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Abstract

Key separation is often difficult to enforce in practice. While key reuse can be catastrophic for security,

we know of a number of cryptographic schemes for which it is provably safe. But existing formal models,

such as the notions of joint security (Haber-Pinkas, CCS ’01) and agility (Acar et al., EUROCRYPT ’10),

do not address the full range of key-reuse attacks—in particular, those that break the abstraction of the

scheme, or exploit protocol interactions at a higher level of abstraction. This work attends to these

vectors by focusing on two key elements: the game that codifies the scheme under attack, as well as its

intended adversarial model; and the underlying interface that exposes secret key operations for use by

the game. Our main security experiment considers the implications of using an interface (in practice, the

API of a software library or a hardware platform such as TPM) to realize the scheme specified by the

game when the interface is shared with other unspecified, insecure, or even malicious applications. After

building up a definitional framework, we apply it to the analysis of two real-world schemes: the EdDSA

signature algorithm and the Noise protocol framework. Both provide some degree of context separability,

a design pattern for interfaces and their applications that aids in the deployment of secure protocols.
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1 Introduction

The principle of key separation, or ensuring that distinct cryptographic functionalities use distinct keys, is

a widely accepted tenet of applied cryptography. It appears to be difficult to follow, however, as there are

many instances of key reuse in deployed cryptosystems, some having significant impact on the security of

applications. There are a number of practical matters that lead to key resuse. First, operational requirements

of the system often demand some degree of it. For example, it is common to use a signing key deployed for

TLS [55] in other protocols, as this is permitted by certificate authorities and avoids the cost of certifying a

distinct key for each protocol. But doing so has side effects that must be addressed in the design of these

protocols, as well as the interface that exposes the key to applications [15]. Second, it is often not clear what

constitutes a “distinct functionality”. Intel’s Trusted Platform Module (TPM) standard [61] supports a

variety of protocols for remote attestation that use an Intel-certified key stored on chip. The TPM exposes a

core set of operations involving this key via its application-programming interface (API), which applications

make calls to in order to implement attestation schemes. But the requirement to support so many protocols

has lead to a flexibile API with subtle vulnerabilities [3, 20].

Prior work sheds light on when key reuse is safe among specific primitives. Haber and Pinkas [34]

introduce the notion of joint security, which captures the security of a target cryptosystem (say, a digital

signature scheme) in the presence of an oracle that exposes a related secret-key operation (say, the decryption

operation of a public-key encryption scheme). Many widely used primitives are jointly secure, including RSA-

PSS/OAEP [34] and Schnorr signatures/hybrid encryption [22]. Acar et al. [2] address the related problem

of agility, where the goal is to identify multiple instantiations of a particular primitive (e.g., sets of AEAD

schemes, PRFs, or signature schemes) that can securely use the same key material. But the range of potential

key-reuse attacks goes well beyond what these works cover; attack vectors sometimes break the intended

abstraction boundary of the scheme by exposing lower level operations [19, 3], or involve unforeseen protocol

interactions at a higher level of abstraction [36, 15]. We believe that a comprehensive treatment of key reuse

can and should account for these attack vectors as well.

To this end, we propose to surface the API as a first class security object. For our purposes, the API

(or just “interface”) is the component of a system that exposes to applications a fixed set of operations

involving one or more secret keys. APIs are often the root-of-trust of applications: TPM, Intel’s Software

Guard Extensions (SGX), hardware security modules (HSMs), and even chip-and-pin credit cards all provide

cryptographic APIs that aim to be trustworthy-by-design. But pressure to meet operational requirements,

while exporting interfaces that are suitable for a variety of applications, often leads to vulnerabilities [17,

22, 41, 3]. An analogous situation arises in the development of software that uses a cryptographic library;

software engineers tend to trust that any use case permitted by an API is secure, without fully grasping its

side-effects [50]. This phenomenon tends to lead to vulnerable code [4, 51].

In light of these issues, this work seeks to develop security-oriented design principles for interfaces and

their applications. We devise a definitional framework for reasoning about the security of an application

when the interface it consumes is used in other, perhaps unintended or even insecure ways. We model these

“other applications” very conservatively, as follows: to assist it in its attack against the target application,

we assume the adversary has direct access to the underlying interface, allowing it to mount exposed interface

attacks on a target application. We apply this framework to the design and analysis of two real-world

cryptosystems: the EdDSA signature algorithm [35] and the Noise protocol framework [53]. In doing so, we

elicit a property of interfaces and their applications we call context separability, which we will show to be an

invaluable tool for secure protocol design.

