
Agree-and-Prove:
Generalized Proofs Of Knowledge and Applications

Christian Badertscher1

, Daniel Jost2

, and Ueli Maurer2

1University of Edinburgh, Scotland, christian.badertscher@ed.ac.uk
2ETH Zurich, Switzerland, {dajost,maurer}@inf.ethz.ch

Abstract

Proofs of knowledge (PoK) are one of the most fundamental notions in cryptography and
have been used as a building block in numerous applications. The appeal of this notion is that it
is parameterized by generic relations which an application can suitably instantiate. On the other
hand, in many applications, a more generalized proof system would be desirable that captures
aspects not considered by the low-level abstraction boundary of PoKs. First, the context in
which the protocol is executed is encoded using a static auxiliary input, which is insufficient to
represent a world with more dynamic setup, or even the case where the relation to be proven
does depend on a setup. Second, proofs of knowledge do by definition not take into account
the statement derivation process. Yet, it often impacts either the complexity of the associated
interactive proof or the effective zero-knowledge guarantees that can still be provided by the
proof system. Some of this critique has been observed and partially addressed by Bernhard
et al. (PKC’15), who consider PoK in the presence of a random oracle, and Choudhuri et al.
(Eurocrypt’19), who need PoK schemes in the presence of a ledger functionality.

However, the theoretical foundation of a generalized notion of PoK with setup-dependent
relations is still missing. As a first contribution, we introduce this new notion and call it agree-
and-proof. Agree-and-prove rigorously extends the basic PoK framework to include the missing
aspects. The new notion provides clear semantics of correctness, soundness, and zero-knowledge
in the presence of generic setup and under dynamic statement derivation.

As a second contribution, we show that the agree-and-prove notion is the natural abstraction
for applications that are in fact generalized PoKs, but for which the existing isolated notions do
not reveal this intrinsic connection. First, we consider proofs-of-ownership of files for client-side
file deduplication. We cast the problem and some of its prominent schemes in our agree-
and-prove framework and formally analyze their security. Finally, leveraging our generalized
zero-knowledge formalization, we devise a novel scheme that is provably the privacy-preserving
analogon of the known Merkle-Tree based proof-of-ownership protocol. As a second application,
we consider entity authentication and two-factor authentication. We thereby demonstrate that
the agree-and-prove notion can not only phrase generalized PoKs, but also, along the same lines,
proofs of possession or ability, such as proving the correct usage of a hardware token.

1 Introduction

The concept of an interactive proof in which a prover’s goal is to convince a verifier of the validity
of a given statement is a fundamental theoretical concept in complexity theory and is established as
a cornerstone in cryptography as well. Especially the task of proving to a party that one knows a
certain piece of information, without necessarily revealing it, is an essential task in cryptography
and in the design of cryptographic protocols. The formal concept capturing the essence of this task
is called proof of knowledge [GMR85 , TW87 , FFS88 , BG93] and has turned out to be a building
block with countless applications. In a nutshell, the task of a prover is to convince the verifier that
he knows a witness w for a statement x satisfying a relation R(w, x). Part of the elegance of this

1

https://orcid.org/0000-0002-1353-1922
https://orcid.org/0000-0002-6562-9665

definition, fostering its wide applicability, is that it neither makes any particular assumption about
the statements or witnesses, i.e., the definition is independent of how statements are generated, nor
about the relation except that for cryptographic applications relations based on hardness assumptions
are typically considered. It is clear that proofs of knowledge are a rather low-level building block, and
thus not directly suitable to define the overall security goal of a concrete cryptographic application,
for at least two reasons: First, it assumes that the statement and witness are static objects, and
the statement is given to the parties as input. If the prover is required to be efficient, the witness
is also given as input. However, most real world settings are much more dynamic by design and
seem to require a more general building block of the above spirit. Typically we have two parties,
both with a certain prior state and access to some setup, such as a random oracle, to approach
each other and first (interactively) agree on a statement, and only then prove the agreed statement.
Clearly non-trivial theoretical questions and definitional issues arise about the interplay between
these two phases. Aside of definitional challenges, it is clear that the first phase (which we call
agreement phase) might have impact on the security guarantees: an involved agreement phase might
be followed by a less expensive proof, but might at the same time harm the desired zero-knowledge
guarantees. Hence, the agreement phase plays a crucial role that cannot be neglected.

Second, proofs of knowledge are formalized in a rather static world where the parties do not have
access to any shared setup, such as a common reference string (CRS), a random oracle (RO), or
simply a database storing user-logins. While such a setup can be and has been partially represented
as an auxiliary input, it does not admit making the goal of the proof, i.e., the relation, depend on
this setup and thus the state of the world. As a consequence, the security of applications that ought
to be instantiations of some generalized proof-of-knowledge notion have been phrased using rather
ad-hoc security definitions. For instance, the basic security of password-based authentication and
identification schemes naturally appears to be captured as having to know the password; yet it is
frequently described in a property based manner assuming that the password is drawn according
to some distribution. Similarly, in the realm of cloud file storage, the security of schemes where
a client aims to convince the server that he knows a specified file (e.g., client-side deduplication),
has been formalized using a min-entropy based security definition [HHPSP11], which is not clear
how this maps to practice. While all these examples follow a generic and dynamic agree-and-prove
paradigm, their respective tailored security definitions suffer from the major disadvantage that they
do not simply inherit advanced properties, most prominently the zero-knowledge property, that are
precisely understood by traditional interactive proofs of knowledge.

The potential need for a more general formalization has already been envisioned by Goldre-
ich [Gol06]. However, the shortcoming that traditional definitions of proofs of knowledge do not
account for setup was only made explicit and partially addressed by two important recent works.
First, in the work by Bernhard, Fischlin and Warinschi [BFW15] proofs of knowledge in the random
oracle model are formalized including some dependency of the chosen statement on the random
oracle. Their model does, however, not account for aspects such as programmability in either the
knowledge-extraction or the zero-knowledge simulation experiments which, as we see in this work,
can be rather involved and tricky to define. Furthermore, their model still treats the statement
and witness as simple inputs to parties rather than permitting a generic negotiation that might
be dependent on the random oracle. And finally, they consider classical NP-relations that do not
depend on the random oracle which is a restriction that seems desirable to overcome. In a recent
work, Choudhuri, Goyal, and Jain [CGJ19] provide a comprehensive treatment of secure multi-party
computations in the presence of a ledger functionality. Not surprisingly, their treatment does unveil
the need for proofs (of knowledge) in the presence of setups more complex than for example a
random oracle. As in the above case [BFW15], their definition is tailored to this case, i.e., standard
zero-knowledge proofs are extended to allow all entities, i.e., prover, verifier, and the distinguisher
(for the real and ideal transcripts in the zero-knowledge experiment) oracle access to the ledger
functionality. In this setting, Choudhuri et al. [CGJ19] point out the important and subtle issue
that several of the standard proof techniques, such as rewinding, are not easily applicable. The

2

reason is that the setup does not only assist the honest parties but can significantly enrich the
adversarial capabilities unless properly tamed by a clever protocol, as given in [CGJ19].

We note that this is only one of many subtleties that may occur in general interactive proofs
in the presence of setup. It indeed seems to be a subtle task to formally capture the relevant
probabilistic experiments (for correctness, soundness, and zero-knowledge) because they have to
deal with (1) the omnipresent dependency—even of the relation to be proven—on the state of the
setup, (2) the kind of access of the different entities to the setup (including the simulator), (3) the
question how the state of the setup has been generated before a proof is executed, and (4) that
different entities might have different side information regarding the state of the setup.

It is therefore important to devise the theoretical foundations of this more general concept that
addresses all these subtle points above. We define in this paper a new concept that does include
all the above mentioned missing elements in existing formalizations of proofs (or arguments) of
knowledge. The concept we aim for abstracts from specific applications, gives clear interpretations for
the correctness, soundness, and zero-knowledge properties in the presence of setups and interactive
statement derivation, and is therefore suitable as a unifying cryptographic concept behind the above
mentioned scenarios, including entity authentication and client-side deduplication.

1.1 Our Contributions

Agree-and-prove. Based on the above motivation, we introduce a new notion called Agree-and-
Prove in Section 2 . We generalize proofs (and arguments) of knowledge to dynamic settings where
the prover and verifier, based on a setup and their initial state, first have to agree on a statement
(agreement phase), of which the prover then convinces the verifier in a second phase (proof phase).
The agree-and-prove notion is parametrized by an arbitrary setup functionality, where in particular
not only the agreed statement but also the associated relations can depend on. We formulate
both cases of programmable vs. non-programmable setups. Moreover, we define the equivalent of
zero-knowledge and consider both, prover and verifier zero-knowledge which is needed in dynamic
settings where both parties potentially have information they do not want to reveal. Finally, for
the sake of generality, our definitions of zero-knowledge are parametrized using explicit leakage
functions, accommodating for protocols that leak limited information.

We exemplify the applicability of the agree-and-prove notion as a template to define the security
of (or within) cryptographic protocols following two main application scenarios. This leads to
contributions of independent interest as we outline below.

Application to proofs of ownership. In Section 3 , we dive into the application of proofs-of-
ownership of files that aim to achieve secure client-side deduplication in a cloud storage system. In a
nutshell, these schemes consist of a client convincing a server that it has a file (already stored in the
server’s database), but without uploading the entire file. The main security concern is thereby that
the client cannot falsely convince the server. Overall, this problem is arguably a generalized proof
of knowledge of the file. We therefore capture proofs of ownership as a particular instantiation of
agree-and-prove, where the setup is the server database (plus possibly further tools such as a random
oracle) and where the parties have to first agree on a file identifier (together with additional control
information), and only then run an efficient proof phase. This view captures proofs of ownership
naturally as an instantiation of a higher-level concept.

In this setting, we show that a naive hash-based scheme, where the hash value of a file should
imply knowledge, is secure if the hash function is modeled as a private random oracle, i.e., exclusively
accessible to the prover and verifier. However, with a publicly accessible random oracle, as we argue
formally, the scheme completely breaks which is the theoretical statement explaining the apparent
insecurity observed in practice when using a concrete hash function [HHPSP11]. We further show
how to retain security in this global random oracle setting by employing a stronger proof phase
in which a Merkle-Tree based proposal as in [HHPSP11] is executed. This exemplifies that the

3

particular statement derivation relative to the above setup does have an influence on the complexity
of the associated proof—yet the overall agree-and-prove interface to an application, in this case
providing the abstraction of a secure proof of ownership, remains identical.

We point out that compared to previous definitions in this space, including [HHPSP11 , XZ14], our
formalism is not tailor-made for a particular application, but justified by a higher-level abstraction.
As a consequence, our formalization of proof of ownership does not require that we have to start from
a distribution on files (i.e., following an entropy-based approach to knowledge). In our language, this
is an additional assumption and can be formalized by a stronger setup, where files in the database
have an intrinsic min-entropy. Stated differently, the weaker entropy-based definition put forth
in [HHPSP11] (avoiding an extraction-based notion) can be seen as a proof of ownership in our
sense with a stronger setup. We point out that while our soundness definition contains an extraction
process, a stronger setup can significantly improve the power of the agreement phase (and reduce
the complexity of the proof phase) up to the extent that extraction becomes trivial but soundness is
still satisfied. Such situations occur in Sections 3.1 and 4.2 of this work.

Privacy-preserving proofs of ownership. We extend proofs of ownership to a privacy-aware
setting in Section 3.3 . Consider a situation where a set of clients (e.g. employees of the same
company) share a secret key under which they apply client-side encryption of the files before
uploading them to a server. We present a novel scheme that allows an employee to prove that he
knows the plaintext of a ciphertext without having to know the randomness that was used during
the encryption. We prove that our protocol does not reveal more information to both client or server
than what is generally necessary for the task of client-side deduplication. Analogously to above,
in comparison with previous approaches to privacy in this context [XZ14 , GMO15], we formulate
a cryptographic definition of privacy for proofs of ownership that is justified by a generalized
zero-knowledge definition for agree-and-prove schemes.

Overall, our construction is designed as the privacy-preserving analogon of the above Merkle-Tree
based solution. The thereby added privacy layer enables a modular analysis with a clear separation
into the two tasks of proving ownership and protecting the privacy, which we believe is a desirable
simplification compared to more “interleaved” approaches such as [XZ14 , GMO15]. Furthermore,
our construction is secure under standard cryptographic assumptions and compared to [GMO15]
does not use random oracles.

Application to client authentication. In Section 4 , a second application of agree-and-prove is
presented. First, it is shown how password-based authentication naturally fits as an instantiation
of the notion. Then, it is discussed how advanced security properties arising in the context of
password-based authentication, such as protection from precomputed rainbow-tables, can be taken
into account. Finally, we present a direct instantiation of Agree-and-Prove that captures two-factor
authentication. The fact that the knowledge-relation can depend on the setup is thereby leveraged
to demonstrate that the agree-and-prove notion can not only (as expected) formalize proofs and
arguments of knowledge, but is in fact the cryptographic tool to capture in a similar spirit proofs of
possession or proofs of ability such as the possession and use of a hardware-token.

2 Agree-and-Prove: Definition

In this section, we introduce our notion of an agree-and-prove scheme. Such a scheme is intended
to capture a setting where two parties, the prover and the verifier, dynamically want to agree on
a statement of whose validity the prover then wants to convince the verifier. The statement is
not fixed beforehand and can in particular depend on the environment in which they execute the
protocol as well as the parties’ prior knowledge.

4

Generic Setup Functionality F

• init: Setup-Functionality initialization procedure

• OF (i, q, arg): Interaction of setup with the participants, where
– i ∈ {I,P,V} denotes a role.
– q is a keyword.
– arg is the argument for this query.

• OF (QUERIES): Recorded queries of role P. Upon invocation, the oracle returns a list of
(q, arg, reply) triples corresponding to all the queries made by role P so far.

