
Algebraic Techniques for Short(er) Exact
Lattice-Based Zero-Knowledge Proofs

Jonathan Bootle1, Vadim Lyubashevsky1, and Gregor Seiler1,2

1 IBM Research – Zurich, Switzerland
2 ETH Zurich, Switzerland

Abstract. A key component of many lattice-based protocols is a zero-
knowledge proof of knowledge of a vector ~s with small coefficients sa-
tisfying A~s = ~u mod q. While there exist fairly efficient proofs for a
relaxed version of this equation which prove the knowledge of ~s′ and
c satisfying A~s′ = ~uc where ‖~s′‖ � ‖~s‖ and c is some small element
in the ring over which the proof is performed, the proofs for the exact
version of the equation are considerably less practical. The best such
proof technique is an adaptation of Stern’s protocol (Crypto ’93), for
proving knowledge of nearby codewords, to larger moduli. The scheme is
a Σ-protocol, each of whose iterations has soundness error 2/3, and thus
requires over 200 repetitions to obtain soundness error of 2−128, which
is the main culprit behind the large size of the proofs produced.

In this paper, we propose the first lattice-based proof system that signi-
ficantly outperforms Stern-type proofs for proving knowledge of a short
~s satisfying A~s = ~u mod q. Unlike Stern’s proof, which is combinatorial
in nature, our proof is more algebraic and uses various relaxed zero-
knowledge proofs as sub-routines. The main savings in our proof system
comes from the fact that each round has soundness error of 1/n, where
n is the number of columns of A. For typical applications, n is a few
thousand, and therefore our proof needs to be repeated around 10 times
to achieve a soundness error of 2−128. For concrete parameters, it pro-
duces proofs that are around an order of magnitude smaller than those
produced using Stern’s approach.

Keywords. Lattices, Zero-Knowledge Proofs, Commitments

1 Introduction

Lattice based cryptography is viewed as one of the most promising post-quantum
replacements for traditional public key cryptography because the most crucial
cryptographic primitives, such as public key encryption and digital signatures,
can be efficiently constructed from lattice assumptions. Furthermore, there ex-
ist cryptographic primitives (e.g. FHE [Gen09]) whose only current realization
stems from lattice assumptions.



1.1 Lattice-based Zero-Knowledge Proofs.

A central part of many lattice protocols is a zero-knowledge proof of a vector ~s
satisfying

A~s = ~u mod q (1)

for public A ∈ Zm×nq and ~u ∈ Zmq . Current lattice-based zero-knowledge
proofs for the above equation come in several varieties. The most direct ap-
proach proves exactly the knowledge of ~s satisfying (1) that the prover uses to
generate the proof. This proof system [KTX08,LNSW13] is an adaptation of
Stern’s protocol [Ste93], which proves knowledge of nearby codewords, to larger
moduli. Its main weakness is that each iteration of the proof has soundness error
2/3 and it therefore needs to be repeated 219 times to achieve soundness error
2−128. For typical applications where the modulus is q ≈ 230, the size of such a
proof is several megabytes long.

There are other protocols that give “relaxed” proofs of (1), which may be
useful in some situations. The Fiat-Shamir-with-Aborts [Lyu09,Gro10,Lyu12]
approach proves knowledge of an ~s′ and c satisfying A~s′ = c~u mod q. Despite
the fact that ‖~s′‖ > ‖~s‖ and the presence of an extra factor c, this technique
is useful for producing short lattice-based primitives, such as digital signatures,
when performed over polynomial rings. The reason that these protocols are so
efficienct is that each run of the protocol has negligible soundness error and
so only needs to be performed once. Another approach [BCK+14] proves the
knowledge of ~s′ satisfying A~s′ = 2~u mod q for ‖~s′‖ > ‖~s‖. When performed
over polynomial rings, the soundness error of this protocol 1/2d, where d is the
dimension of the ring. In the case where one has many equations as in (1) for the
same A, but different ~si and ~ui, there are even sub-linear size proofs [BBC+18]
showing that A~s′i = ~ui, where ‖~s′i‖ > ‖~si‖.

The main downside in all of the aforementioned efficient proofs is that even
though they are more efficient than Stern-type proofs, they always prove kno-
wledge of an ~s′ which is larger than the ~s that the prover knows. Other than
the Stern-type proofs mentioned above, the only other known proof system that
exactly proves knowledge of the ~s in (1) is based on the hardness of the dis-
crete logarithm problem [dPLS19] using the “Bulletproofs” [BCC+16,BBB+18]
approach which results in short proofs, but long running times (in addition to
requiring the discrete logarithm assumption).3 The disadvantage of proofs that
prove knowledge of a larger ~s′ is that, for security reasons, they force the modulus
q to be larger. When the zero-knowledge proof is the main part of the protocol
one is building (e.g. group signatures [LNWX18,dPLS18]), this trade-off may be
worthwhile. On the other hand, if one would like to use a zero-knowledge proof
to prove something about a relation used in a different protocol (e.g. proving
that the public key of a lattice based encryption scheme is well-formed), then

3 Since the submission of this paper, independently achieved results (some
using very different techniques) appeared for solving versions of this problem
[Beu19,BN19,YAZ+19].

2



one may not want to increase the parameters of the scheme just to make the
zero-knowledge proof more efficient.

In this paper, we present a new proof technique for exactly proving (1) which
is different from the “combinatorial” approach of Stern-like proofs. The proof
crucially uses the connection between the coefficient and the NTT (i.e. FFT) re-
presentation in polynomial rings, invokes a “relaxed” lattice-based commitment
scheme as a sub-routine, and uses some “tricks” present in certain discrete-log
based proofs (e.g. [GK15]).

1.2 Our Approach

The basic building block of our zero-knowledge proof system is a proof of kno-
wledge of an ~s with coefficients in {0, 1, 2} satisfying (1). One can easily trans-
form this into a proof system where ~s comes from the more typical space of
{−1, 0, 1} and also extend it into a proof system where ~s has coefficients in
the set {−S . . . , S}. The former is trivial, whereas the latter involves rewriting
~s = G~s′, where ~s′ has coefficients in {0, 1, 2} for some public matrix G, and then
proving knowledge of an ~s′ such that A′~s′ = ~u for A′ = AG.

Notice that in the above transformation from a basic proof to a general one,
the larger the size of the basic set is, the fewer columns A′ will have – which
is good for keeping the proof size small. On the other hand, as we’ll see below,
the larger the basic set is, the larger the proof will be for the fact that each
coefficient of ~s′ is in the basic set. When picking the size of the basic set, it is
thus important to balance these two conditions to obtain the optimally minimal
proof size. It turns out that choosing the basic set to be {0, 1, 2} is very close
to the optimal choice. Furthermore, {0, 1, 2} (which is equivalent to {−1, 0, 1})
is often the actual set in which we want to prove that the coefficients of the
solution lie. We therefore choose to work with this set for the remainder of the
paper.

If ~1 and ~2 are n-dimensional vectors consisting of 1’s and 2’s, then proving
that the coefficients are all in the set {0, 1, 2} is equivalent to showing that

~s ◦ (~s−~1) ◦ (~s−~2) = ~0 mod q,

where ◦ denotes component-wise multiplication. Let us now consider a poly-
nomial ring R = Zq[X]/(f(X)) where f(X) is a polynomial of degree n that
splits into linear factors modulo q. For example, if n is a power of 2 and q ≡ 1
(mod 2n), then f(X) = Xn + 1 is a good polynomial to use. If s ∈ R satisfies
s(s−1)(s−2) = 0, then it also holds that ŝ ◦ (ŝ− 1̂) ◦ (ŝ− 2̂) = 0̂ mod q, where
ŝ is the NTT (or FFT) representation of s. Since the we chose our ring so that
f(X) fully splits, ŝ is a vector of dimension n and so 1̂ and 2̂ are n-dimensional
vectors consisting entirely of 1’s and 2’s. We can now rephrase what we’re trying
to prove in terms of polynomials and their NTT representations. Proving the
knowledge of a polynomial s ∈ R such that

s(s− 1)(s− 2) = 0 and Aŝ = ~u mod q (2)

3



is equivalent to proving the knowledge of ~s with coefficients in {0, 1, 2} satisfying
(1).