The framework. We begin by motivating our definitional viewpoint, which draws abstraction boundaries a

bit differently than usual. Game-based notions of security [12] typically specify (in pseudocode) a game G that

makes calls to a cryptographic scheme Π (a primitive or protocol, also specified in pseudocode). The game
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<latexit sha1_base64="mHyS62r6pkTK0xEbvXDLmpkHf/M=">AAAB8nicbVBNS8NAFHypX7V+VT16CVbBU0lE0GPBi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMcfcTGaDesNrenO4q8QvSQNKtAf1r/5Q0SxhEqkgxgS+l2KYE42cCjar9TPDUkInZMQCSyVJmAnzeeSZe26VoRsrbZ9Ed67+3shJYsw0iexkEdEse4X4nxdkGN+EOZdphkzSxUdxJlxUbnG/O+SaURRTSwjV3GZ16ZhoQtG2VLMl+Msnr5LuZdP3mv79VaN1VtZRhRM4hQvw4RpacAdt6AAFBc/wCm8OOi/Ou/OxGK045c4x/IHz+QPYIZGD</latexit><latexit sha1_base64="mHyS62r6pkTK0xEbvXDLmpkHf/M=">AAAB8nicbVBNS8NAFHypX7V+VT16CVbBU0lE0GPBi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMcfcTGaDesNrenO4q8QvSQNKtAf1r/5Q0SxhEqkgxgS+l2KYE42cCjar9TPDUkInZMQCSyVJmAnzeeSZe26VoRsrbZ9Ed67+3shJYsw0iexkEdEse4X4nxdkGN+EOZdphkzSxUdxJlxUbnG/O+SaURRTSwjV3GZ16ZhoQtG2VLMl+Msnr5LuZdP3mv79VaN1VtZRhRM4hQvw4RpacAdt6AAFBc/wCm8OOi/Ou/OxGK045c4x/IHz+QPYIZGD</latexit><latexit sha1_base64="mHyS62r6pkTK0xEbvXDLmpkHf/M=">AAAB8nicbVBNS8NAFHypX7V+VT16CVbBU0lE0GPBi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMcfcTGaDesNrenO4q8QvSQNKtAf1r/5Q0SxhEqkgxgS+l2KYE42cCjar9TPDUkInZMQCSyVJmAnzeeSZe26VoRsrbZ9Ed67+3shJYsw0iexkEdEse4X4nxdkGN+EOZdphkzSxUdxJlxUbnG/O+SaURRTSwjV3GZ16ZhoQtG2VLMl+Msnr5LuZdP3mv79VaN1VtZRhRM4hQvw4RpacAdt6AAFBc/wCm8OOi/Ou/OxGK045c4x/IHz+QPYIZGD</latexit><latexit sha1_base64="mHyS62r6pkTK0xEbvXDLmpkHf/M=">AAAB8nicbVBNS8NAFHypX7V+VT16CVbBU0lE0GPBi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMcfcTGaDesNrenO4q8QvSQNKtAf1r/5Q0SxhEqkgxgS+l2KYE42cCjar9TPDUkInZMQCSyVJmAnzeeSZe26VoRsrbZ9Ed67+3shJYsw0iexkEdEse4X4nxdkGN+EOZdphkzSxUdxJlxUbnG/O+SaURRTSwjV3GZ16ZhoQtG2VLMl+Msnr5LuZdP3mv79VaN1VtZRhRM4hQvw4RpacAdt6AAFBc/wCm8OOi/Ou/OxGK045c4x/IHz+QPYIZGD</latexit> win

<latexit sha1_base64="XfMwrzB8KP5qLPSvHPUsv7RuErY=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxmUF+4AmlMl02g6dTMLMjVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnTKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuhtRwKRRvoUDJu4nmNAol74ST29zvPHJtRKwecJrwIKIjJYaCUbSS70cUxwKzJ6Fm/WrNrbtzkFXiFaQGBZr96pc/iFkacYVMUmN6nptgkFGNgkk+q/ip4QllEzriPUsVjbgJsnnmGTm3yoAMY22fQjJXf29kNDJmGoV2Ms9olr1c/M/rpTi8CTKhkhS5YotDw1QSjEleABkIzRnKqSWUaWGzEjammjK0NVVsCd7yl1dJ+7LuuXXv/qrWOCvqKMMJnMIFeHANDbiDJrSAQQLP8ApvTuq8OO/Ox2K05BQ7x/AHzucPq5qR/Q==</latexit><latexit sha1_base64="XfMwrzB8KP5qLPSvHPUsv7RuErY=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxmUF+4AmlMl02g6dTMLMjVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnTKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuhtRwKRRvoUDJu4nmNAol74ST29zvPHJtRKwecJrwIKIjJYaCUbSS70cUxwKzJ6Fm/WrNrbtzkFXiFaQGBZr96pc/iFkacYVMUmN6nptgkFGNgkk+q/ip4QllEzriPUsVjbgJsnnmGTm3yoAMY22fQjJXf29kNDJmGoV2Ms9olr1c/M/rpTi8CTKhkhS5YotDw1QSjEleABkIzRnKqSWUaWGzEjammjK0NVVsCd7yl1dJ+7LuuXXv/qrWOCvqKMMJnMIFeHANDbiDJrSAQQLP8ApvTuq8OO/Ox2K05BQ7x/AHzucPq5qR/Q==</latexit><latexit sha1_base64="XfMwrzB8KP5qLPSvHPUsv7RuErY=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxmUF+4AmlMl02g6dTMLMjVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnTKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuhtRwKRRvoUDJu4nmNAol74ST29zvPHJtRKwecJrwIKIjJYaCUbSS70cUxwKzJ6Fm/WrNrbtzkFXiFaQGBZr96pc/iFkacYVMUmN6nptgkFGNgkk+q/ip4QllEzriPUsVjbgJsnnmGTm3yoAMY22fQjJXf29kNDJmGoV2Ms9olr1c/M/rpTi8CTKhkhS5YotDw1QSjEleABkIzRnKqSWUaWGzEjammjK0NVVsCd7yl1dJ+7LuuXXv/qrWOCvqKMMJnMIFeHANDbiDJrSAQQLP8ApvTuq8OO/Ox2K05BQ7x/AHzucPq5qR/Q==</latexit><latexit sha1_base64="XfMwrzB8KP5qLPSvHPUsv7RuErY=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxmUF+4AmlMl02g6dTMLMjVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnTKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuhtRwKRRvoUDJu4nmNAol74ST29zvPHJtRKwecJrwIKIjJYaCUbSS70cUxwKzJ6Fm/WrNrbtzkFXiFaQGBZr96pc/iFkacYVMUmN6nptgkFGNgkk+q/ip4QllEzriPUsVjbgJsnnmGTm3yoAMY22fQjJXf29kNDJmGoV2Ms9olr1c/M/rpTi8CTKhkhS5YotDw1QSjEleABkIzRnKqSWUaWGzEjammjK0NVVsCd7yl1dJ+7LuuXXv/qrWOCvqKMMJnMIFeHANDbiDJrSAQQLP8ApvTuq8OO/Ox2K05BQ7x/AHzucPq5qR/Q==</latexit>

