# Speed-up of SCA attacks on 32-bit multiplications

Robert NGUYEN<sup>1</sup>, Adrien FACON<sup>1,3</sup>, Sylvain GUILLEY<sup>1,2,3</sup>, Guillaume GAUTIER<sup>4</sup>, and Safwan ELASSAD<sup>5</sup>

<sup>1</sup> Secure-IC S.A.S. - Think Ahead Business Line, 35 510 Cesson-Sévigné, France <sup>2</sup> LTCI, Telecom ParisTech, COMELEC department 75 013 Paris, France

<sup>3</sup> École Normale Supérieure Département d'Informatique 75 005 Paris, France
<sup>4</sup> INSA RENNES, 35 708 Rennes Cedex 7

<sup>5</sup> IETR Laboratory, UMR CNRS 6164; VAADER team, NANTES

Abstract. Many crypto-algorithms, Deep-Learning, DSP compute on words larger than 8-bit. SCA attacks can easily be done on Boolean operations like XOR, AND, OR, and substitution operations like s-box, p-box or q-box, as 8-bit hypothesis or less are enough to forge attacks. However, attacking larger hypothesis word increases exponentially required resources: memory and computation power. Considering multiplication, 32-bit operation implies  $2^{32}$  hypothesis. Then a direct SCA attack cannot be efficiently performed. We propose to perform instead 4 small 8-bit SCA attacks. 32-bit attack complexity is reduced to 8-bit only complexity.

**Keywords:** SCA  $\cdot$  arithmetic multiplication  $\cdot$  32-bit  $\cdot$  divide and conquer  $\cdot$  8-bit  $\cdot$  reduce partition size  $\cdot$  fault model  $\cdot$  neural network  $\cdot$  Deep learning  $\cdot$  signal processing  $\cdot$  PID  $\cdot$  automotive  $\cdot$  avionic  $\cdot$  LFSR  $\cdot$  PUF  $\cdot$ chaotic pseudo-random generator

## 1 Introduction

Following the low cost of 32-bit microcontrollers that substitute to 8-bit and 16bit microcontrollers in embedded product, more and more algorithms use 32-bit operators. IoT firmware may then embed technical secret values of processing, meaning then key-knowledge of the product. SCARE approach (SCA+RE) is a way to retrieve such secret. It uses Side Channel Analysis (SCA) [1] to extract statistical information from product behavior (consumption and/or EM radiation) to perform Reverse Engineering (RE) and the retrieve secret.

Initial work has been done on a Vernam-like cipher using a PRNG based on Chaotic cell [2], [3], [4], [5]. The purpose of work was to retrieve 15 words of 32-bit from the secret keys of the PRNG. 12 words are used in a sum of products for a linear feedback. This article describes a side-channel attack on 32-bit multiplication, alone multiply operation or multiply-and-add operation. The attack has been performed on "ma" instruction of ARM-v2 which computes a multiply-and-add operation.

This 32-bit multiplication vulnerability can be applied on multiple other targets and for a large spectrum of applications. One can consider targets using

Robert NGUYEN et al.



Fig. 1. Attack on sensitive data in neural network

neuronal network for deep learning [6], [7]. (see example in Fig. 1). Also coefficients of FIR-IIR filter for signal processing are sensitive goods (eg. FIR parameter used for preprocessing by a SCA attack at [8] could be retrieved by SCA counterattack). (see example in Fig. 2). Also coefficients of PID for control loop in avionic or automotive actuators ([9]) are goods for advanced functionalities. (see example in Fig. 3). Last examples of applications deal with cryptographic functions in TPM may also include such 32-bit operations for Linear Return Function (LRF) in LFSR (pseudo-random generator), for HASH function or for PUF[10] (post-processing of PUF measurements). (see example in Fig. 4).

### 2 Complexity of attacking 32-bit multiplication

The targeted operation to attack is an arithmetic multiplication of two 32-bit values. The result is truncated at 32 bits, a modulus  $2^{32}$ . This 32-bit multiplication vulnerability against SCA has been identified on multiple targets. As the whole 32-bit word is needed for computation, following [11] statistical SCA



Fig. 2. Attack on sensitive coefficients of FIR-IIR Filter

attacks with a leakage model should need  $2^{32}$  partitions to discriminate the secret multiplicand value. This implies a large memory resource to store 4 billion independent traces and associated computing power to calculate intermediate results for CPA or DPA at each new measurement of a multiplication activity.

