Improved Multiplication Triple Generation over Rings via
RLWE-based AHE (Full Version)*

Deevashwer Rathee!, Thomas Schneider?, and K. K. Shukla!

! Department of Computer Science and Engineering,
Indian Institute of Technology (BHU) Varanasi, India
{deevashwer.student.csel5,kkshukla.cse}@iitbhu.ac.in
2 Department of Computer Science,

Technische Universitiat Darmstadt, Germany
schneider@encrypto.cs.tu-darmstadt.de

Abstract. An important characteristic of recent MPC protocols is an input-independent setup phase
in which most computations are offloaded, which greatly reduces the execution overhead of the online
phase where parties provide their inputs. For a very efficient evaluation of arithmetic circuits in an
information-theoretic online phase, the MPC protocols consume Beaver multiplication triples generated
in the setup phase. Triple generation is generally the most expensive part of the protocol, and improving
its efficiency is the aim of our work.

We specifically focus on computation over rings of the form Z,. in the semi-honest model and the
two-party setting, for which an Oblivious Transfer (OT)-based protocol is currently the best solution.
To improve upon this method, we propose a protocol based on RLWE-based Additively Homomorphic
Encryption. Our experiments show that our protocol is more scalable, and it outperforms the OT-based
protocol in most cases. For example, we improve communication by up to 6.9x and runtime by up to
3.6x for 64-bit triple generation.

Keywords: Secure Two-party Computation - Beaver Multiplication Triples - Ring-LWE - Additively
Homomorphic Encryption

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to jointly compute a function
on their inputs while keeping them private from one another. There is a multitude of MPC protocols such
as [DPSZI2IKOSI6/DSZ15|] that allow secure evaluation of arithmetic circuits, which form the basis of
many privacy-preserving applications. An important characteristic of many of the recent MPC protocols
is an input-independent setup phase in which most computations are offloaded, which greatly reduces the
execution overhead of the online phase where parties provide their inputs. The idea is to compute Beaver
multiplication triples [Bea91] in the setup phase, and then use them to evaluate arithmetic circuits very
efficiently in an information-theoretic online phase, without using any cryptographic operations. In light of
their significance on the overall runtime of the protocol, the main focus of this work is efficient generation
of such triples in the semi-honest setting.

In the malicious model and the multi-party setting, the first to employ RLWE-based Somewhat Homo-
morphic Encryption (SHE) for triple generation were [DPSZ12] in 2012. Their major source of efficiency
was the packing method from [SV14]. In 2016, this method was replaced by an Oblivious Transfer (OT)-
based method by Keller et al. [KOS16]. Later in 2017, SHE emerged again with the Overdrive methodology
[KPRI§|. These protocols were designed to generate triples over a finite field which can only be used to
support finite field arithmetic in the online phase. In 2018, Cramer et al. [CDET18] proposed an OT-based
protocol that generates triples over rings of the form Zs.. Designing protocols over rings is useful in a lot of

* Please cite the conference version of this paper published at CANS’19 [RSS19].

Functionality F7,.: Sample values ag, a1, bo, b1, r <= (Z,e)". Output tuples (ao, bo, (ao +a1) - (bo +b1) +r)
and (a1, b1, —r) to Py and P, respectively, where arithmetic is performed modulo 2°.

Fig. 1: Functionality for generating Beaver multiplication triples

applications since it greatly simplifies implementation of comparisons and bitwise operations, which are inef-
ficient to realize with finite field arithmetic. Apart from this, using ring-based protocols also implies that we
can leverage some special tricks that computers already implement to make integer arithmetic very efficient.
In 2019, Orsini et. al [OSV19] presented a more compact solution based on SHE and argued that it is more
efficient than the OT-based protocol of [CDE™18]. Concurrently, Catalano et. al. [CRFG19] used the Joye-
Libert homomorphic cryptosystem [JLI3|] to improve upon the communication of [CDE™ 18] particularly for
larger choices of /.

Our Contributions. In this paper, we consider the semi-honest model and the two-party setting, for
which the current best method for generating triples over rings is the OT-based approach of [DSZ15].
Taking inspiration from the changing trend in the malicious model, we propose a protocol based on RLWE-
based Additively Homomorphic Encryption (RLWE-AHE) that improves upon the OT-based solution. In
the process, we analyze the popular approaches for triple generation using AHE and adapt them to using
state-of-the-art RLWE-AHE and our scenario. We also argue why the approach taken in [OSV19] does not
provide the most efficient solution in our semi-honest setting. Our experiments show that our protocol is more
scalable, and it outperforms the OT-based protocol in most cases. For example, we improve communication
over [DSZ15] by up to 6.9x and runtime by up to 3.6x for 64-bit triple generation.

2 Preliminaries

2.1 Notation

We denote the players as Py and P;. k denotes the symmetric security parameter, o the statistical security
parameter, and A the computational security parameter. (x) is a shared value of = € {0,1}¢, which is a pair
of ¢-bit shares ({(x)o, {(x)1), where the subscript represents the party that holds the share. A vector of shares
is represented in bold face e.g. (x), and multiplication, denoted by -, is performed component-wise on it. To
represent an element z being sampled uniformly at random from G, we use the notation x +—s G. Assignment
modulo 2° is denoted by <.

