
Robust and Scalable Consensus for Sharded
Distributed Ledgers

Eleftherios Kokoris-Kogias∗
∗EPFL

eleftherios.kokoriskogias@epfl.ch

Abstract—ByzCoin, a promising alternative of
Bitcoin, is a scalable consensus protocol used as
a building block of many research and enterprise
level decentralized systems. In this paper we show
that ByzCoin is unsuitable for deployment in an
open, adversarial network and instead introduce
MOTOR. MOTOR is designed as a secure, robust, and
scalable consensus suitable for permisionless sharded
blockchains. MOTOR achieves these properties by
making four key design choices: (a) it prioritizes
robustness in adversarial environments while main-
taining adequate scalability, (b) it employees prov-
ably correct cryptography that resists DoS attacks
from individual nodes, (c) it deploys unpredictable
rotating leaders to defend against mildly-adaptive
adversaries and prevents censorship, and (d) it
creates an incentive compatible reward mechanism.
These choices are materialized as (a) a “rotating
subleader” communication pattern that balances the
scalability needs with the robustness requirements
under failures, (b) deployment of provable secure
BLS multi-signatures, (c) use of deterministic thresh-
old signatures as source of randomness and (d) care-
ful design of the reward allocation mechanism. We
have implemented MOTOR and compare it with
ByzCoin. We show that MOTOR can scale similar
to ByzCoin with an at most 2x overhead whereas
it maintains good performance even under high-
percentage of faults, unlike ByzCoin.

I. INTRODUCTION

Blockchain technology has emerged a decade
ago with Bitcoin [27], an open, self-regulating
cryptocurrency build on top of the idea of de-
centralization. Bitcoin and the first generation
of blockchain consensus protocols that followed
have two challenging limitations regarding per-

formance; confirmation latency and transaction
throughput. This is due to the consensus used
in those blockchains that requires synchronous
communication [30] to guarantee persistence of the
blocks. As a result clients may need to wait up to
60-minutes [27], before accepting a transaction as
valid.

In order to solve this problem a second gen-
eration of blockchains emerged [22], [11], [29],
which use traditional Byzantine consensus algo-
rithms [10] in order to guarantee strong consis-
tency in seconds. These systems, however, do not
scale well since BFT protocols [10], [24] are
designed to run among a few (usual deployment
is 4-16) nodes. Currently, the most prominent
system scaling to more than a few nodes is Byz-
Coin [22], but this scalability is achieved only in
non-adversarial environments as we show in Sec-
tion III. In order to sidestep the scalability problem
a third generation of blockchains is proposed [23],
[1] which is based on the idea of sharding the
state into multiple sub-blockchains that can process
transactions in parallel. This means that no valida-
tor audits the full blockchain. Although, sharded
blockchains scale better than classic BFT, they still
require to run the per-subchain consensus protocol
among hundreds of participating nodes [23], espe-
cially in strong adversarial environments, showing
that the requirement of scalable BFT consensus
cannot simply be avoided by changing the archi-
tecture. In short, current solutions for scalable BFT
consensus do not scale to the required number of
participants (≈ 600) [16], [29], are not robust to
high adversarial power [15], [22] or adversarial

adaptation [22], [29], and do not consider rational
participants [15], [29], [16], [22].

In this work, we introduce MOTOR, a scalable
BFT-consensus architecture that is designed for
realistic deployment at an open blockchain ecosys-
tem where participants are rational. Our protocol
can become an integral part of current multi-
million dollar blockchain ventures that deploy
either classic BFT consensus (e.g., HyperLedger
Fabric [2], [3] or Cypherium [17]) or sharded
blockchains (e.g., Zilliqa [37], Harmony [35], or
Emotiq [36]).

To provide a viable solution, MOTOR needs
to address the following three key challenges.
First, a consensus algorithm that is designed to
be deployed on the Internet and on potentially
anonymous servers needs to be robust to a high
percentage of Byzantine faults while maintain-
ing sufficient scalability. Second, the protocol
should guarantee censorship-resistance meaning
that transactions from honest nodes do not face the
risk of starvation in the presence of an adversar-
ial leader. Current BFT protocols do not support
this property as a malicious leader can reign for
ever proposing blocks that do not include trans-
actions of some specific clients. Finally, MOTOR

needs to address incentive-compatibility. Previous
works [11], [29], [22] assume that participants are
”honest” and faithfully follow the protocol even if
they get higher rewards by deviating from it. In
a permissionless blockchain this assumption does
not model the real word where participants are
rational and want to maximize their rewards.

To address the first challenge MOTOR balances
the robust but not scalable star communication
pattern (see Figure 1), where there is a single
leader who collects messages from and broad-
casts messages to all nodes (which prior work
has extensively studied [31], [24], [16]) and the
scalable but not robust tree communication pattern
(see Figure 2) where every node has a parent and
two children which they communicate with (which
ByzCoin is using). To this end we design and for-
mally study a hybrid of those two communication

patterns which resembles a tree of stars (Figure 3)
where the leader is connected to clusters of nodes
and rotates the emission of his messages to in-
dividual nodes inside every cluster until he finds
a non-malicious subleader. For the challenge of
censorship resistance, we introduce rotating leaders
following existing work in BFT [16], and extend
it to withstand round-adaptive adversaries by ran-
domizing the leader schedule. For this purpose
we use pairing-based threshold keys to produce
deterministic signatures which can be also used
as unbiasable random seeds. Finally, we design
the reward distribution mechanism such that the
consensus nodes are incentivized to participate and
the leader to not exclude them.

Our contributions: In summary we make the
following contributions:

• We study ByzCoin and show that it has mul-
tiple attack surfaces both in the cryptography
it uses and in the broadcast communication
pattern it employs.

• We propose MOTOR consensus protocol
which fixes ByzCoin’s issues and remains
robust, scalable and functional when deployed
among rational participants. MOTOR can be
deployed standalone or facilitate sharding.

• We show theoretically MOTOR’s safety, live-
ness, and censorship-resistance and show ex-
perimentally its scalability and robustness.