Our proof of knowledge of (2) begins with the prover picking a random
masking polynomial y ∈ R and producing a ~w = Aŷ mod q. For a challenge
c ∈ Zq ⊂ R, if the prover outputs z = y + cs, then this can be rewritten as
ẑ = ŷ + cŝ, and therefore the verifier can check the equation

Aẑ = ~w + c~u. (3)

Notice that in order for z = y + cs to imply (3), it is crucial that c ∈ Zq, since
this is the only way that all the coefficients of ĉ can be identical. By rewinding,
we can obtain another equation Aẑ′ = ~w + c′~u, for a c′ 6= c and combining the
two we get

A(ẑ− ẑ′) = (c− c′)~u. (4)

The above does not really prove (1) since we still do not know that the coefficients
of (ẑ−ẑ) are in {0, 1, 2} and there is the term (c−c′) ∈ Zq which is not necessarily
1. Let us first describe how the latter problem is handled. In the first step, the
prover additionally makes commitments Com(y) and Com(s) to y and s using
the commitment scheme from [BDL+18] which has the property that for any
c ∈ R

Com(y) + c · Com(s) = Com(y + cs).

After receiving the challenge c, the prover will prove that Com(y)+ c ·Com(s) is
a commitment to z, which implies that y+cs = z, and therefore after rewinding,
(c− c′)s = z− z′. Plugging this into (4) implies that A(c− c′)ŝ = (c− c′)~u, and
since c 6= c′ and q is prime, we can divide out by (c− c′) to obtain

Aŝ = ~u. (5)

What we still have not proved is that the coefficients of ŝ (or more precisely,
the NTT coefficients of the message that was committed to in Com(s)) are in
{0, 1, 2}. For this proof, we make the observation that

z(z− c)(z− 2c) = y3 + 3y2(s− 1)c+ y(3s2 − 6s + 2)c2 + s(s− 1)(s− 2)c3. (6)

In particular, the last coefficient of the above polynomial is exactly what we
would like to prove equals to 0. In the first step of the protocol, the prover will
also commit to

t0 = Com(y3)

t1 = Com(3y2(s− 1))

t2 = Com(y(3s2 − 6s + 2))

and after receiving the challenge c, he will again use the linearity of the com-
mitment scheme to show that

Com(z(z− c)(z− 2c)) = t0 + ct1 + c2t2 (7)

4



Intuitively (by an argument similar to the Schwartz-Zippel Lemma) this implies
that z(z − c)(z − 2c) as written in (6) is indeed a polynomial that is quadratic
in c and therefore the last term of (6) is 0 as we wanted.

The one thing that is still left to do is show that all the commitments that we
made are valid. For this we use the proof from [BDL+18], paying careful attention
to the fact that the challenges have to come from a set whose differences are all
invertible. To make this set large, [BDL+18] proposed the use of a polynomial
ring R such that the underlying polynomial f(X) splits into a few high-degree
irreducible terms. But in our proof, we crucially need f(X) to fully split, and so
the largest set that we can use is {0,±Xi}, for 0 ≤ i < n, which is of size 2n+1.
Thus the commitment validity proof needs to be repeated 128/ log 2n times.

Decreasing the soundness error. Looking at the number of repetitions, the chal-
lenge c comes from the set Zq and therefore one would need 128/ log q such
challenges for achieving 128-bit security. Since we mentioned above that the
challenges for proving the commitments are valid come from a set of size 2n, one
may näıvely assume that (128/ log q) · (128/ log 2n) (parallel) repetitions of the
protocol will be necessary – but this would be an overestimate. The prover does
not have to convince the verifier that each commitment is correct with overwhel-
ming probability. Intuitively, the probability of the verifier cheating is if he can
guess the challenge c (which is 1

q ) or he can create an invalid commitment and
not get caught. If the latter probability is ρ, then the probability of the verifier
cheating is less than 1

q + ρ. It is therefore not very useful to decrease ρ below 1
q .

Thus the commitment validity proof will need to be repeated (in parallel) a total
of 128/ log 2n times (for the whole protocol) and the number proofs of (1) that
will need to be made, conditioned on the commitment being valid, is 128/ log q.

Observations. One interesting observation is that our proof crucially uses poly-
nomial rings and the security of the commitment scheme in [BDL+18] based on
problems in polynomial rings, but the original problem instance in (1) is only
viewed as a linear equation over Zq. One could, of course, have (1) represent an
equation over some ring R′ (which is not the same as the ring R that we did the
proof over!) by having the matrix A be “structured”. For example if A consists
of concatenations of rotation matrices, then (1) is a polynomial equation over
Zq[X]/(Xm − 1). So our proof can also be seen as a way to give a more efficient
proof (of any kind, even relaxed) of a linear equation over Zq, though relying on
the hardness of problems over polynomial rings.

While the beginning of our proof may have some similarity to proofs of a
relaxed version of (1) (e.g. [Lyu09,Lyu12]), we believe that the resemblance is
only superficial. Ignoring the NTT step (which is not present in other protocols),
the extracted values of ẑ and c in (4) somewhat resemble what one obtains in
the final step of the aforementioned protocols. In those protocols, the values of
ẑ are constructed to be small (but still larger than ŝ) by choosing the ŷ from a
particular narrow distribution and using rejection sampling to keep the ẑ small.
In the current proof, however, the ẑ are not small and everything about the size

5



of the secret ŝ is proved elsewhere in the protocol by showing that the c3 term
of (6) is 0.

Acknowledgements

This work is supported by the SNSF ERC starting transfer grant FELICITY and
the Horizon2020 project FutureTPM. We also thank the anonymous reviewers
for their useful comments.

2 Preliminaries

2.1 Notation

The following table summarizes the notation and parameters that will appear
in this paper.

Parameter Explanation

q ≡ 1 (mod l) Prime modulus that splits completely in R
Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system and the rank of R
Φl ∈ Z[X] The l-th cyclotomic polynomial of degree n = ϕ(l)

R = Z[X]/(Φl) The ring of integers in the l-th cyclotomic number field

Rq = Zq[X]/(Φl) The ring of integers R modulo the fully splitting rational prime q

C ⊂ R A set of low-weight challenge polynomials

C̄ = (C − C) \ {0} The set of challenge differences excluding 0

T Bound for honest prover’s f~r in embedding norm

σ = 5T Standard deviation for sampling ~y′

B = σ
√

12n Bound for honest prover’s ~z′ in embedding norm

βn Error distribution on R in the RLWE problem

Dn
σ Discrete Gaussian distribution on R with standard deviation σ

Table 1. Overview of Parameters and Notation

We use bold letters f for polynomials in R, arrows as in ~v for integer vectors
~v ∈ Zk, bold letters with arrows ~v for vectors of polynomials ~v ∈ Rk and capital
letters A and A for integer and polynomial matrices, respectively. We write

x
$← S when x ∈ S is sampled uniformly at random from the set S and similarly

x
$← ρ when x is sampled according to the distribution ρ.

As is often the case in ring-based lattice cryptography, computation will be
performed in the quotient ring Rq modulo q of the ring of integers R of the
l-th cyclotomic number field. The geometry on R is inherited by embedding R

6



into the Minkowski space, an n-dimensional real subspace of Cn. Concretely, for
f ,g ∈ R, we have the scalar product and its induced norm

〈f ,g〉 =
∑
j∈Z×l

f(ζj)g(ζj) and

‖f‖2 =

∑
j∈Z×l

|f(ζj)|2
 1

2

,

where ζ is the primitive l-th complex root of unity ζ = e2πi/l. In the special
case where R is a power-of-two cyclotomic ring, i.e. l = 2r, the norm of f =
f0 + · · · + fn−1X

n−1 is identical, up to a scaling factor, to the `2-norm of the

coefficient vector ~f = (f0, . . . , fn−1) ∈ Zn; that is,

‖f‖2 =
√
n

(
n∑
i=1

|fi|2
) 1

2

=
√
n‖~f‖2.