2.2 Problem Statement
A Beaver multiplication triple [Bea91] is defined as the tuple ({(a), (b), (c)) satisfying:
({a)o + (@)1) - ((b)o + (B)1) = ({e)o + {c)1) mod 2°.
Our aim is to construct a two-party protocol that securely realizes the Triple functionality which is defined
in Fig. [
2.3 Security Model

Our protocol is secure against a semi-honest and computationally bounded adversary. This adversary tries
to learn information from the messages it sees during the protocol execution, without deviating from the
protocol.

2.4 Ring-LWE-based Additively Homomorphic Encryption (RLWE-AHE)
We use an IND-CPA secure AHE scheme with the following 5 algorithms:

— KeyGen(1*) — (pk,sk): Key Generation is a randomized algorithm that outputs the key pair (pk, sk),
with public key pk and secret key sk. We consider a single key pair (pk,sk) throughout the entire paper.

— Enc(pk,m) — ct: Encryption is a randomized algorithm that takes a vector m € (Z,)" as input, where
n depends on scheme parameters m and p (cf. , along with pk, and outputs a ciphertext ct. We
assume that all ciphertexts in the following description of the scheme are encrypted with public key pk.

— Dec(sk,ct) — m: Decryption takes the secret key sk and a ciphertext ct, and outputs the plaintext
m € (Zy,)".

— Add(pk; cty, cty) — ct’: Addition takes as input two ciphertexts cty, cty and the public key pk, and outputs
a ciphertext ct’ such that Dec(sk, ct’) = my +my € (Z,)", where addition is performed component-wise.
This algorithm is also denoted by the @,k operator.

— ScalarMult(pk;ct,s) — ct’: Given inputs ciphertext ct and scalar s, and the public key pk, scalar-
multiplication outputs a ciphertext ct’ such that Dec(sk, ct’) = Dec(sk, ct)-s € (Z,)™, where multiplication
is performed component-wise. This algorithm is also denoted by the ®« operator.

Possible instantiations of RLWE-based schemes that satisfy the description above are [EVI12IBGV12]. These
schemes are IND-CPA secure, and their security relies on the Decision RLWE assumption [LPRI0]. We
assume that the parameters of the scheme have been chosen to be large enough to allow evaluation of the
circuit for our triple generation protocol and accommodate the extra noise added to prevent leakage through

ciphertext noise (cf. §4.3).

3 Previous Works

The previous approaches for generating multiplication triples in the semi-honest model are based on AHE and
OT. Initially, Beaver triples were generated using AHE schemes such as Paillier [Pai99] and DGK [DGKO0S].
However, the authors in [DSZ15|] showed that the OT-based generation method greatly outperforms the
AHE-based generation, and is currently the best method. In this section, we summarize both approaches.
Although the protocols based on AHE are much slower, they are the basis for our proposed protocol.

3.1 AHE-based Generation

Case I - 2%|p. Fig.[2|describes a well-known protocol for generating triples using AHE [PBS12]. This protocol
generates multiplication triples in Zge, using an AHE scheme with plaintext modulus p, and it works if and
only if 2¢|p. This is due to the fact that the AHE scheme implicitly reduces the underlying plaintext modulo p.
We can use the DGK cryptosystem [DGKOS]| since it uses a 2-power modulus.

Case II - 2° { p. We start by choosing r from an interval such that d = (a)o-(b)1-+(b)o-(a)1+r does not overflow
the bound p. This affects the security of the protocol as we no longer have information theoretic security
provided by uniform random masking by 7. To get around this issue, we resort to “smudging” [AJLT12],
where we get statistical security of o-bits by sampling » from an interval that is by factor 27 larger than
the upper bound on magnitude of the expression v = (a)o - (b)1 + (b)o - (a)1. Since the upper bound on v is
226+1 we sample 7 from Zgze+o+1. Consequently, the plaintext modulus p has to be of bitlength 2/ + o + 2.
This prevents the overflow and provides statistical security of o-bits [PBS12]. We can instantiate this case
with the Paillier cryptosystem [Pai99], whose plaintext modulus is the product of two distinct primes.

3.2 OT-based Generation

The feasibility result for triple generation over Z,: using Oblivious Transfer was given in [Gil99], and it
was shown in [DSZ15] that it is the currently best method for triple generation in the semi-honest setting.

(a)o, (b)o <= Zye (a)1, (b)1 +3Zqye
ct, « Enc(pk, ()o) r a7,
ctp Enc(pk, 0)

Cty, Ctp

ctl, < cty Opk (b)1

Ct;, < Cty Opk <CL>1

cty +— ct; Dpk ctg, Dpk T

cty

d +¢ Dec(sk, ctq)
(c)o ¢ (a)o - (D)o +d ()1 < (a)r- (D) — 7
Output (a)o, (b)o, (c)o Output (a)1, (b)1, (c)1

Fig.2: IIgasicTripleaHE: Basic Beaver Triple Generation using AHE.

