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Abstract In order to thwart Differential Power Analysis (DPA) and
Differential Fault Analysis (DFA) attacks, we require the implemented
algorithm to ensure correct output and sensitive variable privacy. We
propose security notions to determine an algorithm’s security against
combined attacks consisting of both faults and probes on circuit wires.
To ease verification, help create secure components, and isolate prim-
itives in protocols, we extend our notions to capture secure composi-
tions. We propose the NINA property which forms the link between the
established Non-Interference (NI) property and our composable active
security property, Non-Accumulation (NA).
To illustrate the NINA property, we prove the security of three multiplic-
ation gadgets: an error checking duplication gadget; an error correcting
duplication gadget; and an error checking polynomial gadget. Our proofs
illustrate that the error detecting gadgets admit to statistical ineffective
faults. We also prove the error correcting gadget attains the stronger In-
dependent NINA property meaning that faults do not affect its sensitive
variable privacy. Lastly, we prove the combined security of a polynomial
based method using the error detecting properties of Shamir’s secret
sharing.
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1 Introduction

Differential Fault Analysis (DFA) is an attack on a physical device which effect-
ively breaks a cipher by using incorrect ciphertexts due to well-placed faults in
the encryption procedure and was discovered by Biham and Shamir in 1997 [8].
Differential Power Analysis (DPA) is an attack which uses a cryptographic
device’s power consumption to launch a divide-and-conquer attack on the private
key as first described by Kocher et al. in 1999 [30]. To enable key-extraction via
DFA or DPA, several physical attacks can be used against the implementation,
we differentiate passive, active, and combined attacks. Passive attacks observe
the behaviour of a device during its process, such as observing the process time or
the device’s power consumption. Active attacks tamper with the device’s func-
tioning, such as inducing computational errors by fault injections. Combining
passive and active attacks enables either enhanced tampering or observation of



the device’s reaction to tampering. As DFA and DPA attacks form significant
threats against keyed primitives there is a need for study to ensure the black-box
secure primitive can run in an unprotected environment.

In order to defend against physical attacks without using expensive custom
hardware such as shields and detectors it is the algorithm that needs to coun-
teract passive, active, and combined attacks by securing it in a formal security
model. Passive adversary models and their corresponding security notions have
improved significantly over the last five years, largely due to the introduction of
the probing adversary by Ishai et al. [29]. This adversary is capable of reading
the exact values on a number of circuit wires. The minimal number of wires the
adversary observes to learn a sensitive variable is defined as the order of probing
security. Duc et al. showed that the noisy leakage model reduces to the probing
model assuming the presence of sufficient noise and independent wire leakage,
as a result an implementation’s signal to noise ratio is exponentially related
to its probing security order [19]. While the probing model helps to verify im-
plementations, the time complexity is exponential in the security order which is
therefore not cost effective for larger implementations such as symmetric ciphers.
To streamline this verification procedure, Barthe et al. proposed a composable
security definition called Strong Non-Interference (SNI) [3]. This approach views
circuits as the composition of several components and forms a sufficient security
condition, such that when multiple components are linked together the total cir-
cuit is probing secure. Composable security definitions allow designers to verify
and optimise separate circuit components which are small enough for a brute
force verification technique. This technique has been adopted in several tools
to quickly verify implementations based on modular designs [4, 7, 16]. The im-
portance of a formal security notion, such as the probing model, includes the
need of assurance in high-end secure devices. To guarantee such assurance, the
Common Criteria was proposed as an international standard. These criteria spe-
cify the security and assurance users can have in their sensitive devices where
the strongest criterion requires a target of evaluation to have a formally verified
design which is only possible with formal security notions [22].

Apart from security models, the current literature provides countermeasures
against passive attacks. One example is the methodology of Ishai, Sahai and
Wagner (ISW) which guarantees protection of arbitrary circuits against passive
attacks using the previous discussed probing model [29]. This countermeasure
led to further study to increase its security and efficiency [5–7,9, 15,20,25,39].
Another methodology to secure implementations is described in Threshold Im-
plementations by Nikova et al. [32]. By extensively using the masking scheme
and cipher properties, they minimise the countermeasure’s latency and random-
ness costs and as a result the method has been used to defend various symmetric
primitives [14,26,31,33,35].

Despite having formal security notions and countermeasures against passive
attacks, there are only few works which consider active and combined attacks.
The first is Private Circuits II [28] which provides a countermeasure where the
active adversary is modelled as one who faults a bounded number of wires per
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clock cycle. By viewing faults as probes, the work naturally offers protection
against a combined adversary. However, the implementation of the countermeas-
ure and its efficiency is currently still a challenge [13]. Later on, the work of
ParTI [38] proposes to encode intermediate variables with error correcting codes
to detect errors. To protect against passive attacks, they apply threshold imple-
mentations on top of the encoding. The results are promising as they succeed in
protecting the LED cipher on FPGA. However, they only provide argumentation
for active security leaving out combined security and a formal adversary model.
As efficiency is a major concern for practical applications, the work of Impeccable
Circuits [1] only focuses on active attacks to find very efficient countermeasures.
They consider an adversary who faults up to a given number of gates and con-
sider compositional security, i.e., they look at the propagation of faults in their
components. Previous works looked at adversaries faulting and reading separate
wires, the work of CAPA [36] considers stronger adversaries. They use multiparty
computation to provide provable security against combined attacks by proposing
a new adversary model, the tile probe-and-fault model. This model considers an
adversary who is capable of reading and faulting whole areas in the implementa-
tion thus ensuring hardware protection against combined attacks. However, due
to their security model the countermeasures are heavy.

The adversaries considered in Private Circuits II and Impeccable Circuits
are a good start towards formalising active and combined security but they do
not yet allow for composable combined security definitions which are needed
by designers. In this work, we combine the wire faulting adversary with the
usual probing adversary to consider an attacker who can read and fault a given
number of wires in a circuit. Similar to the proposition of Non-Interference by
Barthe et al. [3], we build further on our adversary model by considering a mod-
ularised circuit and proposing sufficient security conditions (SNA and SNINA)
such that modular compositions remain secure.

To show our security notions in action, we propose three SNINA secure mul-
tiplication gadgets. While two of these gadgets are based on duplicated Boolean
masking, the third is based on polynomial masking and shows that our proposed
security notion is not dependent on the used secret sharing scheme. Addition-
ally, we find that error detecting multiplication gadgets are prone to statistical
ineffective faults (SIFA) introduced in [18] which are the more mature version
of ineffective faults introduced in [12]. These attacks aim to break the privacy
of a countermeasure by injecting a fault and viewing whether the state of its
output has changed. In order to thwart them, we propose an error correcting
multiplication gadget based on duplicated Boolean masking. We then show that
this gadget achieves an even stronger notion of combined security where faults
do not affect the privacy of the scheme.

2 The Circuit Model

We introduce gadgets, private circuits, and the notion of simulability. Similar
to [29], we represent computations in arithmetic circuit form, a directed acyclic
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graph whose nodes are operations over a finite field F and whose edges are wires.
Additionally, we consider probabilistic arithmetic circuits, meaning circuits with
nodes having no input and uniform random elements over F as output; this
randomness is independent and identically distributed and the correctness of
the circuit is not dependent on it. In order to resist fault attacks, we consider
nodes with no output and which can abort the computation. This abort signal
works as a broadcast making all wires in the circuit read ⊥ when the signal is
sent out.1 The adversary also receives this abort signal as it can see from the
state of the output whether the circuit aborted or not.

A probabilistic circuit with shared inputs/outputs and, if needed, the cap-
ability to abort the computation is dubbed a gadget.

Definition 1 (Gadget). A gadget G is a probabilistic circuit with input in Fnm
(m inputs where each input is divided in n shares), uniform randomness r ∈ Fα,
and a shared output in Fnm′

.

Additionally, we define private circuits as probabilistic circuits consisting of
a gadget, where its inputs are first shared and the shared outputs are recon-
structed.

Definition 2 (Private Circuit [29]). A private circuit implementing the func-
tion f : Fm → Fm′

is defined by a triple (I, C,O), where

− I : Fm → Fnm is a probabilistic circuit with uniform randomness, called
input encoder;

− C : Fnm → Fnm′
is a gadget with uniform randomness;

− O : Fnm′ → Fm′
is a circuit, called output decoder.

Since we will be working with composable security definitions, we typically
consider that private circuits are composed of several gadgets, i.e., the output
of one gadget forms the input of another.

AC

Probes, Faults

Probed Values, ⊥

Figure 1. Interaction between a circuit C and an adversary A.

We aim to protect against passive, active or combined adversaries as those
who interact with a circuit by placing probes, faults, or both respectively. The
circuit responds to this adversary by setting or toggling the values on the faulted
wires and returning the values on the probed wires. The state of the abort signal
(true or false) is returned as well.

1 On hardware this functionality is replaced a specialised mechanism such as a cas-
cading gadget from [28].
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In order to make simulation based proofs for the secrecy of shared variables
in gadgets, we define simulability similar to the definitions proposed in [5, 9].
However, we additionally consider that up to k wires in that gadget have been
faulted and that the gadget can abort. Here the adversary (distinguisher) is
either interacting with the actual gadget or with a simulator. This simulator is
given only a part of the input and does not know the secrets of the gadget. The
distinguisher’s goal is to determine whether it is interacting with the simulator
or with the actual gadget. A failure to do so implies that the adversary can know
at most the shares given to the simulator and as a result only some inputs of
the gadget.

Definition 3 (Simulability). Let P = {p1, ..., pd} be a set of d probes of a
gadget C with m inputs where each input is divided in n shares. Let the set of q
shares of each input given to the simulator be denoted by I = {(i1, j1), ..., (im, jq)}
⊂ {1, ...,m}×{1, ..., n}. Let F = {(f1, e1), ..., (fk, ek)} be a set of k injected faults
ei (either set or add) on the wire fi in C. Denote CP,F as the circuit C with
probed wires as per P and injected faults as per F . Finally, let ⊥ ∈ {0, 1} denote
the state of the abort signal in the circuit.

We define the simulator S and distinguisher D as the following probabilistic
functions.