Figure 1: A generic setup functionality F , consisting of a initialization procedure init and then
provides an oracle OF (i, q, arg), where i ∈ {I,P,V} denotes a role, q denotes a keyword, and arg
denotes the argument for this query. Furthermore, F keeps track of all the prover’s queries.

2.1 The Scenario

Analogous to a proof-of-knowledge scheme, an agree-and-prove scheme is only well defined with
respect to a goal it should achieve. While in proof of knowledge such a goal is simply given by an
NP-relation, it is now generalized for agree-and-prove schemes.

First, we consider in our notion setup that models some assumptions on the world in which we
execute the protocol. Such a setup can simply consist of a CRS or a random oracle, but also can
model further assumption such as a file database assigning files to certain identifiers in the case
of a proof of ownership. Second, characterizing which statement the parties should agree on—in
dependence of the setup and the parties’ prior knowledge—is an integral part of specifying the goal
of an agree-and-prove scheme. This is characterized by an agreement relation. Third, the proof
relation characterizes what it means to satisfy the statement they agreed on (for which we simply
use the common term proof). This relation generalizes the NP-relation of the proof-of-knowledge
formalization, as it can capture notions of knowledge as well as more general properties about the
relation between the statement and the setup.

We formally define this intuition below: An agree-and-prove scenario captures what is the
assumed setting in which the protocol is executed and specifies the goal of the scheme.

Definition 2.1 (Agree-and-Prove Scenario). An agree-and-prove scenario Ψ is a triple Ψ :=
(F ,ROF (·,·,·), COF (·,·,·)), consisting of the following components:

• A setup functionality F , which is a PPT ITM that consists of an initialization procedure
init and then provides an oracle OF (i, q, arg), where i ∈ {I,P,V} denotes a role, q denotes
a keyword, and arg denotes the argument for this query. For technical reasons, the setup
functionality keeps track of all queries (including the answer) by the prover, exposing them as
an oracle OF (QUERIES).

• An agreement relation COF (·,·,·), which is a PPT oracle machine taking a unary encoding of
the security parameter κ, two auxiliary inputs and a statement as inputs, and producing a
decision bit as output.

• A proof relation ROF (·,·,·), which is a PPT oracle machine taking a unary encoding of the
security parameter κ, a statement x, and a witness w as inputs, and outputting a decision bit.

Observe that the setup functionality, as depicted in Figure 1 , contains three oracles that operate
on shared state and randomness. Both the prover and the verifier have their own oracles OF (P, ·, ·)
and OF (V, ·, ·), respectively. This allows us, for instance, to express that if the setup contains a

5

login database, then only the verifier has access to the passwords. In addition, there is also the third
oracle OF (I, ·, ·) capturing the information and prior influence that third parties can have about
the setup. For example, the setup can either be a shared private key, or it can be a public CRS,
where only in the latter case the oracle OF (I, ·, ·) can access it. Some leakage about the information
obtained through this oracle might also be passed to the parties as prior knowledge, capturing
that for instance a dishonest prover might obtain hashes from other parties without knowing the
respective queries.

2.2 The Protocols

For a given agree-and-prove scenario we can now define the notion of a corresponding agree-and-prove
scheme. Such a scheme consists of two pairs of protocols for the prover and verifier, (P1, V1) and
(P2, V2), where the former pair agrees on the statement for which the latter one then will execute
the necessary proof. More concretely, the prover and verifier P1 and V1, respectively, output the
statement they agreed on at the end of the first phase, or chooses to abort the protocol by outputting
⊥ in case they could not agree. If they do agree on a statement, then at the end of the second phase
the prover and verifier P2 and V2, respectively, output whether the proof has been successful or not.

Definition 2.2 (Agree-and-Prove Scheme). An agree-and-prove scheme is a quadruple S :=
(P1, P2, V1, V2), consisting of the following four interactive PPT oracle machines:

• A (honest) first phase prover POF (P,·,·)
1 taking a unary encoding of the security parameter κ

and an auxiliary input auxp as inputs. It produces a statement xp or ⊥ as output, as well as
a state stp.

• A (honest) first phase verifier V OF (V,·,·)
1 taking a unary encoding of the security parameter κ

and an auxiliary input auxv as inputs. It produces a statement xv or ⊥ as output, as well as
a state stv.

• A (honest) second phase prover POF (P,·,·)
2 taking a state stp as input, as well as a unary

encoding of the security parameter κ, and producing as output a bit that indicates whether
the proof has been accepted.

• A (honest) second phase verifier V OF (V,·,·)
2 taking a state stv as input, as well as a unary

encoding of the security parameter κ, and producing as output a bit that indicates whether it
accepts or rejects.

Observe that both the prover and the verifier can keep state between the two phases. Furthermore,
note that both the prover and the verifier get an auxiliary input auxp and auxv, respectively, as
input which models the parties’ prior knowledge about the world, and where auxp typically contains
a witness (among other). Finally, note that in a slight abuse of notation, we treat an empty output
at the end of the agreement phase as x = ⊥.
Remark (On variations of the computational model). We formulate the above algorithms as interactive
and PPT for the sake of concreteness and since our presented applications live in this world. However,
as for the traditional notions, various computational models and properties can be considered for
agree-and-prove such as allowing unbounded provers in Definition 2.2 or considering computational
instead of information-theoretic soundness in Section 2.3 or different runtime requirements for
extractors. Also, intermediate computational classes such as unbounded provers with limited calls
to the setup (e.g., random oracle calls) would be possible to consider. On another dimension, one
can restrict the number of messages exchanged or number of queries made in the proof phase. An
obvious example would be to restrict the prover to send only a single message in the second phase
which would overall establish (a generalized notion) of non-interactive proofs.

We move on to define the execution of an agree-and-prove scheme:

6

Definition 2.3. Let auxp and auxv denote two bit-strings, let F denote a setup functionality, and
let S := (P1, P2, V1, V2) denote an agree-and-prove scheme. Then,

((xp, stp); (xv, stv);T)←
〈
P
OF (P,·,·)
1 , V

OF (V,·,·)
1

〉(
(1κ, auxp); (1κ, auxv)

)
denotes the execution of the agreement phase between the honest first phase prover P1 and the
honest first phase verifier V1. Note that we use the notation (a; b;T)← 〈A,B〉(x, y) to denote the
interactive protocol execution of interactive algorithms A and B invoked on the inputs x and y,
respectively, and where a and b are the resulting outputs of A and B, respectively, and where T
denotes the communication transcript. Moreover,

(v; v′; ·)←
〈
P
OF (P,·,·)
2 , V

OF (V,·,·)
2

〉(
(1κ, stp); (1κ, stv)

)
denotes the execution of the proof phase between the honest second phase prover P2 and verifier V2,
with v and v′ being the decision bit of the prover and verifier, respectively.

2.3 The Basic Security Notion

In this section, we define the agree-and-prove security notion that generalizes the traditional security
requirements expected from proofs of knowledge.

2.3.1 Prior Knowledge

Recall from the previous section that both parties take an auxiliary input. While the setup models
the world which we assume the protocol to be executed in, those auxiliary inputs model the parties’
prior knowledge (a similar concept was used in [Gol06 , Section 4.7.5] on identification schemes). In
the security experiment, those inputs will be generated by a respective algorithm.

Definition 2.4 (Input Generation Algorithm). An input generation algorithm IOF (I,·,·) for an
agree-and-prove scenario Ψ := (F ,ROF (·,·,·), COF (·,·,·)) is a PPT oracle machine taking a unary
encoding of the security parameter κ as input and producing a pair of bit-strings (auxp, auxv),
specifying the auxiliary inputs for the prover and verifier respectively, as output.

Note that this algorithm gets oracle access to the setup functionality via its own oracle OF (I, ·, ·).
This allows us to model restrictions on the prior knowledge as part of the setup functionality, and
thus as part of the agree-and-prove scenario. The input generation algorithm is then universally
quantified over in the security definition, making a clean separation between the part we do make
assumptions about (the setup) and the part which we do not make assumption up (the exact prior
knowledge of the parties).

2.3.2 Programmability and Non-Programmability

There are many cases in which one would like to formalize that an extractor can program the setup
(e.g., a backdoor in a CRS model). He should, however, be only allowed to do so in a “correct”, i.e.,
undetectable, manner, as otherwise he might for instance force the prover and verifier to disagree on
the statement and abort, thereby making the extraction game trivial. To this aim, we introduce the
notion of a setup generation algorithm to formally capture (valid) programmability.

Definition 2.5 (Setup Generation Algorithm). A setup generation algorithm SGen is a PPT taking
a unary encoding of the security parameter κ as input. It outputs (the description of) a setup
functionality F ′ and a trapdoor td as output.

We say that the setup generation algorithm SGen is admissible for an agree-and-prove scenario
Ψ := (F ,ROF (·,·,·), COF (·,·,·)), if for every PPT oracle machine A the following advantage

AdvAP-Setup
Ψ,SGen,A := PrF .init(1κ)[AOF (·,·,·)(1κ) = 1]− Pr(F ′,td)←SGen(1κ); F ′.init(1κ)[AOF′ (·,·,·)(1κ) = 1]

is negligible in κ.

7

We formulate the security games that potentially require programmability in proofs using this
generated setup instead of the real one. The extractor then gets a trapdoor td (e.g. for the generated
CRS) that he can use for the extraction during the prove phase (or in the zero-knowledge case to
simulate proofs). Other than that, the generated setup is directly used in the security game.

On the other hand a non-programmable setup corresponds to restricting setup generation
algorithms that do not produce any leakage, which is, in accordance with the above definition,
essentially equivalent to just taking the real setup functionality F .

Finally, one can also easily model a mixture of programmable and non-programmable setups by
considering the list F := (F1, . . . ,Fk) as one setup functionality and a corresponding setup-generation
algorithm SGen(1κ) := (SGen1(1κ), . . . ,SGenk(1κ)) where for each declared non-programmable setup
Fi, SGeni is required to produce no leakage.

2.3.3 The Security Definition

Based on the notion of an input generation algorithm I and a setup generation algorithm SGen, we
now define the security game. Before giving the definition, we explain and motivate the security
conditions appearing in Figure 2 in the following paragraphs.

Experiment ExpAP-Corr,Ψ
S,I

Input: 1κ, where κ ∈ N
flagCorr ← 1
Execute F .init(1κ)
(auxp, auxv)← IOF (I,·,·)(1κ)

((xp, stp); (xv , stv); ·)←
〈
P
OF (P,·,·)
1 , V

OF (V,·,·)
1

〉(
(1κ, auxp); (1κ, auxv)

)
if xp 6= xv or ¬COF (·,·,·)(1κ, auxp, auxv , xv) then

flagCorr ← 0; return
else if xv 6= ⊥ then

(v; v′; ·)←
〈
P
OF (P,·,·)
2 , V

OF (V,·,·)
2

〉(
(1κ, stp); (1κ, stv)

)
flagCorr ← (v′ = accept) ∧ (v′ = v)

Experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂

Input: (1κ, p), where κ ∈ N and p : N→ [0, 1]
(F ′, td)← SGen(1κ)
Execute F ′.init(1κ)

(auxp, auxv)← IOF′ (I,·,·)(1κ)

((·, stp); (x, stv);T)←
〈
P̂
OF′ (P,·,·)
1 , V

OF′ (V,·,·)
1

〉(
(1κ, auxp); (1κ, auxv)

)
if x = ⊥ then

flagExt ← 1; return
Define succ := Pr

[
v′ = accept : (·; v′; ·)←

〈
P̂
OF′ (P,·,·)
2 , V

OF′ (V,·,·)
2

〉(
1κ, stp; (1κ, stv)

)]
if succ ≤ p(κ) then

flagExt ← 1; return
w ← EOE (1κ, x, auxp, stp, T)

flagExt ← (ROF′ (·,·,·)(1κ, x, w) = 1)

where:
OE := OF′ (P, ·, ·),OF′ (QUERIES),ROF′ (·,·,·)(1κ, ·, ·),OBBR(P̂

OF′ (P,·,·)
2 (stp))

Figure 2: Security experiments for an Agree-and-Prove scheme. Top: The correctness experiment.
Bottom: The extraction experiment to formalize soundness (the case where an honest verifier
V = (V1, V2) interacts with a dishonest prover P̂ = (P̂1, P̂2)).

8

Correctness. The correctness experiment ExpAP-Corr,Ψ
S,I formalizes the following aspects: First, if

the honest prover and verifier interact, then they need to agree on a valid statement, where the
validity is given by the agreement relation COF (·,·,·) of the agree-and-prove scenario (c.f. Section 2.1).
This relation takes into account the parties’ prior knowledge auxp and auxv, respectively, as well
as the setup functionality F . It also decides whether aborting is allowed or not. Second, if they
do not abort, then correctness enforces that the honest prover does convince the verifier, i.e., it
enforces that the proof succeeds. Note that we do not require the honest prover to explicitly output
a witness for the proof relation—the fact that he in principal knows such a witness is covered by
the soundness condition.

Soundness. The extraction experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂
formalizes that every (potentially dishon-

est) prover that can convince the verifier with probability at least p(κ) of a statement x must know
a witness w that satisfies the proof relation ROF (·,·,·)(1κ, x, w). Analogous to a proof of knowledge,
we phrase this via the existence of an extractor. More precisely, this extraction property refers to
the proof phase of the protocol, formalizing that the above guarantee holds for every valid statement
x which the prover manages to agree on with the verifier. To reflect this in the security game, the
agreement phase is executed exactly once, and cannot be rewound, thereby fixing the statement x,
the prover’s and verifier’s state stp and stv respectively, and the state of the setup functionality. (See
the two final remarks on the experiment below for a more formal notion of “state”). It is important
to note that our definition simultaneously captures validity and soundness1 (justifying the common
term soundness), as we let the extractor run w.r.t. any derived statement. That is, if V1 accepts an
invalid statement (without witness), there exists trivially no extractor that provokes flagExt = 1.