This protocol facilitates the triple generation by allowing secure computation of the product of two secret
values. The amortized complexity of generating a triple in Zy¢ using OT-based generation is 2¢ Correlated-
OT (C-OT) over (£+ 1)/2-bit strings (cf. [DSZ15]). The protocol uses state-of-the-art C-OT extension (cf.
[ALSZ13]) that requires s + £-bit communication per C-OT on ¢-bit strings.

4 RLWE-based Generation

In we described two cases, namely 2¢|p and 2¢ { p, and presented a protocol for both of them. While we
can build a protocol based on our RLWE-AHE scheme that follows a similar design as in for both cases,
the two protocols are not equally efficient. In this section, we analyze these differences and show that the
protocol for 2¢ { p is more efficient. Before comparing the cases, we detail two optimizations and a security
consideration that are crucial for our analysis.

4.1 Batching Optimization

Using a RLWE-AHE scheme, we can generate many triples at the cost of generating one by leveraging
the ciphertext packing technique described in [SV14]. For a prime p, we can encrypt a maximum of n =
@(m)/ordz: (p) plaintexts m; € Z, in a single ciphertext. The operations performed on a ciphertext are
applied to all the slots of the underlying plaintext in parallel. As a result, in a single run of the protocol, we
can generate n triples.

4.2 CRT Optimization

Using a very large plaintext modulus p results in inefficient instantiations since a larger p leads to a larger
ciphertext modulus to contain the noise growth. Therefore, we use the CRT optimization to split the plaintext
modulus p into e distinct primes p; of equal bitlength such that p = sz p; for some e € Z. We create e
different instances of the cryptosystem for each p;, and the whole protocol is performed for each instance.
The plaintexts produced after decryption are combined using the Chinese Remainder Theorem (CRT) (with
precomputed tables) to get the output in Z,,. This technique also has the advantage that it can be parallelized
in a straightforward manner.

4.3 Leakage through Ciphertext Noise

The ciphertexts of RLWE-based schemes have noise associated with them, whose distribution gets skewed
on performing homomorphic operations on the ciphertext. This can lead to potential leakage through the
noise, and reveal information in the case of scalar multiplication. A solution to this problem, called the noise
flooding technique, was proposed in [Gen09]. This technique involves adding a statistically independent noise
from an interval B’ much larger than B, assuming that the ciphertext noise is bounded by B at the end of the
computation. Specifically, this is done by publicly adding an encryption of zero with noise taken uniformly
from [—B’, B'] such that B’ > 27 B, to provide statistical security of o bits. We denote the encryption with
noise from an interval p - 2° times larger than the normal encryption as Enc’.

4.4 Parameter Selection

The plaintext modulus p determines the protocol to be used as described in After determining p, we
can determine the other parameters to maximize efficiency as follows:

Case I - 2°|p: This approach was recently considered in [OSV19] for the malicious model. In order to
generate authenticated triples in Zye, the authors required Zero Knowledge Proofs of Knowledge (ZKPoKs)
and triples to be generated in Zye+s to prevent a malicious adversary from modifying the triples with error
probability 275t1°8 s However in the semi-honest setting, the adversaries can not deviate from the protocol.
Hence we do not require ZKPoKs, and computing triples in Zqe suffices. We start by choosing m to be a
prime like in [OSV19] to ensure a better underlying geometry. Given that d is the order of 2 in Z},, we get
n = ¢(m)/d slots, each of which embeds a d-degree polynomial (cf. [SV14]). In case we naively utilize just the
zero coefficient of the slot, even for small values of d, we are getting an order of magnitude fewer slots than
the maximum possible value. In order to better utilize the higher coefficients of the polynomial embedded in
each slot, we employ the packing method from [OSV19] to achieve a maximum utilization of ¢(m)/5 slots.
Despite this significant optimization, most of the slots are wasted. Moreover, since p is a power of 2, we can
not use the CRT optimization.

Case II - 2° t p: Here, we choose m to be a power of 2 for efficiency reasons described in [CLP17], and
big enough to provide security greater than 128-bits. Accordingly, we choose a prime plaintext modulus p
of 20 + o + 2 bits that satisfies p = 1 mod m, thereby maximizing the number of slots to ¢(m). A con-
cern of inefficiency here is that now our plaintext modulus is much larger than it was in the previous case.
However, using the CRT optimization, we can split the plaintext modulus into e distinct primes p; and
get e instances of the cryptosystem with similar parameter lengths as in the previous case. A run of the
protocol will require e times more computation and communication, but we can use the maximum number
of slots. An important consideration here is that while we will have similar plaintext modulus and cipher-
text modulus bitlengths, taking a 2-power m might result in an at most twice as large n than is required
for 128-bit security. However with increasing n, the communication and computation increase only linearly
and quasi-linearly respectively, and the number of triples generated increase linearly as well. Therefore, the
amortized communication remains the same and the amortized computation increases at most by a factor of
A = (log(n) 4+ 1)/log(n), which is small for the minimum value of n typically required to maintain security