(↵)
<latexit sha1_base64="XPOoRgFFhPZGjwIzGvuj2fQOn0o=">AAACCHicbVDLSsNAFJ3UV62vqEsXBqtQNyURQZcFNy4r2Ac0odxMpu3QySTMTIQSsnTjr7hxoYhbP8Gdf+MkzUJbDwwczrmvOX7MqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCujRGDSwRGLRN8HSRjlpKOoYqQfCwKhz0jPn97kfu+BCEkjfq9mMfFCGHM6ohiUlobmsRuCmmBgaSN1i3GpIEHmAosnkJ1nQ7NuN+0C1jJxSlJHJdpD88sNIpyEhCvMQMqBY8fKS0EoihnJam4iSQx4CmMy0JRDSKSXFpsz60wrgTWKhH5cWYX6uyOFUMpZ6OvK/Gy56OXif94gUaNrL6U8ThTheL5olDBLRVaeihVQQbBiM00AC6pvtfAEBGCls6vpEJzFLy+T7kXTsZvO3WW9dVrGUUVH6AQ1kIOuUAvdojbqIIwe0TN6RW/Gk/FivBsf89KKUfYcoj8wPn8AsJaaSg==</latexit><latexit sha1_base64="XPOoRgFFhPZGjwIzGvuj2fQOn0o=">AAACCHicbVDLSsNAFJ3UV62vqEsXBqtQNyURQZcFNy4r2Ac0odxMpu3QySTMTIQSsnTjr7hxoYhbP8Gdf+MkzUJbDwwczrmvOX7MqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCujRGDSwRGLRN8HSRjlpKOoYqQfCwKhz0jPn97kfu+BCEkjfq9mMfFCGHM6ohiUlobmsRuCmmBgaSN1i3GpIEHmAosnkJ1nQ7NuN+0C1jJxSlJHJdpD88sNIpyEhCvMQMqBY8fKS0EoihnJam4iSQx4CmMy0JRDSKSXFpsz60wrgTWKhH5cWYX6uyOFUMpZ6OvK/Gy56OXif94gUaNrL6U8ThTheL5olDBLRVaeihVQQbBiM00AC6pvtfAEBGCls6vpEJzFLy+T7kXTsZvO3WW9dVrGUUVH6AQ1kIOuUAvdojbqIIwe0TN6RW/Gk/FivBsf89KKUfYcoj8wPn8AsJaaSg==</latexit><latexit sha1_base64="XPOoRgFFhPZGjwIzGvuj2fQOn0o=">AAACCHicbVDLSsNAFJ3UV62vqEsXBqtQNyURQZcFNy4r2Ac0odxMpu3QySTMTIQSsnTjr7hxoYhbP8Gdf+MkzUJbDwwczrmvOX7MqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCujRGDSwRGLRN8HSRjlpKOoYqQfCwKhz0jPn97kfu+BCEkjfq9mMfFCGHM6ohiUlobmsRuCmmBgaSN1i3GpIEHmAosnkJ1nQ7NuN+0C1jJxSlJHJdpD88sNIpyEhCvMQMqBY8fKS0EoihnJam4iSQx4CmMy0JRDSKSXFpsz60wrgTWKhH5cWYX6uyOFUMpZ6OvK/Gy56OXif94gUaNrL6U8ThTheL5olDBLRVaeihVQQbBiM00AC6pvtfAEBGCls6vpEJzFLy+T7kXTsZvO3WW9dVrGUUVH6AQ1kIOuUAvdojbqIIwe0TN6RW/Gk/FivBsf89KKUfYcoj8wPn8AsJaaSg==</latexit><latexit sha1_base64="XPOoRgFFhPZGjwIzGvuj2fQOn0o=">AAACCHicbVDLSsNAFJ3UV62vqEsXBqtQNyURQZcFNy4r2Ac0odxMpu3QySTMTIQSsnTjr7hxoYhbP8Gdf+MkzUJbDwwczrmvOX7MqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCujRGDSwRGLRN8HSRjlpKOoYqQfCwKhz0jPn97kfu+BCEkjfq9mMfFCGHM6ohiUlobmsRuCmmBgaSN1i3GpIEHmAosnkJ1nQ7NuN+0C1jJxSlJHJdpD88sNIpyEhCvMQMqBY8fKS0EoihnJam4iSQx4CmMy0JRDSKSXFpsz60wrgTWKhH5cWYX6uyOFUMpZ6OvK/Gy56OXif94gUaNrL6U8ThTheL5olDBLRVaeihVQQbBiM00AC6pvtfAEBGCls6vpEJzFLy+T7kXTsZvO3WW9dVrGUUVH6AQ1kIOuUAvdojbqIIwe0TN6RW/Gk/FivBsf89KKUfYcoj8wPn8AsJaaSg==</latexit>