II. BACKGROUND AND SYSTEM MODEL

A. Prior Work

The most closely related work to ours is
ByzCoin [22] ByzCoin envisions a Bitcoin [27]
protocol that uses strongly consistent consensus.
In order to scale to hundreds of nodes it uses
multi-cast trees and aggregate Schnorr signatures.
MOTOR relies on the ideas of ByzCoin. In
Section III we extensively study ByzCoin to
identify its shortcomings and in Section IV we
address those issues.

2

Parsimonious Broadcast. The majority of BFT
algorithms inspired by PBFT [10] use an all-to-
all communication pattern making them unable
to scale. In order to speed this up, Ramasamy
et al. [31] proposed the use of a strong consis-
tent broadcast primitive instead of the reliable
broadcast PBFT is using, together with a fall-
back protocol that guarantees safety and liveness.
This reduces the communication complexity of
the optimistic case to O(n) instead of O(n2).
Multiple systems such as Zyzzyva [24] use this
fast-track communication pattern to perform better
than PBFT under normal operation. We call this
communication pattern a star throughout this pa-
per.

B. System Model

In this work, we begin assuming a correct
parsimonious-broadcast [31] consensus algorithm,
and extend it to be suitable for blockchains. Specif-
ically, we modify the parsimonious broadcast prim-
itive to balance its robustness with our scalablity
requirements as described in Section IV-C.

Throughout this paper we consider a system
consisting of a fixed set of n = 3f + 1 nodes
of which up to f are Byzantine faulty, meaning
that they can behave maliciously, collude or simply
crash. The rest of the participants are assumed
to be rational, meaning that they want to max-
imize their individual utility functions which is
the relative1 amount of transaction rewards they
can collect. We assume a round-adaptive adversary
that chooses which nodes to corrupt at the end of
every consensus round and has control over them
at the the end of the next round. We assume that
all nodes have already setup both their individual
identities (pki, ski) and a threshold key pks. The
associated secret key sks is not known and every
node has a secret share si of it. If f + 1 nodes
use their share to sign a record then a signature
sigs that verifies against sks can be generated by
pooling those partial signatures together. We do
not investigate how the members of the consensus

1The percentage over the total coins available

group change through time; a potential way can be
through an epoch based Sybil resistant protocol as
proposed by OmniLedger [23].

C. Network model

We adopt the usual partial synchronous
model [10] for our network communication where
there exists some unknown time interval named
GST (General Stabilization Time) after which all
messages between honest nodes are delivered.

D. Cryptography

We make the usual cryptographic assump-
tions, namely that the adversary is computation-
ally bounded, that cryptographically secure hash
functions exist, and that participants sign their
messages and verify the signatures of received
messages. Furthermore, we assume that BLS [8]
signatures are secure and that there is a standard
(decentralized) PKI for authentication [22], [29],
[15] and for setting up a (f+1)-out-of-(3f+1) BLS
threshold signature scheme using a partially syn-
chronous DKG [19].

III. BYZCOIN’S SHORTCOMINGS

In this section we delve into ByzCoin and iden-
tify the attack vectors it exposes to the adversary as
well as general shortcomings that prevent it from
being deployable in public blockchain networks. In
summary we look into 4 issues as follows: (a) the
two-round Schnorr multisgnature scheme used is
susceptible to simple DoS attacks by a single
malicious node, (b) the tree communication pattern
employed to facilitate scalability is fragile under
strong adversaries, (c) the leader election mech-
anism is predictable and cannot defend against a
round-adaptive adversary, and (d) the incentives are
not aligned with the system design.

A. ByzCoin Protocol

In order to correctly aggregate the Schnorr
multi-signatures, ByzCoin relies on a protocol
called Collective Signing [34] (CoSi). For each

3

Fig. 1: Parsimonious Broadcast (Star Communication Pattern)

1 record 2 record
Leader

Nodes

(Cosigners)each statement collectively

signed by both leader and

all or most nodes

Agree on Authoritative Statements: e.g. log records

Fig. 2: CoSi protocol architecture

message to be collectively signed, the leader initi-
ates a CoSi four-phase protocol round that requires
two round-trips over the communication tree be-
tween the leader and its witnesses:

1) Announcement: The leader broadcasts an
announcement of a new round down the com-
munication tree. The announcement can op-
tionally include the message M to be signed,
otherwise M is sent in phase three.

2) Commitment: Each node picks a random
secret and uses it to compute a Schnorr
commitment. In a bottom-up process, each
node obtains an aggregate Schnorr commit-
ment from its immediate children, combines
those with its own commitment, and passes a
further-aggregated commitment up the tree.

3) Challenge: The leader computes a collective
Schnorr challenge using a cryptographic hash
function and broadcasts it down the commu-

nication tree, along with the message M to
sign, if the latter has not already been sent in
phase one.

4) Response: Using the collective challenge, all
nodes compute an aggregate response in a
bottom-up fashion that mirrors the commit-
ment phase.

The result of this four-phase protocol is the
production of a standard Schnorr signature. In
principle, Kokoris-Kogias et al. implemented a
parsimonious broadcast [31] primitive that has a
super-fast path, where multiple pipelined broad-
casts take place in a hierarchical way using the
tree communication pattern while the leader can
unilaterally decide that he should use the star
communication pattern if he detects failures.

4

B. Schnorr Multi-Signatures

One of the first shortcomings of ByzCoin has
been revealed by Drijvers et al [13], where they
show that it is impossible to prove two-round
Schnorr-based multi-signatures secure. The prob-
lem, however, in ByzCoin is not only theoretical.
Below we describe a trivial DoS attack against
ByzCoin, that an adversary can launch as long
as he can control one node, simply by crashing.
We note that this attack is on the underlying CoSi
protocol and is applicable to all the systems using
it [28], [33], [21], [20]. First we define what is a
consensus disruption:

Definition 1: We say that the adversary disrupts a
consensus round if he can force the leader to block
forever or restart the protocol from scratch.

Theorem 1: An adversary controlling a single node
per round can disrupt consensus on ByzCoin.

