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Abstract—In this paper, we revisit the generic construction of
ring signatures from hash-then-one-way type (Type-H) signatures
proposed by Abe et al. (AOS) in 2004 from the following
aspects. First, we give a proof for the generic construction, in a
strengthened security model. Previously, this was only done for
concrete instantiations, in a weaker model. Second, we extend
AOS’s framework to generically construct one-time linkable
ring signatures from Type-H signatures and one-time signatures.
Lastly, we instantiate the generic construction with an NTRU-
based Type-H signature: FALCON and obtain a post-quantum
linkable ring signature scheme. Our analysis shows that the
resulting linkable signature is more efficient than any existing
lattice based solutions for small to moderate number of users.

I. INTRODUCTION

Introduced by Rivest, Shamir and Tauman in [1], a ring
signature allows a signer to endorse a message on behalf of a
group of potential signers. It can be regarded as a special type
of group signatures without a manager for group management
and anonymity revocation. In ring signature schemes, public
and secret keys usually are generated by the user; and a group
is formed spontaneously by collecting users’ public keys.
Since there are no revocation mechanisms in ring signatures,
a signer can always hides itself within the group.

The strong anonymity provided by ring signature maybe
undesirable in some real-word scenarios, such as electronic
voting. In e-voting scenario, strong anonymity makes it impos-
sible to discard double votes. Observing this fact, Liu, Wei and
Wang [2] proposed the notion of linkable ring signature. In a
linkable ring signature scheme, the signer remains anonymous
in the group, but two signatures generated by the same signer
can be linked. The property, linkability, allows linkable ring
signatures to be applicable in various cryptographic construc-
tions, including electronic cash and ad-hoc authentication. At
present, linkable ring signature is adapted in cryptocurrency
as a significant building block to protect user privacy.

The first ring signature scheme [1] is a generic construction
using one-way trapdoor permutation and ideal block cipher
as building blocks. Since one-way trapdoor permutation is
a relatively rare cryptographic construct, the only known
instantiation is based on RSA. In 2004, Abe, Ohkubo and
Suzuku (AOS) proposed a new generic construction for ring
signatures [3] from digital signatures with specific structures.
Specifically, they show how to construct a ring signature
scheme from the hash-then-one-way type (Type-H) signatures

(such as RSA) and three-move type (Type-T) signatures
(discrete log (DL) based schemes such as Schnorr). While in
principle similar to the concrete instantiations, security proof
for the AOS generic construction is not formally presented.

In 1994, Shor presented a quantum algorithm [4] which can
be used to break RSA and DL type digital signatures. Since
then, significant effort has been made to develop practical
quantum computers. Facing the potential threat from quantum
computers, post-quantum cryptography has attracted more and
more attentions. Lattice-based cryptography is currently an
important approach for post-quantum cryptography. In order
to construct post-quantum (linkable) ring signatures, generic
constructions such as RST and AOS, with adaptations, have
been instantiated to the lattice setting.

The two recent constructions of linkable ring signature [5],
[6] are instantiations of the AOS framework based on the
lattice-based Type-T signature BLISS [7]. The main difference
between these two constructions is the way to achieve linkabil-
ity. One drawback is that rejection sampling, which will affect
the time complexity of signature generation, is needed for the
security of the underlying Type-T signature. The recent work
from Lu et al. [8] followed a different approach.They presented
an adaption of the RST framework which relies on a new
cryptographic primitive similar to Chameleon hash instead of a
one-way trapdoor permutation. Based on their framework, they
present a practical lattice-based linkable ring signature from
NTRU lattice. While the size of the signature in the above
schemes are linear in ring size, their practical performance
compares favourably with signature schemes with logarithmic
signature size for small rings. In particular, for a ring size
up to 1024, the signature size in Lu et al.’s scheme is still
smaller than the logarithmic lattice-based ring signatures. As
a reference, the traditional ring signatures employed in current
cryptocurrency Monero is about 11.

It is fair to say constructing linkable ring signatures from
lattices (even with linear signature size) is non-trivial. Com-
mon framework such as AOS does not give concrete security
proof; and the RST framework relies on one-way trapdoor
permutation of which no lattice-based realisation is known.
For the adapted framework from Lu et al. [8], one has to
provide construction of their new primitive.



A. Overview

In this paper, we first revisit AOS generic method for ring
signatures. While they provide a generic approach to construct
ring signatures, in their paper, security proofs are only given to
the concrete examples. In other words, if one is to instantiate
the AOS generic method from other cryptographic setting, a
new security proof is needed. Observing this limitation, we
give a security proof for the generic AOS transformation from
Type-H signature scheme to ring signature schemes. More-
over, in the original paper, the security of its RSA instantiation
is based on the one-wayness of the RSA trapdoor function.
In our new proof, we instead rely on the unforgeability of
the underlying Type-H signature. Also, different from the
unforgeability security model in [3], we use a strengthened
model that allows for both a corruption oracle and a signing
oracle with adversarially chosen keys.

We then extend AOS framework to its linkable variant.
Borrowing the idea from [8], we adopt a one-time signature
scheme (ΠOTS). We build a generic method of constructing
linkable ring signature based on ΠOTS and Type-H signature
with uniform distributed public key. During the key generation
procedure, in addition to the public key and secret key pair
(pk, sk), each signer also generates a pair of public key and
secret key (opk, osk) of a one-time signature. The signer then
computes PK = pk ⊕ H(opk) for some appropriate hash
function H(·). The new public key is PK and the secret key
is SK = (sk, opk, osk).