Actually, current available computer resource can be enough for such partition and computation power. But it is still a waste of resources (memories and computation time). For example, attacking with 1k-points traces, makes  $2^{32} = 4$ G partitions of 1k-points of 4 (or 8) bytes each. This imply to manage 16 TB of memory to store intermediate differential traces. When 10k-traces are enough to discriminate 8-bit hypothesis, 40k-traces will be needed at least for 32-bit hypothesis.

This will imply to manage  $16 * 10^{12} * 40 * 10^3 = 640 * 10^{15}$  Bytes, meaning more than  $10^{18}$  operations (31 years of computation on 1GHz computer).

### 3 Split the attack

Instead of attacking the whole word, we propose a different approach based on divide and conquer. The single attack with  $2^{32}$  partitions is substituted by 4 small and sequential attacks on  $2^8$  partitions.

You can note this strategy to attack 32-bit word can be extended to larger word, (N x 8) bits word can be attacked through N successive attacks on 8-bit value.

3



Fig. 3. Attack on sensitive coefficients of PID control loop

The proposed approach will split this single attack into 4 small attacks on 8 bits of secret key but computation still uses 32-bit multiplication<sup>6</sup>.

First of all is to describe the operands and elementary operations of the multiplication.

Each 32-bit word can be assumed as a vector of four 8-bit bytes:

- -Y = [Y3, Y2, Y1, Y0] : result Y = K \* X
- -K = [K3, K2, K1, K0] : secret key which is the multiplier constant
- -X = [X3, X2, X1, X0]: data to multiply

Note: " $\ll$ " operator corresponds to a bit-shifter operator,  $c = a \ll b$  sets c to a value left shifted from b bits. The operation of "left shift from 1 bit" is equivalent to "multiply by 2". Using the " $\ll$ " operator, Y can be rewrite in byte sub-operation as the following:

As result of multiplication is truncated to 32-bit, "Y" expression can be simplified as:

<sup>&</sup>lt;sup>6</sup> Actually, for some cryptographic operations, such as AES, it is natural to cut the 128bit datapath in 16 bytes, as the algorithm is programmed this way. But regarding the 32-bit multiplication, it is less obvious that the attacker can choose to focus specifically on sub-words, which actually normally have interactions between them (through carries). This is the point which makes our result remarkably non-obvious and interesting in terms of divide-and-conquer approach.



Fig. 4. Attack on sensitive goods inside a TPM

| $Y = (K3.X0) \ll 24$ | $4 + (K3.X1) \ll 32$ | $2 + (K3.X2) \ll$      | $40 + (K3.X3) \ll 48 +$ |
|----------------------|----------------------|------------------------|-------------------------|
| $(K2.X0) \ll 16$     | $6 + (K2.X1) \ll 24$ | $4 + (K2.X2) \ll$      | $32 + (K2.X3) \ll 40 +$ |
| $(K1.X0) \ll 8$      | $+ (K1.X1) \ll 16$   | $\delta + (K1.X2) \ll$ | $24 + (K1.X3) \ll 32 +$ |
| $(K0.X0) \ll 0$      | $+ (K0.X1) \ll 8$    | $+(K0.X2) \ll$         | $16 + (K0.X3) \ll 24$   |

Amongst 16 initial intermediate multiplications, only 10 multiplications are really needed. This triangle representation reveals that part of the key can be selected in operation only by selecting Xi values.

### 4 Attack steps

#### 4.1 Step 1 - Retrieve K0

If X0, X1 and X2 can be forced to zero (0), then  $Y = ((K0.X3) \ll 24)$  & 0xFF000000. A SCA attack with variation on X3 enables to retrieve K0 with only 256 partitions and up-to 256 traces. The leakage model is (only 8 low weight bits):  $\mathcal{L}(K0) : HW(Y) = HW((K0.X3) \& 0xFF)$ HW(Y) takes value in [0:8]

In case of noisy measurements, multiple traces can be acquired and average for each X3 value to reduced noise impact.