(a)o, (b)o <=5 (Zye)" ()1, (b)1 s (Zye)"

Cty Enc(pk, <a)0) Tr<s (ZQ2E+0+1)TL

ctp < Enc(pk, (b)o) cty < Enc’(pk, 1)
Cta, Ctp

Ct; < Cta Opk 1
cth, < ctp Opk (a)1

ctg ct;l Dok ct’b ©Dpk Ctr

ctag
d < Dec(sk, cta)
(c)o < (a)o- (b)o+d (€)1 ¢ (a)1 - (b)1 —r
Output (a)o, (b)o, (c)o Output (a)1, (b)1, (c)1

Fig.3: IItiperiwe: Beaver Triple Generation using RLWE-AHE. Enc’ denotes encryption with extra noise
(cf. §4.3) and n denotes the number of plaintext slots (cf. §4.1)).

(for n = 4096, A = 1.08). Choosing n = 8192 instead of n = 4096, while keeping the other parameters
unchanged, we experimentally observed a maximum slowdown in amortized runtime by 1.035x.

Conclusion: A single run of the protocol for Case I requires e = (2¢ 4 o + 2)/¢ times more computation and
communication than Case II. However, the protocol for Case II requires at least 5 runs of the protocol to
generate the same number of triples. Hence, considering o = 40-bits and with the exception of small values
of ¢ (£ < 15), Case II is more efficient. Although we conclude that Case I could be better for smaller ¢, we
have implemented the protocol just for Case II because SEAL [CLP17], currently the most efficient publicly
available library that satisfies the description of our RLWE-AHE scheme, only supports 2-power cyclotomics.

4.5 Our Final Protocol

Our final protocol is given in Fig. [3] In the protocol, we have shown an initialization phase for the generation
of n triples. However, arbitrary many triples can be generated following a single initialization phase (involving
a single key-pair). As discussed above, we have used the parameters for Case II with 2¢ { p. Rather than
drowning the ciphertext noise with a fresh encryption of zero with extra noise, we combine it with the step
of adding r, and simply add a fresh encryption of r with extra noise. The advantage of using RLWE-AHE
for generating triples is not only efficiency (cf. ; we also get post-quantum security, unlike the OT-based
approach which heavily relies on OT extension for efficiency.

Theorem 1. The IItipieriwe protocol (cf. Fig. @) securely computes the F1,,,. functionality (cf. Fig.|1)) in the
presence of semi-honest adversaries, providing statistical security against a corrupted Py and computational

security against a corrupted Pj.

Table 1: Concrete scheme paramters for generating ¢-bit triples using RLWE-AHE. n and ¢ denote the
number of plaintext slots and the ciphertext modulus respectively. The plaintext modulus is split into e
co-prime p;’s using the CRT optimization (cf. §4.2).

€] llogs ()] | Llogy(pi)] [e | n |

8 150 30

16 170 38 2

32 218 54 8192
64 190 44 4

Proof. We first show that the output of the functionality Friple and the output of the protocol IltyipleRLWE
are identically distributed. Then we construct a simulator for each corrupted party that outputs a view
consistent with the output of the functionality.

Output Distribution. The functionality chooses the shares (a);, (b); uniformly at random for i € {0, 1},
as do the parties Py and P; in the protocol, which makes them identically distributed in both cases. Let
u = ((a)o+(a))-({(b)o+(b);) mod 2¢ and v = (a);-(b); mod 2¢. The functionality sets (c)o = u+r mod 2°
and (c); = —r mod 2¢ for some r ¢ (Zy¢)", while the parties compute (c)g = u + (r* — v) mod 2¢ and
(c)1 = —(r* — v) mod 2° for some r* < (Zg2e1o41)". Since 2¢ | 22T+ ¢ = r* — v mod 2¢ is uniformly
distributed in (Zy¢)™ and the joint distribution of {c)g and {(c); is identically distributed in the ideal func-
tionality and the protocol. Hence, the output is identically distributed in both scenarios.

Corrupted Py. The Simulator Sy receives ((a)g, (b)o, (c)o) as input. It chooses a uniformly random tape
p for Py, and uses this tape to run (pk,sk) <— KeyGen(1%). It then uses independent randomness to sample a
uniformly random d* € (Zgze+o+1)™ such that d* = (c)g — (a)g - (b)g mod 2¢, and to encrypt d* with extra
noise. Its output is (p, ctq» = Enc’(pk, d*)).

ctq~ is statistically indistinguishable from ctq received by P, in the protocol. This follows from the fact that
t = v+ r and r*, where v € Zgzet1 and r, 17" <= Zyaetot1, are statistically 277 indistinguishable [PBS12].
Therefore, the underlying plaintexts are statistically indistinguishable. From a similar argument, the cipher-
texts are also statistically indistinguishable (cf. . Hence, the output distributions are identical and the
corresponding views are statistically indistinguishable, implying that the joint distribution of party Py’s view
(p,cta) and the protocol output is statistically indistinguishable in the ideal and the real execution.