Suppose a signer with public key PKπ wants to sign a mes-
sage µ on behalf of a group of signers LPK = {PK1, · · · ,PK`}
(π ∈ {1, · · · , `}). For each public key PKi in the group, the
signer computes pk′i = PKi⊕H(opk). The signer then obtains
a new list of “public keys”, {pk′1, · · · , pk

′
`}. Note that, for the

signer, pk′π is equivalent to the original ring signature public
key pkπ . The signer then runs the ring signature’s signing
algorithm with inputs µ, skπ and {pk′1, · · · , pk

′
`} to obtain

a ring signature σR. Next, it signs {LPK, µ, σR, opkπ} using
the one-time signature scheme. Denote by sig the one-time
signature. The linkable ring signature is σ = {σR, opkπ, sig}.

The verification is similar to the non-linkable version, with
an additional step to verify the one-time signature.

Similar to [8], we also instantiate this generic linkable ring
signature with NTRU lattice using a NTRU-based Type-H
signature scheme: FALCON [9]. Our analysis shows that our
scheme gives the best performance in terms of signature sizes.
We summarize the results in Table I. Details will be provided
in Section V-B.

B. Comparison with Other Lattice-Based (Linkable) Ring Sig-
nature Scheme

In this section, we give a brief overview of the difference
between this work, Raptor [8] and schemes from [5], [6]. We
observe that at a high level, [5], [6] are both instantiations of
AOS framework from the lattice-based signature BLISS [7], a
Three-move type (Type-T) according to AOS’s terminology.
There are mainly two drawbacks from the underlying BLISS
signature. First of all, for a lattice-based Type-T signature,
a technique called rejection sampling is always required to

TABLE I
COMPARISON OF LATTICE-BASED (LINKABLE) RING SIGNATURE AT

SECURITY LEVEL λ = 100.

[11] [6] [5] [12] [8] Our

Signature logarithm linear linear logarithm linear linearsize growth
linkability × X X × X X

Sig size for
37 MB 649 KB 585 KB 930 KB 82.7 KB 82.0 KB

26 users
28 users 48.1 MB 2.47 MB 2.34 MB 1132 KB 326.5 KB 318.9 KB
210 users 59.1 MB 9.77 MB 9.36 MB 1409 KB 1301.9 KB 1266.6 KB
212 users 70.2 MB 39 MB 37.4 MB 1492 KB 5203.3 KB 5057.5 KB

prevent the leakage of secret key from signatures. Thus,
ring signatures adopting BLISS require multiple iterations.
Secondly, BLISS is vulnerable to side-channel attacks [10]
due to the usage of a Gaussian sampler.

Raptor [8] is a new generic framework for (linkable) ring
signature based on RST framework. Instead of relying on one-
way trapdoor permutation as in the RST framework, [8] firstly
introduces a new primitive, named CH+, and then uses CH+ to
construct (linkable) ring signature scheme. They also showed
how to build CH+ from one-way trapdoor functions. Thus,
their work allows instantiations from lattice-based one-way
trapdoor function (rather than permutation). In this paper, we
focus on the AOS framework with Type-H signature. Note
that there are already lattice-based Type-H signatures in the
literature. Comparing with Type-T signature, Type-H does not
require rejection sampling. Comparing with linkable Raptor,
we are able to achieve a slightly smaller signature size under
the same assumption.

C. Contribution

We summarize our contributions as follows.
• We present a new security proof for the AOS generic

construction of ring signatures from Type-H signature
schemes. In the original paper, proofs are only given for
concrete instantiations.

• Our proof is in a stronger security model which allows
corruptions and a signing oracle with adversarially chosen
keys. As a side note, we reduce the security of the generic
construction to the unforgeability of the underlying Type-
H signature (instead of the one-wayness of the underling
trapdoor function), which allows generic constructions
from any given Type-H digital signatures.

• We give a generic method of constructing linkable ring
signature from Type-H signatures with uniformly dis-
tributed public key. We also provide the security proofs
for the generic construction based on the security of
underlying Type-H signature scheme.

• We instantiate the generic linkable ring signature from
NTRU lattice and obtain a post-quantum and efficient
linkable ring signature scheme. Our scheme has the
shortest signature size when the ring size is reasonably
small (i.e., less than 1024).

D. Related Work

We refer readers to [8] for a more in-depth survey on the
development of (linkable) ring signatures. Here we briefly



review ring signatures in the lattice setting. While the generic
construction from Brakerski and Kalai [13] can be instantiated
from lattice, the result is in a weaker security model. Melchor
et al. [14] constructs a lattice-based ring signature based on the
signature scheme of Lyubashevsky [15]. Libert et al. [11] gives
the first log-size lattice-based construction, but the constant is
rather large. Another log-size scheme was recently proposed
by Esgin et al. [12], which can be thought of as the lattice
counterpart of the log-size scheme from [16].

II. PRELIMINARY

A. Notation
Elements in Zq are represented by integers in [− q2 ,

q
2 ). For

a ring R we define Rq to be the quotient ring Zq[x]/(xn+ 1)
with n being a power of 2 and q being a prime satisfying
q = k ·n+ 1 for some integer k. Elements in Rq are denoted
by lower-case bold letters (e.g. x).

For distribution D, x← D means sampling x according to
distribution D. ‖v‖1 is the `1 norm of vector v and ‖v‖ is
the `2 norm of v.

The continuous normal distribution over Rn centered at
v with standard deviation σ is defined as ρnv,σ(x) =

( 1√
2πσ2

)ne
−‖x−v‖2

2σ2 . For simplicity, when v is the zero vector,
we use ρnσ(x).