#### 4.2 Step 2 - Retrieve K1

The attack strategy is the same but with different Xi forced to zero. If X0, X1 and X3 can be forced to zero (0), then

 $Y = (K1.X2) \ll 24 + (K0.X2) \ll 16.$ 

A SCA attack with variation on X2 enables to retrieve K1 with only 256 partitions and up-to 256 traces. This attack needs to know the value of K0.

#### Robert NGUYEN et al.

$$\begin{split} Y &= (K3.X0) \ll 24 + \\ & (K2.X0) \ll 16 + (K2.X1) \ll 24 + \\ & (K1.X0) \ll 8 + (K1.X1) \ll 16 + (K1.X2) \ll 24 + \\ & (K0.X0) \ll 0 + (K0.X1) \ll 8 + (K0.X2) \ll 16 + (K0.X3) \ll 24 \end{split}$$

The leakage model is:  $\mathcal{L}(K1) : HW(Y) = HW(((K1.X2) \& 0xFF) \ll 8 + (K0.X2))$   $\mathcal{L}(K1) : HW(Y) = HW(((K1 \ll 8 + K0).X2) \& 0x0000FFFF)$ HW(Y) takes value in [0:16]

In case of noisy measurements, multiple traces can be acquired and average for each X2 value to reduced noise impact.

#### 4.3 Step 3 - Retrieve K2

The attack strategy is the same but with different Xi forced to zero. If X0, X2 and X3 can be forced to zero (0), then

 $Y = (K2.X1) \ll 24 + (K1.X1) \ll 16 + (K0.X1) \ll 8.$ 

A SCA attack with variation on X1 enables to retrieve K2 with only 256 partitions and up-to 256 traces. This attack needs to know the value of K0 and K1. The leakage model is:

 $\begin{aligned} \mathcal{L}(K2) &: HW(Y) = HW(((K2.X1) \& \texttt{OxFF}) \ll 16 + (K1.X1) \ll 8 + (K0.X1)) \\ \mathcal{L}(K2) &: HW(Y) = HW(((K2 \ll 16 + K1 \ll 8 + K0).X1) \& \texttt{OxOOFFFFFF}) \end{aligned}$ 

HW(Y) takes value in [0:24]

In case of noisy measurements, multiple traces can be acquired and average for each X1 value to reduced noise impact.

#### 4.4 Step 4 - Retrieve K3

The attack strategy is the same but with different Xi forced to zero. If X1, X2 and X3 can be forced to zero (0), then

 $Y = (K3.X0) \ll 24 + (K2.X0) \ll 16 + (K1.X0) \ll 8 + (K0.X0) \ll 0.$ 

A SCA attack with variation on X0 enables to retrieve K3 with only 256 partitions and up-to 256 traces. This attack needs to know the value of K0, K1 and K2.

The leakage model is:

 $\mathcal{L}(K3): HW(Y) = HW(((K3.X0)\& \text{ OxFF}) \ll 24 + (K2.X0) \ll 16 + (K1.X0) \ll 8 + (K0.X0))$ 

 $\mathcal{L}(K3) : HW(Y) = HW(((K3 \ll 24 + K2 \ll 16 + K1 \ll 8 + K0).X0)\&$  OxFFFFFFF)

HW(Y) takes value in [0:32]

In case of noisy measurements, multiple traces can be acquired and average for each X0 value to reduced noise impact.

6

#### 4.5 Conclusion

The complex attack on K (32-bit) is replaced by 4 small attacks on 8-bit word: K = [K3, K2, K1, K0]. The order of the sequence of attacks remains as the last constraint to know few sub-keys  $K_i$  before attacking next sub-key  $K_i$ .

### 5 Benchmark

### 5.1 SCA attack on 8-bit multiplication

Each of 8-bit SCA attack presented in the previous chapter is based on the same attack scenario.

The 8-bit attack, used by the previous attacks, is a classical statistical SCA. CPA is chosen as distinguisher as it can converge quickly, even in noisy condition.

#### 5.2 Performance on Software implementation

A single 8-bit attack on 1k-points traces requires 256 \* 1024 \* 8 = 2M bytes of memory and for computational resources 32 \* 1024 \* 256 = 8M multiplications and 256 \* 1024 \* 256 = 32M additions.

For the whole attack, this corresponds to 2M-bytes of memory, 32M-multiplications and 128M-Additions.