Back to extraction, with respect to this overall state after phase one, the extractor has to
provide a witness w (within a reasonable time bound along the lines of Goldreich [Gol06 , Definition
4.7.1]). To achieve extraction, the extractor gets the statement x, the prover’s state stp, and the
communication transcript T of the agreement phase. Furthermore, he gets black-box rewinding
access to the dishonest prover (communication) strategy P̂2, access to the prover’s oracle of the
setup functionality OF (P, ·, ·), and access to the list of setup queries made by the prover, which
is provided by the oracle OF (QUERIES). In contrast to a traditional proof of knowledge where
the relation is deterministic and publicly known, we also provide an oracle to the extractor with
black-box access to the predicate defining the proof relation (which in general could depend on the
randomness of the setup functionality). We refer the reader to the discussion after Definition 2.6 for
the rationale behind these choices in comparison with traditional proof-of-knowledge systems.

Two formal considerations about the extraction experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂
are in order:

• For sake of concreteness, we understand the black-box rewinding oracle OBBR(P̂
OF (P,·,·)
2 (stp))

as a stateful message-specification function along the lines of Goldreich [Gol06 , Definition
4.7.1]: more formally, when invoked with a random tape r, the oracle creates the machine
P̂2(stp) in its initial configuration with random tape r. It then provides black-box access to
the communication behavior by accepting incoming messages, performing the state transitions
of P̂2 until it outputs the next message to be sent. Note that during this computation, oracle
calls to OF (P, ·, ·) might be made (which can neither be intercepted nor undone unless the
setup functionality would allow this form of resetting).

• The formal expression2

succ := Pr
[
v′ = accept : (·; v′; ·)←

〈
P̂
OF (P,·,·)
2 , V

OF (V,·,·)
2

〉(
(1κ, stp); (1κ, stv)

)]
1Note that in traditional proof-of-knowledge games, the extraction game is called validity and only valid statements

x ∈ L for some language L, are considered, whereas soundness requires an extra condition to capture security for the
case that x 6∈ L.

2We would like to stress that the formal evaluation of the expression has no side-effects on the state of any of the
involved entities.

9

is associated to the following probability space: first, the start configuration of both machines
of prover and verifier is the initial configuration with the specified input tape. The start
configuration of machine F is the configuration at the end of the first phase (i.e., a snapshot).
The probability space is then formed over the random coins of prover and verifier, and over
the coins, i.e., positions on the random tape, of F , that have not been read up to and until
the above start configuration of machine F .

It follows the definition of the security requirements of an agree-and-prove scheme.

Definition 2.6 (Agree-and-Prove Security). Let p : N→ [0, 1]. An agree-and-prove scheme S, for
an agree-and-prove scenario Ψ, is secure up to soundness error p, if the following conditions hold,
where the experiments are defined in Figure 2 .

• Correctness: For all input generation algorithms I, the experiment ExpAP-Corr,Ψ
S,I returns with

flagCorr = 1 for all κ with probability 1.

• Soundness : There exists an extractor algorithm E and an admissible setup generation algorithm
SGen, such that for all dishonest provers P̂ = (P̂1, P̂2) and input generation algorithms I, the
experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂
on input (1κ, p) returns with flagExt = 1 except with negligible

probability. Furthermore, for some c > 0, the expected number of steps of extractor E within
the experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂
on input (1κ, p) is required to be bounded by κc/(succ− p(κ))

(where the experiment ensures that succ > p(·)).

We next discuss some of the motivation and rationale behind the definition.

Discussion of selected elements. We first observe that providing the prover with the transcript
of the agreement phase implies that in the proof phase we do not necessarily have a full-fledged
proof or argument of knowledge of a witness as it, or parts of it, could already be contained in the
agreement phase, thereby allowing for a more efficient proof phase.

Moreover, providing the extractor with the prover’s input, state, and the setup queries from the
first round also entails a couple of implications: we formalize naturally that it is sufficient for the
prover to know a witness in order to pass the test—in contrast to more traditional definitions of
proofs of knowledge requiring that the communication needs to prove that he knows one.

For instance, consider a shared URF U(·) between the prover and the verifier as a setup. If
the statement is that the prover knows the pre-image x of y under some one-way permutation f ,
i.e, x such that f(x) = y for x, y known to a verifier, then we would consider sending the correct
evaluation under U(x) as convincing, as a prover cannot guess U(x) without querying it except
with negligible probability. On the other hand, x cannot be extracted from the communication
transcript U(x). We consciously opted for this relaxed definition of knowledge to allow for broader
applicability of the concept and because we believe it to capture the essence of a more general
understanding of knowledge. For example, in the case of proof-of-ownership of files it is crucial that
the communication complexity can be significantly smaller than the file.

2.4 Zero Knowledge

Analogous to a proof of knowledge, we can also require the agree-and-prove scheme to be zero
knowledge. That is, whatever a (potentially dishonest) verifier can compute after interacting with
the honest prover can also be computed by an appropriate simulator. Since we consider an interactive
agreement phase where both parties get private information and a different view on the setup
functionality, it however also makes sense to consider prover zero-knowledge. That is, we can phrase
that both a verifier, as well as a prover should not learn anything about the other party’s input nor
about the other party’s view on the setup functionality.

10

Experiment ExpAP-ZK-V,Ψ,S,LP
V̂ ,I,S,SGen,D

Input: 1κ, where κ ∈ N
b� {0, 1}
if b = 0 then
F ′ ← F
Execute F ′.init(1κ)

(auxp, auxv)← IOF′ (I,·,·)(1κ)

((x, stp); out1; ·)←
〈
P
OF′ (P,·,·)
1 , V̂

OF′ (V,·,·)
1

〉(
(1κ, auxp); (1κ, auxv)

)
(v; out2; ·)←

〈
P
OF′ (P,·,·)
2 , V̂

OF′ (V,·,·)
2

〉(
(1κ, stp); (1κ, out1)

)
else

(F ′, td)← SGen(1κ)
Execute F ′.init(1κ) and LP .init(1κ)

(auxp, auxv)← IOF′ (I,·,·)(1κ)

(out1, out2)← SOF′ (V,·,·),L
OF′ (P,·,·),OF′ (V,·,·)
P

(1κ,auxp,·)(1κ, auxv , td)

b′ ← DOF′ (I,·,·),OF′ (V,·,·)(1κ, auxp, auxv , out1, out2)
flagGuessed := b = b′

Experiment ExpAP-ZK-P,Ψ,S,LV
P̂ ,I,S,SGen,D

Input: 1κ, where κ ∈ N
b� {0, 1}
if b = 0 then
F ′ ← F
Execute F ′.init(1κ)

(auxp, auxv)← IOF′ (I,·,·)(1κ)

(out1; (x, stv); ·)←
〈
P̂
OF′ (P,·,·)
1 , V

OF′ (V,·,·)
1

〉(
(1κ, auxp); (1κ, auxv)

)
if x 6= ⊥ then

(out2; ·; ·)←
〈
P̂
OF′ (P,·,·)
2 , V

OF′ (V,·,·)
2

〉(
(1κ, out1); (1κ, stv)

)
else

out2 ← ⊥
else

(F ′, td)← SGen(1κ)
Execute F ′.init(1κ) and LV .init(1κ)

(auxp, auxv)← IOF′ (I,·,·)(1κ)

(out1, out2)← SOF′ (V,·,·),L
OF′ (P,·,·),OF′ (V,·,·)
V

(1κ,auxv,·)(1κ, auxp, td)

b′ ← DOF′ (I,·,·),OF′ (P,·,·)(1κ, auxp, auxv , out1, out2)
flagGuessed := b = b′

Figure 3: The zero-knowledge security experiments for an AaP scheme. The first experiment phrases
verifier zero-knowledge, whereas the second one phrases prover zero-knowledge.

While a zero knowledge agree-and-prove protocol certainly represents the optimal case it is often
already desirable to limit and explicitly quantify the leakage. To this end, we introduce the notion of
a leakage oracle that the simulator is allowed to invoke. Furthermore, in the classical ZK definition,
it is assumed that the verifier is always allowed to learn the statement and whether the prover has a
valid witness. Since in our agree-and-prove notion the statement and the witness are not a priori
fixed, this also has to be modeled as an explicit leakage. The classical zero-knowledge definition is
then obtained by considering a leakage oracle that only reveals this information.

Definition 2.7. A leakage oracle L for a setup functionality F is an oracle PPT ITM that consists of
a initialization procedure init and an oracle LOF (P,·,·),OF (V,·,·)(1κ, aux, query), allowing the simulator
to ask certain queries query which are evaluated on the other party’s input aux and view on the
setup.

We now proceed to define the classical property that the scheme is zero-knowledge, up to some

11

explicit leakage, with respect to the verifier. As usual, this is phrased via a simulator that can
produce an output that is just as good as the one from the actual interaction. Having setup, however,
also affects the corresponding indistinguishability notion as it raises the question to whom the
output should look just as good. We opt for a definition where we demand that the simulated
output is indistuinguishable from the joint view of the verifier and third parties, therefore giving
the distinguisher access to both oracles OF (V, ·, ·) and OF (I, ·, ·), respectively.

Definition 2.8. Let LP denote a leakage oracle. An agree-and-prove scheme S, for an agree-and-
prove scenario Ψ, is verifier zero-knowledge up to leakage LP if for all dishonest verifiers V̂ = (V̂1, V̂2)
and all input generation algorithms I, there exists an efficient simulator S and an admissible setup
generation algorithm SGen such that for all efficient distinguishers D it holds that the experiment
ExpAP-ZK-V,Ψ,S,LP

V̂ ,I,S,SGen,D
on input 1κ returns with flagGuessed = 1 with probability at most negligibly larger

than 1
2 . The experiment is defined in Figure 3 .

Note that in the experiment depicted in Figure 3 we assumed that a dishonest verifier V̂1 is
not restricted to output something of the form (x, stv) at the end of the agreement phase, but can
produce an arbitrary output instead. Moreover, observe that a dishonest verifier is not forced to
abort, but in principle can always try to execute the proof phase with the honest prover.

Now we also define the symmetrical property that the scheme is zero-knowledge with respect
to the prover. When defining this notion, care has to be taken that observing the honest verifier
aborting after the agreement phase does not leak information either. In the following definition it is
assumed that the honest verifier refuses to execute V2 in case V1 ended with an abort, and at best
sends an error message back to the (dishonest) prover.

Definition 2.9. The scheme is said to be prover zero-knowledge up to leakage L, if the same property
as in Definition 2.8 holds for all dishonest provers P̂ = (P̂1, P̂2) in the experiment ExpAP-ZK-P,Ψ,S,LV

P̂ ,I,S,SGen,D
,

which is defined in Figure 3 .

3 Application to Proof-of-Ownership of Files

File deduplication is a cornerstone of every cloud storage provider. Client-side, rather than server-side,
deduplication furthermore provides the additional benefit of reducing the bandwidth requirements
and improving the speed. In such a scheme, the client—instead of just uploading the file—first tries
to figure out whether the server already possesses a copy of the file, and if so simply requests the
server to also grant him access to the file. Several commercial providers implemented client-side
deduplication using a naive scheme of identifying the file using hash values. This allowed users to
covertly abuse the storage as a content distribution network, prompting the storage providers to
disable client-side deduplication [MSL+11].

As a response, Halevi, Harnik, Pinkas, and Shulman-Peleg [HHPSP11] introduced the first
rigorous security treatment of client-side deduplication, formalizing the primitive of a proof of
ownership. While intuitively their notion formalizes that a client can only claim a file he knows,
Halevi et al. formalized the proof-of-ownership concept as an entropy-based notion, rather than a
proof-of-knowledge based notion.

In this section, we show that our agree-and-prove notion is the natural candidate for formalizing
the security of client-side deduplication. Besides the basic requirements, we also present a privacy
preserving scheme that is applicable if users additionally employ client-side encryption.

3.1 Proof-of-Ownership with a Local RO

We first abstract this application as an agree-and-prove scenario which includes the setup and the
relation we want to prove. We finally give a description of the scheme.

12

Setup. We describe the setup in very simple terms. We want to deal with an array of pairs
L = (idi, Fidi)i∈[n], where idi, Fidi ∈ {0, 1}∗ and for all i, idi is unique in L. The setup of the
Proof-of-Ownership scenario is thus a functionality FDB,RO that first expects such a list from
the input-generation algorithm (recall that the input-generation algorithm also defines the state
of the prover). The setup gives the verifier access to the list L. The setup further provides a
(non-programmable) random oracle to the prover and the verifier (but not to the input generation
algorithm). The description can be found in Figure 4 .

Agreement and Proof Relations. Our goal is to show that a very simple File-Ownership
protocol is indeed a valid agree-and-prove scheme with the above setup. The statement that prover
and verifier agree on is a file identity and the relation to be proven is that the prover knows the file
with the corresponding identity. More formally, the agreement relation is defined via the condition

C
OFDB,RO

(·,·,·)
(1κ, auxp, auxv, x) = 1 :↔ x = ⊥ ∨ ∃i : L(i) = (x, ·), (1)

which can be efficiently implemented by C by calling OFDB,RO
(V, getFile, x) and verifying that the

answer is some F 6= ⊥.
Accordingly, the proof relation is defined via the condition

ROFDB,RO
(·,·,·)

(1κ, x, w) = 1 :↔ (x,w) ∈ L (2)

which can be efficiently implemented by R by calling OFDB,RO
(V, getFile, x) and verifying that the

returned value F equals w.

The scheme. The scheme is described in Figure 4 . The agreement phase consists of the prover
stating the identity of the file, of which ownership is to be proven, and providing a hash of it.
The verifier checks the hash of the claimed file and upon success, informs the prover. The agreed
statement is x = id such that there is an index i with L(i) = (id, ·). As we will see in the analysis,
after this agreement phase no further proof phase is needed. Hence, the prover P2 halts and V2

outputs 1 if and only if V1 did successfully derive the statement.