Init
<latexit sha1_base64="wVHOqgtktmIg1fAY8x2ROySRO90=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCG91VsA9oh5JJM21oJjMmdwpl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3eZ+a8y1EbF6xEnC/YgOlAgFo2glvxtRHAZhdq8ETnvlilt1ZyCrxFuQCixQ75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342Cz0l51bpkzDW9ikkM/X3RkYjYyZRYCfzkGbZy8X/vE6K4Y2fCZWkyBWbHwpTSTAmeQOkLzRnKCeWUKaFzUrYkGrK0PZUsiV4y19eJc3LqudWvYerSu1sUUcRTuAULsCDa6jBHdShAQye4Ble4c0ZOy/Ou/MxHy04i51j+APn8wcez5I4</latexit><latexit sha1_base64="wVHOqgtktmIg1fAY8x2ROySRO90=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCG91VsA9oh5JJM21oJjMmdwpl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3eZ+a8y1EbF6xEnC/YgOlAgFo2glvxtRHAZhdq8ETnvlilt1ZyCrxFuQCixQ75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342Cz0l51bpkzDW9ikkM/X3RkYjYyZRYCfzkGbZy8X/vE6K4Y2fCZWkyBWbHwpTSTAmeQOkLzRnKCeWUKaFzUrYkGrK0PZUsiV4y19eJc3LqudWvYerSu1sUUcRTuAULsCDa6jBHdShAQye4Ble4c0ZOy/Ou/MxHy04i51j+APn8wcez5I4</latexit><latexit sha1_base64="wVHOqgtktmIg1fAY8x2ROySRO90=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCG91VsA9oh5JJM21oJjMmdwpl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3eZ+a8y1EbF6xEnC/YgOlAgFo2glvxtRHAZhdq8ETnvlilt1ZyCrxFuQCixQ75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342Cz0l51bpkzDW9ikkM/X3RkYjYyZRYCfzkGbZy8X/vE6K4Y2fCZWkyBWbHwpTSTAmeQOkLzRnKCeWUKaFzUrYkGrK0PZUsiV4y19eJc3LqudWvYerSu1sUUcRTuAULsCDa6jBHdShAQye4Ble4c0ZOy/Ou/MxHy04i51j+APn8wcez5I4</latexit><latexit sha1_base64="wVHOqgtktmIg1fAY8x2ROySRO90=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCG91VsA9oh5JJM21oJjMmdwpl6He4caGIWz/GnX9jpu1CWw8EDufcyz05QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3eZ+a8y1EbF6xEnC/YgOlAgFo2glvxtRHAZhdq8ETnvlilt1ZyCrxFuQCixQ75W/uv2YpRFXyCQ1puO5CfoZ1SiY5NNSNzU8oWxEB7xjqaIRN342Cz0l51bpkzDW9ikkM/X3RkYjYyZRYCfzkGbZy8X/vE6K4Y2fCZWkyBWbHwpTSTAmeQOkLzRnKCeWUKaFzUrYkGrK0PZUsiV4y19eJc3LqudWvYerSu1sUUcRTuAULsCDa6jBHdShAQye4Ble4c0ZOy/Ou/MxHy04i51j+APn8wcez5I4</latexit> Call