Corrupted P;. The Simulator Sy receives ((a)1, (b)1,{(c)1) as input. It chooses a uniformly random tape
p for P;. It then uses independent randomness to run (pk, sk) < KeyGen(1*), and to perform encryptions on
a vector of zeros (denoted by 0™) using pk. Its output is (p, pk,cta = Enc(pk, 0"),ct, = Enc(pk, 0™)).

The computational indistinguishability of the view follows from the IND-CPA security of the AHE scheme (cf.
, because the distinguisher doesn’t have access to the randomness used to generate the key-pair (pk, sk)
with which ct, and ctp were encrypted. Hence the joint distribution of party Pi’s view (p, pk, cta, ctp) and
the protocol output is computationally indistinguishable in the ideal and the real execution. a

5 Implementation Results

In this section, we compare the performance of our RLWE-based method (cf. with the OT-based method
(cf. §3.2) for generating Beaver multiplication triples.

5.1 Experimental Setup

Our benchmarks were performed on two servers, each equipped with an Intel Core i9-7960X @ 2.8 GHz CPU
with 16 physical cores and 128 GB RAM. We consider triple generation for bitlenghts ¢ € {8, 16,32, 64}.

Table 2: Amortized runtime (in ps) for generating one £-bit Beaver multiplication triple with 7' threads in
the LAN10, LAN1, and WAN setting. A total of N = 220 triples are generated. Smallest values are marked
in bold.

T=2 T=28 T =32
oT [RLWE [Impr. oT [RLWE [Impr. oT [RLWE [Impr.
81 0.92 | 236 [0.39x| 0.35 | 0.70 |0.51x|| 0.24 | 0.51 [0.47x
16]| 1.74 | 2.38 [0.73x|| 0.56 | 0.69 [0.81x|| 0.39 | 0.50 |0.77x
32| 3.35 | 2.37 |1.41x|| 0.99 | 0.68 |[1.46x|| 0.75 | 0.49 |1.51x
64|| 6.53 | 4.61 |1.41x|| 1.89 | 1.30 |1.46x|| 1.61 | 0.80 |2.01x
81 1.30 | 3.07 |0.42x|| 1.27 | 2.07 |0.61x|| 1.28 | 2.02 |0.64x
16]| 2.64 | 3.08 [0.85x|| 2.56 | 2.09 [1.22x|| 2.58 | 1.99 |1.29x

Setting| £

LAN10

LANI 32|| 5.55 | 3.07 |1.81x|| 5.53 | 2.34 |2.36x|| 549 | 2.24 |[2.45x
64| 13.14 | 5.85 [2.25x|| 13.09| 4.06 |3.23x||13.03| 3.88 |[3.35x
81/ 20.48 | 20.02 |1.02x||{19.33| 25.11 |0.77x||20.14| 22.90 |0.88x
WAN 16|| 31.10 | 20.39 |1.53x|| 32.66 | 26.11 |1.25x|| 28.98 | 23.83 |1.22x

32| 60.81 | 23.85 [2.556x|| 60.22 | 26.42 |2.28x|| 61.25 | 26.44 |2.32x
64(/140.48| 39.34 |3.57x||138.54| 45.20 [3.07x||140.79| 41.57 |3.39x

Table 3: Amortized communication (in Bytes) for generating one ¢-bit Beaver multiplication triple. Smallest
values are marked in bold.

(][OT [RLWE [[Impr.]
8] 272 [224 [[1.21x
16]] 576 | 224 [|2.57x
32][1280 | 256 |[5.00x
64]| 3072 | 448 [[6.85x

We have used the Microsoft SEAL library v3.1 [CLP17] to implement the RLWE-based method ITrripieriweE,
and the OT-based method ITripeot is implemented in ABY library [DSZ15]. In all experiments, we have
set the symmetric security parameter to x = 128, and the statistical security parameter to ¢ = 40. The
computational security parameter A for the RLWE-AHE scheme has been chosen to get security of at least
128-bits. The concrete parameters for the RLWE-AHE scheme are given in Tab. [1] .

We run the benchmarks for three network settings (bandwidth, latency): LAN10 (10 Gbps, 0.5ms RTT),
LAN1 (1 Gbps, 0.5ms RTT), and WAN (100 Mbps, 100ms RTT). In each setting, we performed experiments
for N € {25 216 222} triples and T € {2,8,32} threads.

5.2 Results and Analysis

We give the amortized (over generating N = 22° triples) runtimes in Tab. [2Jand the communication in Tab.
to compute one Beaver multiplication triple using RLWE-AHE and OT for bitlengths ¢ € {8, 16, 32,64}. The
initialization costs are given in Tab. [4] For a more detailed analysis, we also varied the number of triples
generated N, and the corresponding plots are given for the LAN10 (Fig. 7 LAN1 (Fig. , and WAN
(Fig. @ scenario. The breakeven-points, in terms of N, beyond which RLWE-AHE performs better than OT
(including initialization costs) are given in Tab. |5l The results of our experiments can be summarized as
follows:

1. RLWE-AHE requires less communication than OT, and the difference grows with increasing ¢. For £ = 64,
the improvement factor over OT is 6.9x.