Proof 1: The consensus disruption attack works
during steps 2 and 4 of a collective signing round
and exploits the randomness aggregation of step 3.
The attack works as follows. First the adversary
chooses one node to control before the consen-
sus round begins. Then the leader executes step
1 and announces the new round. The adversary
correctly commits in step 2. During step 3 the
leader aggregates all the commitments to generate
the challenge and sends it to the nodes. At step 4
the adversary crashes his node and does not return
a correct response making it impossible to produce
a valid signature against the challenge. The leader
can either block forever or restart.

This attack is practical as it can be implemented
by DDoSing only one node per challenge. Hence,
it is clear that MOTOR needs a multi-signature
scheme that does not rely on committing and
revealing randomness from individual nodes. As
we describe in Section IV-B, the BLS pairing based
scheme satisfies all our requirements.

C. The Tree Communication Pattern

After looking into the signature scheme of
ByzCoin, now it is time to look into the fast-
path communication pattern it uses. ByzCoin sends
messages using a binary tree. Every non-leaf
node forwards the messages to its children, detects
invalid replies, and aggregates the commitments
and the responses. Below we show that this com-
munication pattern is fragile and the adversary has
a high probability of disrupting a consensus.

Theorem 2: An adversary controlling f nodes has a
high probability of disrupting fast-path consensus
of ByzCoin.

Proof 2: For an adversary to disrupt the fast path
consensus he needs to have at least one of his f
nodes to be a non-leaf node that is an ancestor
of an honest node. This way he will be able to
control the information flow to the honest node and
eclipse him from the leader. As a result the leader
will be unable to collect the necessary quorum
to continue. Given that in a full binary tree the
number of leaves is equal to the number of inter-
nal nodes the probability that all the adversarial
nodes are leaves is 0.5b

n

3
c. Even for 16 nodes the

probability of having at least one non-leaf node is
an overwhelming 96.88%.

We note that after a few disruptions ByzCoin
will fall back to the more robust star topology,
however as the authors of ByzCoin showed [22],
the star does not scale to more than 100 par-
ticipants. Thus, it is clear that MOTOR requires
a communication pattern that strikes a balance
between robustness and scalability.

D. Censorship

In classic consensus algorithms an important
property is validity, which states that all opera-
tions accepted by the consensus layer need to be
proposed by a client. Validity, however, does not
differentiate between an honest and a dishonest
client. This implicitly permits leader-driven cen-
sorship, where the leader does not include in his

5

proposed transactions those of honest clients. A
quick-fix [16] to this problem is to have a rotating
leader in the hope that some leader will be honest
and prevent censorship forever. This fix, however,
is a valid defense only under a static adversary that
cannot change the compromised nodes throughout
the lifetime of the system, a rather weak assump-
tion.

Theorem 3: A round-adaptive adversary can always
control the leader of the consensus in ByzCoin.

Proof 3: Currently consensus protocols protect
from censorship by changing the leader. This
change of leader will signal a new round. Given
that the sequence of leaders is well-known the
adversary can always choose to corrupt the current
and the next-in-line leaders. This means that the
adversary will always know the leader of round
r+1 prior to the commencement of round r, hence
will have control over the leader of round r+1 and
the ability to enforce his censoring rules. Thus,
it is clear that MOTOR needs to randomize the
schedule of leaders to create a moving target for
the adversary.

E. Incentives

In order for ByzCoin to avoid free-riding (or
establishing a public goods game [4]), the re-
wards are not uniformly distributed2. Instead the
rewards are distributed equally to all participat-
ing nodes, whereas the non-participating nodes
get zero rewards, which someone would expect
to be incentive compatible. However, the exact
mechanism of calculating the per node rewards
is not well thought, leading to a deviating leader
who excludes a minority of nodes to increase his
relative rewards. In such a case the aforementioned
minority receives zero rewards, which can result
to abandoning the system or becoming willing to
collude with the adversary in order to break the
protocol.

2Free-riding is a problem that scalable BFT protocols using
threshold [16] signatures might have as everyone is rewarded
regardless of participation

Although the fair reward mechanism is a step
towards the correct direction as it avoids free-
riding, the fate of the rewards that would have
normally been assigned to the non-participating
nodes require careful design. The two obvious
choices that ByzCoin proposes are to either destroy
this part of the rewards or redistribute it to the
participating nodes. Both possible reward mech-
anisms are incompatible with the system design.
The leader’s actual incentive is to achieve consen-
sus with the minimum valid quorum3 instead of
the maximum available quorum.

We model the system as follows. We say that
there are n nodes, k of which participated in the
consensus round. The total reward of the block is
denoted by R and each node gets a reward of value
r. Finally the total amount of coins (the scarce
commodity that has value) in the system is denoted
by N . We say that every node wants to increase his
relative amount of coins, meaning that he wants the
highest percentage of available coins. This means
that the total amount of coins after the block is
committed is N + R and each participating node
has received a relative reward of rrel = r

R+N .

Case 1: The reward is fixed to r coins and the rest
of the coins are burned.

Analysis 1: In this case the relative reward of the
leader is rrel = r

r∗k+N . Since r is constant, the
rrel increases as k decreases which means that the
leader is incentivized to keep k to the lowest value
possible. This is the minimum value that enables
him to achieve consensus (2f + 1), hence he will
exclude the rest f nodes.

Case 2: The rewards are redistributed hence r = R
k

Analysis 2: In this case the relative reward of the
leader is rrel = R

k(R+N) . Since R,N are constant,
the rrel increases as k decreases which means that

3If the leader does not reach a quorum, then a new leader
will be elected who might censor the old leader, hence a
rational leader wil ask every node to participate but only
include 2f+1 contributions

6

the leader is incentivized to keep k to the lowest
value possible, and thus he will exclude f nodes.

Thus, it is clear that MOTOR needs a better
reward scheme than the trivial approach taken by
ByzCoin.

IV. MOTOR DESIGN

In this section we describe MOTOR. Specif-
ically we discuss how we provide a robust
and scalable BFT-consensus protocol, suitable for
open blockchains. Section IV-B describes a single
round-trip, BLS-based, Collective-Signing proto-
col that produces provably secure signatures and
defends against DoS attacks. Section IV-C de-
scribes our rotating subleader communication pat-
tern that is a hybrid of the tree and star topology
which makes it both robust and sufficiently scal-
able. Section IV-D describes our randomized view-
change that prevents a round-adaptive adversary
from breaking liveness and fairness by controlling
all leaders. Finally, Section IV-E describes the re-
ward allocation mechanism that provides incentive
compatibility for rational participants.