In comparison, a direct 32-bit attack needs 16 TB (16 Million of MB) of memory and  $10^{18}$  operations ( $10^{12} * 1M$  operations).

### 6 Conclusion

By splitting big-word variables into an array of bytes, the complex attack of a N-Bytes word multiplication can be substituted by N small attacks on 8-bit words. The attack complexity  $O(2^{32})$  is replaced by  $4*O(2^8)$ . The gain of memory is over 10 million and the gain of computation is 1 billion. Then the new method allows to compute the attack in 1 second on embedded computer (1GHz mono-core, 4MB of memory) instead of 31 years with 16 TB of memory.

#### 7 Glossary

| Chaotic Cell | Compute a value $x(n+1)$ with $x(n+1) = f(x(n))$ that      |  |
|--------------|------------------------------------------------------------|--|
|              | makes a prediction of $x(n+p)$ very complex if $p>1$ .     |  |
| CPA          | Correlation Power Analysis.                                |  |
| CEMA         | Correlation Electro-Magnetic Analysis.                     |  |
| Double       | an extended floating-point value on 64-bit (8 bytes), IEEE |  |
|              | defined.                                                   |  |
| EM           | ElectroMagnetic.                                           |  |
| FIR          | Finite Impulse Response, a filter defined by:              |  |
|              |                                                            |  |

### Robert NGUYEN et al.

| $Y(n) = \sum_{i=1}^{N} [X(n-i) * a(i)]$ |                  |                                                                                                           |  |  |
|-----------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|--|--|
|                                         | Float            | a floating-point value on 32-bit. IEEE defined.                                                           |  |  |
|                                         | GB               | Giga-Bytes = $10^9$ Bytes (Billion).                                                                      |  |  |
|                                         | HASH             | Data transformation to produce a compressed signature.                                                    |  |  |
|                                         |                  | This signature is used to test data integrity.                                                            |  |  |
|                                         | HD               | Hamming Distance. HW of the transition of a register value                                                |  |  |
|                                         |                  | when update: $HD(reg(n)) = HW(reg(n) XOR reg(n-1))$                                                       |  |  |
|                                         |                  |                                                                                                           |  |  |
|                                         | HW               | Hamming Weight number of "1" in binary representation                                                     |  |  |
|                                         |                  | of a number.                                                                                              |  |  |
|                                         | IRR              | Infinite Impulse Response, a filter defined by                                                            |  |  |
|                                         |                  | $V(n) - \sum^{N} \left[ Y(n-i) * a(i) \right] - \sum^{M} \left[ V(n-i) * b(i) \right]$                    |  |  |
|                                         | IFSB             | $I(n) = \sum_{i=1} [A(n-i) * a(i)] = \sum_{j=1} [I(n-j) * b(j)]$<br>Linear Feedback Shift Periotar        |  |  |
|                                         | IRF              | Linear Return Function                                                                                    |  |  |
|                                         |                  | Linear Return Function.                                                                                   |  |  |
|                                         | MAC              | Multiply-and-Accumulate, same as Multiply-and-Add.<br>More $P_{\rm vites} = 10^6 P_{\rm vites}$ (Million) |  |  |
|                                         | Multiply and Add | Mega-Dytes = $10^{\circ}$ Dytes (Minion).                                                                 |  |  |
|                                         | Munipiy-and-Add  | Two operation executed by a single instruction $T = a * A + b$                                            |  |  |
|                                         | Noural Notwork   | U.<br>In Artificial Intelligence (AI) context set neurons ergo                                            |  |  |
|                                         | Neural Network   | nized and interconnected in layers to process and reduce                                                  |  |  |
|                                         |                  | number of values                                                                                          |  |  |
|                                         | Neuron           | Each neuron of a layer computes a value from sum of prod-                                                 |  |  |
|                                         | Neuron           | uct of its inputs and propagate a post-processed value to                                                 |  |  |
|                                         |                  | upper layer of neurons                                                                                    |  |  |
|                                         | PID              | Proportional Integral and Derivative: definite a three-term                                               |  |  |
|                                         | 1 ID             | controller in a control loop feedback mechanism                                                           |  |  |
|                                         | PRNC             | Pseudo-Random Number Cenerator, produce a predeter-                                                       |  |  |
|                                         | 1100             | mined sequence of value that simulate random an initial                                                   |  |  |
|                                         |                  | seed give the beginning of the sequence                                                                   |  |  |
|                                         | PUF              | Physical Unclonable Function Use silicon intrinsic prop-                                                  |  |  |
|                                         | 1.01             | erty to produce a unique ID even from the same logical                                                    |  |  |
|                                         |                  | gate/transistor definition Post-processing using multipli-                                                |  |  |
|                                         |                  | cation can be used to forge better quality PUF                                                            |  |  |
|                                         | BE               | Reverse Engineering                                                                                       |  |  |
|                                         | BNG              | Random Number Generator, can be a TRNG or a PRNG                                                          |  |  |
|                                         | SCARE            | Side-Channel Analysis for Reverse Engineering                                                             |  |  |
|                                         | SCA              | Side-Channel Analysis for Reverse Engineering.                                                            |  |  |
|                                         | TB               | Tera-Bytes = $10^{12}$ Bytes (Millions of million)                                                        |  |  |
|                                         | TPM              | Trusted Platform Module                                                                                   |  |  |
|                                         | TRNG             | True Bandom Number Generator, use physical property to                                                    |  |  |
|                                         | 11010            | produce unpredictable random number (Eg. atomic desin-                                                    |  |  |
|                                         |                  | tegration)                                                                                                |  |  |
|                                         | XOR              | eXclusive OB                                                                                              |  |  |
|                                         | 11010            |                                                                                                           |  |  |