The scalar product and norm are extended to vectors ~v = (v1, . . . ,vk), ~w =
(w1, . . . ,wk) ∈ Rk of polynomials in the natural way,

〈~v, ~w〉 =

k∑
i=1

〈vi,wi〉,

‖~v‖2 =

(
k∑
i=1

‖vi‖22

) 1
2

.

2.2 Fully Splitting Primes and the Number Theoretic Transform

Our prime modulus q needs to be such that q splits completely in R; that is,
the cyclotomic polynomial Φl needs to factor into linear polynomials modulo q.
This is the case if and only if there exists a primitive l-th root of unity modulo
q, which in turn is equivalent to the condition q − 1 ≡ 0 (mod l).

Then, by the Chinese remainder theorem, we have that Rq = Zq[X]/Φl is
isomorphic Znq . Concretely,

Zq[X]/(Φl) ∼= Zq[X]/(X − ζ1)× · · · × Zq[X]/(X − ζn)

where ζ1, . . . , ζn are the primitive l-th roots of unity modulo q. The isomorphism
is given by reduction modulo X − ζi. We write f̂ for the image of f ∈ Rq under
the isomorphism and call it the Number Theoretic Transform (NTT) of f .

When l is a product of powers of small primes then the NTT (and its inverse)
can be computed very efficiently in a divide an conquer fashion. Especially po-
pular is the optimal case where l is a power of two and indeed many schemes in
lattice cryptography are instantiated over such a ring.

The existence of a fast NTT algorithm for computing the isomorphism speeds-
up and simplifies computation but is not crucial for our results. Therefore we do
not go into more details here.

7



2.3 Challenge Space

We define the challenge space C ⊂ R as

C = {0, Xi | 0 ≤ i < l}.

The crucial property of this set is that the difference of any two members is
invertible in R and the multiplication of any element in R by any member of
the set does not increase the norm of the element.

In the area of lattice-based zero-knowledge proofs, when R is a power of two
cyclotomic ring, there is a sometimes-used stronger result stating that 2(Xi −
Xj)−1 exists and has ternary coefficients in {−1, 0, 1}; c.f. [BCK+14, Lemma 3.1].
In our application we do not need any condition on the smallness of the inverse of
a difference of challenges and hence we will not be concerned with this property.

Lemma 2.1. The polynomials Xi −Xj ∈ Rq for i 6≡ j (mod l) are invertible.

Proof. Let ζ ∈ Zq be one of the primitive l-th roots of unity. Then Xi − Xj

mod X − ζ = ζi − ζj . The latter is zero in Zq if and only if i ≡ j (mod l). ut

2.4 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
a variant of the Ring Learning with Errors problem, we need to define an error
distribution βn on R. For general cyclotomic rings one has to be careful when
sampling error polynomials as one has to do it over the Minkowski space [LPR13].

For power-of-two cyclotomics, however, it is secure and much easier to di-
rectly sample the polynomial coefficients. Moreover, we will need to bound the
norm of error polynomials and these bounds turn out to be slightly better when
sampling the coefficients using a uniform or binomial distribution on a small in-
terval instead of a small one-dimensional (discrete) Gaussian. Also this is much
easier to implement in practice. Therefore, in the power-of-two case we sample
the coefficients of the random polynomials in the commitment scheme using the
distribution β2 on {−1, 0, 1} where ±1 both have probability 5/16 and 0 has
probability 6/16. This distribution is chosen (rather than the more “natural”
uniform one) because it is easy to sample given a random bitstring by compu-

ting a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi. Now if ~v
$← βn2

then we have the Chernov bound for 0 < δ ≤ 1 given by

Pr

[
‖~v‖2 <

√
(1 + δ)

10

16
n

]
≥ 1− exp

(
−δ

2

3

10

16
n

)
. (8)

In our zero-knowledge proof, the prover will want to output a vector ~z whose
distribution should be independent of a secret randomness vector ~r, so that ~z
cannot be used to gain any information on the prover’s secret. During the proto-
col, the prover computes ~z = ~y+f~r where ~r is the randomness used to commit to
the prover’s secret, f ← C is a challenge polynomial, and ~y is a “masking” vector.

8



To remove the dependency of ~z on ~r, we use the rejection sampling technique by
Lyubashevsky [Lyu09,Lyu12]. In the two variants of this technique the masking
vector is either sampled uniformly from some bounded region or using a discrete
Gaussian distribution. In the high dimensions we will encounter, the Gaussian
variant is far superior as it gives acceptable rejection probabilities for much nar-
rower distributions. We first define the discrete Gaussian distribution and then
state the rejection sampling algorithm in Figure 1, which plays a central role in
Lemma 2.4.

Definition 2.2. The discrete Gaussian distribution on Rk centered around ~v ∈
Rk with standard deviation σ > 0 is given by

Dkn
v,σ(~z) =

e−‖~z−~v‖
2
2/2σ

2∑
~z′∈Rk e−‖~z

′‖22/2σ2
.

When it is centered around ~0 ∈ Rk we write Dkn
σ = Dkn

~0,σ

We will use the following tail bound, which follows from [Ban93, Lemma
1.5(i)].

Lemma 2.3. Let ~z
$← Dkn

σ . Then

Pr
[
‖~z‖2 ≤ σ

√
2kn

]
≥ 1− 2− log(e/2)kn/4.

Algorithm 1 Rej (~z, ~v, σ)

u
$← [0, 1)

if u < 1
12
· exp

(
−2〈~z,~v〉+‖~v‖2

2σ2

)
then

return 0
else

return 1
end if

Lemma 2.4. Let ρ : Rk → [0, 1] be a probability distribution such that, for some

T > 0, ρ({~v ∈ Rk | ‖~v‖2 ≤ T}) ≥ 1 − 2−101 and let σ ≥ 5T . Sample ~v
$← ρ

and ~y
$← Dkn

σ , set ~z = ~y + ~v, and run b ← Rej (~z, ~v, σ). Then, the probability
that b = 0 is at least 1/12− 2−104 and the distribution of (~v,~z), conditioned on
b = 0, is within statistical distance of 2−100 of the product distribution ρ×Dkn

σ .

The proof is essentially the same as in [Lyu12, Theorem 4.6], but we include
it here for the sake of completeness since the statement in [Lyu12] is slightly
different.

9



Proof. For every ~v′ ∈ Rk let S~v′ ⊂ Rk be the set of vectors ~z′ such that

Dkn
σ (~z′)

Dkn
~v′,σ(~z′)

≤ 12.

By a simple variant of [Lyu12, Lemma 4.5] it follows that for all ~v′ such that
‖~v′‖2 ≤ T ,

Dkn
σ (S~v′) ≥ 1− 2−102.

Then,

Pr [b = 0] =
∑
~v′∈Rk

ρ(~v′)
∑
~z′∈Rk

Dkn
~v′,σ(~z′) min

(
1

12

Dkn
σ (~z′)

Dkn
~v′,σ(~z′)

, 1

)

≥
∑

‖~v′‖2≤T

ρ(~v′)
∑

~z′∈S~v′

1

12
Dkn
σ (~z′)

≥ 1

12
(1− 2−101)(1− 2−102) >

1

12
− 2−104.