Analysis. In order for the verifier to accept, in the agreement phase the prover has to send (id, h)
such that H(Fid) = h. Since the auxiliary input from I does not depend on H, there are two
possibilities: either the prover queried the random oracle at position Fid, in which case he has the
file, or he guessed the hash. The latter can, however, only happen with negligible probability. Hence
we get the following statement.

Theorem 3.1. The agree-and-prove scheme from Figure 4 , for the above described agree-and-prove
scenario capturing proof-of-ownership with a local RO, is secure (with soundness error p(κ) := 0).

Proof. By the definition of V1, the experiment ExpAP-Corr,Ψ
S,I returns with flagCorr = 1 with probability

1 for all input generation algorithms I, as the verifier outputs a statement x 6= ⊥ only if the
correctness predicate is satisfied. Now consider the following extractor E. Given (id, h) from the
transcript T , with x = id 6= ⊥, the extractor fetches the list L of random oracle queries from the
prover by calling OF (QUERIES). For each pair (qi, ri) ∈ L, E checks whether ri = h and (qi, h)
satisfies the proof relation. If such a pair is found, the extractor returns this qi, otherwise it aborts.
It remains to analyze the probability of the experiment ExpAP-Ext,Ψ

S,SGen,I,E,P̂
returning with flagExt = 1.

First, observe that the verifier decides at the end of the agreement phase. Hence, in the experiment
we have that succ is either zero or one. If succ = 0, we trivially have flagExt = 1. If succ = 1,
assume that the extractor does not succeeds. In that case, we have that P1 sent (id, h) such that
H(Fid) = h without having any information about H(Fid), since he neither queried it himself nor
got any information about it from I (which cannot query it) nor V1. Given that h is of the length κ,
this can happen with probability at most 2−κ.

13

Prover Protocols P1 and P2

Prover P1(1κ, auxp):
1: Parse auxp as (id, F). If this fails, set stp = Fail

and halt.

2: Call h ← OFDB,RO
(P, ROeval, F) and send (id, h)

to V1.

3: Upon receiving ok output stp = Done and state-
ment x := id Otherwise, set stp = Fail and x := ⊥.

Prover P2(1κ, stp):
1: Halt with 1 (accept) if stp = Done and otherwise

with 0.

Verifier Protocols V1 and V2

Verifier V1(1κ, auxv):
1: Upon receiving a message (id, h) from P1, obtain

F ← OFDB,RO
(V, getFile, id) and obtain h′ ←

OFDB,RO
(V, ROeval, F). Then do the following:

– If h = h′, define x := id and m, stv ← ok.
– If h 6= h′ define x := ⊥ and m, stv ← ⊥.

Send m to P1 and output (x, stv)

Verifier V2(1κ, stv), assume x 6= ⊥:
1: If stv = ok then output 1, otherwise output 0.

File-Ownership setup FDB,RO

• init: H ← [] and L is the empty array.

• OFDB,RO
(I, defineDB, L′): If L is the empty array, then do the following: If L′ is an array of pairs (idi, Fidi)i∈[n],

where idi, Fidi ∈ {0, 1}
∗ and for all i, idi is unique in L′, then set L← L′. Output L in any case.

• OFDB,RO
(V, getFile, id): If i ∈ {I,V} and id ∈ L then return Fid. In any other case, return ⊥.

• OFDB,RO
(i, ROeval, x): If i ∈ {P,V} do the following: if H[x] is not yet defined, first choose y � {0, 1}κ and set

H[x] := y; finally, return H[x]. If i = I, return ⊥.

Figure 4: The description of the prover protocols (left) and the verifier protocols (right), and the
concrete setup functionality (bottom).

3.2 Proof-of-Ownership with a Global RO

While the above approach is sound if prover and verifier share a random function among each other
(which is only used locally in the agree-and-prove context), it is not considered secure in practice,
since one does usually have to assume that access to such a random function is not exclusive to the
prover. In this section, we discuss the alternative, where the random oracle is accessible by all three
roles and in particular by the input generation algorithm.

The new scenario. We modify the setup slightly to allow all roles access to the random oracle,
i.e., even an input generation algorithm could obtain the RO outputs and hence hashes might be
part of the prior knowledge. The resulting setup functionality FDB,GRO is defined analogous to the
one from Figure 4 , except that also ROeval queries are also admitted for the role I. The relations
remain the same as in equations (1) and (2) , except that they are with respect to the setup FDB,GRO.

3.2.1 Insecurity of the Simple Scheme

It is easy to see that with a global RO, the scheme in Section 3.1 loses its guarantees. To be more
concrete, the scheme has the following property in a GRO setting, that basically says that the
scheme can only be secure if the file identifier and the hash are sufficient to efficiently recover the
file corresponding to the identifier. This results in a trivial scheme, as anyone can efficiently obtain
knowledge about any file in L.

Lemma 3.2. Consider the scheme of Section 3.1 in the GRO setting. There exists an input
generation algorithm I and a dishonest prover strategy (P̂1, P̂2) for which the extraction problem
of Figure 2 is at least as hard as the extraction problem that must recover the file F only given its
identifier id and its hash h and with access to the setup.

14

Poof Sketch. Consider the following input generation algorithm I
OFDB,RO

(I,·,·) for the agree-and-prove
scenario from above: I (id, Fid) and the corresponding hash h← H[Fid]. It defines auxp ← (id, h).
It is clear that a dishonest prover P̂1 can convince V1 by sending (id, h). To conclude the attack,
we simply let P̂2 := P2 (i.e. simply halts). Note that any extractor E in the security game is
hence called on input (1κ, id, (id, h), (id, h)). To conclude the statement, note that no setup-query
is made by P̂1 and P̂2 simply halts. This means that the prover-oracle can be replaced by a local
sub-routine. We can therefore construct a simpler extractor ẼOFDB,RO

(P,·,·)
(1κ, auxp) that simply

executes E on input (1κ, id, (id, h), (id, h)) and emulates the prover-oracle access towards E. E and
E′ have the same efficiency and the output distribution given the file identifier id and the hash h
are identical.

Note that the above stated provable insecurity reflects practice. For instance, consider the
case where a cloud storage provider uses an proof-of-ownership protocol to perform client side
deduplication based on above protocol with a standard hash function. In this setting, malicious
parties can covertly abuse it as a file sharing platform by only having to exchange small hash values,
with which they can then download the entire file from the cloud storage prover, as for instance
pointed out by Mulazzani et al. [MSL+11].

3.2.2 A Secure Alternative

The natural way to obtain a secure protocol in this setting, is to let the prover prove his knowledge
in the second phase. While one way to do so would be to simply send the entire file, we consider
here a more efficient protocol proposed in [HHPSP11]. We also extend the structure of the protocol
to be privacy preserving in the next section.

The scheme. In the agreement phase, the prover still sends the identity to the verifier. In the
verification phase both prover and verifier first encode F using an erasure code to obtain X = E(F)
and then split X into blocks of size b. The verifier then chooses uniformly at random a subset (of
size n) of the blocks for which the prover has to demonstrate knowledge. We assume here an erasure
code (E,D) as of Appendix A.2 which can restore the original data item, as long as at most an α
fraction of the symbols of the encoding X are missing, for some fixed α ∈ (0, 1).

Instead of simply sending those blocks, the protocol makes use of a Merkle-Tree as of Ap-
pendix A.1 . That is, both the prover and verifier already compute X = E(F) in the agreement
phase, and then calculate the Merkle-Tree using GenMTh(X, b) (where we assume here h be a
random oracle for sake of simplicity). The prover then additionally sends the root value and the
number of leaves ` of a Merkle-Tree along with the file identifier, and the verifier only accepts the
statement if they match. During the second phase, the verifier can then check the correctness of the
blocks by only using the control information consisting of the root and the number of leaves of the
tree (instead of the entire file), thereby keeping its state small at the expense of some communication
overhead.

A formal description of the corresponding prover and verifier protocols is given in Figure 5 .

Analysis. Assume there is a prover who knows less than a 1− α fraction of the blocks, and thus
cannot recover it with the erasure code. If we ask this prover to send us block bi, for an i chosen
uniformly at random by the verifier, then we will catch him with probability at least α. So if we ask
him for a uniformly drawn subset of n blocks, we catch him with probability 1− (1−α)n. We make
this intuition precise, building on results from [HHPSP11], in the following security statement and
its proof.

Theorem 3.3. The described agree-and-prove scheme, specified as pseudo-code in Figure 5 , for
the scenario capturing proof-of-ownership with a global RO is secure up to soundness error p(κ) :=
(1− α)n(κ).

15

Prover Protocols P1 and P2

Parameters: Size of Merkle-Tree leafs b and number of
challenges n.

Prover P1(1κ, auxp):
1: Parse auxp as (id, F). Abort if not possible.

2: Compute
– X ← E(F)

– (T, `)← GenMT
OFDB,GRO

(P,ROeval,·)
(X, b).

and let vroot be the root of T .

3: Send (id, (vroot, `)) to V1.

4: Upon receiving ok from V1, define the state stp ←
T and statement x = id, otherwise, set stp ← Fail
and x := ⊥.

Prover P2(1κ, stp):
1: If stp = Fail, output 0 and halt.

2: Upon receiving the message containing a set I =
{i1, . . . , in} ⊆ [`] of leaf indexes, do the following:
– ∀j ∈ [n] : pij ← MTGetPath(T, ij).
– Send (pi1 , . . . , pin) to V2. Output 1 and halt.

Verifier Protocols V1 and V2

Parameters: Size of Merkle-Tree leafs b and number of
challenges n.

Verifier V1(1κ, auxv):
1: Upon receiving a message (id, (v′, `′)) from P1, ob-

tain F ← OFDB,RO
(V, getFile, id) and compute

– X ← E(F) and

– (T, `)← GenMT
OFDB,GRO

(V,ROeval,·)
(X, b).

if F 6= ⊥ and let vroot be the root of T (and ⊥
otherwise).

2: If vroot 6= ⊥ and v′ = vroot and `′ = `, set stv ←
(vroot, `), send ok to P1, and output (x = id, stv).
In any other case, set x := ⊥ and send x to P1.

Verifier V2(1κ, stv), assume x 6= ⊥:
1: Choose uniformly at random a subset I =
{i1, . . . , in} ⊆ [`] of n leaf indexes and send I to
P2.

2: Upon receiving siblings paths (pi1 , . . . , pin) do:
– If ∀j ∈ [n] : MTVerifyPath(vroot, `, pij) re-

turns 1, then output 1. Output 0 in any other
case. Halt.

Figure 5: The description of the prover protocols (left) and the verifier protocols (right) of the
Merkle-Tree based scheme.

Proof Sketch. Correctness is clearly satisfied. Security, in a nutshell, follows by a standard hardness
amplification argument, i.e., if the prover provides valid Merkle paths for n uniformly at random
chosen leaves with probability greater than (1− α)n, then the same prover will essentially provide
a valid path for a single one with at least probability 1 − α. Or phrased differently, he provides
a valid path for at least an 1 − α fraction of the leaves. For this reasoning to be made precise,
we can rely on the established fact stated in Lemma A.1 . This means that our overall extractor
first lets the extractor program K ′P2(v, `, n)—which is guaranteed by Lemma A.1 — run on input
the Merkle-tree root v and the number of leaves ` from the transcript T , as well as the protocol
parameter n (number of leaf indexes queried), until K ′ succeeds in restoring an (1 − α) fraction
X ′ of the encoding of E(F) (matching the control information v,`). We finally apply and output
F ← D(F ′) if F is a valid witness for the statement x = id.

The security and runtime bounds of our overall extractor follows from (1) the guarantees given
in Lemma A.1 , in particular that an (1−α) fraction of the leaves is restored in an expected number
of steps TU that is inverse proportional to the soundness gap δ, (2) the assumed erasure code that
allows to decode the obtained output of E to F , since an (1−α) fraction gets restored of X = E(F),
where X is the underlying data of the Merkle-Tree, and (3) the hash-collision property, which is
information theoretic in the case of an RO, which guarantees that the restored file F is the file with
identifier id and Merkle-root v except with negligible probability.

3.3 On Including Privacy and Zero-Knowledge

Consider a company that wants to use an external cloud provider for file storage. To protect the
confidentiality of their trade secrets they most likely want to opt for client side encryption of all the
files. As naturally each file might be distributed among many employees, and the provider charges
for the overall storage requirement, file deduplication is highly desirable. While all employees (or at
least certain subgroups) might share the same key, coordinating on the randomness used to encrypt
each file is not practical and deterministic encryption does often not provide the required level

16

of security. Thus, neither server-side deduplication nor the naive client-side deduplication on the
ciphertext are feasible.

In this section, we provide a private version of the proof-of-ownership scheme that enables
client-side deduplication in this setting, if the cloud provider explicitly supports so. The goal is that
the storage provider should not be required to be trusted, and thus essentially learn nothing during
the protocol run. At the same time, the storage provider should only provide access to the files to
those users that already possess it, thereby preventing a rogue employee from just downloading all
of the company’s files. The basic idea of the protocol is that we keep the overall structure of the
previous protocol, but patch it using encryption and NIZKs.

Setup. The setup corresponds to a snapshot of the system at the moment where a user wants to
run the protocol. That is, it contains a list of encrypted files indexed by their respective identifiers
(where the files can again be chosen by the input-generation algorithm), which have already been
uploaded, together with the corresponding control information needed to run the protocol. The
control information consists of an ElGamal encrypted Merkle root of the plaintext (an unencrypted
root would allow the server to test whether a file is equal to a given bit-string), the number of leaves
in the tree, as well as a signature binding the control information to the file identifier.