## References

- Kocher, P., Jaffe, J., and Jun, B. (1999). Differential Power Analysis. In Wiener, M., editor, Advances in Cryptology — CRYPTO' 99, volume 1666 of Lecture Notes in Computer Science book series (LNCS), pages 388–397, Berlin, Heidelberg. Springer Berlin Heidelberg.
- El Assad et al., "Chaos-based Block Ciphers: An Overview", IEEE, 10th International Conference on Communications, COMM-2014, Bucharest, Romania, May 2014, pp. 23-26.
- El Assad, Farajallah, "A new Chaos-Based Image Encryption System". Signal Processing: Image Communication 41, (2016) 144-157.
- 4. G.Gautier, Safwan El Assad: Design and Efficient Implementations of a Chaos-based stream cipher for Securing Internet of Things"., IETR Laboratory, UMR CNRS 6164; VAADER team, NANTES, FRANCE:2017-12-08, Talk, Journée GDR-ISIS, IRISA, Rennes.
- G.Gautier, Safwan El Assad: A Promising Chaos-based Stream Cipher, IETR Laboratory, UMR CNRS 6164; VAADER team, NANTES, FRANCE:2018-01-18, Talk at Polytech Nantes.
- 6. Lejla Batina<sup>1</sup>, Shivam Bhasin<sup>2</sup>, Dirmanto Jap<sup>2</sup>, Stjepan Picek<sup>3</sup>: CSI Neural Network - Using Side-channels to Recover Your Artificial Neural Network Information: <sup>1</sup> Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands; <sup>2</sup> Physical Analysis and Cryptographic Engineering, Temasek Laboratories at Nanyang Technological University, Singapore; <sup>3</sup> Delft University of Technology, Delft, The Netherlands: arXiv:1810.09076v1 [cs.CR] 22th Oct 2018.
- Pierre-Alain Moellic,: The Dark Side of Neural Networks: an Advocacy for Security in Machine Learning: CEA Tech, Centre CMP, Équipe Commune CEA Tech -Mines Saint-Etienne, F-13541 Gardanne FRANCE pierre-alain.moellic@cea.fr: CE-SAR 2018 J1-05.
- David Oswald and Christof Paar: "Improving Side-Channel Analysis with Optimal Pre-Processing", Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany, {david.oswald, christof.paar}@rub.de CARDIS 2012,16
- Hari Om Bansal, Rajamayyoor Sharma, P. R. Shreeraman: "PID Controller Tuning Techniques - A Review", Electrical and Electronics Engineering Department, Birla Institute of Technology and Science, Pilani, India,: hobansal@gmail.com Journal of Control Engineering and Technology, JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.vkingpub.com
- 10. Physically Unclonable Function PUF, SR2I301 : https://perso.telecomparistech.fr/danger/SR2I301/PUF.pdf
- Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Cryptographic Hardware and Embedded Systems — CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer (2004)