And on the other hand,

Pr [b = 0] ≤ 1

12

∑
~v∈Rk

ρ(~v′)
∑

~z′∈S~v′

Dkn
σ (~z′) +

∑
~v∈Rk

ρ(~v′)
∑

~z′ 6∈S~v′

Dkn
~v′,σ(~z′)

≤ 1

12
+

1

12

∑
‖~v‖2≤T

ρ(~v′)
∑

~z′ 6∈S~v′

Dkn
σ (~z′)

+
1

12

∑
‖~v‖2>T

ρ(~v′)
∑

~z′ 6∈S~v′

Dkn
σ (~z′)

≤ 1 + 2−102 + 2−101

12
=

1

12
+ 2−104

10



Therefore, we find for the statistical distance between the conditional distribu-
tion of (~v,~z) and the product distribution ρ×Dσ,

1

2

∑
~v′∈Rk

∑
~z′∈Rk

∣∣Pr [~v = ~v′ ∧ ~z = ~z′ | b = 0]− ρ(~v′)Dkn
σ (~z′)

∣∣
=

1

2

∑
~v′∈Rk

∑
~z′∈S~v′

∣∣∣∣ρ(~v′)Dkn
σ (~z′)

12 Pr [b = 0]
− ρ(~v′)Dkn

σ (~z′)

∣∣∣∣
+

1

2

∑
~v′∈Rk

∑
~z′ 6∈S~v′

∣∣∣∣∣ρ(~v′)Dkn
~v′,σ(~z′)

Pr [b = 0]
− ρ(~v′)Dkn

σ (~z′)

∣∣∣∣∣
≤ 1

2

∣∣∣∣ 1

12 Pr [b = 0]
− 1

∣∣∣∣ ∑
~v′∈Rk

ρ(~v′)
∑
~z′∈Rk

Dkn
σ (~z′)

+
1

2

∑
~v′∈Rk

ρ(~v′)
∑

~z′ 6∈S~v′

Dkn
σ (~z′)

≤ 1

2

∣∣∣∣ 1

12 Pr [b = 0]
− 1

∣∣∣∣+ 3 · 2−103 ≤ 2−100

ut

2.5 Lattice Problems

We will use the commitment scheme from [BDL+18] whose security can be based
on variants of the following two standard lattice problems.

Definition 2.5. The Ring Short Integer Solution problem RSISk,B with para-
meters k ≥ 1 and B > 0 is solved by finding a short, non-zero vector ~s ∈ Rk+1

such that (1, ~aT ) ·~s = 0 over Rq. We say that an algorithm A has advantage ε
in solving the RSISk,B problem if

Pr
[
‖~s‖2 ≤ B ∧ (1, ~aT ) ·~s = 0 ∧ ~s 6= ~0k+1

∣∣∣~a $← Rkq ; ~s← A(~a)
]
≥ ε

Definition 2.6. In the Ring Learning with Errors problem RLWEm with pa-

rameter m ≥ 1, an adversary A tries to distinguish (~a, ~b)
$← Rmq × Rmq from

(~a, ~as + ~e) with ~a
$← Rmq and secret short s

$← βn, ~e
$← βmn. We say that an

algorithm A has advantage ε in solving the RLWEm problem if∣∣∣Pr
[
b = 1

∣∣∣~a $← Rmq ; s
$← βn ; ~e

$← βmn ; b← A(~a, ~as + ~e)
]

−Pr
[
b = 1

∣∣∣~a $← Rmq ; ~b
$← Rmq ; b← A(~a, ~b)

]∣∣∣ ≥ ε
2.6 Commitment Scheme

A commitment scheme consists of a triple of algorithms (KeyGen,Com,Open)
which work as follows.

11



KeyGen(1λ) → pp is a probabilistic polynomial-time algorithm that produces
the public parameters pp for the commitment scheme, defines the message space
M , randomness space R and commitment space C, and implicitly includes the
security parameter λ.

Com(pp,m) → (c, r) is a probabilistic polynomial-time algorithm that takes a
message m and the public parameters pp as input and produces a commitment
c ∈ C and some randomness r ∈ R used to compute and open c.

Open(pp,m, c, r) → b is a deterministic polynomial-time algorithm that takes
the public parameters pp, a message m, randomness r, and a commitment c as
input, and produces a bit b ∈ {0, 1} as output.

A commitment scheme should be hiding and binding.

Definition 2.7 (Hiding). A commitment scheme is ε-hiding if for all algo-
rithms A

Pr

b = b′

∣∣∣∣∣∣
pp← KeyGen(1λ), (m0,m1)← A(pp)
b← {0, 1}, (c, r)← Com(pp,mb)

b′ ← A(pp, c)

 < ε

where the probability is taken over the randomness of KeyGen, Com and A.

Definition 2.8 (Binding). A commitment scheme is ε-binding if for all algo-
rithms A

Pr

[
m 6= m′ and

Open(pp,m, c, r) = Open(pp,m′, c, r)

∣∣∣∣ pp← KeyGen(1λ),
(m,m′, r, r′, c)← A(pp)

]
< ε

where the probability is taken over the randomness of KeyGen and A.

If we restrict the algorithms A to probabilistic polynomial time algorithms in
the definition of the hiding or binding properties, then we say that the property is
computational. If we allow for arbitrarily powerful algorithms, then the property
is statistical.

In our protocol, we use a variant of the commitment scheme from [BDL+18]
which splits the message space into different components. This allows useful
manipulations on the different components as part of our zero-knowledge proof.

We will create public parameters that can be used to commit to messages
~m ∈ R4

q. Define the matrix B ∈ R5×6
q (with row vectors ~bT1 , . . . ,

~bT5 ).

B =


~bT1
~bT2
~bT3
~bT4
~bT5

 =


1 b1,2 b1,3 b1,4 b1,5 b1,6

0 1 0 0 0 b2,6

0 0 1 0 0 b3,6

0 0 0 1 0 b4,6

0 0 0 0 1 b5,6


where the polynomials bi,j ∈ Rq are chosen uniformly at random.

12



To commit to ~m = (m2,m3,m4,m5)T ∈ R4
q, we choose a random polynomial

vector ~r
$← β6n from the error distribution and output the commitment

Com( ~m;~r) = ~t =


t1
t2
t3
t4
t5

 = B ·~r +


0

m2

m3

m4

m5


A valid (relaxed) opening of such a commitment ~t consists of a message

vector ~m ∈ R4
q, a short vector ~r ∈ R6

q with ‖~r‖2 ≤ 2B and a challenge difference

f̄ ∈ C̄ or f̄ = 1. The verifier checks that

f̄~t = B~r + f̄

(
0
~m

)
and that ‖~r‖2 ≤ 2B.

Remark. Although the commitment scheme allows relaxed openings to a multiple
of the original commitment, it is used incidentally in our protocol. We would like
to stress that our zero-knowledge proof shows that the prover knows an exact
solution to a system of linear equations.

Lemma 2.9. C.f. [BDL+18, Lemma 6] For every algorithm A that has advan-
tage ε in breaking the hiding property of the commitment scheme, there exists
another algorithm A′ that runs in the same time and has advantage ε in distin-
guishing RLWE5.

Lemma 2.10. C.f. [BDL+18, Lemma 7] For every algorithm A that succeeds
with probability ε in breaking the binding property of the commitment scheme,
there exists another algorithm A′ that runs in the same time and solves RSIS5,8B

with probability ε.

3 The Main Protocol

We want to prove knowledge of a short integer vector ~s that is a solution to a
linear equation A~s = ~u over Zq with public matrix A and vector ~u. We now
describe our protocol for this task. In the introduction, we made various simpli-
fications to make the key ideas easier to understand. We now give more precise
details.

Concretely, let A be an m × n matrix over Zq and ~s have coefficients in
{−S, . . . , S}. First we transform the equation to an equation with vector ~s′

having coefficients in {0, 1, 2}. The easiest way to achieve this is simply to write
the coefficients s1, . . . , sn of ~s as

si = s′i,0 + 3s′i,1 + · · ·+ 3r−1s′i,r−1 − 3rs′i,r = ~gT~s′i

13



where r = blog3 S + 1c, the coefficients s′i,j of ~s′i are in {0, 1, 2}, and ~gT is the

gadget row vector ~gT = (1, 3, . . . , 3r−1,−3r)T . Then we have ~s = (In ⊗ ~gT )~s′

and hence
A′~s′ = A(In ⊗ ~gT )~s′ = A~s = ~u

when we write A′ = A(In ⊗ ~gT ) ∈ Zm×rnq .
As discussed in the introduction, our high level strategy is for the prover to

send the masked opening z = y + cs, and use commitments to y and s to show
that z was correctly formed. Then, the prover and verifier can use this masked
opening z, along with some extra commitments, to prove that the following
polynomial expression is a polynomial of degree 2, and not degree 3.

z(z− c)(z− 2c) = y3 + 3y2(s− 1)c + y(3s2− 6s + 2)c2 + s(s− 1)(s− 2)c3. (9)

The simplest way to do this would be to make 5 commitments, and check equa-
tion 9 in committed form, i.e.

t1 = Com(y) t2 = Com(s)

t3 = Com(y3) t4 = Com(3y2(s− 1))

t5 = Com(y(3s2 − 6s + 2))

Com(z)
?
= t1 + ct2 Com(z(z− c)(z− 2c))

?
= t3 + t4c + t5c

2

In our protocol, we optimize the procedure so that the prover needs only commit
to 4 polynomials, instead of 5. Given that we will send z, and check that it was
correctly computed as y +cs, we can use z to help evaluate the left-hand side of
equation 9, and use the commitment to s to simplify the right hand side. After
these optimisations, our proof uses the following alternative expression.