S : Fq × Fk → Fd × {0, 1}

D : Fd × {0, 1} × Fk × Fnm → {0, 1}

We say that the set of probes P and the state of the abort signal ⊥ of the
faulted circuit CF can be simulated with the set of input wires I if there exists
a simulator S, such that for any distinguisher D and any inputs a∗,∗, we have
that ∣∣Pr[D(CP,F (a∗,∗), F, a∗,∗) = 1]− Pr[D(S(I, F ), F, a∗,∗) = 1]

∣∣
is negligible in d, where the probability is taken over the random coins in C, S
and D.

3 Security Definitions

In this section we specify orders of passive, active, and combined security and
expand them to composable security notions which is the focus of our work. Our
motivation to propose compositional security notions is threefold.

– Efficient Verification. The probing and wire faulting security model’s veri-
fication time is exponential in their security order. As a result, verifying
larger circuits such as a symmetric cipher quickly becomes infeasible. To
leverage this complexity constraint, composable security definitions allow
for the verification of smaller blocks even for larger security orders.

– Optimised Building Blocks. Composable security notions allow designers
to create smaller designs which allow for brute force search techniques on
their implementation to maximise efficiency. Since a proof of composable
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security considers arbitrary security orders, these designs can be generalised
to work for any security order allowing for efficient and flexible building
blocks to secure arbitrary protocols.

– Compartmentalisation. Symmetric ciphers are not often used in a stand-
alone setting. Instead they are used in a mode of operation as an encryption
scheme; to generate a stream cipher for authenticated encryption; or as a
compression for hash functions. A cipher secured with a non-composable
notion can still be insecure as part of a protocol contrary to securing with
compositional notions.

3.1 Orders of Security

Passive Security. To model passive security we consider the known probing
adversary who can read the exact values of up to a threshold number of wires
in a gadget. The order of passive security is the usual order of probing security.

Definition 4 (Order of passive security [29,37]). A private circuit is dth-
order passive secure (dth-order probing secure) if every d-tuple of the gadget’s
intermediate variables is independent of any sensitive variable.

Active Security. We ensure protection against an adversary who is capable of
faulting a given number of wires in the circuit. We note that similar adversaries
have been proposed in Private Circuits II [28] and Impeccable Circuits [1]. The
order of active security is determined by the number of wires in the circuit the
adversary needs to fault in order to create an incorrect output. Such incorrect
outputs are important as they can activate DFA attacks, thus to secure imple-
mentations we require that the private circuit either gives back a correct output
or the process is aborted.

Definition 5 (Order of active security). A private circuit is kth-order active
secure if any set of k faults on the gadget’s intermediate variables results in either
abort ⊥ or a correct output.

Note that active security guarantees output correctness and does not consider
fault attacks which target the privacy of a scheme such as ineffective faults.

Combined Security. We protect against a combined adversary who both faults
and probes wires. We consider a private circuit secure if it retains both its privacy
and correctness against the combined adversary. This gives us the following
combined security definition.

Definition 6 (Order of combined security). A private circuit is (d, k)-
order combined secure if for any set of k faults and d probes on the gadget’s
intermediate variables, the following holds.

(a) Privacy: The probed d-tuple with the state of the abort signal is independent
on any sensitive variable.

(b) Correctness: The circuit either aborts ⊥ or gives a correct output.
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The combined security model with d = 0 still differs from the active security
model as the combined security model considers that an adversary can use the
knowledge on the state of the abort signal to derive the private circuit’s internal
variables. The difference between the two models thus lies in the combined se-
curity model looking at both the privacy and correctness of a circuit while active
security only considers its correctness.

3.2 Composable Notions of Security

We note that the previously discussed security conditions are not composable,
i.e., the composition of multiple secure gadgets can be insecure. Thus the previ-
ous security conditions should be applied to the entire implementation, instead
we look at composable security notions. We note that with a composition of
gadgets we mean that the output of one gadget becomes an input of another,
for an example see Figure 2.

G3

G1

G2

k1 Faults

d1 Probes

k2 Faults

d2 Probes

k3 Faults

d3 Probes

Figure 2. An example of a composition of two gadgets and the potential faults and
probes on them.

Passive Security. The security notion for composable passive security has been
studied by Barthe et al. [3] who defined the notion of Non-Interference (NI) using
simulation based security (see Definition 3).

Definition 7 (d Non-Interferent (d-NI) [3]). A gadget G is d-NI if any set
of at most d′ ≤ d probes can be simulated with at most d′ shares of each input.

Intuitively, the above model grants composable security since a probed value
in a gadget can be simulated with an input share, which on its turn is the output
share of a previous gadget. In case the latter gadget is also non-interferent, this
output value can again be simulated with an input share. This chains until we
reach the encoding function in a private circuit (Definition 2). Since the adversary
can only probe d values we only need to use a secret sharing scheme of passive
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threshold at least d to protect against our probing adversary. While the notion
of non-interference is a good start and captures a composable security notion
over the serial composition of gadgets, the notion is not sufficient to provide
protection when gadgets are composed in parallel (e.g., when two gadgets share
the same input). To this end Barthe et al. introduced the notion of Strong Non-
Interference (SNI).

Definition 8 (d-Strong Non-Interferent (d-SNI) [3]). A gadget G is d-SNI
if any set of d1 probes on its intermediate variables and every set of d2 probes on
its output shares such that d1+d2 ≤ d, the totality of the probes can be simulated
by only d1 shares of each input.

We note that intermediate variables can also be the input or output variables
of the gadget.

Active Security. Recall that we defined the order of active security as the
maximal number of faulty wires such that the circuit still returns a correct
output. We now make this into a composable notion, thus we look at the effect
of a fault in a gadget which is part of a larger whole. Ideally an injected fault
in the gadget is not propagated, i.e., the fault does not affect the output of that
gadget. However, the adversary can always fault its output directly, meaning that
we can never guarantee that all outputs of a faulted gadget are correct. Instead,
we are interested in gadgets which do not accumulate faults. In other words,
we need a fault on a single input or intermediate wire to affect only a single
output of the gadget. We relax this requirement by allowing countermeasures to
abort the computation (e.g., by using error detecting methods). We thus find
composable active security notions which are similar in nature to the definitions
of NI and SNI discussed earlier. Our first notion is Non-Accumulation (NA).

Definition 9 (k-Non-Accumulative (k-NA)). A gadget G is k-NA if for
any set of k′ ≤ k errors, the gadget either aborts or gives an output with at most
k′ errors.

G1 G4

G2

G3

k Faults 2k Faults

k Faults

k Faults

k Faults

k Faults

Figure 3. An example of the propagation of faults over several k-NA gadgets for which
a stronger composability notion is needed.

For a gadget which is k-NA, k faults on its intermediate variables result in
the gadget giving an output with at most a total of k faults. When compos-
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ing gadgets, a stronger notion of non-accumulation is needed to guarantee the
security of the composition. For example, consider the case given in Figure 3
where each gadget Gi is k-NA. If an adversary injects k faults in the input of
G1, the gadget will give an output with at most k faulty shares. These faults
propagate to the inputs of G2 and G3 which, because both gadgets are k-NA,
results in a worst case scenario where G4 gets an input with a total of 2k faulty
shares. The end result is a sharing with 2k faulty shares even though only k
faults were injected. To avoid such an accumulation of faults, one needs gadgets
which are capable of erasing the errors from their input. The following definition
of Strong Non-Accumulation (SNA) is sufficient to arbitrarily compose gadgets
and be assured of their active security.

Definition 10 (k-Strong Non-Accumulative (k-SNA)). A gadget G is k-
SNA if for any set of k1 errors on each input and every set of k2 errors on the
intermediate variables, with k1 + k2 ≤ k, the gadget either aborts or gives an
output with at most k2 errors.

Combined Security. We now look at composable security notions consider-
ing circuits which are both probed and faulted. First, we need to guarantee
the correctness of the output of each gadget. To capture the effect of faults in
compositions of gadgets, we use an argument similar as the one on active se-
curity. Thus we need that an injected fault in a gadget propagates to at most
one output share. However, the adversary can now place probes and thus learn
part of the computation made in the gadgets. As a result, the combined security
notion needs to capture the probability of an adversary breaking the correct-
ness of a gadget given several faults and probes. In this work we only propose
countermeasures for which this probability is 100%, to give an example of a coun-
termeasure for which this probability is lower we refer the reader to the CAPA
countermeasure [36]. Apart from guaranteeing the correctness of a gadget, we
also guarantee its sensitive variable privacy for which we use simulation based
arguments similar to non-interference. As mentioned by Clavier et al. [12], fault
injections can act as a probing tool (think of an adversary faulting away the
randomness in a gadget). Thus we treat faults as probes giving extra shares to
the simulator per injected fault (though we see later on that this is not always
needed). Additionally, to give designer the freedom to make countermeasure
more efficient we consider security with abort. To capture the effect of the abort
signal potentially revealing secrets in the gadget, we require the simulator to re-
produce this signal given the injected errors and some input shares. As a result,
we design a composable security notion of order (d, k) such that the gadget is
(d′, k′)-order combined security for all sets of d′ + k′ ≤ d probes and k′ ≤ k
faults. We dub our notion NINA derived from the concatenation of the names
Non-Interference (NI) and Non-Accumulation (NA).
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Definition 11 ((d, k)-NINA). A gadget G is (d, k)-NINA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′+ k′ ≤ d, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d′+k′ shares
of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k′

errors.

The notion of NINA with a high threshold sharing scheme implies the notion
of combined security (see Definition 6). This follows from the simulation based
security which states that the adversary can learn up to a threshold number of the
gadget’s inputs which, if lower than the passive threshold of the sharing scheme,
gives no information on the gadget’s secrets. Similarly, since the adversary can
only fault up to a threshold number of outputs, a decoding gadget can detect or
correct those errors given that the sharing scheme has enough redundancy in it.
A formal proof of this implication is found in Appendix A.

Theorem 1. A (d, k)-NINA gadget G with input encoding I and output decod-
ing O using a secret sharing scheme with passive threshold at least d and active
threshold at least k is (d′, k′)-order combined secure for any d′ + k′ ≤ d and
k′ ≤ k.

As a result, if we prove a gadget is NINA, we know it is combined secure.
However, just as with non-interference, the NINA notion is not sufficient for
composability. To this end we introduce “Strong NINA” (SNINA).