<latexit sha1_base64="F5uN99JDBJR4sHaGnC7VNwznzJY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMtCNy4r2Ae0Q7mTZtrQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY13O/PWFK81g+mmnC/AiHkoecorGS34vQjIIwq6MQs3654lbdOcg68ZakAks0+uWv3iCmacSkoQK17npuYvwMleFUsFmpl2qWIB3jkHUtlRgx7Wfz0DNyaZUBCWNlnzRkrv7eyDDSehoFdjIPqVe9XPzP66YmvPMzLpPUMEkXh8JUEBOTvAEy4IpRI6aWIFXcZiV0hAqpsT2VbAne6pfXSeu66rlV7+GmUrtY1lGEMziHK/DgFmpwDw1oAoUneIZXeHMmzovz7nwsRgvOcucU/sD5/AH6H5Ig</latexit><latexit sha1_base64="F5uN99JDBJR4sHaGnC7VNwznzJY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMtCNy4r2Ae0Q7mTZtrQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY13O/PWFK81g+mmnC/AiHkoecorGS34vQjIIwq6MQs3654lbdOcg68ZakAks0+uWv3iCmacSkoQK17npuYvwMleFUsFmpl2qWIB3jkHUtlRgx7Wfz0DNyaZUBCWNlnzRkrv7eyDDSehoFdjIPqVe9XPzP66YmvPMzLpPUMEkXh8JUEBOTvAEy4IpRI6aWIFXcZiV0hAqpsT2VbAne6pfXSeu66rlV7+GmUrtY1lGEMziHK/DgFmpwDw1oAoUneIZXeHMmzovz7nwsRgvOcucU/sD5/AH6H5Ig</latexit><latexit sha1_base64="F5uN99JDBJR4sHaGnC7VNwznzJY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMtCNy4r2Ae0Q7mTZtrQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY13O/PWFK81g+mmnC/AiHkoecorGS34vQjIIwq6MQs3654lbdOcg68ZakAks0+uWv3iCmacSkoQK17npuYvwMleFUsFmpl2qWIB3jkHUtlRgx7Wfz0DNyaZUBCWNlnzRkrv7eyDDSehoFdjIPqVe9XPzP66YmvPMzLpPUMEkXh8JUEBOTvAEy4IpRI6aWIFXcZiV0hAqpsT2VbAne6pfXSeu66rlV7+GmUrtY1lGEMziHK/DgFmpwDw1oAoUneIZXeHMmzovz7nwsRgvOcucU/sD5/AH6H5Ig</latexit><latexit sha1_base64="F5uN99JDBJR4sHaGnC7VNwznzJY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMtCNy4r2Ae0Q7mTZtrQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY13O/PWFK81g+mmnC/AiHkoecorGS34vQjIIwq6MQs3654lbdOcg68ZakAks0+uWv3iCmacSkoQK17npuYvwMleFUsFmpl2qWIB3jkHUtlRgx7Wfz0DNyaZUBCWNlnzRkrv7eyDDSehoFdjIPqVe9XPzP66YmvPMzLpPUMEkXh8JUEBOTvAEy4IpRI6aWIFXcZiV0hAqpsT2VbAne6pfXSeu66rlV7+GmUrtY1lGEMziHK/DgFmpwDw1oAoUneIZXeHMmzovz7nwsRgvOcucU/sD5/AH6H5Ig</latexit>

(ctx 6= ↵)
<latexit sha1_base64="kHbqiexrcG+096z4TOBqPB+3aJA=">AAACEHicbVC7TsMwFHV4U14FRhaLgoClShASjJVYGEGiD6mJKse9pRaOE+wbRBXlE1j4FRYGEGJlZONvcNsM0HIkS0fn3JdPmEhh0HW/nZnZufmFxaXl0srq2vpGeXOrYeJUc6jzWMa6FTIDUiioo0AJrUQDi0IJzfD2fOg370EbEatrHCQQROxGiZ7gDK3UKR/4EcO+wOyQ4wP1FdzRzB+NzTR0c5/JpM/yo7xTrrhVdwQ6TbyCVEiBy075y+/GPI1AIZfMmLbnJhhkTKPgEvKSnxpIGL9lN9C2VLEITJCNNud03ypd2ou1fQrpSP3dkbHImEEU2srh+WbSG4r/ee0Ue2dBJlSSIig+XtRLJcWYDtOhXaGBoxxYwrgW9lbK+0wzjjbDkg3Bm/zyNGkcVz236l2dVGp7RRxLZIfskkPikVNSIxfkktQJJ4/kmbySN+fJeXHenY9x6YxT9GyTP3A+fwCWkZ12</latexit><latexit sha1_base64="kHbqiexrcG+096z4TOBqPB+3aJA=">AAACEHicbVC7TsMwFHV4U14FRhaLgoClShASjJVYGEGiD6mJKse9pRaOE+wbRBXlE1j4FRYGEGJlZONvcNsM0HIkS0fn3JdPmEhh0HW/nZnZufmFxaXl0srq2vpGeXOrYeJUc6jzWMa6FTIDUiioo0AJrUQDi0IJzfD2fOg370EbEatrHCQQROxGiZ7gDK3UKR/4EcO+wOyQ4wP1FdzRzB+NzTR0c5/JpM/yo7xTrrhVdwQ6TbyCVEiBy075y+/GPI1AIZfMmLbnJhhkTKPgEvKSnxpIGL9lN9C2VLEITJCNNud03ypd2ou1fQrpSP3dkbHImEEU2srh+WbSG4r/ee0Ue2dBJlSSIig+XtRLJcWYDtOhXaGBoxxYwrgW9lbK+0wzjjbDkg3Bm/zyNGkcVz236l2dVGp7RRxLZIfskkPikVNSIxfkktQJJ4/kmbySN+fJeXHenY9x6YxT9GyTP3A+fwCWkZ12</latexit><latexit sha1_base64="kHbqiexrcG+096z4TOBqPB+3aJA=">AAACEHicbVC7TsMwFHV4U14FRhaLgoClShASjJVYGEGiD6mJKse9pRaOE+wbRBXlE1j4FRYGEGJlZONvcNsM0HIkS0fn3JdPmEhh0HW/nZnZufmFxaXl0srq2vpGeXOrYeJUc6jzWMa6FTIDUiioo0AJrUQDi0IJzfD2fOg370EbEatrHCQQROxGiZ7gDK3UKR/4EcO+wOyQ4wP1FdzRzB+NzTR0c5/JpM/yo7xTrrhVdwQ6TbyCVEiBy075y+/GPI1AIZfMmLbnJhhkTKPgEvKSnxpIGL9lN9C2VLEITJCNNud03ypd2ou1fQrpSP3dkbHImEEU2srh+WbSG4r/ee0Ue2dBJlSSIig+XtRLJcWYDtOhXaGBoxxYwrgW9lbK+0wzjjbDkg3Bm/zyNGkcVz236l2dVGp7RRxLZIfskkPikVNSIxfkktQJJ4/kmbySN+fJeXHenY9x6YxT9GyTP3A+fwCWkZ12</latexit><latexit sha1_base64="kHbqiexrcG+096z4TOBqPB+3aJA=">AAACEHicbVC7TsMwFHV4U14FRhaLgoClShASjJVYGEGiD6mJKse9pRaOE+wbRBXlE1j4FRYGEGJlZONvcNsM0HIkS0fn3JdPmEhh0HW/nZnZufmFxaXl0srq2vpGeXOrYeJUc6jzWMa6FTIDUiioo0AJrUQDi0IJzfD2fOg370EbEatrHCQQROxGiZ7gDK3UKR/4EcO+wOyQ4wP1FdzRzB+NzTR0c5/JpM/yo7xTrrhVdwQ6TbyCVEiBy075y+/GPI1AIZfMmLbnJhhkTKPgEvKSnxpIGL9lN9C2VLEITJCNNud03ypd2ou1fQrpSP3dkbHImEEU2srh+WbSG4r/ee0Ue2dBJlSSIig+XtRLJcWYDtOhXaGBoxxYwrgW9lbK+0wzjjbDkg3Bm/zyNGkcVz236l2dVGp7RRxLZIfskkPikVNSIxfkktQJJ4/kmbySN+fJeXHenY9x6YxT9GyTP3A+fwCWkZ12</latexit>