The verifier can access the encrypted files, the control information, as well as the public ElGamal
key and the signature verification key. The setup either provides the prover access to the public
keys only (modeling an outsider), or additionally to the symmetric key, the ElGamal decryption
key, and the signing key (modeling an insider). Finally, the setup also provides the necessary CRS
for the NIZK proofs to all parties. See Figure 6 . Looking ahead, we will assume that the setup be
programmable (to program the CRS).

File-Ownership setup Fpriv

• The setup is (implicitly) parametrized by a cryptographic hash-function familiy H, an erasure code (E,D), the leaf-
size b for the Merkle-Tree, a symmetric encryption scheme SE, the ElGamal encryption scheme ElGamal, and four
associated NIZK proof systems.

• init:
1: KeysAssigned← false

2: Choose h� H
3: kSE ← SE.Gen(1κ), (ekElGamal, dkElGamal)← ElGamal.Gen(1κ), (vkSig, skSig)← Sig.Gen(1κ)

4: (crspt, crscon, crsmt,h)← (NIZKpt.Gen(1κ),NIZKcon.Gen(1κ),NIZKmt,h.Gen(1κ))

• OFpriv
(I, defineDB, L′): If L is the empty array then do the following: if L′ is an array of pairs (idi, Fidi)i∈[n], where

idi, Fidi ∈ {0, 1}
∗ and for all i, idi is unique in L′, then set L← L′. In any case, output L.

Once L is defined, for (id, Fid) ∈ L do:
– Xid ← SE.Enc(k , Fid)

– (Tid, `id)← GenMTh(E(Fid), b). Let vroot,id be the root of Tid.

– croot,id ← ElGamal.Enc(ekElGamal, vroot,id).

– σid ← Sig.Sgn(skSig, (id, croot,id, `id))

– D[id]← (Xid, croot,id, `id, σid).

• OFpriv
(I, assignKeys,−): Set KeysAssigned← true.

• OFpriv
(V, getFile, id): If id ∈ L then return D[id]. Otherwise, return ⊥.

• OFpriv
(P, getKey,−): Return (kSE, dkElGamal, skSig) if KeyAssigned. Otherwise, return ⊥.

• OFpriv
(i, getPub,−): Return the description of h, (crspt, crseq , crsmt,h, crsmt,h), and (ekElGamal, vkSig)

Figure 6: The setup for the privacy-preserving file-ownership setting.

17

Verifier Leakage LV

• init: queried← false

• L
OFpriv

(P,·,·),OFpriv
(V,·,·)

V (1κ, auxv , query):

1: If queried, return ⊥, else set queried ← true and
continue.

2: Parse query as (id, v, dk). Return ⊥ if not possible.
3: Obtain (kSE, dkElGamal, skSig) via a call to
OFpriv

(P, getKey,−). Return ⊥ if not possible.

4: Call D ← OFpriv
(V, getFile, id).

– If D = ⊥, return 0.
– Else, parse D as (Xid, croot,id, `id, σid).

Let vroot,id ← ElGamal.Dec(dk , croot,id) and
return 1 if v = vroot,id. Return 0 otherwise.

Prover Leakage LP

• init: –

• L
OFpriv

(P,·,·),OFpriv
(V,·,·)

P (1κ, auxp, query):

1: Parse auxp as (id, F) and get (kSE, dkElGamal, skSig)
by calling OFpriv

(P, getKey,−). Return aborted if
either one is not possible. Continue otherwise.

2: Compute (T, `)← GenMTh(E(F), b) and let vroot
denote the root of T .

3: Obtain (Xid, C
′, `′, σ) from OFpriv

(V, getFile, id)

– If this fails or ` 6= `′, return (id, `, 0)
– Else, v′root ← ElGamal.Dec(dkElGamal, C′) and

let a := (vroot = v′root). Return (id, `, a).

Figure 7: The description of leakage a dishonest prover can obtain about the verifier’s view (left)
and leakage a dishonest verifier can obtain about the prover’s view (right), in a single run of the
protocol.

Agreement and Proof Relations. The statement that prover and verifier agree on is simply
the analogous statements from the previous section, i.e., the relation is defined via the condition

C
OFpriv

(·,·,·)
(1κ, auxp, auxv, x) = 1 :↔ x = ⊥ ∨ ∃i : L(i) = (x, ·), (3)

Accordingly, the proof relation is defined via the condition

ROFpriv
(·,·,·)

(1κ, x, w) = 1 :↔ (x,w) ∈ L ∧ KeysAssigned, (4)

where it is additionally checked that the prover not only knows the file but it also has the necessary
keys. As before, both predicates can be efficiently evaluated using the available oracles.

The privacy. Assume a prover and verifier execute a privacy-preserving proof-of-ownership scheme.
Clearly at the end of a successful protocol run, the verifier will have learned whether the prover had
a file which was already present in his database. More specifically, he will learn which identifier
this file had, which appears to be inevitable if we were to use the protocol to handle client-side
deduplication for cloud storage. Analogously, the prover will learn whether for his input (id, F) it
held that F = Fid, which also seems necessary in a setting where he needs to upload the entire file
otherwise.

In the remainder of the section we design a privacy preserving version of the previous Merkle-Tree
based scheme. Let us briefly discuss the implication of sticking to this overall structure on privacy.
In the agreement phase of the previous protocol, the prover sent the identity together with the root
of the Merkle-Tree. The verifier would accept if and only if he has a file with the corresponding
identity that has the same root, and only in the proof phase the prover had to show that he knows
the entire file. In our scheme, a dishonest prover that has the decryption key dk will be able to
learn whether for an identifier id and a Merkle-Tree root vroot of his choice, there exists a file Fid

with root vroot, leaking slightly more than an optimal protocol. A formal definition of the leakage
machine LV can be found in Figure 7 .

On the other side, in our protocol a dishonest verifier will learn the file identifier the prover has
(if the prover has a file and the decryption key) and also the length of the prover’s file (the number
of Merkle leaves). Furthermore, if a file with this identifier exists in his database, then he will also
learn whether it is the same one. A formal definition of the leakage machine LP can be found in
Figure 7 (note that in this case query is merely a trigger-input to obtain the leakage).

18

The scheme. The scheme basically follows the approach of the previous scheme of using a Merkle
tree (in this section, we assume a collision-resistant hash function h and not a random oracle),
however encrypts all the nodes of the tree using ElGamal encryption and then proves the consistency
using NIZK proofs. See Figure 8 for the formal description of the scheme. In the following, let
G = 〈g〉 be a cyclic group of prime order q with a generator g, in which the decisional Diffie-Hellman
assumption is assumed to hold, and let h : G2 → G be a collision resistant function.

We first describe the agreement phase. While in the original protocol the prover sends the
identity id to the server together with the root of the Merkle tree, in the privacy preserving scheme
he sends the identity alongside a fresh ElGamal encryption (c0, c1) := (gr, gdkr · vroot) of the root. If
the verifier has a file with that identity, then they proceed to check whether it encrypts the same
root as the corresponding one from the verifier’s control information (c′0, c

′
1) := (gs, gdks · v′root),

i.e, whether v′root = vroot. To this end, the verifier chooses t ∈ Z∗q uniformly at random and sends
back (d0, d1) :=

(
gt(s−r), gt·dk(s−r) · (v′root · v−1

root)
t
)
obtained from dividing the two encryptions. Note

that t is used to blind the verifier’s Merkle tree root, which would otherwise leak to the prover
knowing dk . The prover can then check whether (v′root · v−1

root)
t = 1 by raising the first element by

the decryption key dk, and inform the verifier accordingly. Observe that since G is of prime order,
we have that xt = 1, for t ∈ Z∗q , if and only if x = 1, and thus the prover’s check succeeds if and
only if v′root = vroot. If the verifier does not have a file with identifier id, then he chooses d0 ∈ G and
t ∈ Z∗q uniformly at random and sends (d0, (d0)t) instead, to conceal this fact. With overwhelming
probability t 6= dk and, thus, the prover will abort assuming that the Merkle roots don’t match.

To protect against dishonest behaviors, during the agreement phase, both parties additionally
prove with each message that is has been computed correctly using a NIZK proof for the languages
introduced below, which are parametrized in (a description of) the group G, the generator g, the
group order q, the file identifier space ID, and the signature scheme Sig including the verification-key
space VK and the signature space Σ.

• For the first message from the prover to the verifier, let NIZKdk be a NIZK proof system for
the language Ldk := {x | ∃w (x,w) ∈ Rpt}, where Rdk is defined as follows: for x = ek ∈ G
and a witness w = dk ∈ Zq, Rdk(x,w) = 1 if and only if

ek = gdk .

Hence, the prover shows that he knows the decryption key, and thus also the corresponding
plaintext vroot of his first message.

• For the message from the verifier to the prover, let NIZKcon be a NIZK proof system for
the language Lcon := {x | ∃w (x,w) ∈ Rcon}, where Rcon is defined as follows: for x =(
c0, c1, d0, d1, id, `, vk

)
∈ G4 × ID × N × VK and a witness (c′0, c

′
1, t, σ) ∈ G2 × Zq × Σ,

Rcon(x,w) = 1 if and only if(
(d0, d1) =

(
(c′0 · c−1

0)t, (c′1 · c−1
1)t

)
∧ Sig.Vrf(vk , σ, (id, c′0, c

′
1, `))

)
∨ (d0)t = d1.

• For the second message from the prover to the verifier, let NIZKeq be a NIZK proof system
for the language Leq := {x | ∃w (x,w) ∈ Req}, where Req is defined as follows: for x =(
ek , d0, d1

)
∈ Zq ×G2 and a witness w = dk ∈ Zq, Req(x,w) = 1 if and only if

(ek , d1) = (gdk , ddk0).

Finally, in the prove-phase, the server selects again a number of leaf indexes and the prover
replies with the encrypted siblings path together with NIZK’s to prove that the path is correctly
built, defined as follows.

19

Prover Protocols P1 and P2

Parameters: Size of Merkle-Tree leafs b and number of
challenges n.
Prover P1(1κ, auxp):

1: Parse auxp as (id, F). Abort if not possible.

2: Obtain h, (crsdk, crscon, crseq , crsmt,h), and
(ekElGamal, vkSig) from OFpriv

(P, getPub,−).
Also, obtain (kSE, dkElGamal, skSig) by calling
OFpriv

(P, getKey,−). Abort if not possible (send
stp := Fail to V1 and set x := ⊥).

3: Compute
– X ← E(F)

– (T, `)← GenMTh(X, b),
and let vroot be the root of T .

4: Let C ← ElGamal.Enc(ekElGamal, vroot) and
πdk ← NIZKdk.Prove

(
crsdk, ekElGamal, dkElGamal

)
Send (id, C, πek, `) to V1.

5: Upon receiving D = (d0, d1) from V1,
– If NIZKcon.Ver

(
crscon, (C,D, id, `, vkSig),

πcon
)

= 0 or d1 6= (d0)dk
ElGamal

then set stp ←
Fail and x := ⊥.

– Else, compute πek ← NIZKeq .Prove
(
crseq ,

(ekElGamal, d0, d1), dkElGamal
)
, send πeq to V1,

and set stp ← T and x := id.

6: Output stp and x if V1 returns ok (and stp ← Fail
and x := ⊥ otherwise).

Prover P2(1κ, stp), assume stp 6= Fail:
1: Upon receiving the message containing a set I =
{i1, . . . , in} ⊆ [`] of leaf indexes, compute ∀j ∈
[n] : pij ← MTGetPath(T, ij) and do for each such
sibling path pij :
– Parse pij = (vij ,1, . . . , vij ,k) as sequence

of nodes (starting from the root and
with at each level the left node being
first), and let the encrypted sequence be
(cij ,1, . . . , cij ,k), where cij ,1 := C and cij ,t ←
ElGamal.Enc(ekElGamal, vij ,t) for 2 ≤ t ≤ k.

– For each non-leaf level 1 ≤ d ≤ (k − 1)/2,
compute πij ,d ← NIZKmt,h.Prove

(
crsmt,h,

(ekElGamal, nd, ld, rd), dkElGamal
)
, where nd de-

notes the node on the d-th level on which the
path descends, and ld and rd is left and right
children, respectively.

– Send (πij ,1, . . . , πij ,(k−2)/2) and (cij ,1, . . . ,

cij ,k) to V2 and output 1. Halt.

Verifier Protocols V1 and V2

Parameters: Size of Merkle-Tree leafs b and number of
challenges n.

Verifier V1(1κ, auxv):
1: Upon receiving a message (id, C, πdk, `) from

P1, obtain h, (crsdk, crscon, crseq , crsmt,h), and
(ekElGamal, vkSig) from OFpriv

(P, getPub,−). Then,
check NIZKdk.Ver

(
crsdk, ekElGamal, πdk

)
, and if

this fails (or P1 aborted) then set x := ⊥ and
send ⊥ to P1. Otherwise, continue.

2: Choose t� Z∗q uniformly at random and retrieve
(Xid, C

′, `′, σ) via a call to OFpriv
(V, getFile, id).

– If the file does not exist, or if ` 6=
`′, then choose d0 � G u.a.r., set
D :=

(
d0, (d0)t

)
, and compute πcon ←

NIZKcon.Prove
(
crscon, (C,D, id, `, vkSig),

((1, 1), t, σ⊥)
)
, for σ⊥ ∈ ΣSig arbitrary.

– Else, parse C as (c0, c1) and C′ as (c′0, c
′
1) and

compute D :=
(
(c′0/c0)t, (c′0/c0)t

)
. Addition-

ally, compute
πcon ← NIZKcon.Prove

(
crscon, (C,D, id,

`′, vkSig), (C′, t, σ)
)
.

Send (D,πcon) to P1.