A. Goals.

To sum up, MOTOR has the following goals.

• Robustness: The adversary cannot disrupt the
consensus round unless he controls the leader
node.

• Scalability: The protocol performs well even
when run among hundreds of nodes4.

• Fairness: The probability of a malicious
leader being elected is equal to the percent-
age of malicious nodes in the system. This
prevents the adversary from covertly censor-
ing specific clients, by always controlling the
leader.

• Incentive Compatibility: The most reward-
ing strategy is to follow the protocol.

We do not aim to design a consensus algorithm
from scratch but to define the set of extensions that

4Enough to support secure sharding (600)

need to be deployed in order for an existing classic
BFT algorithm such as ByzCoin to be converted
into a blockchain-consensus algorithm. We focus
on ByzCoin because it provides the backbone of
multiple decentralized application [23], [22], [28],
[33], [20], [36], [35]. Nevertheless, our individual
protocols can be deployed to other BFT-consensus
algorithms to achieve robustness in scale or incen-
tive compatibility.

B. BLS-CoSi

The first design step towards MOTOR is to
abandon the DoS-susceptible two-round CoSi and
instead use BLS signatures. BLS signatures are
provably secure and can be aggregated into
compact multi-signatures. Because of their non-
interactive and deterministic nature BLS signatures
are a powerful tool MOTOR employees in multiple
components.

1) Protocol: In this section we describe MO-
TOR’s agreement protocol assuming an honest
leader. In order to get consensus we need to com-
bine two rounds of this protocol (prepare and com-
mit) just like ByzCoin and Hybrid Consensus [22],
[29]. The protocol needs a setup phase where all
participants prove knowledge of their secret keys
ski by signing pki in order to eliminate rogue-key
attacks [6]. Furthermore there is an array of bits
b[i] which is used to signal which keys take part
in the final aggregate signature. 5 We also assume
that all the keys are publicly available for anyone.
The protocol works in two steps or one round-trip
of Figure 1:

• Announcement: The leader broadcast the
message M to be signed.

• Response: Every node verifies M against
some policy (e.g., if all transactions in a block
are valid) and on agreement signs message
M with his key pki creating σi. The leader
verifies and aggregates the signatures while
setting the correct bits of b[:] as 1. After

5We note that our agreement protocol is equivalent to the
independently proposed ASM protocol of Boneh et al [7]

7

aggregation, the leader holds an aggregate
signature σ̂M of M and b[:]. He can then
send σ̂M to everyone, who can verify it by
aggregating all the keys pki that have been
marked as 1 in b[:].

The protocol above is a modification of CoSi
for BLS-multi-signatures, which is DoS-resistant
as there is no randomness aggregation step to
exploit.

Theorem 4: An adaptive adversary controlling f
nodes (out of 3f+1) cannot disrupt consensus in
MOTOR.

Proof 4: The consensus disruption attack on Byz-
Coin targeted the interactivity of the Schnorr multi-
signatures. By using BLS signatures we remove
this attack surface. During step 1 the leader will
announce the new round. At step 2 the adversary
can decide to sign, which helps the leader, or
abort. Even if all f nodes abort the leader will
still collect 2f + 1 responses which represent a
sufficient quorum for liveness.

Finally, to achieve consensus we need two
rounds of the above protocol (which implements
the consistent broadcast abstraction that parsimo-
nious broadcast employs), however, there is no
need for the quorums to be the same nodes. As a
result even if the adversary decides to compromise
different sets of f nodes for the prepare and the
commit phase there will still be 2f + 1 honest
nodes per phase which will enable the leader reach
consensus.

C. Rotating-Subleader Communication

After applying BLS-CoSi on Parsimo-
nious [31], we get a more scalable algorithm
because of the compaction of signatures which
is close to O(N) (there is a bit-vector that still
increases linear to the size of the system, but
is small compared to the size of N signatures).
However, the leader is still the bottleneck to our
new scalable consensus algorithm.

The next challenge MOTOR aims to solve is
to find a suitable communication pattern to avoid
the communication bottleneck that classic BFT
protocols have when run among many servers
over a limited bandwidth network such as the
Internet. More specifically we design a rotating-
subleader (RS) communication pattern which is a
hybrid of the robust star communication pattern
that many BFT protocols use and the scalable tree
communication pattern that ByzCoin employs.

The RS communication pattern is a star of
star topologies. The leader first splits the nodes
into c random groups and then chooses ephemeral
subleaders who route his messages and aggregate
signatures (see Figure 3). As illustrated the set
of subleaders together with the leader form a
robust star topology, similarly the subleader and his
group’s nodes form a second star. If all subleaders
are honest (or rational as we show later), they will
collect as many signatures as possible and reply
to the leader. If, however, they are malicious they
can crash or not forward the message to the group.
If a subleader either replies with very few accept
messages or does not reply within some timeout
(we define later) the leader will choose a new
subleader for every failed group and retry. This
will continue until the leader manages to collect
2f + 1 positive replies.

Timers. To prove liveness we first need to define
the timers that decide when to rotate subleaders
and when to view change. Every node maintains
two timers. The first timer ∆1 is used to detect a
crashed leader, while the second timer ∆2 is used
by the leader to rotate his unresponsive subleaders.
When a leader is assumed faulty a new leader is
elected and both timers are doubled. There is a
fixed ratio (see below) between ∆1 and ∆2 such
that the leader has enough time to rotate through
all his potential subleaders before being assumed
faulty.

Theorem 5: An honest leader will eventually find
a sufficient quorum to commit his proposal.