Op
<latexit sha1_base64="r9SSn70S9B5WJcml3mIPlewyZUw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxp0V7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo2ilXj+iOA7C7D6ZDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5tHnpFzqwxJGGv7FJK5+nsjo5Ex0yiwk3lEs+zl4n9eL8Xwxs+ESlLkii0+ClNJMCb5/WQoNGcop5ZQpoXNStiYasrQtlSxJXjLJ6+S9mXdc+vew1WtcVbUUYYTOIUL8OAaGnAHTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHiLORTw==</latexit><latexit sha1_base64="r9SSn70S9B5WJcml3mIPlewyZUw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxp0V7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo2ilXj+iOA7C7D6ZDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5tHnpFzqwxJGGv7FJK5+nsjo5Ex0yiwk3lEs+zl4n9eL8Xwxs+ESlLkii0+ClNJMCb5/WQoNGcop5ZQpoXNStiYasrQtlSxJXjLJ6+S9mXdc+vew1WtcVbUUYYTOIUL8OAaGnAHTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHiLORTw==</latexit><latexit sha1_base64="r9SSn70S9B5WJcml3mIPlewyZUw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxp0V7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo2ilXj+iOA7C7D6ZDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5tHnpFzqwxJGGv7FJK5+nsjo5Ex0yiwk3lEs+zl4n9eL8Xwxs+ESlLkii0+ClNJMCb5/WQoNGcop5ZQpoXNStiYasrQtlSxJXjLJ6+S9mXdc+vew1WtcVbUUYYTOIUL8OAaGnAHTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHiLORTw==</latexit><latexit sha1_base64="r9SSn70S9B5WJcml3mIPlewyZUw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBqvgqiQi6LLgxp0V7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo2ilXj+iOA7C7D6ZDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5tHnpFzqwxJGGv7FJK5+nsjo5Ex0yiwk3lEs+zl4n9eL8Xwxs+ESlLkii0+ClNJMCb5/WQoNGcop5ZQpoXNStiYasrQtlSxJXjLJ6+S9mXdc+vew1WtcVbUUYYTOIUL8OAaGnAHTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHiLORTw==</latexit>