2. RLWE-AHE requires more computation than OT for smaller bitlengths, since OT has a smaller runtime
than RLWE-AHE in the LAN10 setting where communication is not a bottleneck.

3. RLWE-AHE is faster than OT for larger bitlengths due to lower computation and communication re-
quirements, achieving speedup of 3.6x for £ = 64 in the WAN setting.

Table 4: (One-time) Initialization Costs for ¢-bit Beaver multiplication triple generation with 7' = 2 threads
in the LAN10, LAN1, and WAN setting. Smallest values are marked in bold.
Time [in ms] Comm. [in KB]
oT [RLWE [Impr. oT [RLWE [Impr.
8 || 246.51 | 41.45 [5.94x({97.57|1024.28 |0.09x
16| 246.51 | 41.82 [5.89x||97.57|1024.28 |0.09x
32(] 246.51 | 41.77 |5.90x(|97.57| 1024.28 |0.09x
64| 246.51 | 54.22 [4.54x((97.57| 2048.57 |0.05x
8 (1 253.12 | 41.92 |6.03x||97.57| 1024.28 | 0.09x
16| 253.12 | 42.43 |5.96x(|97.57| 1024.28 |0.09x
32([253.12 | 42.97 |5.89x(|97.57| 1024.28 |0.09x
64| 253.12 | 55.39 |4.56x(|97.57|2048.57 |0.05x
8 1547.87| 700.81 [0.78x({97.57| 1024.28 |0.09x
16(|547.87| 703.39 [0.78x||97.57|1024.28 |0.09x
32(|547.87| 711.22 [0.77x({97.57| 1024.28 |0.09x
64(|547.87| 812.64 [0.67x|{97.57| 2048.57 |0.05x

Setting| £

LAN10

LAN1

WAN

Table 5: Break-even point (in [log,(N)], where N is the number of triples) beyond which RLWE-AHE

performs better than OT with T' = 2 threads in a scenario where the initialization costs are also included in

the cost of triple generation. The cases where the break-even point does not exist are denoted by ‘- .
]Setting[L H Time [Comm. [

8 - 15
16 - 13
LAN10 3 0 9
64 0 11
8 - 15
16 - 13
LANI 32 0 12
64 0 11
8 - 15
16|| 13 13
WAN 32| 12 12
64(13 11

4. OT is faster than RLWE-AHE for smaller bitlengths in most cases. For instance, OT is better than
RLWE-AHE in all cases for £ = 8 in the LANT setting (cf. Fig. .

5. Due to less communication, the improvement factor in runtime of RLWE-AHE over OT increases with
decreasing network performance.

6. RLWE-AHE benefits more from multi-threading than OT for faster networks. For ¢ = 64 in the LAN1
setting, the improvement factor increases from 2.25x to 3.35x as we move from 2 to 32 threads. When
communication is the bottleneck, multi-threading does not benefit either method.

7. OT benefits more from increasing N in general, and the gains are more prominent for smaller ¢. For
¢ = 8 (resp. 64) in the LAN10 setting and 7' = 2 threads, the performance of OT improves by 4.80x
(resp. 1.60x) as we increase N from 2% to 222, compared to a performance improvement by 2.19x (resp.
1.56x) for RLWE-AHE.

8. The performance of RLWE-AHE saturates for a smaller N as compared to OT. For instance, in Fig.
the performance of RLWE-AHE saturates at N = 218 for £ = 8 (resp. N = 2'7 for ¢ = 64), while the
performance of OT saturates at N = 22! (resp. N = 219).

9. The initialization cost of RLWE-AHE is much smaller than that of OT (cf. Tab.[4) for the faster networks.
Even in the WAN setting, the initialization cost of RLWE-AHE can be made smaller than that of OT
(cf. Remark [2)).

Time vs N (LAN1O, £ =8)

5| ..‘ ce @ OT-2
- wwe@eeee RLWE-2
o oT-8
"».. o RLWE-8
41 8 ——-8—- 0T-32
——--—- RLWE-32
— Q -
wn AN
33 N °.
£ oo\
o N, "‘- @ e
£ N R S,
[> ‘\ B\\
N N L
“a Non
. NG R
1 IS N o . -]
~ %o =
g3
, .
15 16 17 18 19 20 21 22
log,(N) (N: Number of Triples)
(a) £=8
Time vs N (LAN10, £ = 32)
7 5
.~‘ el OT-2
wrrr @ RLWE-2
6 o oT-8
o RLWE-8
;] L ——m— OT-32
o) ——-——- RLWE-32
— “m.
4400 T
£ i B
" e e -
€ = el
=37 o
@, °
° @
] N @ g
NG
N D
1 *l.:~~-; ___@o u] o
15 16 17 18 19 20 21 22

log(N) (N: Number of Triples)

(c) £ =32

Time (in us)

Time (in us)

Time vs N (LAN10O, £=16)