The discrete normal distribution over Zn centered at v ∈ Zn
with standard deviation σ is defined as Dn

v,σ(x) =
ρnv,σ(x)

ρnv,σ(Zn)
.

B. Ring Signatures
We are going to give the syntax and security model for ring

signatures in this section.
1) Syntax: A ring signature scheme usually consists of four

algorithms (Setup, KeyGen, Signing, Verification):
• Setup(1λ)→ param: On input security parameter 1λ, this

algorithm generates system parameter param. We assume
param is an implicit input to all the algorithms below.

• KeyGen→ (sk, pk): This key generation algorithm gen-
erates a private signing key sk and a public verification
key pk.

• Signing(sk, µ, Lpk) → σ: On input message µ, a list of
user public keys Lpk, and signing key sk corresponding
to one of the public keys in Lpk, the signing algorithm
outputs a ring signature σ on µ and Lpk.

• Verification(µ, σ, Lpk)→ accept/reject: On input mes-
sage µ, signature σ and a list of user public keys Lpk,
the verification algorithm outputs accept if σ is a valid
signature for µ and Lpk; reject, otherwise.

Correctness: the scheme is correct if signatures generated
according to above specification are always accepted during
verification.

2) Security Notions: A secure ring signature scheme should
be unforgeable and anonymous. Before going into the details,
we first introduce the following oracles which can be used by
adversaries in breaking the security of ring signature schemes:
• Registration Oracle RO(⊥) → pki: Upon request, RO

generates a new user and returns the public key of the
new user.

• Corruption Oracle CO(pk) → sk: On input user public
key pk that is a query result of RO, CO returns the
corresponding secret key, sk.

• Signing Oracle SO(µ,Lpk, pkπ) → σ: On input list of
user public keys Lpk, message µ and the public key of
the signer pkπ ∈ Lpk, SO returns a valid signature σ on
µ and Lpk.
a) Unforgeability: The unforgeability of a ring signa-

ture scheme is defined via the following game, denoted by
Gameforge, between adversary A and challenger C.
• Setup. C runs Setup(1λ) → param and sends param to
A.

• Query. A may query RO, CO and SO for a polynomial
bounded number of times in an adaptive manner.

• Output.Finally, A outputs a tuple (µ∗, σ∗, L∗pk).
A wins Gameforge if: Verification(µ∗, σ∗, L∗pk) = accept;
(µ∗, L∗pk) has not been queried to SO; and no public key in
L∗pk has been queried to CO.

The advantage of A, denoted by advforge
A , is defined by the

probability that A wins Gameforge:

advforge
A = Pr[A wins Gameforge]

Definition 1 (Unforgeability): A ring signature scheme
(KeyGen, Signing, Verification) is said to be unforgeable if
for any polynomial-time adversary A, advforge

A is negligible.
b) Anonymity: For a ring signature scheme, this notion

captures that it is impossible for an adversary to identify the
actual signer of a ring signature with probability better than
random guessing. The anonymity of a ring signature scheme
can be defined by the following game, denoted by Gameanon,
between adversary A and challenger C:
• Setup. C runs Setup(1λ) → param and sends param to
A.

• Query. A may queryRO and CO in an adaptive manner.
• Challenge. A picks a list of user public keys Lpk =
{pk1,pk2, · · · ,pkn}, a message µ and sends (Lpk, µ)
to C. C randomly picks π ∈ {1, · · · , n} and runs
Signing(skπ ,µ,Lpk)→ σ. C sends σ to A.

• Output. A outputs a guess π∗ ∈ {1, · · · , n}.
A wins Gameanon if π∗ = π. The advantage of A is defined

as
advanon

A = |Pr[π∗ = π]− 1

n
|.

Definition 2 (Anonymity): A ring signature scheme
(KeyGen, Signing, Verification) is said to be anonymous
(resp. unconditionally anonymous) if for any polynomial-time
(resp. unbounded) adversary A, advanon

A is negligible.

C. Linkable Ring Signatures

In this section, we are going to give the syntax and security
requirements of linkable ring signatures.

1) Syntax: A linkable ring signature scheme consists of five
algorithms, namely, (Setup, KeyGen, Signing, Verification,
Link). The first four are the same with ring signature. For
Link algorithm:



Link (σ1, σ2, µ1, µ2, L(1)
pk , L(2)

pk )→ linked/unlinked: This
algorithm takes two tuples (σ1, µ1, L

(1)
pk ), (σ2, µ2, L

(2)
pk ) as

input, output linked or unlinked.
Correctness. We say the linkable ring signature scheme is
correct if signatures generated according to above specification
will always be accepted during verification. Furthermore, two
signatures generated according to the above specification from
the same signer will be linked.

2) Security Notions: We require a linkable ring signature
should be unforgeable, anonymous, linkable and nonslander-
able. Same as the security notions for ring signatures, there
are also RO, CO and SO oracles accessible by adversary.
We emphasize that due to the property of one-time linkability,
each signer can only be queried at most once as an actual
signer in SO.

The security definition of unforgeability for linkable ring
signatures remains the same as in section II-B2. The def-
initions of anonymity, linkability and nonslanderability are
adopted from Liu et al. [17].

a) Anonymity: For one-time linkable ring signature, it
is required that it is impossible for adversary to identify the
actual signer from a ring signature with probability better than
random guessing.The anonymity of a linkable ring signature
scheme can be defined by the following game, Game∗anon,
held between adversary A and challenger C. The difference
between Game∗anon and Gameanon is that, in Game∗anon, A is
not allowed to obtain signatures on the possible signers in
the challenged ring as it will lead to a trivial attack through
linking.
• Setup. C runs Setup with security parameter 1λ and

sends the system parameter param to A.
• Query. A may query RO in an adaptive manner.
• Challenge. A picks a list of user public keys Lpk =
{pk1, pk2, · · · , pkn} and a message µ. All public
keys in Lpk should be query outputs of RO. A sends
(Lpk, µ) to C. C randomly picks π ∈ {1, · · · , n} and
runs Signing(skπ , µ, Lpk)→ σ. C sends σ to A.