(z− c)(z− 2c)s = zy(2s− 3)− y2(s− 3) + s(s− 1)(s− 2)c2. (10)

Our protocol is based around making 4 commitments and checking (10) in com-
mitted form.

t2 = Com(y) t3 = Com(s)

t4 = Com(y(2s− 3) t5 = Com(y2(s− 3))

Com(z)
?
= t1 + ct2 Com(0)

?
= (z− c)(z− 2c)t3 − zt4 + t5

This is still a slight simplification of what takes place in the protocol, as the
commitment scheme given in Section 2.6 will actually commit to all four messages
at the same time, but fortunately, the commitment scheme nevertheless allows
us to manipulate the individual components and check the given equations.

The protocol uses two challenges, c ∈ Zq, and f ∈ C. The first challenge c is
used to embed s into a masked value, which is used to show that Aŝ = ~u. The

14



second challenge f is used to embed the commitment randomness into a masked
value, which will help us to check important equations in committed form. Of
course, we cannot allow the verifier to see the commitment randomness without
any random masking, as this would leak information about the committed secret
s. This leads to two more extra terms when checking the equations, which are
given by x1 and x2 in the protocol.

We now discuss each step of the protocol, describing the actions of the prover
and verifier.

In the first move, the prover samples a random masking value y, which will
later be used to hide the secret s. Then they sample the randomness ~r used to
commit to the four ring elements given in the polynomial equations above. They
also fix the random masking value ŷ by computing ~w = Aŷ. The value ŷ will be
used to help verify that Aŝ = ~u later on. The prover sends these to the verifier.

Next, the verifier sends a random challenge c ∈ Zq to the prover. As we have
seen, the challenge c is used to embed the secret s into z. The prover samples a
new masking value ~y′ which will be used to hide the commitment randomness
~r. They also compute the values x1 and x2, which will later allow the verifier to
check equation (10) in committed form using a masked version of ~r. They send
these values to the verifier.

Next, the verifier sends a random challenge f ∈ C to the prover. The prover
computes ~z′, a masked version of the commitment randomness, and applies a
rejection sampling algorithm to make sure that this value does not leak any
information about r.

Finally, the verifier checks a blinded version of the equation Aŝ = ~u, and
blinded versions of the equation (10) and z = y + cs written in committed form,
using the extra terms which the prover sent earlier.

The full protocol is given in Figure 1.

3.1 Security Analysis

Theorem 3.1. The protocol in Figure 1 is complete, computational honest ve-
rifier zero-knowledge if RLWE5 is hard and generalized special sound if RSIS5,8B

is hard.
More precisely, the honest prover P convinces the honest verifier V with

probability ε ≈ 1/12.
For zero-knowledge, there exists a simulator S, that, without access to secret

information, outputs a simulation of a non-aborting transcript of the protocol
between P and V. Then for every algorithm A that has advantage ε in distin-
guishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε − 2−100 in distinguishing
RLWE5.

For knowledge-soundness, there is an extractor E with the following pro-
perties. When given rewindable black-box access to a deterministic prover P∗
that convinces V with probability ε > 2/q + 2/l, E either outputs a solution

~s∗ ∈ {0, 1, 2}n to A~s∗ = ~u, or a RSIS5,8B solution for ~bT1 in expected time at
most 144/(ε− 2/q − 2/l) when running P∗ once is assumed to take unit time.

15



Prover P Verifier V

Inputs:

A ∈ Zm×nq , ŝ ∈ {0, 1, 2}n A, ~u, ~b1, . . . , ~b5

~u = Aŝ ∈ Zmq
~b1, . . . , ~b5 ∈ R6

q

y
$←Rq

~r
$← β6n

~t =


~bT1
~bT2
~bT3
~bT4
~bT5

~r +


0
y
s

y(2s− 3)
y2(s− 3)


~w = Aŷ

~t, ~w -

c� c
$← Zq

z = y + cs

~y′
$← D6n

σ

w′ = ~bT1 ~y
′

x1 =
(
~bT2 + c~bT3

)
~y′

x2 =
(

(z− c)(z− 2c)~bT3 − z~bT4 + ~bT5

)
~y′ z,w′,x1,x2-

f� f
$← C

~z′ = ~y′ + f~r

If Rej
(
~z′, f~r, σ

)
= 1, abort ~z′ - ∥∥~z′∥∥ ≤ B = σ

√
12n

Aẑ
?
= ~w + c~u

~bT1 ~z
′ ?

= w′ + ft1(
~bT2 + c~bT3

)
~z′ + fz

?
= x1 + f(t2 + ct3)(

(z− c)(z− 2c)~bT3 − z~bT4 + ~bT5

)
~z′

?
= x2 + f((z− c)(z− 2c)t3 − zt4 + t5)

Fig. 1. Lattice-based proof of knowledge of a ternary solution to a linear equation over
Zq.

16



Notice that we only require the simulator S to simulate non-aborting transcripts,
i.e. the interaction between P and V conditioned on the prover not aborting.
The rationale behind this is that in the non-interactive version that is relevant
in practice one never gets to see the aborting proofs. In any case, there is a
standard technique which makes it possible to simulate the aborting transcripts
too, whereby the prover commits to the binding quantities w′, x1 and x2 and
only opens the commitments if he does not abort.

Proof. Completeness. It follows directly from Lemma 2.4 that the honest prover
P does not abort with probability at least 1/12− 2−100. Moreover, in this case
the distribution of the vector ~z′ sent by P has statistical distance at most 2−100

from D6n
σ , and Lemma 2.3 implies that the bound ‖~z′‖2 ≤ B = σ

√
12n is true

with probability at least 1−2−0.66n−2−100. It is easy to see that all of the other
verification equations are always true for the messages sent by P. Therefore, the
honest prover convinces the honest verifier with probability ε ≈ 1/12.

Soundness. The extractor E needs to obtain accepting transcripts from P∗
for 3 different first challenges c1, c2, c3 ∈ Zq. Moreover, for each of the 3 ci, E
needs 2 accepting transcripts with first challenge ci and two different second
challenges fi,1 6= fi,2. So in total E needs 6 transcripts. To this end, he runs P∗,
sends uniformly random challenges c1 and f1,1 and repeats until he obtains a first
accepting transcript. This takes expected time 1/ε. Then, by a standard heavy
rows argument, with probability at least 1/2, the probability of obtaining an
accepting transcript conditioned fixing the first challenge c1, but with uniformly
random second challenge, is at least ε/2. So conditioned on c1, the extractor
obtains a second accepting transcript with challenges c1 and f1,2 6= f1,1 with
probability at least ε/2 − 1/l, and he succeeds in getting such a transcript in
expected time at most (ε/2−1/l)−1. For the third transcript he sends uniformly
random c2 6= c1 and f2,1 and succeeds in expected time at most (ε − 1/q)−1.
Then, using the heavy rows argument again, we can assume that the acceptance
probability for fixed first challenge c2 is at least ε/2 − 1/(2q), which is true
with probability at least 1/2. Therefore, in conditioned expected time (ε/2 −
1/(2q)−1/l)−1, the extractor receives the 4-th transcript with challenges c2 and
f2,2 6= f2,1. Continuing in the same way, the last two transcripts are obtained in
conditioned expected time at most 3/(ε− 2/q − 2/l).

In summary, with probability 1/8, the total expected time needed to obtain
the 6 transcripts is less than

T =
9

ε− 2/q − 2/l
.