!. [. oT-2
....... @een RLWE-2
o 0 OoT-8
41 a .. o RLWE-8
——&—- 0T-32
g \ B ——-0——- RLWE-32
3
2 B
1 B
15 16 17 18 19 20 21 22
logz(N) (N: Number of Triples)
(b) £ =16
Time vs N (LAN10, £ = 64)
10 B e -~ - OT-2
...... - s @eeeens RLWE-2
o oT-8
o RLWE-8
8 ' ——--—- 0T-32
---------- o ——-0-—- RLWE-32
61 m .
n “e......
N
°
\\ 'Y @ ° o o
\,
44 & \m
N N,
AN O
“w.__ O -
24 <, =~ —_—
e e
S by ° °
15 16 17 18 19 20 21 22

logz(N) (N: Number of Triples)

(d) ¢ =64

Fig. 4: Performance plots showing amortized runtime (over generating N triples) to compute one ¢-bit Beaver
multiplication triple in the LANI0 scenario. The legend entries represent the method and the number of

threads T used.

10. RLWE-AHE is not suitable for smaller values of N (< 2'3). This is owed to the fact that RLWE-
AHE based solution derives its efficiency mainly from the batching optimization (cf. , that allows
generation of n triples essentially at the cost of one. To maintain security, n needs to be greater than a
certain threshold, which in our case is 8192 = 213 (cf. Tab. . Therefore for smaller values of N, many
plaintext slots are left unused, which leads to a poor amortized performance.

11.

The total cost (including initialization cost) of generating 2!3 triples using RLWE-AHE is less than the

initialization cost for OT in the faster networks, which is why RLWE-AHE performs better than OT for
all values of N for £ = 32 and 64 in the LAN10 and LAN1 setting (cf. Tab. . Even for ¢ = 8 and 16,
RLWE-AHE performs better for small values of N in the faster networks, but as the number of triples
increase, the setup phase, which is more efficient for OT based generation for small values of ¢ in such
networks, starts to dominate the runtime.

10

Time vs N (LAN1, £ =8) Time vs N (LAN1, £ =16)

4541 @ v fleeeeeee OT-2 E vl OT-2
weee@-ees RLWE-2 504 ° oo @eeeees RLWE-2
Y o— OT-8 o— OT-8
"l m e o RLWE-8 o RLWE-8
-, 4.5 A
Q. ——-—- OT-32 ——-—- OT-32
354 % e ——-0——- RLWE-32 ——-0-—- RLWE-32
— o \\ — 4.0
o) g @t g Q)
c 3.01 \“ (O ° c
v N 9 3.5
1S €
£ 2.5 =
3.01 O, ®-......
2.0 °
2.5 e E——
1.5 1 -
~~.
2.0 1 *———3‘—--9————9——-_8
T T T T T T T T T T T T T T T T
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
log2(N) (N: Number of Triples) log2(N) (N: Number of Triples)
(a) £ =8 (b) £ =16
Time vs N (LAN1, £=32) Time vs N (LANL, £ = 64)
.‘..‘ censs e OT-2 . oT-2
84 @™ RLWE-2 - RLWE-2
N o oT-8 oT-8
7 RN — m ° RLWE-8 RLWE-8
‘\\\ ——--—- OT-32 0OT-32
I N ——-@-—- RLWE-32 RLWE-32
S<Che,
% 61 *\“‘i =
< o ITI
;% iy T~ M- | z‘
Q 4 ~ 10
£’ g
F ... F
8
4 g\ e.. O
S o-...
N ‘@ o ol o @ .. .
3 N R S, I ° @@
b $ e
, B s P — 41 =~ -] 8 S————9-—==9
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
log,(N) (N: Number of Triples) log2(N) (N: Number of Triples)
(c) £=32 (d) £ =64

Fig. 5: Performance plots showing amortized runtime (over generating NN triples) to compute one ¢-bit Beaver
multiplication triple in the LANI scenario. The legend entries represent the method and the number of
threads 7" used.

12. Overall, our RLWE-based method is a better option for most practical cases. It is faster in almost
all scenarios for the WAN setting, while even in the LAN10 setting, the performance improvement is
significant for larger bitlengths. However, for smaller bitlengths such as ¢ = 8, the OT-based method is
more suitable even in the WAN setting.

Remark 1. Table [3| and Table [4] show that the communication complexity remains the same for different
values of £. This is due to the fact that SEAL serializes each prime in the ciphertext modulus as a 64-bit
integer, irrespective of the size of the prime. Therefore, the communication for a ciphertext modulus consisting
of 4 primes of 40 bits each and that of 4 primes of 50 bits each is the same and only the computation is
increased for the latter case.