Definition 12 ((d, k)-SNINA). A gadget G is (d, k)-SNINA if for any set of
k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1 + d2 + k1 + k2 ≤ d and
k1 + k2 ≤ k, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d1 + k1 + k2
shares of each input and the injected errors.

(b) Correctness: The gadget either aborts or gives an output with at most k2
errors.

The notion of SNINA is sufficient for composability. In other words the com-
position of two SNINA gadgets is again SNINA (for a proof see Appendix B).

Theorem 2. The composition of two (d, k)-SNINA gadgets is (d, k)-SNINA.

The above theorem together with Theorem 1 implies that the notion of
SNINA is a sufficient condition to achieve composable combined security.

Remark 1. We note that there are variants in between NINA and SNINA, these
hybrid definitions (SNI-NA and NI-SNA) are given in Appendix D. While these
definitions are not sufficient to guarantee arbitrary composition of gadgets, they
allow for a secure countermeasure using minimal error check and refresh gadgets
similar to what was done in [7].
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(d, k)-
SNINA

(d, k)-NINA(d′, k′)
Comb. Sec.

k-SNA

d-SNI

k-NA

d-NI

k Act. Sec.

d Pas. Sec.

Figure 4. A short overview of security models and relations between them.

Nevertheless, we find that there is a stronger property than NINA which
gives improved protection. In case we use error correcting techniques instead of
error detecting ones, specialised gadgets can attain a stronger security condition
where faults are no longer modelled as probes. Thus we propose a security notion
where we claim an adversary can not learn anything by faulting a gadget which
manifests itself in the security definition as the simulator not getting an extra
input share for an injected fault. The result of this change is captured in the
following definition which we dub “Independent NINA” or ININA.

Definition 13 ((d, k)-ININA). A gadget G is (d, k)-ININA if for any set of
k′ ≤ k errors and any set of d′ probes, such that d′ ≤ d, the following holds.

(a) Privacy: The probes can be simulated with d′ shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k′ errors.

The above definition can again be made into a property which is sufficient for
arbitrary compositions. This gives us the notion of “Strong Independent NINA”
or SININA for short.

Definition 14 ((d, k)-SININA). A gadget G is (d, k)-SININA if for any set
of k1 errors on each input and k2 intermediate errors, any set of d1 intermediate
probes, any set of d2 probes on the output, such that d1 +d2 ≤ d and k1 +k2 ≤ k,
the following holds.

(a) Privacy: The probes can be simulated with d1 shares of each input and the
injected errors.

(b) Correctness: The gadget gives an output with at most k2 errors.

4 Combined Secure Duplicated Boolean Masking

In this section we introduce a combined secure methodology for an arbitrary
security order. We work over bits F2, share values using Boolean secret sharing
and encode using duplication. We first introduce the secret sharing scheme and
then move on to show our methodology. In Section 7 and Appendix F we prove
the security of the gadgets.
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4.1 Duplicated Boolean Masking

In order to defend algorithms against side-channel attacks a sound and widely
deployed approach is the masking countermeasure which was introduced at the
same time by Chari et al. [11] and by Goubin and Patarin [24]. The technique
splits each key-dependent variable x in the algorithm into shares xi such that
x =

∑
i xi over a finite field F. In case this field is binary, this masking method

is referred to as Boolean masking. If no d shares give information on the secret
we say that the masking scheme has a passive threshold d.

To defend an algorithm against fault attacks the core idea is to utilise re-
dundancy to enable detection of the injected faults. This redundancy is found in
encoding intermediate variables using error detecting codes. A popular encoding
method is to duplicate intermediate variables, such that, by checking whether all
duplicates are equal, an algorithm can detect injected faults. If all sets k faulty
shares in a share vector are detectable, we say that the encoding scheme has an
active threshold k.

In our work we make use of a duplicated Boolean masking approach which
shares a secret x as a vector

(x1,1, ..., x1,k+1, x2,1, ..., xd+1,k+1) ,

such that
∑d+1
i=1 xi,` = x for all ` ∈ [k+1] and xi,1 = ... = xi,k+1 for all i ∈ [d+1].

This method has a passive threshold d meaning that no d shares give information
on the secret x and an active threshold k meaning that any faults on at most k
shares could be detected in the share vector.

4.2 Duplicated Boolean Methodology

We recall that our secret sharing scheme has a passive threshold d, meaning that
an adversary needs to view at least d + 1 shares to recover the secret, and an
active threshold k, thus an adversary needs to inject at least k+ 1 errors for the
fault to be undetectable. We note that our methodology is similar to the one
from Private Circuits II [28]. The pseudo-code to secret share a value is given in
Algorithm 1.

Algorithm 1: Duplicated Boolean sharing a secret a

Input: Secret a and uniform random values ri
Output: Duplicated Boolean shares of a

for `← 1 to k + 1 do
for i← 1 to d do

ai,` ← ri;
end

ad+1,` ← a+
∑d

i=1 ai,`;

end

12



The addition between independent shared variables is quite simple and needs
only component-wise addition between the shares. Thus, the addition between
the sharing of a and b, giving a sharing of c = a+ b, is made by ci,` = ai,` + bi,`.
To secure operations between shares and constants we ensure that the constant
is not a single point of failure, as such it also needs to be duplicated, namely
each constant is replicated (k + 1) times to form a (k + 1) tuple which is the
encoded value of the constant. The addition of a shared value a with a constant
c is done by adding the duplicated constant to the duplicated first Boolean share
of the variable.

∀` ∈ [k + 1] : a1,` ← a1,` + c`

A multiplication with a constant is done by multiplying the duplicated constant
to each share.

∀i ∈ [d+ 1], ∀` ∈ [k + 1] : ai,` ← ai,` · c`
Since the above operations are all local, they are evidently (d, k)-NINA.

While linear operations are easily implemented, the multiplication between
shared and encoded variables is more difficult. We give pseudo-code of our multi-
plication gadget in Algorithm 2. The gadget starts by multiplying two independ-
ent share vectors of a and b to create all cross products of the form aibj . These
cross products are then remasked by adding unique randomness ri,j (which is
important for the SNI property). Since we add the same randomness over all
duplicated cross products (ui,j,` for ` ∈ [k + 1]) all these cross products should
be equal each other if no fault was injected. As a result, we can error check
them (which is important for the SNA property).2 To detect errors in the cross
products it is sufficient to compare a share to all its duplicated versions, in
symbols:

∀i, j ∈ [d+ 1], ∀` ∈ [k + 1] : ui,j,1 = ui,j,` .

Since we are working over bits, this translates to aborting the computation in
case one of the ui,j,1 + ui,j,` is equal to 1. This abort operation is considered as
a command causing all variables in the implementation to read ⊥ as explained
in our circuit model in Section 2 (in Section 4.3, we describe a gadget which
implements an ideal abort operation is not available). In case no error is detected,
the gadget sums up all the cross products for different indices j and returns a
duplicated Boolean sharing of ab. The proof that this multiplication procedure
is SNINA is given in Section 7.2. From this proof we see that there is a statistical
ineffective fault attack (see [18]) which breaks the privacy of the algorithm. This
attack works as follows, the adversary adds a non-zero fault to one of the ai,`
shares (similarly bi,` shares). In case the protocol does not abort, the adversary
learns that all bi,` = 0 (similarly all ai,` = 0), which means the adversary learns
an input secret and breaks the privacy of the gadget. The probability for this
attack to succeed is equal to 1/|F2|d+1. To increase the protection against the

2 Note that if an adversary injects a fault directly in one of the random values ri,j ,
it would not be detected. Nevertheless, the gadget still outputs a valid duplicated
Boolean sharing so it does not affect the correctness of the gadget. Nevertheless, this
fault should be carefully investigated for its effects on the gadget’s privacy.
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innefective fault, this probability needs to be made sufficiently small which is
done by increasing d or by increasing the field size |F|. In Section 5 we look at
an error correcting variant of the multiplication gadget which is not vulnerable
to an ineffective fault.

Algorithm 2: Multiplying duplicated Boolean shared values

Input: Independent shares of a and b, and uniform random ri,j
Output: Shares of ab or ⊥

for `← 1 to k + 1 do
for i← 1 to d+ 1 do

ui,i,` ← ai,`bi,`;
for j ← i+ 1 to d+ 1 do

ui,j,` ← ai,`bj,` + ri,j ;
uj,i,` ← aj,`bi,` + ri,j ;

end

end

end
for `← 2 to k + 1 do

for i← 1 to d+ 1 do
for j ← 1 to d+ 1 do

ti,j,` ← ui,j,1 + ui,j,`;
if ti,j,` = 1 then return ⊥;

end

end

end
for `← 1 to k + 1 do

for i← 1 to d+ 1 do

ci,` ←
∑d+1

j=1 ui,j,`;

end

end

In Algorithm 3 we provide a method to refresh the randomness of a shared
variable and check whether there are errors present on its shares. In Appendix F
we prove that Algorithm 3 is SNINA. We note that this gadget can be used to
transform a NINA secure operation into its SNINA variant by serially composing
the NINA gadget with Algorithm 3. This follows from Theorem 3 which states
that the serial composition between a NINA gadget and an SNINA gadget is
again SNINA. We leave the proof of this theorem for Appendix C.

Theorem 3. The serial composition of a single input, output (d, k)-NINA gad-
get with a (d, k)-SNINA gadget is again (d, k)-SNINA.

Thus sometimes one can substitute SNINA gadgets with NINA ones without
sacrificing security. This reduces costs as NINA secure gadgets are generally
more efficient than their SNINA variants.
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Algorithm 3: Refreshing and checking a duplicated Boolean sharing

Input: Duplicated Boolean shares of a and uniform random values ri,j
Output: Refreshed and checked shares of a or ⊥

for `← 2 to k + 1 do
for i← 1 to d+ 1 do

ti,` ← ai,1 + ai,`;
if ti,` = 1 then return ⊥;

end

end
for `← 1 to k + 1 do

for i← 1 to d+ 1 do
for j ← i+ 1 to d+ 1 do

ai,` ← ai,` + ri,j ;
aj,` ← aj,` + ri,j ;

end

end

end

Together, all gadgets described in this section form a methodology to secure
arbitrary circuits as each algorithm over a finite field can be described in terms
of additions and multiplications.