8

Fig. 3: (a): Rotating Subleader Communication Pattern. The Leader splits the nodes in the blue and the yellow
group. Then he chooses subleaders and only communicates with them. If Subleader 1 fails to reply with enough
messages, the Leader will ask Leaf 2 or Leaf 3 to take over Subleader 1 and broadcast the message again in the blue
group. (b): Rotating Subleader Network Topology. The leader splits the nodes into two fully connected groups and
randomly elects one subleader per group to be his proxy. If the proxy fails the group rotates (L2− > L3, L3− >
S1, S1− > L2)

Proof 5: In the worst case the system will have
exactly 2f+1 honest nodes and one group that has
only one honest node, whose reply is necessary.
In order to get his answer at the worst case the
leader will rotate all n

c nodes as subleaders of the
specific “bad-case” group before asking the honest
node to be the subleader. In RS we set the view-
change timer ∆1 to be (nc + 1) ∗ ∆2, giving the
leader enough time to try all possible subleaders.
If the leader does not reach consensus within ∆1

this means that he is slower than GST and should
be changed.

Theorem 6: The RS communication pattern pre-
serves safety of MOTOR.

Proof 6: The RS communication pattern does not
affect the quorum requirements and as a result has
the same safety guarantees.

Message Complexity: In this section we analyze
the best-case, average-case and worst-case message
complexity of MOTOR. What we care about is
both the total number of messages as well as the
maximum load (bottleneck) on any given node.

In the best case scenario (Figure 3.(a)) the
leader is going to send 3 ∗ c messages to his
subleaders who are going to forward it to the dnc e
members of their group. The leaf nodes will send
2 messages each. As a result the total number of
messages is O(n). The max load on any given node
will be O(n). Depending on c, this max load will
appear either on the leader or on the subleaders. In
the case that c =

√
(n) the max load on any node

will be O(
√

(n)).

In the average case the leader will have to re-
elect a constant number of subleaders. For example
if the adversary controls a fraction Padv of the
nodes and the system has c groups. Then we need
to find y in the equation:

(1− P y
adv)c =

1

2

which says that with probability 1
2 (average case)

the adversary will find at least one honest leader
after y retries in every one of the c groups (union
bound for disjoint probabilities). Hence,

y =
log (1− 2−

1

c)

logPadv

retries per group. For example if c = 18 (c2 =
324) and Padv = 1

3 the leader will find an honest

9

subleader at every group 51% of the time after 3
retries.

In this average case the load of the leader
increases by y (needs to contact y times more
subleaders), the load of the subleaders remains the
same as before and the load of leaves increases by
y (need to reply to y subleaders). This increases
both the max load of the leader and the total
number of messages by O(y) which is expected
to be constant and low under weak adversaries
(normal execution environment).

Finally, the worst case will be as described in
Proof 5, in which case the leader will have to
do (nc + 1) retries. As a result the total load of
the leader will increase to O(n) and the load of
the leaves to O(nc). Given that there are O(n)
leaf-nodes the total message complexity will be
O(n

2

c), which for c = O(
√

(n)) leads to a message
complexity of O(n

√
(n)).

To sum up, the RS communication pattern
increases the overall load of the network by y
in the average case and by n

c in the worst case.
However, it always distributes the load in a more
egalitarian way, such that the leader (the bottleneck
of the star), has best-case O(c) load and worst case
O(n) load. On the contrary, the more robust star
has always O(n) load on the leader.

Discussion: We can observe the RS communica-
tion pattern as a generalization of the star [24], the
tree [22] or even the chain [38] communication
pattern where c defines the robustness-scalability
trade-off. With c = n we have a star which is
robust but adds too much burden on the leader.
With n < c < b

√
(n)c we have the RS communi-

cation pattern; it decreases the load of the leader
at the optimal and average case on the expense of
increasing the load on the rest of the nodes and
on the expense of increasing the total number of
messages in the average and bad case. If we set
c = 2 we create a binary tree and with c = 1
we create a chain [38]. Because of the recursive
nature of the chain and the tree, the bandwidth
load is equally distributed between all non-leaf

nodes, but any non-leaf failure breaks the recursion
completely.

The reason why RS is robust, whereas the tree
or the chain are not is because when failures occur
in RS the leader knows to blame the subleader,
hence there is only a constant number of retries
(nc ≤

√
n) he needs to do to find a good per-

group subleader (only the subleaders change, the
groups remain static). On the contrary, in the chain
or the tree, the failure can happen at any non-
leaf node and the leader would need to retry an
exponential number of configurations to find a
good permutation.

D. Rotating Leader

After defining how one round of MOTOR

works, we now proceed to describe the inter-
round protocol which enables unpredictable leader
rotation.

In MOTOR we adopt the view-change protocol
from SBFT [16] (which is an improvement against
parsimonious broadcast) and focus on the prob-
lem that current view-change protocols assume a
predetermined schedule of leaders. This require-
ment makes them susceptible to mildly adaptive
adversaries who can predict the next f leaders and
choose to compromise them (only need to adapt
once every f rounds).

To prevent this attack in MOTOR, we rely again
on the power of BLS signatures. Specifically we
use their deterministic nature to generate an un-
predictable and unbiasable random number which
will be used to randomize the schedule of the
leaders. We achieve this using the a BLS-threshold
key pks and we minimally change the view-change
protocol of [16] (this works on any correct view-
change protocol), such that:

1) When node i sends his view-change message
to the leader of view v (who became known

10

Fig. 4: Equation 2. In order to have correct incentives we want the function to be monotonically increasing within
the value space of k (green range).

only during the previous round6) he produces
a normal BLS Signature (for safety of the
view-change protocol) and also produces a
partial signature of v using his secret share
si.

2) When the leader of view v collects 2f+1 view
change messages he can claim his new view
only after combining f + 1 the partial signa-
tures to generate a signature verifiable against
pks on v. This signature is by definition un-
forgeable hence unpredictable. This random
number is used to define a permutation over
the current schedule and as a result elect the
leader of view v+ 1. The leader of v+ 1 can
prove his election when needed (at the end of
round v) by broadcasting sigs, the aggregate
2f + 1 BLS-signature, and with new-view
message that includes the fully signed v.

The rest of the protocol remains the same.
If we assume a more adaptive adversary, then
we would need to randomize the leader election
during the current round. This is possible with
MOTOR’s rotating leaders however we would need

6 The protocol resistant to a round adaptive adversary,
meaning that the leader of the current round is well-known
and can receive view-change messages.

to broadcast the view-change message since the
leader of view v would be unknown. This would
lead to O(n2) message complexity, which might
be an acceptable trade-off.

Theorem 7: The adversary cannot predict nor bias
the output of threshold signature.

