000000000000000000000000000*0000000000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000**00

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000**000000000000

0000000000000000000*000000000000
S S S S S S S S S S S S S S S S

0000000000000000000*000000000000

0000000000000000000*0000000000000000000000000000000*000000000000
S S S S S S S S S S S S S S S S

S

S

00000000000000000000000000000000000000**000000000000000000000000

000000**000000000000000000000000
S S S S S S S S S S S S S S S S

000000**000000000000000000000000

0000000*000000000000000000000000
S S S S S S S S S S S S S S S S

000000**000000000000000000000000

0000000*0000000000000000000000000000000*000000000000000000000000
S S S S S S S S S S S S S S S S

S

S

S

00000000000000*000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000*00000000000000000

000000000000000*0000000000000000
S S S S S S S S S S S S S S S S

000000000000000*0000000000000000

000000000000000*0000000000000000000000000000000*0000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000000000000000**00000000000000000000000000000000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000000000000000**

000000000000000000000000000000xx
S S S S S S S S S S S S S S S S

000000000000000000000000000000xx

000000000000000000000000000000xx000000000000000000000000000000zz
S S S S S S S S S S S S S S S S

S

S

(c) FlexAEAD-256: 2−70

Fig. 5: Clustered characteristics for full-round PFK in FlexAEAD variants.

Changing Associated Data. We query a tag for some plaintext P with associated
data A = A0 || A1, where A0 ⊕ A1 = ∆out. With a probability of about 2−46

(FlexAEAD-64), 2−54 (FlexAEAD-128), or 2−70 (FlexAEAD-256), the sequence
blocks S0 and S1 follow the cluster of differential characteristics, and therefore
also fulfill S0 ⊕ S1 = ∆out. Then, A0 ⊕A1 ⊕ S0 ⊕ S1 = 0, so S0 ⊕A0 = S1 ⊕A1,
resulting in a contribution of the two associated data blocks to the checksum of
PFK2(S0 ⊕A0)⊕ PFK2(S1 ⊕A1) = 0.

Now, if we swap A0 and A1, with the same reasoning, the contribution to the
checksum will again be 0, so the original tag is valid for the modified associated
data with swapped blocks.

Although the example above assumes a distance of 1 between associated
data blocks, we can generalize this property and also find similar differential
characteristics for higher distances j. Distances with lower hamming weight and
with several suitable Xor-differences following the same truncated difference
generally result in a better probability. In practical experiments on round-reduced
FlexAEAD, we observed an even higher success probability than expected when
swapping associated data blocks, such as examples with a non-zero, but constant
contribution to the checksum.

Truncating Ciphertext. In a similar fashion to the previous attack, we can also
use this strategy to create a forgery targeting the plaintext.

Again, consider the generation of the sequence S, using the same strategy
and differential characteristics as in Section 3.1. Now query a tag with a plaintext
P = P0 || · · · || Pm−2 || Pm−1, where Pm−2 ⊕ Pm−1 = ∆out. With the same
reasoning and success probability as before, the combined contribution to the
checksum of Pm−2 and Pm−1 is 0, since, like in the previous attack, Pm−2 ⊕
Sm−2 = Pm−1 ⊕ Sm−1, and therefore PFK2

(S0 ⊕A0)⊕ PFK2
(S1 ⊕A1) = 0.

We can now produce a forgery by truncating the last two ciphertext blocks,
since the contribution of the corresponding plaintext blocks to the checksum and
therefore the tag is 0, and the number of blocks does not influence the tag.

Reordering Ciphertext. For their submission to the NIST Lightweight Cryptog-
raphy standardization project, the designers of FlexAEAD updated their design
from the previous version FlexAE in order to include associated data and prevent
trivial reordering attacks. In this section, we show a forgery based on reordering
ciphertexts of a chosen-plaintext query. Again, this attack is based on the same
property of the sequence S as the two previous attacks.

Consider a chosen plaintext P = P0 || P1, where P0 ⊕ P1 = ∆out, and the
corresponding ciphertext C = C0 || C1 and tag T . As before, this difference of 1
in the block index results in the differential characteristics depicted in Figure 5.
In FlexAEAD, the sequence values S0 and S1 are added at two points during the
encryption process, so that the internal difference ∆out propagates as shown in
Figure 6. By now swapping the ciphertext blocks C0 and C1, we have a valid
forgery using the original tag T . If the sequence generation followed the chosen
characteristic, the two swapped ciphertext blocks will again have a checksum

contribution of 0 during the decryption process. However, the resulting plaintext
blocks are unpredictable.