• Output. A outputs a guess π∗ ∈ {1, · · · , n}.
A wins Game∗anon if π∗ = π. The advantage of A is defined

as
advanon

A = |Pr[π∗ = π]− 1

n
|.

Definition 3 (Anonymity): A linkable ring signature scheme
is said to be anonymous (resp. unconditionally anonymous)
if for any polynomial-time adversary (resp. unbounded adver-
sary) A, advanon

A is negligible.
b) Linkability: This notion captures that only two sig-

natures generated by a same signer can be linked. We use
the following game, Gamelink, between a challenger C and an
adversary A to define linkability:
• Setup. C runs Setup and gives A system parameter

param.
• Query. A is given access to RO, CO, SO and may

query the oracles in an adaptive manner.
• Output. A outputs k sets, {L(i)

pk , µi, σi} for i ∈
[1, · · · , k], where L

(i)
pk is a list of public keys, µi is

message, σi is signature.

A wins the game if: all σis are not query output of SO; all
public keys in L(i)

pk are from RO; Verification(µi, σi,L
(i)
pk ) =

Accept ; A queried CO less than k times; and Link(σi, σj ,
µi, µj , L

(i)
pk , L(j)

pk ) = unlinked for i, j ∈ [1, · · · , k] and i 6= j.
The advantage of A is defined by the probability A wins

Gamelink:

advlink
A = Pr[A wins Gamelink]

Definition 4 (Linkability): A linkable ring signature scheme
is linkable if for any polynomial-time adversary A, advlink

A is
negligible.

c) Nonslanderability: The nonslanderability requires that
a signer cannot frame other honest signers by generating a
signature linked to the honest signer. We use the following
game, Gameslander, to define the nonslanderability of a linkable
ring signature scheme:

• Setup. The challenger C runs Setup and gives A system
parameter param.

• Query. The adversary A is given access to RO, CO,
SO and may query the oracles in an adaptive manner.

• Challenge. A gives C a list of public keys Lpk, a
message µ and a public key pkπ ∈ Lpk. C runs Sign-
ing(sk, µ, Lpk) and returns the corresponding signature σ
to A. A can continue to issue oracle queries.

• Output. A outputs a list of public keys L∗pk, message µ∗,
and a signature σ∗.

A wins Gameslander if the following holds: Verification(µ∗,
σ∗,L∗pk) = accept; pkπ is not queried by A to CO; pkπ is
not queried by A as signer to SO; and Link(σ, σ∗, µ, µ∗) =
linked.

The advantage of A is defined as:

advslander
A = Pr[A wins Gameslander]

Definition 5 (Nonslanderability): A linkable ring signature
scheme is nonsladerable if for any polynomial-time adversary
A, advslander

A is negligible.

III. AOS RING SIGNATURE REVISITED

Recall that AOS’s generic method builds ring signature
schemes from hash-then-one-way type (Type-H) signature
schemes. We first review the concept of (Type-H) digital sig-
natures. Specifically, in a Type-H signature, pk and sk, created
from key generation algorithm Gsig , are associated with a one-
way trapdoor function and its trapdoor respectively. Let F be
a trapdoor one-way function and I be its inverse function. For
any c from appropriate domain, compute e = Fpk(c) is easy.
However, given any e′, one cannot find the preimage c′ such
that e′ = Fpk(c

′) in polynomial time without trapdoor. Secret
key sk can be considered as the trapdoor which allows one
to efficiently compute one of the preimages of e′. In signing
algorithm Sign, H : {0, 1}∗ → ∆ is a hash function that
hashes message µ and auxiliary information aux and I is
the inverse function. Domain ∆ is supposed to be an abelian
group. A Type-H digital signature has the following structure.



Sign(µ, sk)

1 : c = H(µ, aux)

2 : s = Isk(c)

3 : Return σ = (s, aux)

Verify(σ, µ, pk)

1 : σ
parsing−−−−−→ (s, aux)

2 : c = H(µ, aux)

3 : e = Fpk(s)

4 : Return 1 if c = e.Otherwise, 0.

A. Ring Signatures from Type-H Digital Signatures

Let Hi : {0, 1}∗ → ∆i be a hash function where ∆i is
an abelian group. For a, b ∈ ∆i, let a + b denote the group
operation and a− b be the group operation with inverse of b.
∆i depends on pki in user public key list Lpk.
• Setup(1λ)→ param: On input security parameter 1λ, this

algorithm generates system parameter param which in-
cludes hash function H . We assume param is an implicit
input to all the algorithms listed below.

• KeyGen→ (sk, pk): This key generation algorithm gen-
erates the key pairs using the key generation function of
a signature scheme of his choice (sk, pk)←Gsig(param).

• Signing(skπ, µ, Lpk) → σ: On input message µ, a list of
user public keys Lpk = {pk1, · · · , pk`}, and signing key
skπ . the signing algorithm runs as follow:
G− 1 (Initialization): Compute eπ = β, β ←$ ∆π . Then
compute cπ+1 = Hπ+1(Lpk, µ, eπ).
G− 2 (Forward Sequence): For i = π + 1, · · · ,
`,1,· · · ,π − 1, compute ei = ci + Fi(si, pki),where
si is randomly chosen. Then compute ci+1 =
Hi+1(Lpk, µ, ei).
G− 3 (Forming the Ring): sπ = Iπ(β−cπ, skπ). Output
signature σ = {c1, s1, · · · , s`} for message µ and public
key list Lpk.