With probability 7/8 the extractor is not so lucky and might run for a long
time or not terminate at all. We cope with this by limiting the runtime of E
to 2T . Then, by Markov’s inequality, the extractor gets hold of the 6 accepting
transcripts in time at most 2T with probability at least 1/16. By restarting in
case of failure we finally conclude that in expected time 16T the extractor indeed
has the 6 accepting transcripts needed.

17



Let us now see how to use the transcripts. Let ~z′i,j , i = 1, 2, 3, j = 1, 2, be the

last messages from P∗. Write ~z′i = ~z′i,1−~z′i,2 and f̄i = fi,1−fi,2 for the difference of
these messages in the transcripts with the same first challenge and the difference
of the corresponding second challenges, respectively. The verification equation
~bT1 ~z

′
i,j = w′ + fi,jt1 yields approximate solutions to the first equation of the

commitment ~t by subtracting,

~bT1 ~z
′
i = f̄it1.

Then we can compute openings m2 = y∗, m3 = s∗, m4 and m5 of ~t. For
instance,

mk = tk − ~bTk
~z′1
f̄1
.

Note these openings are valid relaxed openings of our commitment scheme with
‖~z′1‖2 ≤ 2B. Therefore, when using ~z′2 and f̄2 or ~z′3 and f̄3 to compute openings
we either get the same mk or break the binding property of the commitment
scheme. The latter would translate to a RSIS5,8B solution; c.f. Lemma 2.10.
Concretely, if

mk 6= m′k = tk − ~bT2
~z′2
f̄2
,

then f̄2~z
′
1 − f̄1~z

′
2 6= 0 and we get the RSIS5,8B solution

~bT1
(
f̄2~z
′
1 − f̄1~z

′
2

)
= 0.

Here we have used the fact that ‖~z′i‖2 ≤ 2B, which implies
∥∥f̄i~z′i∥∥2 ≤ 2 ‖~z′i‖2 ≤

4B and
∥∥f̄2~z′1 − f̄1~z

′
2

∥∥
2
≤ 8B.

Assume we did not break the commitment scheme and write zi for the mes-
sage z sent by the prover in the (2i−1)-th and (2i)-th transcript, which is equal
in the two transcripts. Consider the verification equations(

~bT2 + ci~b
T
3

)
~z′i,j + fi,jzi = x1,i + fi,j (t2 + cit3) .

Subtract the equations with j = 1, 2 and the same i to obtain(
~bT2 + ci~b

T
3

) ~z′i
f̄i

+ zi = t2 + cit3.

Now substitute the opening

y∗ + cis
∗ = m2 + cim3 = t2 + cit3 −

(
~bT2 + ci~b

T
3

) ~z′i
f̄i

corresponding to t2 + cit3. This gives

zi = y∗ + cis
∗. (11)

18



So we see that the messages zi are of the expected form with constant polynomi-
als y∗ and s∗ that are independent of the challenges ci. Next from the verification
equations (

(zi − ci)(zi − 2ci)~b
T
3 − zi~b

T
4 + ~bT5

)
~z′i,j

= x2,i + fi,j ((zi − ci)(zi − 2ci)t3 − zit4 + t5)

we find by using the opening (zi− ci)(zi− 2ci)s
∗− zim4 + m5 corresponding to

(zi − ci)(zi − 2ci)t2 − zit4 + t5 and Equation (11),

(zi − ci)(zi − 2ci)s
∗ − zim4 + m5

= (y∗ + ci(s
∗ − 1)) (y∗ + ci(s

∗ − 2)) s∗ − y∗m4 − cis∗m4 + m5

=
(
(y∗)2s∗ − y∗m4 + m5

)
+ (y∗(2s∗ − 3)−m4) s∗ci + (s∗ − 1)(s∗ − 2)s∗c2i

= 0.

So we have a polynomial of degree 2 over Rq that evaluates to zero at the 3
points c1, c2 and c3. We can write this as a matrix-vector equation over Rq,1 c1 c

2
1

1 c2 c
2
2

1 c3 c
2
3

(y∗)2s∗ − y∗m4 + m5

(y∗(2s∗ − 3)−m4) s∗

(s∗ − 1)(s∗ − 2)s∗

 =

0
0
0

 .

The determinant of this well-known Vandermonde matrix is equal to (c1−c2)(c1−
c3)(c2 − c3) ∈ Z×q ⊂ R×q and hence the matrix is invertible over Rq. Therefore,
s∗(s∗ − 1)(s∗ − 2) = 0. Applying the NTT to this last equation implies

ŝ∗ ◦ (ŝ∗ −~1) ◦ (ŝ∗ −~2) = ~0

in Znq . So the coefficients of ŝ∗ are all in {0, 1, 2}. Finally, by subtracting copies of
the second verification equation from on another, we get A(ẑ1− ẑ2) = (c1−c2)~u.
But we know that

ẑ1 − ẑ2
c1 − c2

= ŝ∗

has only coefficients in {0, 1, 2} and is the solution to the linear equation with
matrix A that we wanted to find.

Zero-Knowledge. We can simulate a non-aborting transcript between the ho-
nest prover and the honest verifier in the following way. First, note that in such
a transcript z = y + cs is uniformly random because the honest prover samples
y uniformly at random. Moreover, ~z′ is statistically close to D6n

σ by Lemma 2.4.

So the simulator can just pick z
$← Rq and ~z′ ← D6n

σ . Next, by Lemma 2.4
again, we know that f~r is independent of ~z′, and hence that f is independent of
~z′. The two challenges c and f are uniformly random since the honest verifier

chooses them in this way. Therefore, the simulator picks c
$← Zq and f

$← C.
The commitment ~t is computationally indistinguishable from a dummy com-
mitment if RLWE5 is hard (c.f. Lemma 2.9. In fact, the construction of the

19



commitment scheme is such that ~t contains an additive term that is precisely

a RLWE5 sample. So the simulator can just take a uniformly random ~t
$← R5

q.
Now, in an honest transcript, the remaining messages ~w, w′, x1 and x2 are all
uniquely determined by the verification equations because of completeness. We
see that if the simulator computes these messages so that the verification equa-
tions become true, then the resulting transcript is indistinguishable from the
honest transcript. More precisely, a simulated transcript has statistical distance
at most 2−100 from a distribution which differs from the actual transcripts only
in that ~t is distributed differently. Therefore, if there is an algorithm A that has
advantage ε in distinguishing a simulated transcript from an actual transcript,
then this algorithm must be able to distinguish RLWE5 samples from random
with advantage ε− 2−100.

3.2 Repeating the Proof

For the moduli q and the dimensions n = ϕ(l) that occur when proving equations
from lattice-based cryptographic schemes, our proof does not have sufficiently
low soundness error as ε0 = 2/q+ 2/l will be much larger than 2−128. Therefore
the proof needs to be repeated multiple times. If for t repetitions, every single
repetition succeeds with probability ε > (ε0)t, then it cannot be that each of
them has success probability less than ε0. Otherwise we would have ε < (ε0)t.
So one of the proofs will be extractable. Since l < q, the number of repetitions
necessary is determined by l. If l is considerably smaller than q then it is worth
repeating the lower half of the proof with challenge f a couple of times for
a single execution of the upper half with challenge c. The lower part of the
proof demonstrates knowledge of an opening of the commitment ~t. Recall that
the extractor needs successful transcripts of the full protocol with the same
challenge c and two different challenges f1 and f2. He gets these by obtaining a
first successful transcript and then running the prover with fixed challenge c and
random f2 6= f1. So if the lower part is repeated twice then the first successful
execution will have challenges c and (f1, f

′
1) and the extractor can choose fresh

challenges (f2, f
′
2) from the set C2 of size l2 and only needs that one of the two

f2 and f ′2 is different from the corresponding f1 or f ′1, i.e. that (f1, f
′
1) 6= (f2, f

′
2).

Hence we see that the proof with two repetitions of the lower part will have
soundness error ε0 = 2/q + 2/l2.