Proof 7: The unpredictability property follows di-
rectly from the unforgeability property of the sign-
ing algorithm. The unbiasability property follows
from the deterministic nature of the BLS-signature.
Given that the signature scheme is deterministic
and the message to be signed is well defined (the
view number v), the adversary cannot change the
resulting signature. This is not true in Schnorr
signatures where the commitment is random, hence
the signature is non-deterministic.

Theorem 8: A round-adaptive adversary cannot
control the consensus decision forever.

Proof 8: Given the unpredictability of the leader
election the only plausible strategy of the adversary
is to randomly choose the nodes he controls and
hope that one is elected a leader. Hence, the prob-
ability that the adversary controls d consecutive

11

leaders is 1/3d. Since limd→∞ 1/3d = 0, the
adversary cannot always control the leader, hence
he cannot always control the consensus decision
(e.g., to censor specific users).

E. Mechanism Design

A final challenge of MOTOR is to design the
reward allocation so that the nodes are incentivized
to participate. The key idea to our design is to bind
the amount of rewards to the percentage of partic-
ipation, which results to an incentive compatible
reward allocation scheme.

1) Reward Allocation Incentives: We iterate our
definitions. We say that there are n nodes, k of
which participated in the consensus round. The
total reward of the block is R and each node gets a
reward of value r. Finally, the total amount of coins
is N . First, we define the max reward per node
as rmax = R

n and then we bind the percentage of
the reward the nodes receive with the participation,
meaning r = R

n
k
n . This leads to an inflation of

r ∗ k = R∗k2

n2 which leads to a relative reward of

rrel =
R∗k
n2

N + R∗k2

n2

, k ≥ 0 (1)

The variable that the nodes control is k so we
can transform Equation 1 to

rrel =
k

N∗n2

R + k2
, k ≥ 0 (2)

Equation 2 has a global maximum at k =
n
√

(NR) and increases monotonically for 0 ≤ k ≤
n ∗

√
(NR) (see Figure 4).

To make sure that our protocol is incentive
compatible we need to move the tipping point of
the curve such that even for k = n the system is
still on the monotonically increasing part (green
part of x-axis in Figure 4) which means that
n ∗

√
(NR) ≥ n or

√
(NR) ≥ 1, hence N > R. As

a result the incentives of MOTOR align with our
system design as long as the system has inflation
rate of less than 100% per block.

2) Liveness Incentives: A challenge that arises
from our mechanism design is that a rational
leader might be unwilling to finish committing
the block unless he has 100% participation (since
increasing k maximizes his reward). This incentive
will eventually be overtaken by the incentive to get
rewards from the next block, but in a system with
a finite supply of transactions, allocating enough
rewards for the next block can take a long time,
hindering latency.

To prevent this non-cooperative behavior we
introduce delayed signature aggregation. The idea
is simple, the amount of the reward that block
h pays the participating nodes is not defined at
the time of the block commitment but at a later
time which we call block encashment. Between the
block commitment and the block encashment any
leader can collect delayed signatures from nodes
that failed to sign on time and add them to his
current proposal removing the liveness-deterring
incentive we described above.

At the time of encashment (e.g., after 100
blocks like in Bitcoin [27]), nodes can collect all
individual signatures from the chain and produce a
new aggregate signature that includes the delayed
signatures to increase their claimed reward. The
aggregation is possible due to the non-interactivity
of BLS signatures and would not be possible in
CoSi. The same protocol could work with indi-
vidual signatures in ByzCoin, however the encash-
ment proof-size would then grow linearly instead
of remaining constant.

V. IMPLEMENTATION

We have built a working prototype of MOTOR

in Go, which includes a working implementation of
BLS-based Collective Signing, running on top of
the RS communication pattern. Furthermore, we
modified ByzCoin to work with BLS signatures
both in tree and star communication pattern and
use it as a baseline for MOTOR.

12

0 200 400 600 800 1000
Consensus Group Size

0

1

2

3

4

5
La
te
nc
y
(s
ec
)

Star/10B
Star/1MB
MOTOR/10B
MOTOR/1MB
Tree/10B
Tree/1MB

Fig. 5: Scalability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Percentage of failed nodes (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te
nc

y
(s
ec

)

50 Hosts
150 Hosts
450 Hosts
750 Hosts

Fig. 6: Failures

Our code can be found on Github. We build on
top of the BN-256 curve from Kyber7 and evaluate
MOTOR with real Bitcoin transactions creating the
same test infrastructure as prior work [23], [22].

VI. EVALUATION

To simulate consensus groups of up to 1000
nodes, we oversubscribed the available 25 physical
machines (see below) and ran up to 40 separate
MOTOR processes on each server. Realistic wide-
area network conditions are mimicked by impos-

7https://github.com/dedis/kyber

ing a round-trip latency of 200 ms between any
two machines and a link bandwidth of 25 Mbps
per simulated host. Note that this simulates only
the connections between miners of the consensus
group and not the full Bitcoin network. Full nodes
and clients are not part of the consensus process
and can retrieve signed blocks only after consensus
is reached.

The key questions we want to answer with the
evaluation is whether MOTOR scales well enough
to support consensus group of 600 nodes, which
are necessary in sharded blockchains [23], and
whether it maintains this scalability even under a
high percentage of failed nodes. We also provide
evaluation for the star communication pattern in
order to show that it is not sufficient in realistic
conditions.

Figure 5 illustrates how different communi-
cation patterns scale under low (10 Bytes) and
normal (1MB, which is Bitcoin’s block size) load.
From the graph it is obvious that MOTOR provides
the best latency even against the tree (ByzCoin),
because of the low roundtrip time it takes to send
a block and receive a reply. The best scalability is
still provided by the tree communication pattern
(ByzCoin) as it is not affected neither by the
increasing number of hosts nor by the increased
load. This is expected and it comes in the expense
of fault tolerance, as we showed in Section III-C.
MOTOR comes second as it is slightly affected by
the increasing number of host and nearly doubles
in latency when we increase the load to 1MB,
maintaining it, nevertheless, in an acceptable range.
The star communication pattern comes last as it is
only scalable under low load, but once the load is
increased to a normal range (i.e., Bitcoin’s block
size) the latency sky-rockets as the connection of
the leader is the scalability bottleneck.