• Verification(µ, σ, Lpk)→ accept/reject: On input mes-
sage µ, signature σ and list of user public keys Lpk =
{pk1, · · · , pkn}, the verification algorithm runs as follow:
For i = 1, · · · , `, compute ei = ci +Fi(si, pki) and then
computes ci+1 = Hi+1(Lpk, µ, ei) if i 6= `. Accept if
c1 = H1(Lpk, µ, e`). Otherwise, reject.

B. Security Analysis

In this section, we prove that the above generic construction
is unconditional anonymous and is unforgeable if the under-
lying signature scheme is unforgeable.

Theorem 1 (Anonymity): AOS ring signature scheme is
unconditional anonymous.

Due to space limitation, we roughly sketch the proof below.
RO can be perfectly simulated with properly generated keys.
The challenge signature will be created by programming
the random oracle without using the corresponding signing
key. Specifically, the challenge signature will be of the form
σ = {c1, s1, · · · , s`}. In the actual signing algorithm, sπ is
generated by Iπ(β − cπ, skπ) while in the simulation, all si
are sampled according to the output distribution o Ii, and
that ei = ci + Fi(si, pki), ci+1 = Hi+1(Lpk, µ, ei), with
H1(Lpk, µ, e`) programmed to be c1 in the random oracle
model. It is straightforward to prove that the distribution of the

simulated signature is the same as a real signature, and that it
is independent of the signer’s key. Therefore, the probability
for adversary to make a successful guess is no more than 1

` ,
meaning that the scheme is unconditionally anonymous.

Theorem 2 (Unforgeability): AOS framework is unforgeable
in random oracle model if the underlying Type-H signature
scheme is unforgeable.

Proof 1: Assume there is an adversary A who can suc-
cessfully forge a ring signature with probability δ by making
at most qr queries to RO oracle, qc queries to CO oracle,
qs queries to SO oracle, and qh queries to all the random
oracles Hi. Then we can construct a simulator S who can
break the unforgeability of the underlying Type-H signature
scheme with a non-negligible probability.
S is given a Type-H signature scheme public key pkc, it

is asked to output σc such that σc is a valid forgery for
pkc. In order to use A to solve this problem instance, the
simulator S needs to simulate the challenger C and oracles to
play Gameforge with A. S runs as follow:
Setup. Simulator S picks hash functions Hi: {0, 1}∗ → ∆i.
His will be modelled as random oracles. Assume A queries
random oracles in the form of Q = (k, Lpk, µ, ek−1) where k
is a index in Lpk. S returns Hk(Lpk, µ, ek−1) to A.
S then randomly picks message µc and queries the chal-

lenger from the underlying forge game for its hash value (or
uses the underlying signature’s hash function to compute the
hash value). S receives hash value h′c.
Oracle Simulation. S simulates the oracles as follow:
• RO(⊥): Assume the adversary A can only queries
RO qr times (qr ≥ 1). S randomly picks an index
I ∈ [1, · · · , qr]. For index I, S assigns pkc to index
I as the public key. For other indexes, S generates the
public key and secret key according to KeyGen. Upon
the jth query, S returns the corresponding public key.

• CO(pk): On input a public key pk returned byRO oracle,
S first checks whether it corresponds to the index I. If
yes, S aborts. Otherwise, S returns the corresponding
secret key sk.

• SO(µ,Lpk, pkπ): When A queries SO on message µ, a
list of public keys Lpk = {pk1, · · · , pk`} and the public
key for the signer pkπ where pkπ ∈ Lpk, S simulates SO
as follow:

– If pkπ 6= pkI , S runs Signing(skπ, µ, Lpk)S returns
the signature σ to A;

– If pkπ = pkI , S randomly choose c1 from its range.
For i ∈ [1, · · · , `] and pki, S samples si and com-
putes ei = ci +Fi(si, pki), ci+1 = Hi+1(Lpk, µ, ei).
S then programs random oracle as H1(Lpk, µ, e`) =
c1. σ = {c1, s1, · · · , s`}.

• Random Oracle Q: At beginning of the simulation, S
randomly picks v, u ←$ [1, · · · , qh] (1 ≤ v ≤ u ≤
qh). During simulation, if Qv = (k + 1, Lpk, µ, ek),
Qu = (k, Lpk, µ, ek−1). S programs Hk(Lpk, µ, ek−1) =
ek − h′c. For other query, if a query input that has
already been programmed, S returns the corresponding
output. Otherwise, the output of the random oracle will
be randomly sampled from its range. S will record all



the queries to the random oracle in a table, in case same
query is issued twice.

Output. Finally, A will output a forgery (µ∗, σ∗, L∗pk) with
probability δ such that Verification(µ∗, σ∗, L∗pk) = accept;
(µ∗, L∗pk) has not been queried by A for signature; and no
public key in L∗pk has been input to CO. If A wants to
successfully forge such a ring signature, A must close a gap
in e∗t − c∗t for some pkt ∈ L∗pk by first querying Q∗1 =
(t + 1, L∗pk, µ

∗, e∗t ), then querying Q∗2 = (t, L∗pk, µ
∗, e∗t−1).

The probability for S successfully guessing Qv = Q∗1 and
Qu = Q∗1 during random oracle simulation should be at least
1
qh2 . The probability for pkt = pkI should be at least 1

qr
.