3: Upon receiving πeq , verify it by evaluating b ←
NIZKeq .Ver

(
crseq , (ekElGamal, D), πeq

)
. If b = 1 set

stv ← (C, `), send ok to P1, and output (x =
id, stv) (otherwise, x := ⊥ and send Fail to P1).

Verifier V2(1κ, stv), assume x 6= ⊥:
1: Choose uniformly at random a subset I =
{i1, . . . , in} ⊆ [`] of n leaf indexes and send I to
P2.

2: Upon receiving n sibling paths (cij ,1, . . . , cij ,k)

and associated proofs (πij ,1, . . . , πij ,(k−2)/2), for
each j ∈ [n] do:
– Check that cij ,1 = C

– For each non-leaf level 1 ≤ d ≤ (k − 1)/2
check NIZKmt,h.Ver

(
crsmt,h, (ekElGamal, nd,

ld, rd), πij ,d
)
, where nd denotes the node on

the d-th level on which the path descends, and
ld and rd is left and right children, respec-
tively.

3: If and only if all tests succeed, output 1. In any
other case, output 0. Halt.

Figure 8: The description of the prover protocols (left) and the verifier protocols (right) for the
privacy setting.

20

• Let the language Lmt,h := {x | ∃w (x,w) ∈ Rmt,h} be defined via the following relation Rmt,h:
for x =

(
ek , n0, n1, l0, l1, r0, r1

)
∈ G7 and a witness w = dk ∈ Zq, Rmt,h(x,w) = 1 if and only

if

ek = gdk

∧ ElGamal.Dec(dk , (n0, n1)) = h
(
ElGamal.Dec(dk , (l0, l1)),ElGamal.Dec(dk , (r0, r1))

)
.

The verifier furthermore checks that in each path, the ciphertext of the root is the one the prover
sent in the agreement phase.

Analysis. The described agree-and-prove protocol achieves the same level of security as the plain
Merkle-Tree based protocol, analyzed in the last section, but additionally provides the described
level of privacy. This is summarized in the following theorem.

Theorem 3.4. The agree-and-prove scheme from Figure 8 , for the agree-and-prove scenario consist-
ing of the setup functionality from Figure 6 and the relations from equations (3) and (4) , is secure
up to knowledge error p(κ) := (1− α)n(κ).

Furthermore, it is verifier zero-knowledge up to LP and prover zero-knowledge up to LV , where
LP and LV are both defined in Figure 7 .

For ease of presentation, we split the proof into its separate properties. First, we show that it
achieves the same level of security as the plain protocol.

Lemma 3.5. The agree-and-prove scheme from Figure 8 , for the agree-and-prove scenario consisting
of the setup functionality from Figure 6 and the relations from equations (3) and (4) , is secure up to
knowledge error p(κ) := (1− α)n(κ).

Poof Sketch. Correctness is again trivially satisfied as the verifier V1 only agrees on a file identifier
id that is in the database.

Soundness follows along the same lines as in Theorem 3.3 . We here only sketch how the soundness
of the scheme with privacy can be reduced to the soundness of the basic scheme. First, consider the
agreement phase. In the basic scheme, a the verifier only agrees on a statement if the prover sent
a (id, vroot, `) triple that matches his file Fid. We now first show that the same also holds in the
scheme with privacy, and that the extractor learns (id, vroot, `). To this end, consider the following
setup generation algorithm SGen: it first runs Ept1 from the knowledge extractor Ept to obtain a
CRS and the corresponding trapdoor. Then, it outputs the description of a setup functionality F ′priv

that works the same as Fpriv except that crspt is replaced by the one obtained from Ept1 . Moreover,
it outputs the CRS trapdoor as td. The extractor for the agree-and-prove scheme can then use td
to extract dkElGamal from the NIZK proof that the prover initially has to send. Since we can extract
the correct secret key, with overwhelming probability it also must hold that KeysAssigned is set to
true, thus reducing the knowledge predicate to knowing the correct file. By the soundness of the
NIZK proof for Req that the prover sends as the second message, we moreover know that V1 only
accepts if

g(s−r)tdkElGamal

= g(s−r)tdkElGamal

· (v′root/v
′
root)

t,

which, by t ∈ Z∗q implies that v′root = v′root. In summary, V1 only accepts if P̂1 sends the encryption
of the same Merkle root, and the extractor furthermore knows this root. In the proof phase, we
know, by the soundness of the NIZK for Lmt,h, that V2 only accepts if and only if the Merkle proofs
are correct. Hence, the extractor can internally run the one from the basic scheme, decrypting for
him the nodes on the paths using dkElGamal, and thereby achieving the same success probability.

Now, we prove that the protocol achieves the desired level of privacy for the honest prover, i.e.,
that a verifier cannot learn more whether the prover had a file with a matching Merkle root.

21

Lemma 3.6. The agree-and-prove scheme from Figure 8 , for the agree-and-prove scenario consisting
of the setup functionality from Figure 6 and the relations from equations (3) and (4) , is verifier
zero-knowledge up to LP as defined in Figure 7 .

Proof. We have to show that a dishonest verifier V̂ cannot learn more than provided by the leakage
oracle LP .

To this end, consider the following setup generation algorithm SGen: it first runs Sdk1 , Seq1 , Smt,h1

and Econ1 to obtain the corresponding CRS crsdk, crseq, crsmt,h, and crscon, and trapdoors τdk,
τ eq, τmt,h and ξcon, respectively. Then, it outputs the description of a setup functionality F ′priv

that works the same as Fpriv except that it uses those CRS. Moreover, it outputs the trapdoor
td := (τdk, τ eq, τmt,h, ξcon).

Now, consider the following simulator SV̂ that internally emulated V̂ and works as follows:

1. First, the simulator queries LP . If the return value is aborted it internally runs V̂ without
providing any further input. Otherwise, it obtained the leakage (id, `, a) and continues.

2. It chooses a file F̃ and computes (T̃ , ˜̀)← GenMTh(E(F̃), b), where the length of F̃ has been
chosen such that ˜̀= `. Let ṽroot be the root of T̃ .

3. For the first message of P1, it computes C̃ ← ElGamal.Enc(ekElGamal, ṽroot) and π̃ek ←
S2(crsek, τ ek, ekElGamal). It then uses (id, C̃, π̃ek, `) as the first message to V̂ .

Observe that by the IND-CPA security of ElGamal, and the zero-knowledge property of the
NIZK, this looks indistinguishable to V̂ from the actual message from P1.

4. The simulator receives the answer to the prover (D,πcon) from V̂ . It then runs the extractor
(c′0, c

′
1, t, σ)← Econ2 (crscon, ξcon, (C̃,D, id, `, vkSig), πcon).

• If
a = 1 ∧ (d0, d1) =

(
(c′0 · c̃−1

0)t, (c′1 · c̃−1
1)t

)
∧ Sig.Vrf(vkSig, σ, (id, c′0, c

′
1, `)),

then the simulator computes π̃eq ← S2(crseq, τ eq, (ekElGamal, D)). If a = 1, then the
simulator inputs π̃eq as the second message from P1 to V̂ .

• Else, the simulator inputs ⊥ as the second message from P1 to V̂ .

We now argue that this message looks indistinguishable to V̂ from the actual second message
from P1. First, assume that the extractor produced a witness satisfying the first condition.
Then, by the unforgeability of the signature scheme C ′, is the verifier’s correct encrypted
root for id and moreover D has been computed correctly. Then, as previously seen in the
soundness proof, the prover P1 will send back a NIZK proof if and only if the two Merkle
roots match, thus if and only if a = 1. If the extractor produced a witness not satisfying this
condition, then it must satisfy dt0 = d1. Given the hardness of the discrete logarithm problem,
we will have t 6= dkElGamal with overwhelming probability, as neither V̂ nor the extractor know
anything about dkElGamal beyond ekElGamal. Thus, with overwhelming probability P1 would
also answer ⊥.

5. In the proof phase, the simulator will forge the Merkle proofs with respect to T̃ . That is it
will decrypt the appropriate nodes from T̃ , and for each non-leaf level 1 ≤ d ≤ (k − 1)/2, it
will generate π̃ij ,d ← S2(crsmt,h, τmt,h, (ekElGamal, nd, ld, rd)), where nd denotes the node on
the d-th level on which the path descends, and ld and rd is left and right children, respectively,
in T̃ .

Again, by the IND-CPA security of ElGamal, and the zero-knowledge property of the NIZK,
this looks indistinguishable to V̂ from the actual message from P2.

22

In summary, the simulator provides V̂ inputs that look indistinguishable from the actual ones
from P given the view of V̂ and OFpriv

(V, ·, ·).

Finally, we show that the protocol achieves the desired level of privacy for the honest verifier,
i.e., that a prover (who has the decryption keys) cannot learn more whether for a given file identifier
id and a root vroot, there is a matching entry in the database.

Lemma 3.7. The agree-and-prove scheme from Figure 8 , for the agree-and-prove scenario consisting
of the setup functionality from Figure 6 and the relations from equations (3) and (4) , is prover
zero-knowledge up to LV as defined in Figure 7 .

Proof. Consider the following setup generation algorithm SGen: it first runs Edk1 , Eeq1 , Emt,h1

and Scon1 to obtain the corresponding CRS crsdk, crseq, crsmt,h, and crscon, and trapdoors ξdk,
ξeq, ξmt,h and τ con, respectively. Then, it outputs the description of a setup functionality F ′priv

that works the same as Fpriv except that it uses those CRS. Moreover, it outputs the trapdoor
td := (ξdk, ξeq, ξmt,h, τ con).

Now, consider the following simulator SP̂ that internally emulated P̂ and works as follows:

1. Upon obtaining (id, C, πek, `) from P̂1 it verifies πek. If the verification fails, it only inputs
⊥ to P̂1. Otherwise, it computes dkElGamal ← Edk2 (crsdk, ξdk, ekElGamal, πeq), and vroot ←
ElGamal.Dec(dkElGamal, C). Then it queries b← L

OFpriv
(P,·,·),OFpriv

(V,·,·)
V (1κ, auxv, (id, v, dk)).

Observe that since we managed to extract dkElGamal, the prover must have access to the keys
(otherwise either the dishonest prover or the extractor solve the discrete logarithm problem)
and, thus, b 6= ⊥.

2. Then,

• If b = 1, the simulator chooses t� Z∗q uniformly at random, sets D̃ :=
(
gt, (ekElGamal)

t)
and computes π̃con ← S2(crscon, τ con, (C, D̃, id, `, vkSig)). Note that the statement is in
the language, as setup has a signature such that ((gs, gdk

ElGamals · vroot), t, σ) is a witness.

• If b = 0, the simulator chooses d0 � G and t � Z∗q uniformly at random, sets D :=

(d0, (d0)t), and computes π̃con ← NIZKcon.Prove
(
crscon, (C, D̃, id, `, vkSig), (C ′, t, σ)

)
, for

arbitrary C ′ and σ.

The simulator then inputs (D̃, π̃con) to P̂1.

3. Upon receiving πeq, the simulator verifies the proof. If the proof verified and b = 1, then it
inputs ok to P̂2, chooses I = {i1, . . . , in} ⊆ [`] uniformly at random, and input I to P̂2.

It remains to show that the message (D̃, π̃con) he inputs to P̂1 is indistinguishable by the one
produced by V1. Clearly, if no file with identifier id exists, or this file has a different number of
leaves `′, then the simulator produces his answer exactly the same way as P1. In case they do
match, we need to consider two cases. First, assume that also the roots match, i.e, vroot = v′root.
The honest verifier then replies with (gt(s−r), ek t(s−r)) for t� Z∗q and s� Zq uniformly at random.
Independently of r, however, t(s− r) is a uniform random element of Zq, which is indistinguishable
from a t� Z∗q in a group of prime order. Second, consider the case that the roots don’t match. In
this case, the honest verifier V1 replies with (gt(s−r), gdk(s−r)t · (v′root/vroot)

t), whereas the simulator
inputs (d0, (d0)t). In the following assume again that t � Zq (which is indistinguishable form
t� Z∗q). Observe now that gt(s−r) is a uniform random group element, independent of r and t and,
thus, by the decisional Diffie-Hellman assumption we have(

dk , r, vroot, g
t(s−r), gdk(s−r)t · (v′root/vroot)

t
)
≈
(
dk , r, vroot, g

x, gdkx · (v′root/vroot)
t)
)

23

for x� Zq uniformly at random. Since v′root/vroot 6= 1 and thus a generator (in the group of prime
order), we moreover have(

dk , r, vroot, g
x, gdkx · (v′root/vroot)

t)
)
≈
(
dk , r, vroot, g

x, gdkx · gy
)
≈
(
dk , r, vroot, g

x, gxy
)

for x, y � Zq chosen independently and uniformly at random. This in turn is indistinguishable
from (dk , r, vroot, d0, (d0)t) where d0 � G and t� Z∗q .

This concludes the overall proof of Theorem 3.4 .

4 Application to Client Authentication

In this section, we consider a different application of our agree-and-prove definition: client authenti-
cation. Client authentication is an integral part of any web service, where the server authenticates
himself using the global certificate infrastructure, but clients are typically authenticated using
passwords and, optionally, some second factor such as a hardware token.

For this reason, client authentication has gained a lot of attention from the security community,
such as for instance [YWWD06 , JK18 , BHvOS12]. Furthermore, plenty of client authentication
protocols have been proposed and studied over the years, such as [CJT02 , YRY04 , YY05 , LLH06].
Those works however phrase security in a property based manner with rather particular attack
models making them not directly applicable in an overall cryptographic analysis based on explicit
hardness assumptions and reduction proofs. For instance, [YWWD06] phrases (among other) the
following desired security properties:

Client Authentication: The server is sure that the communicating party is indeed the registered
client that claims to be at the end of the protocol.

Server Knows No Password: The server should not get any information of a registered client’s
password.

Freedom of Password Change: A client’s password can freely be changed by the client without
any interaction with server S. S can be totally unaware of the change of the client’s password.