4.3 A Cascading Gadget

In case an abort mechanism is not available, we provide a circuit which erases
all data when a fault is detected. This method is similar to the cascading gadget
described in [28] and thus we lend its name. We first make a variable for the
abort flag, we consider ⊥` for ` ∈ [k]. A priori all ⊥` are equal to zero, however,
when a fault is injected we require that each bit ⊥` is set to one. In case the
abort flag equals all one, no k − 1 faults can change each bit ⊥` back to 0. The
above described functionality is implemented by duplicating the error checks in
Algorithms 2 and 3. For example, the error checking component (the first lines)
of Algorithm 3 would be changed to the following.

for m← 1 to k do
for `← 2 to k + 1 do

for i← 1 to d+ 1 do
⊥m ← (ai,1 + ai,`) ∨ ⊥m;

end

end

end
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From the above algorithm it is clear that in case one of the ai,1 does not
equal ai,` all bits ⊥m are set to one and no k− 1 faults can set them all back to
zero.

With the above abort flag as a global variable and its functionality as de-
scribed above, we can easily describe a gadget which erases its input in case a
bit ⊥m is equal to one. We give the pseudo-code of this gadget in Algorithm 4.

Algorithm 4: Cascading a duplicated Boolean sharing

Input: Shares of a and the abort state ⊥m for m ∈ [k]
Output: The shares of a or all 0

for `← 1 to k + 1 do
for i← 1 to d+ 1 do

ai,` ← ai,`
∏k

m=1(1 +⊥m);
end

end

In case Algorithm 4 is serially composed with each Algorithm 2 or Al-
gorithm 3 in a circuit with a final error check, our duplicated Boolean masking
methodology is secure against combined attacks without the need of an ideal
abort command.

5 A Correcting Multiplication

In the previous section we gave a combined secure methodology based on de-
tecting errors using duplicated Boolean shares. From its proof of security in
Theorem 5 we can see that Algorithm 2 is vulnerable against a statistical inef-
fective fault. To avoid this vulnerability one can use an error correction method
instead of an error detection one. As there is no longer an abort signal, a fault
does not change the state of the output and as a result ineffective faults are now
actually ineffective. Note that this comes at the increased cost of using extra
shares and operations to enable error correction.

Instead of just replacing the error detection mechanisms with error correction
ones, we go one step further and create an error correcting variant of Algorithm 2
which attains Strong Independent NINA security (Definition 14). Whereas Al-
gorithm 2 was secure against d probes and k faults where the combined number
of probes and faults wouldn’t exceed d, our new algorithm does not require this
restriction meaning that it is secure against up to d probes and k faults at the
same time. In other words, an adversary faulting the new multiplication gadget
can not harm the privacy of the gadget.

We introduce the error correcting multiplication gadget. We again work over
bits F2, share values using d Boolean secret shares, but now encode using 2k+ 1
duplicated shares (instead of k + 1 shares). As such, the secret sharing scheme
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Algorithm 5: Multiplying shares with error correction

Input: Independent shares of a and b, and uniform random ri,j,`
Output: Shares of ab

for `← 1 to 2k + 1 do
for i← 1 to d+ 1 do

ui,i,` ← ai,`bi,`;
for j ← i+ 1 to d+ 1 do

ui,j,` ← ai,`bj,`;
uj,i,` ← aj,`bi,` ;
for m← 1 to k + 1 do

ui,j,` ← ui,j,` + ri,j,m;
uj,i,` ← uj,i,` + ri,j,m;

end

end

end

end
for `← 1 to 2k + 1 do

for i← 1 to d+ 1 do
for j ← 1 to d+ 1 do

vi,j,` ← Maj(ui,j,1, ..., ui,j,2k+1);
end

end

end
for `← 1 to 2k + 1 do

for i← 1 to d+ 1 do

ci,` ←
∑d+1

j=1 vi,j,`;

end

end

has a passive threshold d, meaning that an adversary needs to view at least d+1
shares to recover the secret, and an active threshold k, thus an adversary needs to
inject at least k + 1 errors for the fault to be uncorrectable (note the difference
with undetectability of faults). We give the pseudo-code of the multiplication
gadget in Algorithm 5. The error correcting gadget works similar to the error
detecting one. It starts by multiplying two independent share vectors of a and b
to create all cross products. These cross products are then remasked by adding
k+1 random elements ri,j,` to each of them. As a result, since each cross product
is masked by k+1 random values, no set of k faults can remove all random values
on a cross product. Since we add the same randomness over all duplicated cross
products (ui,j,` for ` ∈ [2k + 1]) all these cross products still equal each other if
no fault was injected. As a result, we can error correct them. An error correction
on duplicated shares is done by majority voting the shares. If at least k+1 out of
2k+ 1 cross products were equal to zero, the result of this majority vote is zero
otherwise it is equal to one. For brevity, we denote this operation “Maj”, where
we assume for brevity that a probing adversary can view all arguments given to
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the Maj function with one probe. We stress that this error correction procedure
is independently applied to each cross product, such that a single fault can
only affect one corrected cross product. Our multiplication gadget again ends by
summing up all the cross products for different indices j and returns a duplicated
Boolean sharing of ab. The proof that this multiplication procedure is SININA
is given in Theorem 6.

6 Combined Secure Polynomial Masking

Additional to the duplicated Boolean masking countermeasures, we introduce a
polynomial masking based countermeasure. We note that polynomial masking
has been used several times to passively protect implementations [10, 17, 21, 23,
27, 34]. The benefit of this countermeasure is that the total number of shares
needed to protect against d probes and k faults is now n = d + k + 1 instead
of n = (d + 1)(k + 1) as for duplicated Boolean masking and thus, for a larger
security order, the overhead for combined security will be lower compared to a
duplicated Boolean countermeasure.

We first introduce Shamir’s secret sharing and follow-up by proposing our
multiplication gadget where we leave the privacy part of the SNINA security to
Theorem 10 in Appendix G.

6.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme is a linear secret sharing scheme where the secret
a is divided in n shares by taking a random polynomial P over a finite field Fq
of degree d, such that P (0) = a. We denote the n distinct non-zero points αi
as the points in which we evaluate the polynomial P , these points are public.
The shares are defined as the P (αi) where, to reconstruct the secret, we make
use of polynomial interpolation. The scheme has privacy d, meaning that to
get information on the secret we need to see least d + 1 shares. We denote the
λi as the reconstruction constants, i.e., for a sharing (a1, ..., an) we have that∑n
i=1 λiai = a. The λi are public and are constructed from the αi. We denote M

as the error check matrix with mi,j as the element on the ith row and jth column
in the matrix, this matrix is also constructed from the αi. The error check matrix
has the property that for each sharing (a1, ..., an), M(a1, ..., an)T = (0, ..., 0)T ∈
Fkq if all shares are correct and that M(a1, ..., an)T 6= (0, ..., 0)T if up to k shares
are erroneous. Thus the matrix M can detect up to k faults in a share vector.

6.2 A Multiplication Gadget

We specify a combined secure multiplication gadget based on polynomial mask-
ing. The pseudo-code is written out in Algorithm 6. We work over the binary
field Fq and share a secret in n = d+ k+ 1 shares where the sharing scheme has
a passive threshold d and an active threshold k.
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The multiplication gadget starts by multiplying two independent share vec-
tors of a and b to create all cross products aibj . These cross products are then
remasked by adding unique randomness. This randomness is taken as points on
a polynomial r(x, y) of degree d in both x and y with r(0, 0) = 0. Thus r(x, y) is
a bivariate polynomial through zero of degree d, the generation of such a poly-
nomial is discussed in the following subsection. Using the properties of the error
check matrix M as defined in the previous subsection, we check if there are any
errors present on the remasked cross products. More specifically, we check all
masked cross products formed with either the same ai or bi share. The added
randomness does not stand in the way of the error checks as the randomness
forms a polynomial of degree d over each individual check. Similarly, since the
cross products are hidden behind the bivariate randomness, the error checks
do not reveal any secrets. In case an error is detected, i.e., either t1,i,` 6= 0 or
t2,i,` 6= 0, we abort the computation. In case no errors were detected, we recom-
bine the cross products with the same ai share such that we get a polynomial
masking of the multiplication ab which ends the operation of the gadget. The
proof that Algorithm 6 is SNINA is left to Theorem 10 in Appendix G. We note
that this gadget, similar as Algorithm 2, is vulnerable to an ineffective fault
which has a 1/|Fq|d+1 probability to succeed.

Algorithm 6: Multiplying shared values using polynomial masking

Input: Independent shares of a and b, and random bivariate shares ri,j of zero
Output: Polynomial shares of ab or ⊥

for i← 1 to n do
for j ← 1 to n do

ui,j ← aibj + ri,j ;
end

end
for `← 1 to n do

for i← 1 to n do
t1,i,` ←

∑n
j=1m`,jui,j ;

if t1,i,` 6= 0 then return ⊥;
t2,i,` ←

∑n
j=1m`,juj,i;

if t2,i,` 6= 0 then return ⊥;

end

end
for i← 1 to n do

ci ←
∑n

j=1 λjui,j ;

end

19



6.3 Secure Randomness

In this section, we discuss the secure creation of the bivariate randomness ri,j
required for Algorithm 6.

The creation of this randomness is described in Algorithm 7. This gadget
starts by taking uniform random variables zk,` which are used to represent the
coefficients of a bivariate polynomial r(x, y). This polynomial is n2 times evalu-
ated in each tuple (αi, αj). However, to make sure the gadget would be passive
secure, the above described method is applied d+ 1 separate times as otherwise
each share r(αi, αj) would depend on all random values zk,`. The end result,
bivariate random shares, are then obtained by summing up each result of the
d+ 1 repetitions.

Algorithm 7: Generating combined secure bivariate randomness

Input: Uniform random values zk,`,m
Output: Random bivariate shares ri,j through zero

for m← 1 to d+ 1 do
for i← 1 to n do

for j ← 1 to n do

ri,j,m ←
∑

k,` zk,`,mα
k−1
i α`−1

j ;

end

end

end
for i← 1 to n do

for j ← 1 to n do
ri,j ←

∑
m ri,j,m;

end

end

Remark 2. The randomness generation is expensive as it requires O(d3) field
units of randomness and O(n2d3) field operations. Optimisation techniques such
as polynomial evaluation via the discrete Fourier transform [17] and packed
secret sharing [27] could be used to lower the cost of the countermeasure.