S then have e∗t − c∗t = Ft(pkt, s
∗
t ) = FI(pkI , s

∗
t ). Since

Q∗1 = Qv and Q∗2 = Qu, we have e∗t − c∗t = h′c where h′c
is the hash output of µc. S outputs (µc, s

∗
t ) as a forgery.The

probability for S to output such a forgery is at least δ
qh2·qr .

IV. OUR GENERIC RING SIGNATURE WITH LINKABILITY

In this section, we give our generic construction of linkable
ring signatures. Our generic construction mainly has two
building blocks, namely, a Type-H signature scheme and a
one-time signature scheme ΠOTS .

Same as AOS ring signature scheme, we have Hi :
{0, 1}∗ → ∆i being a hash function where range ∆i is an
abelian group. For a, b ∈ ∆i, let a + b denote the group
operation and a − b be the group operation with inverse of
b. ∆i depends on pki in user public key list Lpk. Also,
the distribution of public key pk of the underlying Type-
H signature scheme should be uniformly distributed in its
possible range. We emphasize that, for RSA and one-way
trapdoor functions in lattice [18], [9], their public keys are
all uniformly distributed.
• Setup(1λ)→ param: On input security parameter 1λ,

this algorithm generates system parameter param which
includes a hash function H . We assume param is
an implicit input to all the algorithms listed below.
It also selects a one-time signature scheme ΠOTS =
{OKeygen,OSign,OVer}

• KeyGen→ (sk, pk): This key generation algorithm gen-
erates the key pairs using the key generation function of
a signature scheme of his choice (sk, pk)←Gsig(param).
It also generates a pair of ΠOTS public key and secret
key (opk, osk) ← OKeygen(1λ) and computes mk =
H∗(opk). It sets public key PK = pk ⊕ mk and secret
key SK = {sk, opk, osk}.

• Signing(SKπ, µ, LPK) → σ: On input message µ, a list
of user public keys LPK = {PK1, · · · ,PK`}, and signing
key SKπ = {skπ, opkπ, oskπ}. For i ∈ [1, · · · , `], com-
pute pki = PKi ⊕mkπ where mkπ = H∗(opkπ). Signer
obtains a new public key list Lpk = {pk1, · · · , pk`}. The
signing algorithm runs as follow:
G− 1 (Initialization): Compute eπ = β where β ←$

∆π . Then compute cπ+1 = Hπ+1(Lpk, µ, eπ).
G− 2 (Forward Sequence): For i = π +
1, · · · , `, 1, · · · , π − 1, compute ei = ci + Fi(si, pki)
where si is randomly chosen. Then compute
ci+1 = Hi+1(Lpk, µ, ei).

G− 3 (Forming the Ring): sπ = Iπ(β −
cπ, skπ) Compute one-time signature sig =
OSign(oskπ; (c1, s1, · · · , s`, LPK, opkπ)). Output
signature σ = {c1, s1, · · · , s`, sig, opkπ} for message µ
and public key list LPK.

• Verification(µ, σ, LPK)→ accept/reject: On input mes-
sage µ, signature σ and list of user public keys LPK =
{PK1, · · · ,PKn}. Parse σ to {c1, s1, · · · , s`, sig, opk}.
For i ∈ [1, · · · , `], compute pki = PKi ⊕ mkπ where
mkπ = H∗(opk). The verification algorithm runs as
follow: for i = 1, · · · , `, compute ei = ci + Fi(si, pki)
and then computes ci+1 = Hi+1(Lpk, µ, ei) if i 6= `.
Continue if c1 = H1(Lpk, µ, e`). Otherwise, reject.
Check whether OVer(opk; (c1, s1, · · · , s`, LPK, opk)) =
1. If not,output reject. If all pass, output accept.

• Link(σ1, σ2, µ1, µ2, L
(1)
PK, L

(2)
PK,→ linked/unlinked: On

input two message signature pairs (µ1, σ1) and (µ2, σ2),
this algorithm first checks the validity of signatures
σ1 and σ2. If Verification(µ1, σ1, L

(1)
PK) → accept

and Verification(µ2, σ2, L
(2)
PK) → accept, it parses

σ1={c(1)1 , s
(1)
1 , · · · ,s(1)` , opk1,sig1} and σ2 = {c(2)1 , s

(2)
1 ,

· · · ,s(2)` , opk2, sig2}. The algorithm outputs linked if
opk1 = opk2. Otherwise, output unlinked.

A. Security Analysis
Theorem 3 (Linkability): The linkable ring signature is

linkable in random oracle model if the underlying Type-H
signature scheme and ΠOTS are unforgeable.

Proof 2: Let A be an adversary who can successfully forge
a linkable ring signature with probability δ by making at most
qr queries to RO oracle, qc queries to CO oracle, qs queries to
SO oracle, and q∗h queries to random oracle H∗, qh queries to
all the random oracles Hi. We show how to construct simulator
S who can break unforgeability of the underlying Type-H
signature scheme with a non-negligible probability.