P0

S0

PFK2

st0

PFK1

S0

PFK0

C0

P1

S1

PFK2

st1

PFK1

S1

PFK0

C1

const.

PFK0

MSB

T

∆out

0

0

0

∆out

∆fin

Fig. 6: Propagation of differences in the FlexAEAD encryption function, assuming
S0 ⊕ S1 = ∆out.

4 Discussion and Further Observations on the Mode

The forgery attacks proposed in Section 3 exploit high-probability differential
characteristics for the primitive PF, and are best prevented by increasing the
number of rounds or replacing this primitive entirely. We remark that the designers
were aware of the low bounds for PF, but argued that only the bounds for the
multiple application PF3 = PF ◦ PF ◦ PF as used to compute Ci from Pi are
relevant. As demonstrated in Section 3, this is not the case.

In the following, we discuss additional issues with the FlexAEAD mode of
operation. These issues are independent of the underlying primitive PF and can
be fixed with small tweaks to the mode or by phrasing the security claim for more
restrictive message lengths. Finally, we discuss the applicability of our results to
FlexAE and their practical verification.

4.1 Domain Separation and Length Issues

Domain Separation between Associated Data and Plaintext. In Figure 3, observe
that the first step of the encryption (i.e., producing part of the checksum) is
exactly the same for associated data and the plaintext. Using this observation,
we can create a trivial forgery with probability 1 by redeclaring some part of the
plaintext to be associated data instead. As an example, given a nonce-associated

data-ciphertext-tag tuple (N,A,C, T) with a known plaintext P = P0 || P1 (and
a corresponding ciphertext C = C0 || C1), we can craft a second valid tuple
(N∗, A∗, C∗, T ∗) with probability 1 by setting

N∗ = N , A∗ = A || P0 , C∗ = C1 , T ∗ = T .

This forgery attack works for all versions of FlexAEAD.

Zero-Length Associated Data and Plaintext. During encryption, the nonce is used
to generate the sequence S for each block of associated data and plaintext. If the
combined length of associated data and plaintext is 0, the sequence is never used
during encryption at all and the final tag does not depend on the nonce. Thus,
a forgery is obtained by querying the static tag for empty associated data and
plaintext under an arbitrary nonce and then combining it with a different nonce.

To fix this issue, the nonce needs to be included in the computation of the tag,
for example by prepending the nonce N before the first associated data block A0

in the associated data processing phase.

Padding of Associated Data. The associated data is padded using zeros, but the
original length of the last associated data block does not influence the tag. Thus,
there is no way to distinguish between valid associated data ending in 0 and a
padded associated data block. In contrast, the padding of the plaintext has an
influence on the final tag value; it appears this was omitted for associated data
by mistake, and can easily be fixed. This issue was also observed by Mège [7].

4.2 Other Observations

Overflow of the Internal Counter. During the generation of the sequence S, an
internal state is updated repeatedly using the INC32 function. The internal state
repeats after 232 calls, therefore limiting the size of the encrypted payload to 232

blocks. Otherwise, if the associated data or plaintext length is larger than 232,
any two blocks (Ai, Ai+232) or (Ci, Ci+232) can be swapped to produce a forgery.

This can be addressed by either explicitly imposing a corresponding data
length limit as part of the security claim, or by choosing a counter size that does
not overflow within the data length limit.

4.3 Applicability to FlexAE

FlexAE, published at IEEE ICC 2017 [9], is the predecessor design of FlexAEAD.
It features a slightly simpler mode that omits the step PFK1(·) ⊕ Sj in the
computation of ciphertext block Cj and does not support associated data A.
The primitive also shows minor differences, such as 3 slightly different S-boxes,
which have no significant impact on the security analysis. The additional steps in
FlexAEAD were added by the designers to fix problems in FlexAE; in particular,
the ciphertext reordering attack of Section 3.2 works with probability 1 for
FlexAE.