Remark 2. Even though the initialization phase for RLWE-based triple generation requires one round of
communication, we see a dramatic increase in the runtime for the WAN setting. This increase is an artifact

11

Time vs N (WAN, £ =8)

cooe e OT-2
60 4 .. . RLWE_Z
u} OT-8
(o} RLWE-8
504 ——-@-—- OT-32
——-@——- RLWE-32
m
3
£ 40
[
£
=
301
201
T T T T T T T T
15 16 17 18 19 20 21 22
log2(N) (N: Number of Triples)
(a) £=8
Time vs N (WAN, £ = 32)
- OT-2
-~ RLWE-2
120 N oT-8
N RLWE-8
AR ——&— 0T-32
1001 N ——-@——- RLWE-32

El \
£ 80 ™y
o K
E |
= ~&G
60 1 E__--t~“* ST
P— .
40 4 .-_-——.-;.‘—'T—
o '\\\ o
"""" @
20 A
15 16 17 18 19 20 21 22

logz(N) (N: Number of Triples)

(c) £ =32

Time (in us)

Time (in us)

Time vs N (WAN, £=16)

o - OT-2
704 N e Y RLWE-2
O OT-8
o RLWE-8
60 - ——-m-—- OT-32
——-@-—- RLWE-32
50 4
40 1
_____ N
N
301 \EJ':-—’.—..-_H\
~_ 0 R |
~e -
204 ° "S---n._g
T T T T T T T T
15 16 17 18 19 20 21 22
log2(N) (N: Number of Triples)
(b) £ =16
Time vs N (WAN, / = 64)
2301 oT-2
=+ RLWE-2
O oT-8
2004 o RLWE-8
——-@—- OT-32
——-@—- RLWE-32
150 4 .!""’\\._
Bt
100 4

15 16 17 18 19 20 21 22
logz(N) (N: Number of Triples)

(d) ¢ = 64

Fig. 6: Performance plots showing amortized runtime (over generating NN triples) to compute one ¢-bit Beaver
multiplication triple in the WAN scenario. The legend entries represent the method and the number of threads

T used.

of the Slow-Start mechanism of the TCP protocol. If the parameters of the network are tuned properly, the
runtime for the initialization phase of the RLWE-based generation will be smaller than that for the OT-based

generation in the WAN setting.

Acknowledgements. This work was co-funded by the DFG as part of project E4 within the CRC 1119
CROSSING and project A.1 within the RTG 2050 “Privacy and Trust for Mobile Users”, and by the BMBF

and the HMWK within CRISP.

12

References

AJLT12.

ALSZ13.

Bea9l.
BGV12.

CDE'18.
CLP17.
CRFG19.
DGKO8.
DPSZ12.
DSZ15.
FVi2.
Gen09.
Gil99.
JL13.
KOS16.
KPRI18.
LPRI10.
OSV19.
Pai99.
PBS12.
RSS19.

Sv14.

Gilad Asharov, Abhishek Jain, Adriana Loépez-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty Computation with Low Communication, Computation and Interaction via Thresh-
old FHE. In EUROCRYPT, 2012.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More Efficient Oblivious Transfer
and Extensions for Faster Secure Computation. In ACM CCS, 2013.

Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In CRYPTO, 1991.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homomorphic Encryption
Without Bootstrapping. In Innovations in Theoretical Computer Science Conference, 2012.

Ronald Cramer, Ivan Damgard, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPDZ,x: Efficient
MPC mod 2* for Dishonest Majority. In CRYPTO, 2018.

Hao Chen, Kim Laine, and Rachel Player. Simple Encrypted Arithmetic Library - SEAL v2.1. In WAHC
at FC, 2017. Code: https://github.com/microsoft/SEAL.

Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. MonZ, a: Fast Maliciously Secure
Two Party Computation on Zyk. Cryptology ePrint Archive, Report 2019/211, 2019.

Ivan Damgard, Martin Geisler, and Mikkel Krgigard. Homomorphic Encryption and Secure Comparison.
International Journal of Applied Cryptography, 1(1), 2008.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty Computation from Some-
what Homomorphic Encryption. In CRYPTO, 2012.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY — A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation. In NDSS, 2015. Code: https://encrypto.de/code/ABY.
Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology
ePrint Archive, Report 2012/144, 2012.

Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In STOC, 2009.

Niv Gilboa. Two Party RSA Key Generation. In CRYPTO, 1999.

Marc Joye and Benoit Libert. Efficient Cryptosystems from 2*-th Power Residue Symbols. In EURO-
CRYPT, 2013.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Malicious Arithmetic Secure Com-
putation with Oblivious Transfer. In ACM CCS, 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ Great Again. In EURO-
CRYPT, 2018.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over
Rings. In EUROCRYPT, 2010.

Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k: Efficient Secure MPC over
Zox from Somewhat Homomorphic Encryption. Cryptology ePrint Archive, Report 2019/153, 2019.
Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In EURO-
CRYPT, 1999.

Pille Pullonen, Dan Bogdanov, and Thomas Schneider. The Design and Implementation of a Two-party
Protocol Suite for SHAREMIND 3. CYBERNETICA Institute of Information Security, Tech, 2012.
Deevashwer Rathee, Thomas Schneider, and K. K. Shukla. Improved Multiplication Triple Generation
over Rings via RLWE-based AHE. In CANS, 2019.

N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. Designs, Codes and Cryptography,
71(1), 2014.

13

https://github.com/microsoft/SEAL
https://encrypto.de/code/ABY

	Improved Multiplication Triple Generation over Rings via RLWE-based AHE (Full Version)