Given public key pkc of a Type-H signature scheme, S’s
task is to output a forged signature σc on any message of its
choice. In order to use A to solve this problem instance, the
simulator S needs to simulate the challenger C and oracles to
play Gameforge with A. S runs as follow: Setup. S picks hash
functions H∗, His and sets as system parameter. H∗, His will
be modeled as random oracle. For Hi, A queries it in the form
of Q(k, LPK, µ, ek−1). S returns Hk(LPK, µ, ek−1) to A.For
H∗, S picks {h∗1, h∗2, · · · , h∗p∗} ←$ ∆∗i as the q∗h responses
of random oracle H∗.S then random picks a message µc and
queries the challenger from the forge game of the underlying
signature scheme for its hash value (or compute the hash value
by the given hash function). S receives hash value h′c.
Oracle Simulation. S simulates the oracles as follow:
• RO(⊥): Assume adversary A can only queries RO
qr times (qr ≥ 1). A random picks an index I ←$

[1, · · · , qr]. For index I, S sets PKI = pkc ⊕ h∗Q where
h∗Q ←$ {h∗1, h∗2, · · · , h∗p∗}. For other index, S samples
PK uniformly random from its possible range. Upon the
jth query, S returns the corresponding public key.

• CO(PK): On input a public key PK returned by RO
oracle, S first checks whether it corresponds to index



I. If yes, S aborts. Otherwise, S runs OKeygen(1λ) →
(opk, osk). S runs Gsig(1λ) → (pk, sk). S returns
(sk, opk, osk) as secret key and programs H∗(opk) =
PK⊕ pk.

• SO(µ,LPK,PKπ): When A queries SO on message µ, a
list of public keys LPK = {PK1, · · · ,PK`} and the public
key for the signer PKπ where PKπ ∈ LPK, S simulates
SO as follow:
1). If PKπ has been queried to CO,S runs
Signing(skπ, µ, LPK) where the output of the random
oracle Hi will be . S returns the signature σ to A;
2). If PKπ = PKI , S runs OKeygen(1λ)→ (opkπ, oskπ)
and randomly samples a hash value to H∗(opkπ). S
computes pki = H∗(opkπ) ⊕ PKi for i ∈ [1, · · · , `]. S
randomly choose c1 from its range. For i ∈ [1, · · · , `],
S samples si and computes ei = ci + Fi(si, pki),
ci+1 = Hi+1(Lpk, µ, ei). S then programs random or-
acle as H1(Lpk, µ, e`) = c1. S also computes one-time
signature sig = OSign(oskπ; s1, · · · , s`, LPK, opk). S
returns signature σ = { s1, · · · , s`, opkπ , sig};
3). for other PK, S runs OKeygen(1λ) → (opk, osk).
S runs Gsig(1λ) → (pk, sk). S returns (sk, opk, osk)
as secret key and programs H∗(opk) = PK ⊕ pk.
S runs Signing(skπ, µ, LPK) where the output of the
random oracle will be programmed as the first hit ∈
{h(i)1 , h

(i)
2 , · · · , h(i)pi } that has not been used yet. S returns

the signature σ to A
• Random Oracle H∗: For query input that has already

been programmed, S returns the corresponding output.
Otherwise, the output of the random oracle will be the
first h∗i ∈ {h∗1, h∗2, · · · , h∗p∗} that has not been used yet.
S will record all the queries to the random oracle in a
table, in case same query is issued twice.

• Random Oracle Q: At beginning of the simulation, S
randomly picks v, u ←$ [1, · · · , qh] (1 ≤ v ≤ u ≤ qh).
During simulation, if Qv = (k + 1, LPK, µ, ek), Qu =
(k, LPK, µ, ek−1). S programs Hk(LPK, µ, ek−1) = ek −
h′c. For other query, if a query input that has already
been programmed, S returns the corresponding output.
Otherwise, the output of the random oracle will be
randomly sampled from its range. S will record all the
queries to the random oracle in a table, in case same
query is issued twice.

Output. Adversary A outputs k sets {L(i)
PK, µi, σi} for

i ∈ [1, · · · , k]. These k sets should satisfy that Verifica-
tion(µi, σi, L

(i)
PK) = accept ; A queried CO less than k times;

and Link(σi, σj , µi, µj , L
(i)
PK, L

(j)
PK) = unlinked for i 6= j and

i, j ∈ [1, · · · , k]. Since A is allowed query CO less than k
times. At least one of the output signatures should be generated
from the opk that A does not obtain from CO or SO. If
any of the opk from the returned signatures are obtained
from SO, A breaks the unforgeability of ΠOTS . Assume σj ,
j ∈ {1, · · · , k} is not produced by the opk obtaining from CO
or SO. H∗(opkj) 6= h∗Q, abort.

The probability for H∗(opkj) = h∗Q is no less than 1
q∗h

. In

the following we use (µ∗, σ∗, L∗PK) to denote (µj , σj , L
(j)
PK). If

A wants to successfully forge such a linkable ring signature,
A must close a gap in e∗t − c∗t by first querying Q∗1 = (t +
1, L∗PK, µ

∗, e∗t ), then querying Q∗2 = (t, L∗PK, µ
∗, e∗t−1). The

probability for S successfully guessing Qv = Q∗1 and Qu =
Q∗1 during random oracle simulation should be at least 1

qh2 .
The probability for PKt = PKI should be at least 1

qr
. Since

H∗(opk∗) = h∗Q, we have H∗(opk∗) ⊕ PKI = pkc. S then
have e∗t − c∗t = Ft(pkc, s

∗
t ). Since Q∗1 = Qv and Q∗2 = Qu,

we have e∗t − c∗t = h′c where h′c is the hash output of µc. S
outputs (µc, s

∗
t ) as a forgery.The probability for S to output

such a forgery is at least δ
qh2·q∗h·qr

.
Due to page limitation, we omit the proof of the other

properties, namely, unforgeability, anonymity and nonslander-
ability, which will be available in the full version of the paper.