Figure 6 depicts the fault tolerance of different
MOTOR configurations. It is apparent that failures
do take a toll on MOTOR’s performance but the
system remains functional and still manages to
reach consensus in a few seconds even in large
scale deployments.

13

0 100 200 300 400 500 600 700 800
Consensus Group Size

0

1

2

3

4

5
La
te
nc
y
(s
ec
)

MOTOR-0%
MOTOR-20%
Star

Fig. 7: Robustness

Finally, Figure 7 compares MOTOR scalability
with and without faults against the star communi-
cation pattern that achieves maximum robustness.
Here again we can observe that MOTOR under
faults is not as fast as the normal case, however
it still outperforms the optimal robustness of the
star, hence becoming the best choice for large scale
deployment in an adversarial environment.

VII. RELATED WORK

OmniLedger [23] was the first scalable sharding
protocol that remained secure in a long term exe-
cution. However, its reliance on ByzCoin actually
makes it susceptible to DoS attacks from a strong
networking adversary. Concurrently, Elastico [25]
and Chainspace [1] proposed sharded blockhcains
for value exchange and smartcontracts, but they
both relied on PBFT [10] for their evaluation which
cannot scale to the necessary size for secure per-
missionless sharding [23]. Finally, Rapidchain [39]
takes the road of changing the network assumption
and restricting the adversary to sychrony. This
enables higher fault thresholds for BFT, hence
lower commitee sizes, where performant consensus
protocols do exist. Nevertheless, in the presence
of asychrony the safety of the system might be
broken, hence RapidChain might be risky to deploy
over the Internet.

There are several proposals that, like MOTOR,
target the consensus mechanism and try to im-
prove different aspects. Ripple [32] implements
and runs a variant of PBFT that is low-latency
and based on collectively-trusted subnetworks with
slow membership changes. The degree of decen-
tralization depends on the concrete configuration
of an instance. Tendermint [9] also implements a
PBFT-like algorithm, but evaluates it with at most
64 “validators”. Furthermore, Tendermint does not
address important challenges such as the link-
bandwidth between validators, which we found
to be a primary bottleneck. PeerCensus [11] and
Hybrid Consensus [29] are interesting alternative
that shares similarities with MOTOR, but are only
of theoretical interest. Algorand [15] is another
existing solution for BFT consensus in cryptocur-
rencies, it relies on the use of verifiable random
functions [26] to achieve adaptivity under fully
adaptive adversaries. However, in order to achieve
this property it has to trade-off security or per-
formance (e.g., withstands a 20% adversary and
uses the network bandwidth of 50.000 nodes to run
consensus among 2.000 nodes in order to achieve
good performance). Furthermore, Algorand is only
deployable in the honest/malicious environment
making it suitable mostly for permissioned set-
tings. Another scalable protocol is SBFT [16],
which scales better than PBFT using threshold
cryptography and parsimonious broadcast, the use
however of threshold signatures creates a public
good’s game during consensus which incentivizes
free-riding and might harm the liveness of the
system.

Off-chain transactions, an idea that originated
from the two-point channel protocol [18], are an-
other alternative to improve latency and throughput
of the Bitcoin network. Other similar proposals
include state channels [14], [5] and micro-payment
channels [12], which allow transactions without
a trusted middleman. They use contracts so that
any party can generate proof-of-fraud on the main
blockchain and thereby deny revenue to an at-
tacker. Although these systems enable faster cryp-
tocurrencies, they do not address the core problem

14

of scaling SMR systems, thus sacrificing the open
and distributed nature of Bitcoin.

VIII. CONCLUSION

In this work we studied ByzCoin, a widely de-
ployed blockhain consensus algorithm and showed
that it is unsuitable for deployment in a real-
world scenario where nodes fail and behave ra-
tionally. Then we presented MOTOR, a drop-in
replacement of ByzCoin that is suitable for real-
world deployment. MOTOR achieves this property
by (a) prioritizing robustness in adversarial en-
vironments while maintaining adequate scalability,
(b) employing provably correct cryptography that
resists DoS attacks from individual nodes, (c) de-
ploying unpredictable rotating leaders to defend
against mildly-adaptive adversaries and prevents
censorship, and (d) creating an incentive compat-
ible reward mechanism. To support our claims, we
proved theoretically MOTOR’s safety, liveness, and
censorship-resistance and showed experimentally
that it can scale to 1000 with an at most 2x over-
head and is also able to maintain this scalability
under strong adversaries (up to 20%).

REFERENCES

[1] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn,
and G. Danezis. Chainspace: A sharded smart contracts
platform. CoRR, abs/1708.03778, 2017.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. D. Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fab-
ric: a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys 2018, Porto, Portugal, April 23-
26, 2018, pages 30:1–30:15, 2018.

[3] E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-
Kogias. Channels: Horizontal scaling and confidential-
ity on permissioned blockchains. In European Sympo-
sium on Research in Computer Security, pages 111–
131. Springer, 2018.

[4] M. Archetti and I. Scheuring. Game theory of public
goods in one-shot social dilemmas without assortment.
Journal of theoretical biology, 299:9–20, 2012.

[5] G. Avarikioti, E. K. Kogias, and R. Wattenhofer.
Brick: Asynchronous state channels. arXiv preprint
arXiv:1905.11360, 2019.

[6] A. Boldyreva. Threshold Signatures, Multisignatures
and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme. In Public Key Cryptography
– PKC 2003. Springer, 2002.

[7] D. Boneh, M. Drijvers, and G. Neven. Compact multi-
signatures for smaller blockchains.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the Weil pairing. In International Conference
on the Theory and Application of Cryptology and
Information Security, pages 514–532. Springer, 2001.

[9] E. Buchman. Tendermint: Byzantine Fault Tolerance in
the Age of Blockchains, 2016.

[10] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Feb. 1999.

[11] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets
Strong Consistency. In 17th International Conference
on Distributed Computing and Networking (ICDCN),
Singapore, January 2016.