Final
<latexit sha1_base64="rqK3yT3QVye3vnwfLI9MQvwdeSA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCIC4r2Ae0tdxJM21oJjMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck+OHwuujet+O4WV1bX1jeJmaWt7Z3evvH/Q1FGiKGvQSESq7aNmgkvWMNwI1o4Vw9AXrOWPrzO/9ciU5pG8N5OY9UIcSh5wisZKD90QzcgP0hsuUUz75YpbdWcgy8TLSQVy1Pvlr+4goknIpKECte54bmx6KSrDqWDTUjfRLEY6xiHrWCoxZLqXzlJPyalVBiSIlH3SkJn6eyPFUOtJ6NvJLKVe9DLxP6+TmOCql3IZJ4ZJOj8UJIKYiGQVkAFXjBoxsQSp4jYroSNUSI0tqmRL8Ba/vEya51XPrXp3F5XaSV5HEY7gGM7Ag0uowS3UoQEUFDzDK7w5T86L8+58zEcLTr5zCH/gfP4AyzKSmA==</latexit><latexit sha1_base64="rqK3yT3QVye3vnwfLI9MQvwdeSA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCIC4r2Ae0tdxJM21oJjMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck+OHwuujet+O4WV1bX1jeJmaWt7Z3evvH/Q1FGiKGvQSESq7aNmgkvWMNwI1o4Vw9AXrOWPrzO/9ciU5pG8N5OY9UIcSh5wisZKD90QzcgP0hsuUUz75YpbdWcgy8TLSQVy1Pvlr+4goknIpKECte54bmx6KSrDqWDTUjfRLEY6xiHrWCoxZLqXzlJPyalVBiSIlH3SkJn6eyPFUOtJ6NvJLKVe9DLxP6+TmOCql3IZJ4ZJOj8UJIKYiGQVkAFXjBoxsQSp4jYroSNUSI0tqmRL8Ba/vEya51XPrXp3F5XaSV5HEY7gGM7Ag0uowS3UoQEUFDzDK7w5T86L8+58zEcLTr5zCH/gfP4AyzKSmA==</latexit><latexit sha1_base64="rqK3yT3QVye3vnwfLI9MQvwdeSA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCIC4r2Ae0tdxJM21oJjMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck+OHwuujet+O4WV1bX1jeJmaWt7Z3evvH/Q1FGiKGvQSESq7aNmgkvWMNwI1o4Vw9AXrOWPrzO/9ciU5pG8N5OY9UIcSh5wisZKD90QzcgP0hsuUUz75YpbdWcgy8TLSQVy1Pvlr+4goknIpKECte54bmx6KSrDqWDTUjfRLEY6xiHrWCoxZLqXzlJPyalVBiSIlH3SkJn6eyPFUOtJ6NvJLKVe9DLxP6+TmOCql3IZJ4ZJOj8UJIKYiGQVkAFXjBoxsQSp4jYroSNUSI0tqmRL8Ba/vEya51XPrXp3F5XaSV5HEY7gGM7Ag0uowS3UoQEUFDzDK7w5T86L8+58zEcLTr5zCH/gfP4AyzKSmA==</latexit><latexit sha1_base64="rqK3yT3QVye3vnwfLI9MQvwdeSA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgqsyIoMuCIC4r2Ae0tdxJM21oJjMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck+OHwuujet+O4WV1bX1jeJmaWt7Z3evvH/Q1FGiKGvQSESq7aNmgkvWMNwI1o4Vw9AXrOWPrzO/9ciU5pG8N5OY9UIcSh5wisZKD90QzcgP0hsuUUz75YpbdWcgy8TLSQVy1Pvlr+4goknIpKECte54bmx6KSrDqWDTUjfRLEY6xiHrWCoxZLqXzlJPyalVBiSIlH3SkJn6eyPFUOtJ6NvJLKVe9DLxP6+TmOCql3IZJ4ZJOj8UJIKYiGQVkAFXjBoxsQSp4jYroSNUSI0tqmRL8Ba/vEya51XPrXp3F5XaSV5HEY7gGM7Ag0uowS3UoQEUFDzDK7w5T86L8+58zEcLTr5zCH/gfP4AyzKSmA==</latexit>