V. INSTANTIATIONS FROM NTRU

In this section, we are going to instantiate the linkable
ring signature to NTRU lattice using a NTRU based Type-
H signature scheme: FALCON. In 2008, Gentry, Peikert and
Vaikuntanathan [18] construct a one-way trapdoor function
using ’hard’ basis and ’good’ basis of a lattice and apply it
to construct a lattice-based Type-H signature schemes. Prest
at al. [19], [9] then use NTRU lattices [20] to instantiate
the GPV construction. The corresponding NTRU-based Type-
H signature scheme is named FALCON [9]. FALCON is a
candidate lattice-based signature scheme to the NIST post-
quantum standardization process1.

A. Linkable Ring Signature from Falcon

FALCON signature scheme is a Type-H signature scheme.
Thus, we can apply the generic method of transforming Type-
H signature scheme to linkable ring signature scheme to
FALCON.
Setup(1λ) → param: On input security parameter 1λ, this
algorithm chooses H∗, Hi : {0, 1}∗ → Rq , Db, Dr and η.
KeyGen→ (sk, pk): This algorithm firstly generates
• (a, f ,g, f̄ , ḡ) ← FALCON.KeyGen(param), and
• (aots, fots,gots, f̄ots, ḡots) ← FALCON.KeyGen(param)

Then it sets a′ := a + H∗(aots) mod q. The public key
pk = {a′} and secret key sk = {sk0 = {f ,g, f̄ , ḡ}, sk1 =
{fots,gots, f̄ots, ḡots},aots}.
Signing(skπ, µ, Lpk, param) → σ: On input message µ, list
of user public keys Lpk = {pk1, · · · , pk`}, and signing key
skπ = {sk0π = {fπ,gπ, f̄π, ḡπ}, sk1π = {fots,gots, f̄ots, ḡots },
aots} of pkπ = {a′π}, and the system parameter param, the
signing algorithm runs as follow:

1) for i ∈ [1, · · · , `], compute ai = a′i − H∗(aots) mod q.
Signer then obtains a new list L = {a1, · · · ,a`}.

2) it then randomly samples a polynomial eπ ←$ Rq and
computes cπ+i = Hπ+1(L, µ, eπ);

3) for i = π + 1, · · · , `, 1, · · · , π − 1, compute ei =
ci + xi,0 + aixi,1 where xi = (xi,0,xi,1)← D2

R,η and
ci+1 = Hi+1(L, µ, ei);

1https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization



4) compute (xπ,0,xπ,1) = FALCON.sign(sk0π; eπ − cπ)
such that xπ,0 + aπxπ,1 = eπ − cπ;

5) it then generates a signature sig on
µ′ = {{xi}ii=1, c1, Lpk,aots} by computing
sig=FALCON.sign(sk1π;µ′).

The linkable ring signature of µ and Lpk is σ
={{{xi}`i=1,c1,aots, sig}.
Verification(µ, σ, Lpk)→ accept/reject: On input message µ,
signature σ and a list of user public keys Lpk, the verification
algorithm performs as follows:

1) parses σ ={x1, · · · , x`, c1,aots, sig};
2) For i ∈ [1, · · · , `], compute ai = a′i − H∗(aots) mod q;
3) checks whether for all i ∈ [1, · · · , `], ‖xi‖∞ ≤ β;

outputs reject if not;
4) for all i ∈ [1, · · · , `], computes yi = xi,0 + aixi,1,

ei = ci + yi. Then compute ci+1 = Hi+1(L, µ, ei) if
i 6= `. Continue if c1 = H1(L, µ, e`). Otherwise, reject.

5) verify whether sig is a FALCON signature for
({xi}`i=1, c1, {a′i}`i=1,aots) with public key aots; out-
puts reject if fails.

6) outputs accept.
Link(σ1, σ2, µ1, µ2, L

(1)
PK, L

(2)
PK,→ linked/unlinked: On input

two message signature pairs (µ1, σ1) and (µ2, σ2), this al-
gorithm first checks the validity of signatures σ1 and σ2.
If Vf(µ1, σ1, L

(1)
PK) → accept and Vf(µ2, σ2, L

(2)
PK) → ac-

cept, it parses σ1={{{x(1)
i }`i=1,c

(1),a1
ots, sig1} and σ2 =

{{{x(2)
i }`i=1,c

(2),a2
ots, sig2}. The algorithm outputs linked if

a1
ots = a2

ots. Otherwise, output unlinked.
Note that in this implementation we use additions and

subtractions over the Rq instead of bit-wise XOR operations.
Under the random oracle modelH1(aots) will output a random
ring element. This creates a perfect one-time mask that assures
a′ is indistinguishable from random.

B. Efficiency Analysis
Here we give some estimated performance of instantiating

generic construction with FALCON-512. The estimated link-
able signature size is around 617 × 2(` + 1) + 2 ∗ 897 ≈
1.23(` + 1) + 2 ∗ 0.897 kilo bytes, where ` is the number of
users in a signature. For a signature of FALCON-512, the size
is around 2 × 617 bytes. Besides, 897 bytes is the size of a
ring element in FALCON-512.

We give comparison with some other (linkable) ring sig-
nature scheme in Table I. Comparing with other linear-size
linkable ring signature, we have the smallest signature size.
Comparing with scheme with logarithmic signature size, our
linkable ring signature scheme has a better performance with a
small ring (ring size ≤ 210). Thus, our linkable ring signature
is practical and can be applied in scenarios with small groups.

VI. CONCLUSION

We presented a new generic construction of linkable ring
signatures from Type-H digital signatures and proved its
security in the random oracle model. We instantiated our
framework with NTRU lattice. The resulting scheme outper-
forms state-of-the-art post-quantum constructions when the
ring size is reasonably small.
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