Multi-factor authentication has also gotten some attention in the cryptographic community,
e.g. the work by Shoup and Rubin on session-key distribution with smart cards [SR96], which
arguably does not reflect the usual password plus second-factor based setting. To the best of our
knowledge, there is no formal cryptographic model to analyze multi-factor authentication. In the
following, we show how the agree-and-prove notion can be used to formalize the above mentioned
properties in a sound and thorough manner.

4.1 Password-Based Authentication

We first consider the simple case of a client authenticating himself with a password exclusively to a
server storing a corresponding login database. We first abstract this application as an agree-and-prove
scenario which includes the setup, and the relation we want to prove.

Setup. The setup is parametrized in what we call a user-administration mechanism UAdmin, that
allows a user to register to the service with a given password, or update is password, if the user
already exists. Intuitively, such an algorithm abstracts away the maintenance of a login database.
Note that this does not prescribe how login attempts are verified. For a given user-administration
mechanism this will be the task of the associated agree-and-prove scheme.

Definition 4.1. A user-administration mechanism UAdmin consists of the following two PPT
algorithms:

24

Initialization: The algorithm Init; on input a security parameter 1κ, outputs an initial state db.

User registration: The algorithm Set; on input a state db, a username un, and a password pw,
outputs a new state db′.

The setup then provides the input-generation algorithm the possibility to register users, and
update their passwords, if desired. The verifier then gets the resulting database, to verify the login
attempts. Moreover, to model potential intrusions, the input-generation algorithm can access the
database as well, and to phrase the following relations it can also retrieve the list of all users with
their passwords (which he set). The description can be found in Figure 9 .

Password-Based Client-Authentication setup FPW-A

• The setup is parameterized a user-administration mechanism UAdmin

• init: db← UAdmin.Init(1κ); initialize PW to an empty map.

• OFPW-A
(I, SetPassword, un, pw): Set db← UAdmin.Set(db, un, pw) and PW[un]← pw.

• OFPW-A
(I, GetUsers,−): Return PW.

• OFPW-A
(i, GetDB,−): If i ∈ {I,V}, return db. Otherwise, return ⊥.

Figure 9: The generic setup functionality for a password-based client authentication scenario.

Agreement and Proof Relations. The obvious statement that a prover and verifier should
agree on is a username which has been registered. More formally, the agreement relation is defined
via the condition

COFPW-A (·,·,·)(1κ, auxp, auxv, x) = 1 :↔ x = ⊥ ∨ PW[x] is defined, (5)

which can be efficiently implemented by C by calling OFPW-A(I, GetUsers, x).
The proof relation, on the other hand, guarantees that a prover who can convince the verifier of

being a certain user must know the corresponding password. The relation is thus defined via the
condition

ROFPW-A (·,·,·)(1κ, x, w) = 1 :↔ PW[x] = w. (6)

which again can be efficiently implemented by calling OFPW-A(I, GetUsers, x).

4.1.1 A Simple Scheme

Consider the following naive user-administration mechanism UAdminplain: The algorithm Init outputs
an empty map db← []. The algorithm Set on input and a state db, a username un, and a password
pw does the following: If un already exists in db it overwrites the password; otherwise it creates
a new entry db(un) ← pw. That is, it stores the passwords in plain. The scheme is described
in Figure 10 . The agreement phase consists of the prover stating its username, and the verifier
checking in the login database whether such a user exists (aborting otherwise). In the verification
phase, the prover sends his password in plain. The verifier accepts if and only if it matches the
password in the database.

It is easy to see that this scheme achieves the required client authentication for UAdminplain, as
summarized in the following result.

Theorem 4.2. The agree-and-prove scheme from Figure 10 for the agree-and-prove scenario defined,
by UAdminplain, FPW-A and the above described relations, is secure (with soundness error p(κ) := 0).

25

Prover Protocols P1 and P2

Prover P1(1κ, auxp):
1: Parse auxp as (un, pw). If this fails, set stp = Fail

and halt.

2: Send un to V1.

3: Upon receiving ok output stp = pw and statement
x := un. Otherwise, set stp = Fail and x := ⊥.

Prover P2(1κ, stp):
1: If stp = Fail, then halt with output 0. Otherwise

first send stp to V2 and output whatever V2 re-
turns.

Verifier Protocols V1 and V2

Verifier V1(1κ, auxv):
1: Upon receiving a message un from P1, obtain

db ← OFPW-A
(V, GetDB,−). Then do the follow-

ing: , and otherwise set , stv ← ok. send ok to P1

and output (x, stv) the following:
– If db(un) is defined, set m ← ok, stv ←
db(un), and x← un.

– Else, set m← Fail, stv ← Fail, and x← ⊥.
Send m to P1 and output (x, stv).

Verifier V2(1κ, stv), assume x 6= ⊥:
1: Upon receiving pw from P2, check whether stv =

pw. Output 1 if so, and 0 otherwise and send the
decision to P2.

Figure 10: The description of the prover protocols (left) and the verifier protocols (right) for the
password-based authentication where the setup stores the passwords in plain.

Proof. It is trivial to see that the correctness relation is satisfied as the verifier accepts if and only
if the username is in the database. Similarly, there exists a trivial knowledge extractor: it runs P̂2

and returns the sent password as the witness.

4.1.2 On Reflecting further Aspects

We now briefly discuss how our basic agree-and-prove notion could be extended to account for
additional security properties relevant in client authentication.

On protecting the passwords. The above scheme is slightly oversimplified, as an intruder
breaking into the server can learn all the passwords and then successfully impersonate all users.
Especially, it does not satisfy “Server Knows No Password” property from [YWWD06].

We would like to remark, however, that in our modeling this is a security property of the setup
and thereby orthogonal to the privacy provided by the authentication protocol. As this, it could be
simply expressed as an additional security property of the user-administration mechanism, where
various variants appear plausible: one could either request that an adversary having access to the
login database cannot guess a password (computational property), or that he cannot learn any
information about the passwords (decisional property).

What our agree-and-prove notion can guarantee is that the verifier does not learn anything
about the password (which is not already revealed by the database), during the execution of the
protocol. For instance, consider a login database that stores a hash of the passwords. In the random
oracle model this does not reveal more to the verifier than allowing him to verify password guesses.

On accounting for pre-processing. In practice, simply storing hashes of the password is not
considered good practice. Passwords should rather be seeded with a separate randomly chosen
seed for each password in order to thwart well-know pre-processing attacks such as rainbow tables
[Hel80]. From a cryptographic point of view, such pre-computation attacks are best captured by
considering the auxiliary-input random-oracle model [Unr07 , DGK17], where the adversary can get
a bounded amount of advise about the random oracle from a computationally unbounded entity.

To account for such pre-processing in our agree-and-prove framework, one would best split the
input-generation algorithm into two phases: a first part that is computationally unbounded and has
access to the random oracle, and a second phase that afterwards registers the users by choosing their

26

username and respective passwords. The seeds would then be chosen at the time of user registration
and thus be independent of the pre-processing phase.

4.2 Two-Factor Authentication

In this section we demonstrate that agree-and-prove cannot only capture proofs of knowledge, but
also proofs of possession, such as demonstrating access to a hardware token as commonly used in a
two-factor authentication.

The scheme we consider in this section combines both factors: it checks that the prover knows
the correct password, and has access to the corresponding token. We thereby consider the following
type of hardware token, analogous to [SR96]: upon producing the token a public/secret key pair of
a PKE scheme is chosen. The secret key is then securely embedded into the token—that provides
a decryption oracle—and the public key is stored for verification. In order to verify access to the
token, the verifier encrypts a random challenge and checks that correct decryption is returned.

Setup. As in the previous section, the setup is parametrized in a user-administration mechanism
UAdmin and the setup provides the input-generation algorithm the possibility to register users and
set their passwords. The input-generation algorithm can also assign a certain username to the prover,
thereby granting him access to the corresponding token. In addition, the input generation algorithm
gets query access to all the tokens—modeling that the prover might have had temporary access
to those tokens in the past. The verifier again gets the login database, as well as all public keys
corresponding to the secret keys embedded in the tokens. The description can be found in Figure 11 .

The relations. The agreement relation requires that the parties either have to agree on a valid
username x or abort. For correctness, we require that the honest parties additionally only agree on
a username if the prover possesses the corresponding token.

COF2-FA
(·,·,·)(1κ, auxp, auxv, x) = 1 :↔ x = ⊥ ∨ (PW[x] is defined ∧ Assigned[x]), (7)

which can be efficiently implemented using oracle access to F2-FA.
The proof relation for two-factor authentication checks two conditions: it checks knowledge of

the password and access to the token. Knowledge of the password is as usually phrased as the
witness w which the knowledge extractor has to extract. Access, or possession, of the token on
the other hand cannot be phrased as a witness extraction problem—in the end we do not want to
require the extractor to extract the internal state of a secure hardware token. Rather, it is simply
a property of the setup that is checked by the relation. We thus can define the relation via the
condition

ROF2-FA
(·,·,·)(1κ, x, w) = 1 :↔ PW[x] = w ∧ Assigned[x]. (8)

The scheme. The scheme is described in Figure 11 . It makes black-box use of a secure password-
based agree-and-prove scheme (P pwd = (P pwd1 , P pwd2), V pwd = V pwd

1 , V pwd
2)—where all queries to the

setup are handed to F2-FA in Figure 11 whose capabilities is a superset of FPW-A—and in addition
in the proof phase also checks that the prover has access to the token by requesting him to decrypt
the encryption of a random challenge.

Analysis. The described agree-and-prove protocol achieves the same level of security with respect
to the knowledge of the password as the underlying password based scheme (P pwd, V pwd). Moreover
it successfully ensures possession of the token assuming the used PKE scheme is secure. This can
be summarized in the following statement.

Theorem 4.3. If the agree-and-prove scheme (P pwd, V pwd) is secure up to soundness error p(κ) for
the password-based authentication agree-and-prove scenario, and the PKE scheme (Gen,Enc,Dec) is

27

Prover Protocols P1 and P2

Parameters: password-based authentication scheme
(P pwd, V pwd).

Prover P1(1κ, auxp):

1: Invoke (x, stpwdp) ← P pwd1 (1κ, auxp) and let un
denote the user it agreed on, or halt if this fails.

2: Query OF2-FA
(P, IsAssigned, un). If the answer

is 1, send ok to V1 and set stp := (un, stpwdp).
Otherwise, send Fail to V1 and set stp := Fail (and
the statement to ⊥).

Prover P2(1κ, stp):
1: If stp = Fail or the decision 0 was received from

V2 then output 0 (and halt). Otherwise, parse stp
as (un, stpwdp) and invoke P pwd2 (stpwdp).

2: Upon receiving a challenge ch from V2, then call
res ← OF2FA

U
(P, EvalToken, un, ch) and send res

to V2. Finally, output the decision obtained from
V2.

Verifier Protocols V1 and V2

Parameters: password-based authentication scheme
(P pwd, V pwd) and PKE scheme (Gen,Enc,Dec).

Verifier V1(1κ, auxv):

1: Invoke (x, stv) ← V pwd1 (1κ, auxv) and if ok was
received by P1, return (x, stv) (and otherwise x :=
⊥).

Verifier V2(1κ, stv), assume x 6= ⊥:
1: Invoke apwd ← V pwd2 (stv). If apwd = 0, then

return 0 and send the decision to P2 and halt.

2: Otherwise, choose a random challenge ch ∈
{0, 1}κ, query pk ← OF2-FA

(V, GetPublicKey, x),
compute c← Enc(pk, ch), and send c to P2.

3: Upon receiving res from P2, check res = ch and
return 1 if so, and 0 otherwise. Send the decision
to P2.

Two-Factor Setup F2-FA

• The setup is parameterized a user-administration mechanism UAdmin and a PKE scheme (Gen,Enc,Dec).

• init: db ← UAdmin.Init(1κ); initialize PW, Keys, and TKN to empty maps, and Assigned to a map pre-initialized to
false.

• OF2-FA
(I, SetPassword, un, pw):

1: If Keys[un] is not defined yet, create an empty function table TKNun (·), sample (pk, sk) ← Gen(1κ) and store
Keys[un]← (pk, sk).

2: Set db← UAdmin.Set(db, un, pw) and PW[un]← pw.

• OF2-FA
(I, GetUsers,−): Return PW.

• OF2-FA
(i, GetDB,−): If i ∈ {I,V}, return db. Otherwise, return ⊥.

• OF2-FA
(i, TokenEval, un, x): If i = I and Keys[un] is defined, or i = P and Assigned[un], then let (pk, sk) ← Keys[un]

and return Dec(sk, x). In any other case, return ⊥.

• OF2-FA
(P, IsAssigned, un): If Assigned[un] then return 1, otherwise 0.

• OF2-FA
(i, GetPublicKey, un): If i ∈ {I,V} and Keys[un] is defined, then let (pk, sk) ← Keys[un] and return pk.

Otherwise, return ⊥.

Figure 11: The description of the prover protocols (left) and the verifier protocols (right), and the
concrete setup functionality (bottom) for the two-factor authentication.

IND-CCA1 secure, then the agree-and-prove scheme from Figure 11 , for the described two-factor
authentication agree-and-prove scenario, is secure up to soundness error p(κ) as well.

Proof. Correctness follows from the correctness of (P pwd, V pwd) and the fact that P1 checks access
to the token and aborts otherwise. For soundness, the extractor can internally make use of the one
for (P pwd, V pwd) to successfully extract the password.

It remains to show that any dishonest prover with success probability at least p(κ) must have
access to the token. This follows, however, directly from the IND-CCA1 security, and the fact that
the challenge is chosen uniformly at random and cannot be guessed with non-negligible performance.
Note that IND-CCA1 is needed because the input-generation algorithm can query the token for
arbitrary ciphertexts beforehand. Stated differently, if the dishonest prover has no access to the

28

token, successfully answering the challenge implies an adversary against the IND-CCA1 game and
hence is a negligible probability event in κ.