7 Active and Combined Security of Algorithm 2

In this section, we prove the active and combined security of the error detecting
duplicated Boolean multiplication gadget (Algorithm 2) using our composable
security definitions given in Section 3.2. We note that for completeness and
comparison purposes, we give a proof of the correctness and the SNI security of
Algorithm 2 in Appendix E.
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7.1 Active Security of Algorithm 2

We prove the correctness of Algorithm 2 in the presence of active attacks using
the k-SNA model.

The proof consists of showing that if any errors are present on the input of
Algorithm 2, the algorithm aborts the computation and if an error is injected in
one of the intermediate variables of the algorithm, the fault either affects only
one output share or the algorithm aborts.

Theorem 4. Algorithm 2 is k-SNA.

Proof. Take an arbitrary k2 faults on the intermediate variables and k1 faults
on each input such that k1 + k2 ≤ k. We show that Algorithm 2 either aborts or
gives back a result with at most k2 errors. We classify the internal variables in
the following groups.

(1) ai,`, bi,`
(2) ri,j
(3) ui,j,`
(4) ti,j,`
(5) ci,`

We go over all possible faults and determine whether the algorithm aborts or
which outputs ci,` are affected. Recall that Algorithm 2 has a total of (d+ 1)2k
error checks by verifying that ui,j,1 = ui,j,` for all i, j ∈ [d + 1] and ` ∈ [k + 1].
We distinguish the following cases.

– The adversary used no faults. Then we know from the proof of correctness
(Theorem 7) that Algorithm 2 gives back a correct result.

– The adversary injected a fault in group (1). For ease we consider that ai was
faulted. We go over the following sub-cases.
• No cross products ui,j,` are faulty. In this case all bj,` for j ∈ [d+1] were

equal to zero. As a result, the faults on the a shares are removed, the
algorithm does not abort and gives back a correct output.

• At least one ui,j,` is faulty. In this case there are k error checks performed
on the faulty ui,j,`. Since the adversary can only inject k−1 other faults,
it can not bypass all checks and the algorithm aborts.

– The adversary injected a fault in group (2). This fault affects all ui,j,` and
uj,i,` for ` ∈ [k+ 1]. As a result, this fault goes undetected. However, it does
not affect the correctness of the algorithm as the output is still a duplicated
Boolean sharing of ab.

– The adversary injected a fault in group (3). This fault would be detected by
the k error checks on ui,j,` for ` ∈ [k + 1]. As the adversary can only fault
k − 1 other variables, it can not bypass these checks and the error will be
detected.

– The adversary injected a fault in group (4). As this value is only used to
check whether an error is present on the cross products, it does not influence
the output of the algorithm.
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– The adversary injected a fault in group (5). In this case ci,` is faulty.

As the only faults which affect the output shares are those in group (5) and
since the adversary can only inject k2 intermediate errors, Algorithm 2 gives
an output with at most k2 erroneous output shares or it aborts. Thus we have
proven that Algorithm 2 is k-SNA.

7.2 Combined Security of Algorithm 2

Now we prove the SNINA security of Algorithm 2 as defined in Section 3.2.
Intuitively, the proof is a combination of the SNI and SNA security where the
simulator now needs to simulate the abort signal. This simulator is given a share
of each input per probe and fault injected in the gadget. Since our multiplication
gadget is a duplicated version of the Ishai et al. multiplication gadget with d+ 1
shares, similar proofs on its passive (SNI) security already exist in the literature
such as the one from [20].

We note that the following proof shows there is an attack which has a probab-
ility to violate the privacy of the gadget. This probability can be made negligible
in d thus we show that Algorithm 2 is computationally secure as per Definition 3.

Theorem 5. Algorithm 2 is (d, k)-SNINA.

Proof. The proof is split in two parts. In the first part we prove that a probing
and faulting adversary can not get an output with more than the injected number
of errors of erroneous shares. In the second part we prove that this adversary
also can not break the privacy of the scheme.

We take arbitrary inputs and injected randomness. Take arbitrary k1 errors
on each input and k2 intermediate errors such that k1 + k2 ≤ k. We take d1
arbitrary probes on the intermediate variables and d2 probes on the output such
that d1 + d2 + k1 + k2 ≤ d.

First, we prove that given the faults and probes, the algorithm does not give
an output with more than k2 erroneous outputs. From Theorem 4 we know that
for any set of k1 errors on each input and k2 errors on the intermediate variables,
the gadget does not give an output with more than k2 erroneous shares. Thus,
the information given by the probes can not help the adversary to create an
incorrect output.

Second, we prove the privacy of the scheme. We classify the internal variables
in the following groups.

(1) ai,`, bi,`
(2) ri,j
(3) ui,j,`
(4) ti,j,`
(5) ci,`

We define two sets of indices I and J such that |I| ≤ d1 + k1 + k2, |J | ≤
d1+k1+k2 and such that the probed values and the abort signal can be simulated
given only the knowledge of {ai,1}i∈I and {bi,1}i∈J . The sets are constructed as
follows.
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– For every probe or fault as in group (1) add the corresponding i to either I
or J .

– For every probe or fault as in groups (2), (3), (4) add i to I and j to J .

– For every probe or fault as in group (5) add i to I and for every probed
ui,j,`, ri,j or ti,j,` add j to J .

Since the adversary is allowed to make at most d1 internal probes, k1 faults
on each input and k2 intermediate faults, we have that |I| ≤ d1 + k1 + k2 and
|J | ≤ d1 + k1 + k2. We now show how the simulator behaves for the internal
observed values.

– For each observation as in group (1), since the probed input and the injected
errors are given to the simulator, it can perfectly simulate this observation.

– For each observation as in group (2), we simulate ri,j as a uniform random
variable.

– For each observation as in group (3), the simulator has access to ai,1 and bj,1
(a priori ai,1 = ai,` and bj,1 = bj,`). In case ri,j was not directly probed it is
simulated as a uniform random variable, otherwise it was already simulated.
In case there were errors injected in the ai,`, bj,`, ri,j or ui,j,`, the simulator
is given these errors. As a result, the simulator can perfectly simulate the
ui,j,`.

– For each observation as in group (4). By definition i ∈ I and j ∈ J . Since
the simulator is given the injected faults, it knows the ai,1, bj,1 and ai,`, bj,`
used in the ui,j,1 and ui,j,`. Thus the simulation follows as in the previous
step.

– For each observation as in group (5), by definition i ∈ I, J . In case the
simulator knows the algorithm will abort, it simulates the value ci,j,` as ⊥.
Otherwise, we assign a random value to every term ui,j,` for j ∈ [d + 1].
Then if one of the terms ui,j,`, uj,i,`, ti,j,`, tj,i,` or ri,j was already probed or
faulted, since by definition i ∈ I and j ∈ J the simulator knows ai,` and bj,`
and can simulate ui,j,`. Otherwise ri,j is not viewed or faulted by any other
probe or fault and thus is perfectly simulated as a uniform random value.

We now simulate the outputs ci,` using no additional information from the
inputs. Recall that faults are treated as probes. We have to take into account
the following cases.

– In case the simulator knows the abort signal will be flagged, it simulates all
ci,` as ⊥.

– If the attacker has already observed some of the internal values, then the
partial sums ui,j,` or ai,`bi,` previously probed are already simulated. As for
the remaining terms, we note that by definition of the scheme there always
exists one random bit ri,j which does not appear in the computation of
any other observed element. Therefore the simulator can assign a random
and independent value to ci,` unless the ci,` was directly faulted then the
simulator simulates it as the injected fault.
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– If the attacker has only observed output shares, then we point out that,
following Algorithm 2, each of them is composed by d random bits ri,j and at
most one of them can enter in the computation of each other output variable
cj,`. Since the adversary may have previously probed at most d− 1 of them,
there exist one random bit ri,j which does not appear in the computation
of any other observed value. Thus the simulator can assign a random and
independent element to ci,` or as an injected fault, completing the proof.

We go through the possible faults and show we can simulate the abort signal.
We note that since we treat faults as probes and since the simulator is given the
location and value of the errors, it knows if the injected faults were trivial or not,
i.e., if the injected faults changed the original value. This also holds for when
there are multiple faults on the same variable.

– For each fault as in group (1). In case there was an injected error which
differed from the original value, the simulator aborts the algorithm. For
brevity, we assume ai,` was faulted. From Theorem 4 we know that the real
algorithm aborts unless all bj,` = 0 for j ∈ [d+1] in which case the simulator
fails to simulate the real algorithm. However, since the input shares were
randomised the probability this event occurs is 1/|F2|d+1. In case more than
one input share was faulty, the probability to fail the simulation is smaller
than 1/|F2|d+1.

– For each fault as in group (2), the simulator does not abort. From Theorem 4
we know that in case there is an error on the ri,j , the algorithm never aborts
thus this simulation is perfect.

– For each fault as in group (3), the simulator goes over all errors on ai,`,
bj,`, ri,j , ui,j,` and ti,j,` and checks if the total error is non-trivial in which
case the simulator aborts the algorithm. From Theorem 4 we know that in
case there is an error on the ui,j,`, the algorithm always aborts thus this
simulation is perfect.

– For each fault as in group (4). Similar to the previous step, the simulator
checks the total error on both ui,j,1 and ui,j,`. Since the simulator is given
both ai,1 and bj,1, it can perfectly simulate whether the algorithm aborts.

– For each fault as in group (5), the simulator does not abort.

From Step 1 of the simulation of the abort signal we see that the simulation
fails with a maximal probability of 1/|F2|d+1 for a fault in group (1). Since
the simulator aborts in case such a fault occurs, the overall probability for the
simulation to fail is 1/|F2|d+1 which can be made negligible in d.

Since |I| ≤ d1 + k1 + k2 and |J | ≤ d1 + k1 + k2 and since the abort signal
and the probed variables are simulated using only the knowledge of {ai,1}i∈I
and {bi,1}i∈J , Algorithm 2 is (d, k)-SNINA.