3.3 Non-Interactive Proof

In practice, the interactive protocol given in Figure 1 is usually converted to a
non-interactive protocol by using the Fiat-Shamir heuristic. So the two challenges
c ∈ Zq and f ∈ C are computed by the prover from a hash of public information
and all previous messages, where the hash function is modelled as a random
oracle. Since our protocol does not have sufficiently low soundness error, it needs
to be repeated multiple times to be secure. In the non-interactive version this is
done by computing multiple proofs in parallel where all messages of all parallel

20



proofs are put into the hash function to derive the various challenges for the
parallel executions of the protocol. Here we allow for the lower half to be repeated
multiple times for each repetition of the upper half, as explained in Section 3.2.
Concretely, we repeat the upper half t times with challenges ci, i = 1, . . . , t, and
for each of the repetitions we perform the lower part t′ times with challenges fj ,
j = t′(i− 1) + 1, . . . , t′(i− 1) + t′.

If the rejection sampling on the vectors ~z′j in the parallel proofs was performed
individually, the whole proof would need to be restarted if only one of the ~z′j was

rejected, which would happen with probability about 1 − (1/12)tt
′
. Therefore,

the runtime of the non-interactive prover would be very long. Instead, we mask
the concatenation of the t secret vectors fj~ri for i = 1, . . . , t and j = (i−1)t′+k
with the same k by sampling the masking vectors ~y′j with a standard deviation
that is equal to 5T ′, where T ′ is a bound on the concatenation of those secret
vectors. Then we do rejection sampling on all of the corresponding ~z′j at once.
The downside of this is that the bound T ′ and hence the standard deviation
of the discrete Gaussian distribution for the ~y′j increases by a factor of

√
t. We

could also perform rejection sampling on all of the tt′ masking vectors at once
with another increase of the standard deviation by a factor of

√
t′. But usually t′

is at most two or three and hence the increase in prover time from not including
this optimisation this does not pose a problem.

As another improvement we make use of the fact that it is not necessary to
recommit to the constant secret polynomial s in all of the parallel executions of
the proof. Instead it is actually enough to recommit to all of the other messages
by sampling fresh RLWE errors r1, r2, r4, r5 for them and the first row of the
commitment. In this way, we actually give out 1+4t RLWE samples and require
RLWE1+4t to be a hard problem. The complete non-interactive prover algorithm
is given in Figure 2 and the corresponding verifier in Figure 3.

Apart from the improvements described, the non-interactive algorithms also
make use of the standard technique of sending the challenges ci and fj instead of
the large binding quantities ~wi, w′j , x1,j and x2,j . The verifier computes these as
the only missing terms in the verification equations, which allows him to check
the challenges. The functions G(·) and H(·) are the two hash functions, modelled
as random oracles, for sampling the challenges.

3.4 Proof Size

We want to compute the size of the non-interactive proofs that are produced by
Algorithm 2. Each of the t polynomial vectors ~ti consists of 5 uniformly random
polynomials ti,ν ∈ Rq of which one of them, namely ti,3, is the same in all ~ti
and only needs to be transmitted once. The polynomials zi are also uniformly
random. So we need

(1 + 5t)ndlog qe/8

bytes for (~ti)i and (zi)i. By contrast the vectors ~z′j sampled from discrete Gaus-
sian distributions with standard deviation σ = 5T ′ where T ′ is a bound on the

21



Algorithm 2 Non-Interactive Prover

1: Input: A, ~u, ŝ
2: Output: (~ti)i∈[t], (ci)i∈[t], (zi)i∈[t], (fj)j∈[tt′], (~z

′
j)j∈[tt′]

3: r3, r6
$← βn

4: t3 = b3,6r6 + r3 + s
5: for i = 1, . . . , t do

6: yi
$←Rq

7: ~wi = Aŷi

8: ri,1, ri,2, ri,4, ri,5
$← βn

9: ~ri = (ri,1, ri,2, r3, ri,4, ri,5, r6)T

10: ti,1 = ~bT1~ri
11: ti,2 = ~bT2~ri + yi
12: ti,4 = ~bT4~ri + yi(2s− 3)

13: ti,5 = ~bT5~ri + y2
i (s− 3)

14: ~ti = (ti,1, ti,2, t3, ti,4, ti,5)T

15: end for
16: (ci)i∈[t] = H(A, ~u, (~ti)i, (~wi)i)
17: for i = 1, . . . , t do
18: zi = yi + cis
19: for j = (i− 1)t′ + 1, . . . , (i− 1)t′ + t′ do

20: ~y′j
$← D6n

σ

21: w′j = ~bT1 ~y
′
j

22: x1,j = (~bT2 + ci~b
T
3 )~y′j

23: x2,j = ((zi − ci)(zi − 2ci)~b
T
3 − zi~b

T
4 + ~bT5 )~y′j

24: end for
25: end for
26: (fj)j∈[tt′] = G((ci)i, (zi)i, (w

′
j)j , (x1,j)j , (x2,j)j)

27: for j = 1, . . . , tt′ do
28: ~z′j = ~y′j + fj~rdj/t′e
29: end for
30: for k = 1, . . . , t′ do
31: if Rej

(
(~z′j)j=k,...,(t−1)t′+k, (f(i−1)t′+k~ri)i, σ

)
= 1 or

∥∥(~z′j)j
∥∥
∞ > 6σ then

32: goto 3
33: end if
34: end for

22



Algorithm 3 Non-Interactive Verifier

1: Input: A, ~u, (~ti)i∈[t], (ci)i∈[t], (zi)i∈[t], (fj)j∈[tt′], (~z
′
j)j∈[tt′]

2: Output: b ∈ {0, 1}
3: for i = 1, . . . , t do
4: ~wi = Aẑi − ci~u
5: for j = (i− 1)t′ + 1, . . . , (i− 1)t′ + t′ do

6: w′j = ~bT1 ~z
′
j − fjti,1

7: x1,j = (~bT2 + ci~b
T
3 )~z′j + fjzi − fj(ti,2 + citi,3)

8: x2,j = ((zi − ci)(zi − 2ci)~b
T
3 − zi~b

T
4 + ~bT5 )~z′j

9: − fj((zi − ci)(zi − 2ci)ti,3 − ziti,4 + ti,5)
10: end for
11: end for
12: (c′i)i∈[t] = H(A, ~u, (~ti)i, (~wi)i)
13: (f ′j)j∈[tt′] = G((ci)i, (zi)i, (w

′
j)j , (x1,j)j , (x2,j)j)

14: if
∥∥~z′j∥∥2 ≤ B ∧ c′i = ci ∧ f ′j = fj then

15: return 1
16: else
17: return 0
18: end if

vector (f(i−1)t′+k~ri)i in dimension 6tn. Note that the embedding norm is invari-
ant under multiplication by the monomials fj and we do not need to take them
into account. The coefficients of a discrete Gaussian are smaller in absolute va-
lue than 6σ with probability at least 1− 2−24, c.f. [Lyu12, Lemma 4.4], and our
non-interactive prover enforces this. So the transmission of (~z′j)j requires

6tt′ndlog(12σ)e/8

bytes; that is, dlog(6σ)e bits per coefficient for the absolute value and one sign bit
per coefficient. This does not make use of the fact that the coefficients of ~zj are
distributed according to a (truncated) discrete Gaussian with known standard
deviation, which has less entropy than the uniform distribution. So to get slightly
smaller proof sizes one can encode the ~zj using a Huffman code, for instance.

Finally, the challenge polynomials (ci)i and (fj)j together require

t(dlog qe+ t′dlog le)/8

bytes.

4 Efficiency Comparison

The simplest application of our proof protocol is to prove knowledge of the
secret in LWE samples over Zq. Let’s consider the case of ternary error, mo-
dulus q below 232 such that 4096 | q − 1, and dimension d = 1024. Moduli of
around this size are used in FHE schemes and group signature schemes following

23



the hash-and-sign paradigm with Boyen [Boy10] or Ducas-Micciancio standard-
model signatures [DM14], for example. Now m such LWE samples ~u are of the
form

~u = A′~s′ + ~e

with A′ ∈ Zm×dq public and chosen uniformly at random, and ~s ∈ {−1, 0, 1}d
and ~e ∈ {−1, 0, 1}m secret. We can write A = (A′, Im) and then the above LWE
equation as ~u = A(~s′ ‖ ~e), which is of the form suitable for our proof system.
So let R = Z[X]/(Xn + 1) with n = 2d = 2048 and define s ∈ Rq to be the
polynomial whose NTT ŝ is given by the concatenation of the vectors ~s′ and ~e.