FlexAE even permits forgeries with zero encryption queries, as illustrated in Fig-
ure 7. The following is a forgery with probability about 2−54 for FlexAE-64-128 (or,
with similar characteristics, 2−86 for FlexAE-128-256, 2−150 for FlexAE-256-512,
or 2−278 for FlexAE-512-1024): Take an arbitrary nonce N and single-block ci-
phertext C, and select T = C ⊕∆out with ∆out = xx000000 zz000000, where xx

is an arbitrary nonzero difference and zz is the high-probability S-box output
difference with P[xx → zz] = 2−6. This works based on the differential with
input difference ∆in = 10101010 10101010 for PFK0

due to the constant addition
between the computation of tag T and a single-block ciphertext C. The actual
success probability is likely higher; there are several similar clusters contributing
to the same differential (see Figure 7), and the alternative padding constant (01)∗

instead of (10)∗ gives an alternative compatible ∆in to double the probability.

1010101010101010

1100110011001100

0000
S S S S

0000

*000*000
S S S S

0000

*000*000*000*000
S S S S

S

S

S

S

S

S

1

2−8

2−8

000000000000

**000000
S S S S

**000000

*0000000
S S S S

**000000

*0000000*0000000
S S S S

S

S

S

1

2−4

2−4

**00000000000000

00000000
S S S S

**000000

*0000000
S S S S

*0000000

*0000000*0000000
S S S S

S

S

2−4

2−4

**00000000000000

00000000
S S S S

**000000

*0000000
S S S S

*0000000

*0000000*0000000
S S S S

S

S

2−4

2−4

**00000000000000

00000000
S S S S

**000000

xx000000
S S S S

xx000000

xx000000zz000000
S S S S

S

S

2−8

2−6

1010101010101010

1100110011001100

0000
S S S S

0000

0*000*00
S S S S

0000

0*000*000*000*00
S S S S

S

S

S

S

S

S

1

2−8

2−8

00**000000**0000

00**0000
S S S S

00**0000

00*00000
S S S S

00**0000

00*0000000*00000
S S S S

S

S

S

1

2−4

2−4

0000**0000000000

00000000
S S S S

0000**00

0000*000
S S S S

0000*000

0000*0000000*000
S S S S

S

S

2−4

2−4

00000000**000000

**000000
S S S S

**000000

*0000000
S S S S

**000000

*0000000*0000000
S S S S

S

S

S

1

2−4

2−4

**00000000000000

00000000
S S S S

**000000

xx000000
S S S S

xx000000

xx000000zz000000
S S S S

S

S

2−8

2−6

P0

S0

PFK2

st0

PFK0

C0

101010...10

PFK0

MSB

T

∆in

∆out

Fig. 7: Zero-query forgery for full FlexAE-64-128 with clusters of probability 2−54.

4.4 Practical Verification

All our practical tests use the reference implementation of FlexAEAD. We suc-
cessfully verified the domain separation issue (Section 4.1) using the full-round
version, and we could also confirm that for inputs with zero-length associated data
and plaintext blocks, the final tag does not depend on the nonce (Section 4.2).

Moreover, we practically verified the estimated probabilities of our differ-
ential characteristics for reduced-round versions of both FlexAEAD-128 and
FlexAEAD-256. More specifically, on average we are able to find the required out-
put difference for FlexAEAD-128 with 3-round PFK using about 230 samples, and
that for FlexAEAD-256 with 2-round PFK using about 224 samples, as expected.

5 Conclusion

In this short note, we showed several forgery attacks against FlexAEAD (also
applying to its predecessor FlexAE). Except the trivial forgery based on domain
separation issues, these forgery variants are based on high-probability clusters
of differential characteristics in the generation of the internal sequence S. The
resulting success probabilities per forgery attempt are summarized as follows.
Using a single encryption query with a fixed difference between two consecu-
tive associated data or plaintext blocks, a forgery attempt with swapped or
truncated blocks is successful with probability about 2−46 (FlexAEAD-64), 2−54

(FlexAEAD-128), or 2−70 (FlexAEAD-256). Furthermore, we proposed forgery
attacks on FlexAE with zero encryption queries and arbitrary single-block cipher-
texts with success probability about 2−54 (FlexAE-64-128), 2−86 (FlexAE-128-256),
2−150 (FlexAE-256-512), or 2−278 (FlexAE-512-1024). While increasing the num-
ber of rounds of the permutation PF or the number of calls to PF during sequence
generation would combat these attacks, this also comes with a corresponding
performance impact. Additionally, due to the fragile nature of the tag generation
procedure, similar forgery attacks might still exist.