Remark 3. We have proven in Appendix B that the composition of SNINA gad-
gets is again an SNINA gadget but this does not hold if there is a non-negligible
probability that the simulation fails, thus when d is not taken sufficiently large.
However, we note that Algorithm 2 is still composable as a failed attack causes
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the protocol to abort and a successful attack breaks the privacy of the scheme.
Since this is the only attack, the probability of a bad event stays the same when
composed with itself or other SNINA gadgets.

8 Combined Security of Algorithm 5

Since the proof of SNA for the error correcting duplicated Boolean multiplication
gadget (Algorithm 5) would be similar to the one of the error detecting case (see
Theorem 4), we only discuss the privacy of the algorithm following the definition
of Strong Independent NINA (Definition 14).

Theorem 6. Algorithm 5 is (d, k)-SININA.

Proof. We take arbitrary inputs and injected randomness. Take arbitrary k1
errors on each input and k2 intermediate errors such that k1 + k2 ≤ k. We take
d1 arbitrary probes on the intermediate variables and d2 probes on the output
such that d1 + d2 ≤ d.

We only prove the privacy of the scheme. We classify the internal variables
in the following groups.

(1) ai,`, bi,`
(2) ri,j,`
(3) ui,j,`,m
(4) vi,j,`
(5) ci,`

We define two sets of indices I and J such that |I| ≤ d1, |J | ≤ d1 and such
that the probed values can be simulated given only the knowledge of {ai,1}i∈I
and {bi,1}i∈J . The sets are constructed as follows.

– For every probe as in groups (1), (5) add i to I and J .
– For every probe as in groups (3), (4) add i to I and j to J .

Since the adversary is allowed to make at most d1 internal probes, we have that
|I| ≤ d1 and |J | ≤ d1. We now show how the simulator behaves for the internal
observed values.

– For each observation as in group (1), since the probed input and the injected
errors are given to the simulator, it can perfectly simulate this observation.

– For each observation as in group (2), we simulate ri,j,` as a uniform random
variable.

– For each observation as in group (3), the simulator has access to ai,1 and bj,1
(a priori ai,1 = ai,` and bj,1 = bj,`). In case any of the ri,j,m were not directly
probed they are simulated as uniform random variables, otherwise they were
already simulated. In case there were errors injected in the ai,`, bj,`, ri,j,m
or ui,j,`, the simulator is given these errors. As a result, the simulator can
perfectly simulate the ui,j,`.
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– For each observation as in group (4). By definition i ∈ I and j ∈ J . Since
the simulator is given the injected faults, it knows the ai,1, bj,1 and ai,`, bj,`
used in the ui,j,m. Thus the simulation follows as in the previous step.

– For each observation as in group (5), by definition i ∈ I, J . Since each cross
product ui,j,` is masked by k+1 random values, we know that the adversary
could not have faulted all of them. From the error correcting properties of
the Maj function, we know that the vi,j,` can not contain errors unless
directly faulted. As a result, we assign a random value to every term vi,j,`
for j ∈ [d + 1] unless the term or ui,j,` was previously already probed and
thus can be perfectly simulated.

We now simulate probed outputs ci,` using no information from the inputs.
Recall that faults are treated as probes. We have to take into account the fol-
lowing cases.

– If the attacker has already observed some of the internal values, then the
partial sums vi,j,` or ai,`bi,` previously probed are already simulated. As for
the remaining terms, we note that by definition of the scheme there always
exists one random bit ri,j,m which does not appear in the computation of
any other observed element. Therefore the simulator can assign a random
and independent value to ci,` unless the ci,` was directly faulted then the
simulator simulates it as the injected fault.

– If the attacker has only observed output shares, then we point out that,
following Algorithm 5, each of them is composed by d random bits ri,j,m
and at most one of them can enter in the computation of each other output
variable cj,`. Since the adversary may have previously probed at most d− 1
of them, there exist one random bit ri,j,m which does not appear in the
computation of any other observed value. Thus the simulator can assign a
random and independent element to ci,` or as an injected fault, completing
the proof.

Since |I| ≤ d1 and |J | ≤ d1 and the probed variables are simulated using
only the knowledge of {ai,1}i∈I and {bi,1}i∈J , Algorithm 5 is (d, k)-SININA.

9 Conclusion

We provided security notions considering circuits with probed and/or faulted
wires. We then extended the notions to active and combined composable no-
tions similar to the extension from the probing model to the notion of Non-
Interference. The first notion of Non-Accumulation (NA) addresses composable
active security which states that a gadget is secure if injected faults affect only
one output each. The second is the notion of composable combined security
(NINA). A gadget is considered NINA if an injected fault only affects one out-
put and a fault or probe can be simulated using only one input. We proposed
three multiplication gadgets, two based on duplicated Boolean masking and one
on polynomial masking. We discussed both error detection and error correcting
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gadgets. We showed that error detection mechanisms are prone to ineffective
faults whereas error correction comes at an increased cost but gives significantly
improved protection (Independent NINA).Our security notions do not depend
on the secret sharing scheme as we considered both a countermeasure based
on duplicated Boolean masking and based on polynomial masking. The latter
achieves security using only a linear number of shares in the combined secur-
ity order compared to a quadratic number of shares for the duplication based
alternatives.
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A Proof of Theorem 1

In this appendix we give the proof that NINA (Definition 11) implies combined
security (Definition 6).

Proof. We recall that per Definition 2 an input encoding function I is a prob-
abilistic circuit which shares the input using uniform randomness and is called
before the gadget G. The output decoding function O gives back the decoding of
its input shares or an abort signal ⊥ and is called on the output of G. We take
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an arbitrary d′, k′ set of probes and faults such that d′ + k′ ≤ d and k′ ≤ k and
prove the correctness and privacy of G with I and O following Definition 11.

First, we prove that the adversary does not violate the correctness of G with
I and O given the knowledge of any d′ intermediate values and any set of k′

faults in the intermediate values. From Definition 11 of NINA we know that G
gives an output with less than k′ faulty shares or an abort signal. Since k′ ≤ k,
we know from our our secret sharing scheme that the output decoder O either
corrects its input and gives a correct output or detects an error and aborts the
computation.

Second, we prove the privacy of G with I andO. Since we defined simulability
(Definition 3) with computational security, we consider d large enough for the
probability of simulation failure for G to be negligible. From Definition 11 of
NINA we know that the adversary learns at most d′+ k′ input shares of G from
the injected probes and faults. Since d′+k′ ≤ d, the passive security threshold of
the secret sharing scheme is not reached and hence no information of G’s secret
inputs are revealed due to the properties of I. Additionally, the adversary is
given the state of the abort signal of the circuit. From the definition of NINA we
know that given those d′+k′ input shares, we can simulate the abort signal, i.e.,
we can decide whether or not the abort signal was flagged. As we simulated the
abort signal and the faults on the output shares, we can also simulate whether
O gives back a correct output or an abort. As a result, the privacy of G is
proven.

B Proof of Theorem 2

In this appendix, we show that the composition of SNINA secure gadgets is
again SNINA where we assume for simplicity that each gadget has one shared
output.

Proof. Consider two gadgets G1 and G2 and their composition G3. We prove that
G3 is (d, k)-SNINA given that both G1 and G2 are (d, k)-SNINA. We assume
that G1 and G2 share at least one wire otherwise the proof is evident. Without
loss of generality we assume the output of G2 is not an input to G1 (thus G1

is evaluated before or at the same time as G2). Since we defined simulability
(Definition 3) with computational security, we consider d large enough for the
probability of simulation failure for G1 and G2 to be negligible.

Take an arbitrary set of k1 errors on each input of G3, arbitrary sets of k2
intermediate errors and d1 probes on G3 and an arbitrary set of d2 probes on
the output of G3, such that d1 + d2 + k1 + k2 ≤ d and k1 + k2 ≤ k. Because G3

is the composition of G1 and G2, we divide the d1 probes as d3 probes on G1

and d4 probes on G2 such that d3 + d4 = d1. Similarly, we have k3 faults on G1

and k4 faults on G2 such that k3 + k4 = k2.
We first prove the correctness of G3, since G1 is instantiated with k1 errors

on each input and k3 intermediate errors, such that k1 + k3 ≤ k, and since G1

is (d, k)-SNINA it either aborts or its output has at most k3 ≤ k2 errors on it.
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Now G2 is instantiated with either k1 or k3 faults on each input and has k4
intermediate faults, since G2 is (d, k)-SNINA and k1 + k4 ≤ k, k3 + k4 ≤ k, it
follows that G2 either aborts or its output contain at most k4 ≤ k2 errors. Since
the combined outputs of G1 and G2 have less than k2 faults on them, we have
proven the correctness of G3.

Second, we prove the privacy of G3. First if G1 aborts, then we can simulate
this abort signal with d3 + k1 + k3 of G1’s input shares and the injected errors.
Recall that G2 is instantiated with either k1 or k3 faults on each input and there
are k4 faults on its intermediate variables. Similarly, there are d2 probes on G2’s
output and d4 intermediate probes. Since G2 is (d, k)-SNINA, the adversary
learns at most d4 + k4 input shares of G2. Additionally, the adversary learns
max(k1, k3) shares due to the faults on G2’s inputs. Since both G1 and G2 are
(d, k)-SNINA and less than k faults are injected, we know that each fault causes
the adversary to learn at most one share of each input per fault. From this we
learn that the k3 injected faults in G1 cause the adversary to learn k3 input
shares of G1 and since at most k3 faults propagate to its output, the adversary
learns at most k3 input shares of G2. We also see that the k1 input faults on
G3 give the adversary knowledge of at most k1 shares of G1 and of G2, however
these do not propagate from G1 to G2. Finally, since the output of G1 is either
the output of G3 or the input to G2 and since d3 + d4 + d2 + k1 + k3 + k4 ≤ d,
we can simulate the probed values and the abort signals of G1 and G2 with at
most d3 + d4 + k1 + k3 + k4 ≤ d1 + k1 + k2 shares of each input. This proves the
privacy of G3 and thus that G3 is (d, k)-SNINA.

C Proof of Theorem 3

We show that the serial composition of a NINA and an SNINA gadget is again
SNINA where we assume for simplicity that each gadget has one shared output.

Proof. For brevity, we only show the proof where G1 is NINA and G2 is SNINA.
Assume we have two gadgets G1 and G2 where we call their serial composition
G3. We prove that G3 is (d, k)-SNINA given that G1 is (d, k)-NINA and G2 is
(d, k)-SNINA. Since we defined simulability (Definition 3) with computational
security, we consider d large enough for the probability of simulation failure for
G1 and G2 to be negligible.