References

[BFW15] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowledge
in the random oracle model. In Jonathan Katz, editor, Public-Key Cryptography –
PKC 2015, pages 629–649, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F.
Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 390–420, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg.

[BHvOS12] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes. In
2012 IEEE Symposium on Security and Privacy, pages 553–567, May 2012.

[CGJ19] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding Secure Computation
on Blockchains. In Eurocrypt, pages 1–44, 2019.

[CJT02] Hung-Yu Chien, Jinn-Ke Jan, and Yuh-Min Tseng. An efficient and practical solution
to remote authentication: Smart card. Computers & Security, 21(4):372 – 375, 2002.

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, pages 473–495, Cham, 2017.
Springer International Publishing.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, Jun 1988.

[GMO15] Lorena González-Manzano and Agustin Orfila. An efficient confidentiality-preserving
proof of ownership for deduplication. J. Netw. Comput. Appl., 50(C):49–59, April 2015.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, STOC ’85, pages 291–304, New York, NY, USA, 1985. ACM.

[Gol06] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University Press,
New York, NY, USA, 2006.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, pages
339–358, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Hel80] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, July 1980.

[HHPSP11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of
ownership in remote storage systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 491–500, New York, NY,
USA, 2011. ACM.

[JK18] C. Jacomme and S. Kremer. An extensive formal analysis of multi-factor authentication
protocols. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages
1–15, July 2018.

29

[LLH06] I-En Liao, Cheng-Chi Lee, and Min-Shiang Hwang. A password authentication scheme
over insecure networks. Journal of Computer and System Sciences, 72(4):727 – 740,
2006.

[MSL+11] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and Edgar
Weippl. Dark clouds on the horizon: Using cloud storage as attack vector and online
slack space. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages
5–5, Berkeley, CA, USA, 2011. USENIX Association.

[SR96] Victor Shoup and Avi Rubin. Session key distribution using smart cards. In Ueli
Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 321–331, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[TW87] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge interac-
tive proofs of possession of information. In Proceedings of the 28th Annual Symposium
on Foundations of Computer Science, SFCS ’87, pages 472–482, Washington, DC, USA,
1987. IEEE Computer Society.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor,
Advances in Cryptology - CRYPTO 2007, pages 205–223, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[XZ14] Jia Xu and Jianying Zhou. Leakage resilient proofs of ownership in cloud storage,
revisited. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied
Cryptography and Network Security, pages 97–115, Cham, 2014. Springer International
Publishing.

[YRY04] Eun-Jun Yoon, Eun-Kyung Ryu, and Kee-Young Yoo. Efficient remote user authenti-
cation scheme based on generalized elgamal signature scheme. IEEE Transactions on
Consumer Electronics, 50(2):568–570, May 2004.

[YWWD06] Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal analysis
and systematic construction of two-factor authentication scheme (short paper). In
Peng Ning, Sihan Qing, and Ninghui Li, editors, Information and Communications
Security, pages 82–91, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[YY05] Eun-Jun Yoon and Kee-Young Yoo. New authentication scheme based on a one-way
hash function and diffie-hellman key exchange. In Yvo G. Desmedt, Huaxiong Wang,
Yi Mu, and Yongqing Li, editors, Cryptology and Network Security, pages 147–160,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

A Preliminaries

In this section, we introduce the basic cryptographic primitives used throughout this work.

A.1 Merkle Trees

Merkle Tree. We use Merkle Trees in this works as succinct “commitments” to bitstrings X =
(X1, . . . , Xk), where |Xi| = b, with b the size parameter of the Merkle Tree leafs. Based on a hash-
function h : {0, 1}∗ → {0, 1}κ, a Merkle Tree is built by building pairs of elements (Xi, Xi+1), called
the Merkle Tree leaves, and computing their hashes vi = h(Xi, Xi+1) yielding a list (v1, . . . , vk′),
where vi can be seen as a node of the two “children” (Xi, Xi+1) it was computed from. The process is
recursively applied on each arising list until one element (i.e., a list of size 1) remains. The structure
of this process is a Tree T , where the final element of the above process is the (Merkle Tree) root

30

vroot, the leafs are the original data items, and the intermediate nodes are the computed hash values.
We succinctly denote this process by (T, `)← GenMTh(X, b) where ` denotes the number of leaves
when choosing a leaf size b.

An important property is that leaf values can be “opened” by providing a siblings path, p ←
MTGetPathh(T, i), which is the path from the leaf Xi to the root vroot that is complemented with
all the siblings of each intermediate node. Knowing the root of the Merkle vroot and the number `
of leafs, a siblings path p can be efficiently verified, which we denote by MTVerifyPathh(vroot, `, p),
by checking the length of the path and by recomputing the hashes on p and comparing with vroot.

Merkle-Tree extractor. Merkle trees are often used for efficiency reasons to prove that one
knows a certain set of leaf values. We make use of the following lemma proven in [HHPSP11]: Let
MTProveh(v, `, n) denote the following interactive verifier protocol: the verifier gets as input the root
v and the number of leaves ` of a Merkle Tree GenMTh(X, b), where X is the underlying bitstring
X and b the size of the leaves. The verifier picks n leaf indexes ri ∈ [`] uniformly at random and
asks the prover these leaf values and their corresponding siblings path and accepts if and only if all
paths verify successfully. For this protocol, the following holds:

Lemma A.1 ([HHPSP11], Lemma 1). There exists a black-box extractor E with oracle access to a
Merkle-Tree prover (for the above protocol), that has the following properties:

1. For every prover P and v ∈ {0, 1}∗, `, n ∈ N, and δ ∈ (0, 1), KP (v, `, n, δ) makes at most
u2`(log(`) + 1)/δ calls to oracle P .

2. Let (T, `) ← GenMTh(X, b) for parameters as above and let v denote the root of T , and fix
a prover P ∗ := P ′(h,X, n). Then, if P ∗ has probability at least (1 − α)n + δ of convincing
the verifier MTProveh(v, `, n), where α, δ ∈ (0, 1) then with probability at least 1/4 (over its
internal randomness), the extractor KP ∗(v, `, n, δ) outputs values for at least an (1−α)-fraction
of the leaf values of T (together with valid siblings paths for all those leaves).

The extractor K works as follows:

1. for i = 1 to n, for j = 1 to `:

1.1 repeat for du(log(s) + 1)/δe times:

- Choose at random r1, . . . , rn ∈ [`] and invoke P (r1, . . . , ri−1, j, ri+1, . . . , rn)

2. Output all the sibling paths for all the leaves for which P returned valid siblings path with
respect to control information v and `.

For a proof of this lemma, we refer the reader to [HHPSP11]. Furthermore, we note that all
statements hold using black-box access to the hash-function h (which could therefore be replaced
by a random oracle). Finally, the following equivalent description of extractor K is slightly more
preferable to our setting as it does not rely on the knowledge of δ: Let TU be a runtime bound.

- Execute the following subprocess K ′(v, `, n) for TU times:

1 for i = 1 to n, for j = 1 to `:

- Choose at random r1, . . . , rn ∈ [`] and invoke P (r1, . . . , ri−1, j, ri+1, . . . , rn)

(a) Output all the sibling paths for all the leaves for which P returned valid siblings path
(w.r.t. control information v and `).

The distribution of queries on which P is evaluated remains the same when switching the order
of iterations and hence does not change the output distribution of this process. The probabilistic
guarantees provided by Lemma A.1 therefore hold whenever TU ≥ du(log(s) + 1)/δe.

31

A.2 Erasure Codes

An (n, k, d) erasure code over an alphabet Σ with error symbol ⊥ 6∈ Σ, is a pair of (efficient)
algorithms (E,D) that satisfy the following requirement for all F ∈ Σk: Let F̄ := E(F) ∈ Σn and
define the set

CF̄ := {F̄ ′ ∈ (Σ ∪ {⊥})n | ∀i : F̄ ′i ∈ {F̄i,⊥} ∧ at most d− 1 positions of F̄ ′ are equal to ⊥}.

Then, for all F̄ ′ ∈ CF̄ , it holds that D(F̄ ′) = F .

A.3 Signature and Encryption Schemes

We introduce the basic notation for the standard cryptographic primitives for completeness. Recall
that throughout the text, κ denotes the security parameter.

Signature scheme. We make use of an existentially unforgeable signature scheme under chosen
message attacks (EU-CMA). For a signature scheme Sig we denote the key generation algorithm by
(vkSig, skSig) ← Sig.Gen(1κ), the signing algorithm by σ ← Sig.Sgn(skSig,m), and the verification
algorithm by Sig.Vrf(vkSig, σ,m).

Symmetric encryption schemes. We further make use of symmetric encryption schemes with
indistinguishable ciphertexts under chosen ciphertext attacks (IND-CPA). For a symmetric encryption
scheme SE we denote the key generation algorithm by kSE ← SE.Gen(1κ), the encryption algorithm
by c← SE.Enc(kSE,m) and the decryption algorithm by m′ ← SE.Dec(kSE, c).

Public-key encryption schemes and ElGamal. A generic PKE scheme is denoted by the
triple of algorithms (Gen,Enc,Dec) for key generation, encryption, and decryption, respectively. We
make further specific use of the ElGamal public key encryption scheme. More specifically, ElGamal
is applied on a message space that is identified with a cyclic group G = 〈g〉 of prime order q,
2κ−1 < q < 2κ, where g is a known generator. We further assume throughout this work that the
decisional Diffie-Hellman assumption (DDH) holds in G (and thus ElGamal IND-CPA secure). We
refer to the scheme by ElGamal and to its key generation algorithm by (ekElGamal := gx, dkElGamal :=
x)← ElGamal.Gen(1κ), where x ∈ Zq is chosen uniformly at random, to its encryption algorithm by
(c1 := gr, c2 := grx ·m)← ElGamal.Enc(ekElGamal,m), where r ∈ Zq is chosen uniformly at random,
and finally to its decryption algorithm by m′ := c2 · c−x1 ← ElGamal.Dec(dkElGamal, (c1, c2)).

A.4 Non-interactive Zero-Knowledge Proof Systems

We define non-interactive zero-knowledge proofs following Groth [GOS06].

Definition A.2. Let R be an efficiently computable binary relation and consider the language
L := {x | ∃w (x,w) ∈ R}. A non-interactive proof system for L (or for R) consists of the following
three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ, outputs a common reference
string crs.

Proving: The algorithm Prove on input a common reference string crs, a statement x, and a
witness w, outputs a proof π.

Verification: The algorithm Ver on input a common reference string crs, a statement x, and a
proof π, outputs a bit b (where b = 1 means “accept” and b = 0 means “reject”).

32

We require perfect completeness, i.e., for all crs in the range of Gen and for all (x,w) ∈ R, we have

Ver
(
crs, x,Prove(crs, x, w)

)
= 1

with probability 1.

Definition A.3 (Soundness). Let E = (Gen,Prove,Ver) be a non-interactive proof system for a
language L and let A be a probabilistic algorithm. We define the soundness advantage of A as

AdvNIZK-snd
E,A := Prcrs←Gen(1κ); (x,π)←A(crs)

[
x /∈ L ∧ Ver(crs, x, π) = 1

]
.

The scheme E is computationally sound if AdvNIZK-snd
E,A is negligible for all efficient A and perfectly

sound if AdvNIZK-snd
E,A = 0 for all A.

Definition A.4 (Computational zero-knowledge). Let E = (Gen,Prove,Ver) be a non-interactive
proof system for a relation R and let S = (S1, S2) be a pair of PPT algorithms, called simulator.
Further let S′(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R, and S′(crs, τ, x, w) = failure for (x,w) /∈
R. We define the zero-knowledge advantage of a probabilistic algorithm A as

AdvNIZK-ZK
E,S,A := Prcrs←Gen(1κ)

[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1κ)

[
AS′(crs,τ,·,·)(crs) = 1

]
.

We call (Gen,Prove,Ver, S1, S2) a non-interactive zero-knowledge (NIZK) proof system for R if
AdvNIZK-ZK

E,S,A is negligible for all efficient A.

Definition A.5 (Knowledge extraction). Let E = (Gen,Prove,Ver) be a non-interactive proof
system for a relation R and let E = (E1, E2) be a pair of PPT algorithms, called knowledge extractor.
We define the knowledge extraction advantages of a probabilistic algorithm A as

AdvNIZK-ext1
E,E,A := Prcrs←Gen(1κ)

[
A(crs) = 1

]
− Pr(crs,ξ)←E1(1κ)

[
A(crs) = 1

]
,

AdvNIZK-ext2
E,E,A := Pr(crs,ξ)←E1(1κ); (x,π)←A(crs); w←E2(crs,ξ,x,π)

[
Ver(crs, x, π) = 1 ∧ (x,w) /∈ R

]
.

We call (Gen,Prove,Ver, E1, E2) a non-interactive proof of knowledge system for R if AdvNIZK-ext1
E,E,A

and AdvNIZK-ext2
E,E,A are negligible for all efficient A.

33

	Introduction
	Our Contributions

	Agree-and-Prove: Definition
	The Scenario
	The Protocols
	The Basic Security Notion
	Prior Knowledge
	Programmability and Non-Programmability
	The Security Definition

	Zero Knowledge

	Application to Proof-of-Ownership of Files
	Proof-of-Ownership with a Local RO
	Proof-of-Ownership with a Global RO
	Insecurity of the Simple Scheme
	A Secure Alternative

	On Including Privacy and Zero-Knowledge

	Application to Client Authentication
	Password-Based Authentication
	A Simple Scheme
	On Reflecting further Aspects

	Two-Factor Authentication

	Preliminaries
	Merkle Trees
	Erasure Codes
	Signature and Encryption Schemes
	Non-interactive Zero-Knowledge Proof Systems