[12] C. Decker and R. Wattenhofer. A Fast and Scalable
Payment Network with Bitcoin Duplex Micropayment
Channels. In Stabilization, Safety, and Security of
Distributed Systems, pages 3–18. Springer, Aug. 2015.

[13] M. Drijvers, K. Edalatnejad, B. Ford, and G. Neven.
On the provable security of two-round multi-signatures.
Technical report.

[14] S. Dziembowski, L. Eckey, S. Faust, and D. Mali-
nowski. Perun: Virtual payment channels over cryp-
tographic currencies. IACR Cryptology ePrint Archive,
2017:635, 2017.

[15] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies, Oct. 2017.

[16] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D.-A. Seredinschi, O. Tamir,
and A. Tomescu. Sbft: a scalable decentralized
trust infrastructure for blockchains. arXiv preprint
arXiv:1804.01626, 2018.

[17] S. Guo. Cypherium: A scalable and permissionless
smart contract platform. Draft v1. 0. www. cypherium.
io/wp-content/uploads/2017/03/cypherium whitepaper.
pdf, 2017.

[18] M. Hearn and J. Spilman. Rapidly-adjusted (mi-
cro)payments to a pre-determined party, 2015.

[19] A. Kate and I. Goldberg. Distributed key generation
for the internet. In Distributed Computing Systems,
2009. ICDCS’09. 29th IEEE International Conference
on, pages 119–128. IEEE, 2009.

[20] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly,
P. Jovanovic, L. Gasser, and B. Ford. Hidden in
plain sight: Storing and managing secrets on a public
ledger. Technical report, Cryptology ePrint Archive:
209 https://eprint. iacr. org/2018/209. pdf, 2018.

[21] E. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic,
N. Gailly, and B. Ford. Managing Identities Using

15

https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://eprint.iacr.org/2002/118
https://eprint.iacr.org/2002/118
https://eprint.iacr.org/2002/118
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
http://www.tik.ee.ethz.ch/file/ed3e5da74fbca5584920e434d9976a12/peercensus.pdf
http://www.tik.ee.ethz.ch/file/ed3e5da74fbca5584920e434d9976a12/peercensus.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
https://dl.acm.org/authorize?N47148
https://dl.acm.org/authorize?N47148
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://ieeexplore.ieee.org/abstract/document/5158416/
https://ieeexplore.ieee.org/abstract/document/5158416/
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf

Blockchains and CoSi. Technical report, 9th Workshop
on Hot Topics in Privacy Enhancing Technologies (Hot-
PETs 2016), 2016.

[22] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing Bitcoin Security and
Performance with Strong Consistency via Collective
Signing. In Proceedings of the 25th USENIX Confer-
ence on Security Symposium, 2016.

[23] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
E. Syta, and B. Ford. OmniLedger: A Secure, Scale-
Out, Decentralized Ledger via Sharding. In Security
and Privacy (SP), 2018 IEEE Symposium on, pages 19–
34. Ieee, 2018.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine Fault Toler-
ance. In 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP). ACM, Oct. 2007.

[25] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A Secure Sharding Protocol For Open
Blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’16, pages 17–30, New York, NY, USA, 2016.
ACM.

[26] S. Micali, S. Vadhan, and M. Rabin. Verifiable Random
Functions. In Proceedings of the 40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99,
pages 120–130. IEEE Computer Society, 1999.

[27] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System, 2008.

[28] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly,
L. Gasser, I. Khoffi, J. Cappos, and B. Ford.
CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds.
In 26th USENIX Security Symposium (USENIX Security
17), pages 1271–1287. USENIX Association, 2017.

[29] R. Pass and E. Shi. Hybrid Consensus: Efficient
Consensus in the Permissionless Model. Cryptology
ePrint Archive, Report 2016/917, 2016.

[30] R. Pass, C. Tech, and L. Seeman. Analysis of the
Blockchain Protocol in Asynchronous Networks. An-
nual International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT),
2017.

[31] H. V. Ramasamy and C. Cachin. Parsimonious asyn-
chronous Byzantine-fault-tolerant atomic broadcast. In
9th International Conference on Principles of Dis-
tributed Systems (OPODIS), Dec. 2005.

[32] D. Schwartz, N. Youngs, and A. Britto. The Ripple
protocol consensus algorithm. Ripple Labs Inc White
Paper, page 5, 2014.

[33] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly,
L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford. Scalable
Bias-Resistant Distributed Randomness. In 38th IEEE
Symposium on Security and Privacy, May 2017.

[34] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jo-
vanovic, L. Gasser, N. Gailly, I. Khoffi, and B. Ford.
Keeping Authorities “Honest or Bust” with Decentral-
ized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[35] The Harmony Team. Open Consensus for 10 Billion
People. 2018.

[36] The Team. Emotiq Yellowpaper (v1.0). 2018.
[37] The ZILLIQA Team. The zilliqa technical whitepaper.

2018.
[38] R. Van Renesse and F. B. Schneider. Chain replication

for supporting high throughput and availability. In
OSDI, volume 4, pages 91–104, 2004.

[39] M. Zamani, M. Movahedi, and M. Raykova. Rapid-
chain: Scaling blockchain via full sharding. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 931–
948. ACM, 2018.

16

https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf
http://www.sosp2007.org/papers/sosp052-kotla.pdf
http://www.sosp2007.org/papers/sosp052-kotla.pdf
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978389
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Pseudo%20Randomness/Verifiable_Random_Functions.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Pseudo%20Randomness/Verifiable_Random_Functions.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917
https://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/454.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
http://eprint.iacr.org/2016/1067
http://eprint.iacr.org/2016/1067
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs
https://harmony.one/
https://harmony.one/
https://emotiq.ch/

	Introduction
	Background and System Model
	Prior Work
	System Model
	Network model
	Cryptography

	ByzCoin's Shortcomings
	ByzCoin Protocol
	Schnorr Multi-Signatures
	The Tree Communication Pattern
	Censorship
	Incentives

	Motor Design
	Goals.
	BLS-CoSi
	Protocol

	Rotating-Subleader Communication
	Rotating Leader
	Mechanism Design
	Reward Allocation Incentives
	Liveness Incentives

	Implementation
	Evaluation
	Related Work
	Conclusion
	References