Take an arbitrary set of k1 errors on the input of G3, arbitrary sets of k2
intermediate errors and d1 probes on G3 and an arbitrary set of d2 probes on
the output of G3, such that d1 + d2 + k1 + k2 ≤ d and k1 + k2 ≤ k. Because G3

is the combination of G1 and G2 we divide the d1 probes as d3 probes on G1

and d4 probes on G2 such that d3 + d4 = d1. The same with the faults where
we have k3 faults on G1 and k4 faults on G2 such that k3 + k4 = k2. We need to
prove that G3 is correct and private.

We first prove the correctness. We know from G1 being (d, k)-SNINA that
G1 gives an output containing at most k3 errors or it aborts. This holds since
G1 is faulted by k3 intermediate errors where its inputs are instantiated with k1
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faults such that k1 + k3 ≤ k. Now G2 is instantiated with k1 + k3 faults on the
input and k4 intermediate faults. Since G2 is (d, k)-SNINA and k1 +k3 +k4 ≤ k,
we know that G2 gives back an output with at most k4 ≤ k2 errors or it aborts.
This proves the correctness of G3.

Second, we prove the privacy of G3. First, if G1 aborts, we know that we
can simulate this abort signal with d3 + k1 + k3 input shares of G1 and the
injected errors. We look at the case where G1 does not abort. From the previous
paragraph we know that G2 is instantiated with at most k1 + k3 faults on its
input and with k4 intermediate faults where there are d2 probes on G2’s output
and d4 intermediate probes. Thus the simulator can simulate the probes and the
abort signal of G2 using the knowledge from d4 + k1 + k3 + k4 of its input values
and the injected errors. Since G1 is (d, k)-NINA and k1 + k3 ≤ k, each fault
causes at most one output share to be faulty and each fault causes the adversary
to learn at most one input share. Thus, we have that the k1 + k3 faults on G1

including the faulty inputs to G2 can be simulated by k1 +k3 inputs of G1. Thus
we can simulate the probes of G1 and G2 with d3+d4+k1+k3+k4 = d1+k1+k2
shares of the input of G3. This proves the privacy of G3 and thus that G3 is
(d, k)-SNINA.

D Variants of the NINA Definition

We define two notions which are in between the NINA and SNINA properties,
meaning that they imply NINA but are not sufficient for arbitrary compositions.

Definition 15 ((d, k) SNI-NA). A gadget G is (d, k) SNI-NA if for any set
of d1 probes and k′ ≤ k errors on the intermediate variables and any set of d2
probes on the output, such that d1 + d2 + k′ ≤ d, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d1 +k′ shares
of each input and the injected errors.

(b) Correctness: The protocol either aborts or gives an output with at most k′

errors.

Definition 16 ((d, k) NI-SNA). A gadget G is (d, k) NI-SNA if for any set of
k1 errors on each input and any set of d′ probes and k2 errors on the intermediate
variables, such that d′ + k1 + k2 ≤ d and k1 + k2 ≤ k, the following holds.

(a) Privacy: The probes and the abort signal can be simulated with d′ + k1 + k2
shares of each input and the injected errors.

(b) Correctness: The protocol either aborts or gives an output with at most k2
errors.

While these notions do not allow general composition (e.g., the arbitrary
composition between SNI-NA gadget might not be SNI-NA), a careful designer
might use these relaxed notions to attain better performances.
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E Correctness and Passive Security of Algorithm 2

In this appendix, we prove the correctness and the passive security of the duplic-
ated Boolean multiplication gadget (Algorithm 2), where the proofs are made
using the definitions given in Section 3.2.

E.1 Correctness of Algorithm 2

We verify that multiplying two duplicated Boolean masked values following Al-
gorithm 2 results in a duplicated Boolean sharing of the product of the two input
secrets.

Theorem 7. Given correct input sharings of a and b, Algorithm 2 does not
abort and the output shares ci are duplicated Boolean shares of ab.

Proof. We first show that the algorithm does not abort. Since for all i, j ∈ [d+1]
and ` ∈ [k + 1], ai,1 = ai,` and bj,1 = bj,`, we know that ui,j,1 = ui,j,`. Since we
work over a binary field we know that ui,j,1 + ui,j,` = 0 and thus the algorithm
does not abort.

Secondly, we show that ci,1 = ci,` for all i ∈ [d+ 1] and ` ∈ [k+ 1]. From the
previous paragraph we know that ui,j,1 = ui,j,` and that ai,1bj,1 = ai,`bj,` thus
the sum of these is still equal.

Lastly, we show that
∑d+1
i=1 ci,` = ab for all ` ∈ [k+1]. We know that ci,1 = ci,`

so we show the proof for ` = 1.

d+1∑
i=1

ci,1 =

d+1∑
i=1

ai,1bi,1 +
∑
j 6=i

ui,j,1

 =

d+1∑
i=1

(
ai,1bi,1 +

∑
j<i

(ai,1bj,1 + ri,j) +
∑
j>i

(ai,1bj,1 + rj,i)

)
=

d+1∑
i=1

ai,1bi,1 +
∑
j<i

ai,1bj,1 +
∑
j>i

ai,1bj,1

 =

d+1∑
i=1

ai,1

d+1∑
j=1

bj,1 = b

d+1∑
i=1

ai,1 = ab

E.2 Passive Security of Algorithm 2

We prove that Algorithm 2 is d-SNI as defined in Section 3. We recall that the
proof concerns the creation of a simulator which, given a limited set of shares,
is capable of replicating the distribution of the adversary’s probed values of the
circuit proper. Since Algorithm 2 is given unique and independent uniform ran-
dom values, it suffices to show that the adversaries probed values are uniformly
distributed or directly related to the circuit’s inputs.
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Theorem 8. Algorithm 2 is d-SNI.

Proof. Take an arbitrary set of d1 probes on the intermediate variables of Al-
gorithm 2 and d2 probes on its output such that d1 + d2 ≤ d. We construct a
simulator for the adversary’s probed values which makes use of at most d1 shares
of the secrets a, b. We classify the internal variables in the following groups where
we bundle all duplicated shares.

(1) ai = { ai,` | ` ∈ [k + 1] }, bi = { bi,` | ` ∈ [k + 1] }
(2) ri,j
(3) ui,j = {ui,j,` | ` ∈ [k + 1] }
(4) ci = { ci,` | ` ∈ [k + 1] }

We define two sets of indices I and J such that |I| ≤ d1, |J | ≤ d1 and the
probed values can be perfectly simulated given only the knowledge of {ai,1}i∈I
and {bj,1}j∈J . The sets are constructed as follows.

– For every probe in group (1) add i to I and to J .

– For every probe in groups (2), (3) add i to I and j to J .

– For every probe in group (4) add i to I and for every probed ui,j or ri,j add
j to J .

Since the adversary is allowed to make at most d1 internal probes, we have
|I| ≤ d1 and |J | ≤ d1. We now show how the simulator behaves for the internal
observed values.

– For each observation as in group (1), by definition of I and J the simulator
has access to ai,1 and bi,1 which are equal to ai,`, bi,` for ` ∈ [k + 1]. Thus
we can perfectly simulate the values.

– For each observation as in group (2), we simulate ri,j as a uniform random
variable.

– For each observation as in group (3), the simulator has access to ai,1 and
bj,1, and ri,j can be simulated as a uniform random variable if it was not
simulated before. Since ai,1, bj,1 is equal to ai,`, bj,` for ` ∈ [k + 1] and all
ui,j,` for ` ∈ [k+ 1] are masked with the same ri,j , we can perfectly simulate
the ui,j,` values.

– For each observation as in group (4), by definition i ∈ I, J . At first we assign
a random value to every term ui,j,`, with j ∈ [d + 1]. Then, if one of the
terms ui,j,`, uj,i,` or ri,j was already been probed, since by definition i ∈ J
and j ∈ J the simulator knows ai,` and bj,` and can simulate ui,j,`. Otherwise
ri,j is not viewed by any other probe and thus is perfectly simulated as a
uniform random value.

We now simulate the outputs ci,` using no information from the inputs. We
have to take into account the following cases.
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– If the attacker has already observed some of the internal values, then the
partial sums ui,j,` or ai,`bi,` previously probed are already simulated. As for
the remaining terms, we note that by definition of the scheme there always
exists one random bit ri,j which does not appear in the computation of any
other observed element. Therefore the simulator can assign a random and
independent value to ci,`.

– If the attacker has only observed output shares, then we point out that,
following Algorithm 2, each of them is composed by d random bits ri,j and at
most one of them can enter in the computation of each other output variable
cj,`. Since the adversary may have previously probed at most d− 1 of them,
there exist one random bit ri,j which does not appear in the computation
of any other observed value. Thus the simulator can assign a random and
independent element to ci,`, completing the proof.

F Combined Security of Algorithm 3

For completeness we show that the refresh and error check gadget (Algorithm 3)
is (d, k)-SNINA. The proof follows closely to the one from Theorem 5. We again
build a simulator given limited shares which is capable of simulating the probed
values and the abort signal even when faults occur and we show that each fault
can only one output or abort the algorithm.

Theorem 9. Algorithm 3 is (d, k)-SNINA.

Proof. The proof is split in two parts. In the first part we prove that the ad-
versary who is given both probes and faults can not get an output with more
than the injected number of errors of erroneous shares. In the second part we
prove that this adversary also can not break the privacy of the scheme.

We take arbitrary inputs and injected randomness. Take arbitrary k1 errors
on each input and k2 intermediate errors such that k1 + k2 ≤ k. We take d1
arbitrary probes on the intermediate variables and d2 probes on the output such
that d1 + d2 + k1 + k2 ≤ d.

First, we prove that given the faults and probes, the algorithm does not give
an output with more than k2 erroneous outputs. From the error checking step
ai,1 +ai,` for i ∈ [d+1] and ` ∈ [k+1]. We have that all ai,m = ai,` for i ∈ [d+1]
and m, ` ∈ [k+ 1]. Since the adversary can inject at most k errors, any of the k1
errors on the input would be detected and the algorithm would abort. We thus
assume that k1 = 0 and the algorithm does not abort. We distinguish two faults.