4.1 Our Proof System.

With t′ = 3 lower repetitions, the protocol has soundness error 2/q+ 2/l3 which
is approximately 2−31. So we make t = 4 upper repetitions of the protocol to
reach the 128 bit security level.

As we are in the power-of-two case recall that we are sampling the random-
ness vectors ~ri ∈ R6 using the binomial distribution β2 independently for each
coefficient. By the Chernov bound (8) it follows that T ′ =

√
1.1 · 0.625 · 6tn =

183.83 with probability at least 1 − 2−102. So we sample the vectors ~y′j with
σ = 5T ′ = 919.13.

Hardness. The security of the above instantiation of our protocol is based on the
hardness of the RSIS5,8B and RLWE1+4t problems over the ring Zq[X]/(X2048+
1) with q ≈ 232. We analyze known attacks against these problems and start
with the Ring SIS problem. Here one needs to find a short vector in the k = 6n-
dimensional lattice

Λ⊥(~bT1 ) =
{
~x ∈ R6 | ~bT1 ~x ≡ 0 (mod qR)

}
.

It has volume qn, as one can easily see by writing down a basis. By applying a
reduction algorithm to the basis that achieves a root Hermite factor δ0 we find
a short vector of length qn/kδk0 . But it is actually sufficient to find a short vector
in a sublattice by omitting some of the columns of the matrix corresponding to
~bT1 .

It turns out that the optimal dimension is k = 6509. There a root Hermite
factor of 1.0011 would be needed to find a vector of length 8B. This is out of
reach for current reduction algorithms.

For the Ring LWE problem RLWE1+4t we study the primal attack and use
the fact that the lattice

Λ⊥ =
{
~x ∈ R3+4t |

(
~a I1+4t

~t
)
~x ≡ ~0 (mod qR)

}
of volume q(1+4t)n contains the unusually short vector (s,~eT ,−1)T of expected
length about

√
(2 + 4t)n10/16. Here we do not need to use all of the LWE

samples and can instead search for an unusually short vector in a lattice of

24



dimension k = (i + 1)n + 1 that we get from considering i samples, 1 ≤ i ≤
1 + 4t. Lattice reduction will succeed in finding the unusually short vector if
λ2/λ1 ≥ 0.3δk0 where we assume that there is no other very short vector and
hence, by the Gaussian heuristic,

λ2 =

√
k

2πe
qin/k.

It follows that in our case we would need to achieve a root Hermite factor of
about δ0 = 1.0027, which is impossible.

Size. It follows from the formulas in Section 3.4 that the total size of the proof
is 384.03 KB. Here we have not used the trivial encoding for the vectors ~zj using
dlog(12σ)e = 14 bits per coefficient. Instead we have computed the entropy of
the discrete Gaussian distribution with σ = 919.13, truncated to {−6σ, . . . , 6σ},
which is below 12 bits. So using a Huffman code the vectors ~zj can be encoded
using 12 bits per coefficient on average.

4.2 Stern-like Proofs.

We compare our result against the Stern-type protocol presented in [KTX08,LNSW13],
as it is the only other lattice-based zero-knowledge protocol capable of proving
that a prover knows an exact solution to a system of linear equations, rather
than a solution to a related system.

The protocol of [LNSW13] proves knowledge of ~s ∈ Zn with coefficients in
{−S, . . . , S}, such that A~s = ~u, where A is an m × n matrix over Zq. For the
analysis, we closely follow [LNSW13, Figure 1].

Set k = blogSc+ 1. The protocol decomposes ~s into k vectors ~sj with coeffi-
cients in {−1, 0, 1} using a type of binary decomposition, and extends each ~sj to

a longer vector ~̃sj with a constant number of 0, 1 and −1 entries. The protocol
also uses a matrix A′ which is derived from A. Then, the protocol proves that
that all of the coefficients of the extended vectors do indeed lie in {−1, 0, 1}
and that A′

∑k−1
j=0 ~̃sj is equal to ~u, which implies a short solution to the original

system using A.

The protocol involves choosing a random permutation, choosing random mas-
king vectors ~rj for the ~̃sj , and making three commitments.

– The first commitment is a commitment to a random permutation and a
matrix-vector product involving A′ and the ~rj . The random permutation can
be generated from a short seed of using a PRG. The result of the matrix-
vector product is n log q elements, but this value itself is never revealed.

– The second commitment is a commitment to permutations of the ~rj . The ~rj
can also be generated using a PRG.

– The third commitment is a commitment to permutations of the vectors ~̃sj +
~rj .

25



The prover sends these three commitments to the verifier. Using a simple com-
mitment scheme which commits by hashing and is secure in the random oracle
model, each of these commitments has size 256 bits.

The protocol uses challenges from the set {1, 2, 3}. As for the prover’s re-
sponses to challenges, when the challenge is equal to 1, the prover sends the
permuted ~rj and ~̃sj to the verifier. This means sending 6kn + 3kndlog qe bits.
When the challenge is equal to 2, the prover sends the permutation seed and
the permuted ~̃sj + ~rj to the verifier. This means sending 256 + 3kndlog qe bits.
When the challenge is equal to 3, the prover sends the permutation seed and
the permuted ~rj to the verifier. This means sending 512 bits, as it is sufficient
to send the random seed for the ~rj alongside the permutation seed.

Summing up the challenge responses, dividing by 3, and adding the sizes of
the 3 commitments, a single execution of the protocol has an expected proof size
of 1024+kn(2dlog qe+1) bits. A single execution has a soundness error of 2/3. For
a soundness error of λ bits, this means repeating the protocol t = dλ/(log 3− 1)e
times, for a total proof size of 1024t+ knt(2dlog qe+ 2) bits.

For the application above, with λ = 124 and k = 1, the result is a proof size
of 3.44 MB.

References

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Mathematische Annalen, 296:625–635, 1993.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy, pages
315–334, 2018.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In CRYPTO, pages 669–699, 2018.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Chris-
tophe Petit. Efficient zero-knowledge arguments for arithmetic circuits in
the discrete log setting. In EUROCRYPT, pages 327–357, 2016.

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashev-
sky, and Gregory Neven. Better zero-knowledge proofs for lattice encryption
and their application to group signatures. In ASIACRYPT, pages 551–572,
2014.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In SCN, pages 368–385, 2018.

Beu19. Ward Beullens. On sigma protocols with helper for mq and pkp, fishy
signature schemes and more. Cryptology ePrint Archive, Report 2019/490,
2019. https://eprint.iacr.org/2019/490.

BN19. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. Cryptology ePrint Archive, Report 2019/532, 2019. https:

//eprint.iacr.org/2019/532.

26

https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2019/532
https://eprint.iacr.org/2019/532


Boy10. Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for
fully secure short signatures and more. In Public Key Cryptography, pages
499–517, 2010.

DM14. Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the
standard model. In CRYPTO, pages 335–352, 2014.

dPLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
CCS, pages 574–591, 2018.

dPLS19. Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short discrete
log proofs for fhe and ring-lwe ciphertexts. In PKC, 2019.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

GK15. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In EUROCRYPT, pages 253–280, 2015.

Gro10. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. J.
Cryptology, 23(4):546–579, 2010.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems.
In ASIACRYPT, pages 372–389, 2008.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the ISIS problem, and applications.
In PKC, pages 107–124, 2013.

LNWX18. San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Constant-size
group signatures from lattices. In PKC, pages 58–88, 2018.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe
cryptography. In EUROCRYPT, pages 35–54, 2013.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755, 2012.

Ste93. Jacques Stern. A new identification scheme based on syndrome decoding.
In CRYPTO, pages 13–21, 1993.

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with
standard soundness: Construction and applications. In Crypto, 2019. To
appear.

27


	Algebraic Techniques for Short(er) Exact Lattice-Based Zero-Knowledge Proofs