References

1. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002), https://doi.
org/10.1007/978-3-662-04722-4

2. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: Application
to MANTIS-6. IACR Transactions on Symmetric Cryptology 2018(2), 111–132
(2018), https://doi.org/10.13154/tosc.v2018.i2.111-132

3. Eichlseder, M., Kales, D., Schofnegger, M.: OFFICIAL COMMENT: FlexAEAD.
Posting on the NIST LWC mailing list, https://groups.google.com/a/list.nist.
gov/d/msg/lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ

4. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B.
(ed.) Advances in Cryptology – EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544.
Springer (2001), https://doi.org/10.1007/3-540-44987-6_32

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tosc.v2018.i2.111-132
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ
https://doi.org/10.1007/3-540-44987-6_32

5. Jutla, C.S.: Encryption modes with almost free message integrity. Journal of Cryp-
tology 21(4), 547–578 (2008), https://doi.org/10.1007/s00145-008-9024-z

6. Kam, J.B., Davida, G.I.: Structured design of substitution-permutation encryption
networks. IEEE Transactions on Computers 28(10), 747–753 (1979), https://doi.
org/10.1109/TC.1979.1675242

7. Mège, A.: OFFICIAL COMMENT: FlexAEAD. Posting on the NIST LWC
mailing list, https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/

DPQVEJ5oBeU/YXW0QjfjBQAJ

8. do Nascimento, E.M.: Algoritmo de Criptografia Leve com Utilização de Au-
tenticação. Ph.D. thesis, Instituto Militar de Engenharia, Rio de Janeiro
(2017), http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/
2017/2017-Eduardo.pdf

9. do Nascimento, E.M., Xexéo, J.A.M.: A flexible authenticated lightweight cipher
using Even-Mansour construction. In: IEEE International Conference on Communi-
cations – ICC 2017. pp. 1–6. IEEE (2017), https://doi.org/10.1109/ICC.2017.
7996734

10. do Nascimento, E.M., Xexéo, J.A.M.: A lightweight cipher with integrated
authentication. In: Simpósio Brasileiro em Segurança da Informação e de
Sistemas Computacionais – SBSEG. pp. 25–32. Sociedade Brasileira de
Computação (2018), https://portaldeconteudo.sbc.org.br/index.php/sbseg_
estendido/article/view/4138

11. do Nascimento, E.M., Xexéo, J.A.M.: FlexAEAD. Submission to Round
1 of the NIST Lightweight Cryptography Standardization process (2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/FlexAEAD-spec.pdf

12. National Institute of Standards and Technology (NIST): Lightweight cryp-
tography standardization process (2019), https://csrc.nist.gov/projects/

lightweight-cryptography

13. Rahman, M., Saha, D., Paul, G.: Attacks against FlexAEAD. Posting on the
NIST LWC mailing list, https://groups.google.com/a/list.nist.gov/d/msg/
lwc-forum/VLWtGnJStew/X3Fxexg1AQAJ

14. Rahman, M., Saha, D., Paul, G.: Interated truncated differential for internal keyed
permutation of FlexAEAD. IACR Cryptology ePrint Archive, Report 2019/539
(2019), https://eprint.iacr.org/2019/539

https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1109/TC.1979.1675242
https://doi.org/10.1109/TC.1979.1675242
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/DPQVEJ5oBeU/YXW0QjfjBQAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/DPQVEJ5oBeU/YXW0QjfjBQAJ
http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/2017-Eduardo.pdf
http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/2017-Eduardo.pdf
https://doi.org/10.1109/ICC.2017.7996734
https://doi.org/10.1109/ICC.2017.7996734
https://portaldeconteudo.sbc.org.br/index.php/sbseg_estendido/article/view/4138
https://portaldeconteudo.sbc.org.br/index.php/sbseg_estendido/article/view/4138
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/VLWtGnJStew/X3Fxexg1AQAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/VLWtGnJStew/X3Fxexg1AQAJ
https://eprint.iacr.org/2019/539

	Forgery Attacks on FlexAE and FlexAEAD