(a) A fault on ai,` after the error check.
(b) A fault on ri,`.

A fault in group (a) only affects one output share. A fault in group (b) affects two
output shares, but the output remains a duplicated Boolean sharing of a thus
the fault does not affect the correctness of the algorithm. Since the adversary
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can inject up to k2 of these errors, only up to k2 output shares can be faulty. As
a result the correctness of the scheme is guaranteed following the definition of
SNINA.

Second, we prove the privacy of the scheme. We classify the internal variables
in the following groups.

(1) ai,`
(2) ti,`
(3) ri,j
(4) ai,`

We define a set of indices I such that |I| ≤ d1 + k1 + k2 and such that the
probed values and the abort signal is simulated given only the knowledge of
{ai,1}i∈I . This set is constructed by adding i to I for every probe or fault as in
groups (1)-(4). Since the adversary is allowed to make at most d1 internal probes,
k1 faults on the input and k2 intermediate faults, we have that |I| ≤ d1+k1+k2.

We now show that the simulator can simulate the probed values.

– For each observation as in group (1), since the probed input and the injected
errors are given to the simulator, it can perfectly simulate this observation.

– For each observation as in group (2), the simulator has access to ai,1 (a priori
ai,1 = ai,`). In case there were errors injected in ai,1 or ai,`, the simulator
can perfectly simulate this as it has the injected errors.

– For each observation as in group (3), we simulate ri,j as a uniform random
variable.

– For each observation as in group (4), by definition i ∈ I. In case the simulator
knows the algorithm will abort, it simulates ai,` as ⊥. We assign a random
value to every term ri,j for j ∈ [d + 1]. If one of the terms ri,j composing
ai,` has been probed, it was already assigned a value otherwise we simulate
it as a uniform random value. Since the simulator has access to the injected
errors and since the creation of the ai,` is linear with respect to the ri,j , the
simulator can perfectly simulate an erroneous ai,`.

We now simulate the outputs which we denote as a′i,`. We have to take into
account the following cases. Recall that faults are treated as probes.

– In case the simulator knows the abort signal will be flagged, it simulates all
a′i,` as ⊥.

– If the attacker has already observed some of the internal values, then ai,` is
already given to the simulator. As for the remaining terms, we note that by
definition of the scheme there always exists one random bit ri,j which does
not appear in the computation of any other observed element. Therefore the
simulator can assign a random and independent value to a′i,` unless the a′i,`
was directly faulted then the simulator simulates it as the injected fault.

– If the attacker has only observed output shares we see that, following Al-
gorithm 3, each of the a′i,` is composed by d random bits ri,j and at most
one of them can enter in the computation of each other output variable a′j,`.
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Since the adversary may have previously probed at most d − 1 of them,
there exist one random bit ri,j which does not appear in the computation
of any other observed value. Thus the simulator can assign a random and
independent element to a′i,` or as an injected fault, completing the proof.

We then show that we can simulate the abort signal given the inputs {ai,1}i∈I .
Since Algorithm 3 only aborts if an input is faulty and the simulator is given
the faulted input, it is clear that we can simulate the abort signal.

As a result, since the probed variables are simulated using only the knowledge
of {ai,1}i∈I and |I| ≤ d1 + k1 + k2, Algorithm 3 is (d, k)-SNINA.

G Combined Security of Algorithm 6

We give the proof on the combined security of Algorithm 6.
We start by giving basic lemmas on Shamir’s secret sharing scheme, a proof

for these can be found in [2]. The first lemma states that up to d points on a
random generated polynomial of degree d act as uniform random variables, thus
also hiding the intercept of the polynomial.

Lemma 1. [2] For any secret a ∈ Fq, any set of distinct non-zero elements αi
∈ Fq, and any subset I ⊂ [n] where |I| = ` ≤ d, it holds that

{
{f(αi)}i∈I

}
≡{

U
(1)
Fq
, ..., U

(`)
Fq

}
, where f(x) is chosen uniformly at random from Pa,d and U

(1)
Fq
,

..., U
(`)
Fq

are ` independent random variables that are uniformly distributed over

Fq. With Pa,d, the set of all polynomials of degree d and constant term a.

The second lemma states that for a random bivariate polynomial g of degree
d, up to d tuples, {g(x, αi), g(αi, y)} act as uniform random variables, thus again
hiding the intercept of the bivariate polynomial.

Lemma 2. [2] Let αi ∈ Fq be n distinct non-zero values, let I ⊂ [n] with
|I| ≤ d, and let p1 and p2 be two degree-d polynomials over Fq such that p1(αi) =
p2(αi) for every i ∈ I. Then{

{(i, S1(x, αi), S1(αi, y))}i∈I
}
≡
{
{(i, S2(x, αi), S2(αi, y))}i∈I

}
,

where S1(x, y) and S2(x, y) are degree-d bivariate polynomials arbitrarily chosen
under the constraints that S1(0, z) = p1(z) and S2(0, z) = p2(z), respectively.

We then state a lemma which tells us if Algorithm 6 aborts when initialised
with some errors on the inputs and randomness.

Lemma 3. Algorithm 6 with any set of k1 faults on each input, ai, bi, and any
set of k2 faults on the randomness, ri,j, where k1 + k2 ≤ k, aborts or gives the
correct output.

We omit the proof for the lemma for the sake of brevity.
We now prove that Algorithm 6 is (d, k)-SNINA as defined in Section 3.2. For

brevity we only prove the privacy of the scheme and omit the proof of correctness.
We note that Algorithm 6 is also vulnerable by an ineffective fault as seen in the
proof.
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Theorem 10. Algorithm 6 is (d, k)-SNINA.

Proof. We take arbitrary inputs and randomness and arbitrary k1 errors on each
input and k2 intermediate errors such that k1 + k2 ≤ k. We take d1 arbitrary
probes on the intermediate variables and d2 probes on the output such that
d1 + d2 + k1 + k2 ≤ d.

We only prove the privacy of the scheme. We classify the internal wires in
the following groups.

(1) ai, bi
(2) ui,j
(3) t1,i,`
(4) t2,i,`
(5) ci

We define two sets of indices I and J such that |I| ≤ d1 + k1 + k2, |J | ≤
d1 + k1 + k2 and such that the probed values and the abort signal is simulated
given only the knowledge of {ai}i∈I and {bi}i∈J . The sets are constructed as
follows.

– For every probe or fault as in groups (1), (3), (4), (5) add i to I and to J .
– For every probe or fault as in group (2) add i to I and j to J .

For every fault on the input shares add the corresponding i to either I or J .
Since the adversary is allowed to make at most d1 internal probes, k1 faults
on each input and k2 intermediate faults, we have that |I| ≤ d1 + k1 + k2 and
|J | ≤ d1 + k1 + k2.

We now show that the simulator can simulate the probed values.

– For each observation as in group (1), since i ∈ I, J and the simulator is given
the injected errors, it can perfectly simulate the probed input wires.

– For each observation as in group (2), the simulator has access to ai and bj
where ri,j is simulated as a uniform random variable. In case there were
errors injected in the ai, bj , ri,j or ui,j , the simulator can perfectly simulate
this as it has the injected errors.

– For each observation as in group (3), by definition i ∈ I, J . First, if one
of the addends ui,j has already been probed, since by definition j ∈ J , we
can simulate it as in the previous step. We assign a random value to every
ui,j , with j 6∈ J . Note that every added error e in the ui,j affects t1,i,` as
either it adds an error e, eai or ebi to ui,j . Since the simulator knows the
corresponding ai, bi and the injected errors, the variable t1,i,` can be perfectly
simulated.

– For each observation as in group (4), the approach is similar to that of the
previous step.

– For each observation as in group (5), in case the simulator knows the protocol
will abort, it simulates the value ci as ⊥. Otherwise, we assign a random
value to every term ui,j , with j 6∈ J . If one of the addends ui,j composing
ci has been probed, since by definition j ∈ J , we can simulate it. From the
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error detecting properties of Algorithm 6, we know that the shares ui,j are
error free. Since the simulator has access to the injected errors and since
the creation of the ci is linear with respect to the ui,j , the simulator can
perfectly simulate erroneous shares ci,j .

We now simulate the output wires ci. We have to take into account the
following cases.

– In case the simulator knows the abort signal will be flagged, it simulates all
ci as ⊥.

– In case the attacker has already observed some intermediate values of the
output share ci, then the partial sums ui,j previously probed or faulted were
already simulated. As for the remaining terms, we note by Lemma 2 the
remaining terms can be simulated as uniform random variables.

– If all partial sums composing ci have been observed, we use the values previ-
ously simulated and add them according to the algorithm. Finally, it remains
to simulate a ci when no partial sum ui,j has been observed. By definition,
the ri,j are simulated as random variables, thus ci is simulated as a random
variable.

We go through the possible faults and show the simulator can simulate the
abort signal. Since we treat faults as probes and since the simulator is given the
location and value of the errors, the simulator knows if the injected faults were
trivial or not, i.e., if the injected faults changed the original value. This also
holds for when there are multiple faults on the same wire.

– For each fault as in group (1), in case the injected error differs from the
original wire value, the simulator aborts the protocol. From Algorithm 6, we
see that the algorithm aborts unless all ai = 0 or bi = 0 in which case the
simulator fails to simulate the real protocol. However, since the input shares
were randomised, the probability for this to occur is 1/|Fq|d+1.

– For each fault as in group (2), the simulator goes over all errors on ai, bj ,
ri,j and ui,j and checks if the total error is non-trivial in which case the
simulator aborts the protocol.

– For each fault as in groups (3) or (4), in case an error on t1,i,` or t2,i,` is
non-trivial the simulator aborts the protocol.

– For each fault as in group (5), the simulator does not abort.

From the first step of the simulation of the abort signal we see that the
simulation fails with a probability of 1/|Fq|d+1 for each fault as in group (1).
Since the simulator aborts in case such a fault occurs, the overall probability for
the simulation to fail is still 1/|Fq|d+1 which can be made negligible in d.

Since |I| ≤ d1 +k1 +k2 and |J | ≤ d1 +k1 +k2 and since the abort signal and
the probed wires are simulated using only the knowledge of {ai}i∈I and {bi}i∈J ,
Algorithm 6 is (d, k)-SNINA.
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