G.Call
<latexit sha1_base64="DQqPYDpaLXxeRhkf7VrHqR2C22U=">AAACBnicbVDLSsNAFJ34rPUVdSlCtAiuQiKCLgtd6LKCfUATymQ6aYdOJmHmRiwhKzf+ihsXirj1G9z5N07aLLT1wMCZc+7l3nuChDMFjvNtLC2vrK6tVzaqm1vbO7vm3n5bxakktEViHstugBXlTNAWMOC0m0iKo4DTTjBuFH7nnkrFYnEHk4T6ER4KFjKCQUt988iLMIwI5tm1B/QBRCwj/bEbmPM875s1x3amsBaJW5IaKtHsm1/eICZpRAUQjpXquU4CfoYlMMJpXvVSRRNMxnhIe5oKHFHlZ9MzcutUKwMrjKV+Aqyp+rsjw5FSkyjQlcXSat4rxP+8XgrhlZ8xkaRABZkNClNuQWwVmVgDJikBPtEEE8n0rhYZYYkJ6OSqOgR3/uRF0j63Xcd2by9q9eMyjgo6RCfoDLnoEtXRDWqiFiLoET2jV/RmPBkvxrvxMStdMsqeA/QHxucPIX2ZbQ==</latexit><latexit sha1_base64="DQqPYDpaLXxeRhkf7VrHqR2C22U=">AAACBnicbVDLSsNAFJ34rPUVdSlCtAiuQiKCLgtd6LKCfUATymQ6aYdOJmHmRiwhKzf+ihsXirj1G9z5N07aLLT1wMCZc+7l3nuChDMFjvNtLC2vrK6tVzaqm1vbO7vm3n5bxakktEViHstugBXlTNAWMOC0m0iKo4DTTjBuFH7nnkrFYnEHk4T6ER4KFjKCQUt988iLMIwI5tm1B/QBRCwj/bEbmPM875s1x3amsBaJW5IaKtHsm1/eICZpRAUQjpXquU4CfoYlMMJpXvVSRRNMxnhIe5oKHFHlZ9MzcutUKwMrjKV+Aqyp+rsjw5FSkyjQlcXSat4rxP+8XgrhlZ8xkaRABZkNClNuQWwVmVgDJikBPtEEE8n0rhYZYYkJ6OSqOgR3/uRF0j63Xcd2by9q9eMyjgo6RCfoDLnoEtXRDWqiFiLoET2jV/RmPBkvxrvxMStdMsqeA/QHxucPIX2ZbQ==</latexit><latexit sha1_base64="DQqPYDpaLXxeRhkf7VrHqR2C22U=">AAACBnicbVDLSsNAFJ34rPUVdSlCtAiuQiKCLgtd6LKCfUATymQ6aYdOJmHmRiwhKzf+ihsXirj1G9z5N07aLLT1wMCZc+7l3nuChDMFjvNtLC2vrK6tVzaqm1vbO7vm3n5bxakktEViHstugBXlTNAWMOC0m0iKo4DTTjBuFH7nnkrFYnEHk4T6ER4KFjKCQUt988iLMIwI5tm1B/QBRCwj/bEbmPM875s1x3amsBaJW5IaKtHsm1/eICZpRAUQjpXquU4CfoYlMMJpXvVSRRNMxnhIe5oKHFHlZ9MzcutUKwMrjKV+Aqyp+rsjw5FSkyjQlcXSat4rxP+8XgrhlZ8xkaRABZkNClNuQWwVmVgDJikBPtEEE8n0rhYZYYkJ6OSqOgR3/uRF0j63Xcd2by9q9eMyjgo6RCfoDLnoEtXRDWqiFiLoET2jV/RmPBkvxrvxMStdMsqeA/QHxucPIX2ZbQ==</latexit><latexit sha1_base64="DQqPYDpaLXxeRhkf7VrHqR2C22U=">AAACBnicbVDLSsNAFJ34rPUVdSlCtAiuQiKCLgtd6LKCfUATymQ6aYdOJmHmRiwhKzf+ihsXirj1G9z5N07aLLT1wMCZc+7l3nuChDMFjvNtLC2vrK6tVzaqm1vbO7vm3n5bxakktEViHstugBXlTNAWMOC0m0iKo4DTTjBuFH7nnkrFYnEHk4T6ER4KFjKCQUt988iLMIwI5tm1B/QBRCwj/bEbmPM875s1x3amsBaJW5IaKtHsm1/eICZpRAUQjpXquU4CfoYlMMJpXvVSRRNMxnhIe5oKHFHlZ9MzcutUKwMrjKV+Aqyp+rsjw5FSkyjQlcXSat4rxP+8XgrhlZ8xkaRABZkNClNuQWwVmVgDJikBPtEEE8n0rhYZYYkJ6OSqOgR3/uRF0j63Xcd2by9q9eMyjgo6RCfoDLnoEtXRDWqiFiLoET2jV/RmPBkvxrvxMStdMsqeA/QHxucPIX2ZbQ==</latexit>

G.Final
<latexit sha1_base64="eC5upA8a7zLS1T23Gzcv5BNAK4g=">AAACB3icbVDLSsNAFJ34rPUVdSlItAiuQiKCLguCuqxgH9CEMplO2qGTSZi5EUvIzo2/4saFIm79BXf+jZM2C209MHDmnHu5954g4UyB43wbC4tLyyurlbXq+sbm1ra5s9tScSoJbZKYx7ITYEU5E7QJDDjtJJLiKOC0HYwuC799T6VisbiDcUL9CA8ECxnBoKWeeeBFGIYE8+zaA/oAIpaR/thXTGCe5z2z5tjOBNY8cUtSQyUaPfPL68ckjagAwrFSXddJwM+wBEY4zateqmiCyQgPaFdTgSOq/GxyR24da6VvhbHUT4A1UX93ZDhSahwFurLYWs16hfif100hvPAzJpIUqCDTQWHKLYitIhSrzyQlwMeaYCKZ3tUiQywxAR1dVYfgzp48T1qntuvY7u1ZrX5YxlFB++gInSAXnaM6ukEN1EQEPaJn9IrejCfjxXg3PqalC0bZs4f+wPj8AfkwmeU=</latexit><latexit sha1_base64="eC5upA8a7zLS1T23Gzcv5BNAK4g=">AAACB3icbVDLSsNAFJ34rPUVdSlItAiuQiKCLguCuqxgH9CEMplO2qGTSZi5EUvIzo2/4saFIm79BXf+jZM2C209MHDmnHu5954g4UyB43wbC4tLyyurlbXq+sbm1ra5s9tScSoJbZKYx7ITYEU5E7QJDDjtJJLiKOC0HYwuC799T6VisbiDcUL9CA8ECxnBoKWeeeBFGIYE8+zaA/oAIpaR/thXTGCe5z2z5tjOBNY8cUtSQyUaPfPL68ckjagAwrFSXddJwM+wBEY4zateqmiCyQgPaFdTgSOq/GxyR24da6VvhbHUT4A1UX93ZDhSahwFurLYWs16hfif100hvPAzJpIUqCDTQWHKLYitIhSrzyQlwMeaYCKZ3tUiQywxAR1dVYfgzp48T1qntuvY7u1ZrX5YxlFB++gInSAXnaM6ukEN1EQEPaJn9IrejCfjxXg3PqalC0bZs4f+wPj8AfkwmeU=</latexit><latexit sha1_base64="eC5upA8a7zLS1T23Gzcv5BNAK4g=">AAACB3icbVDLSsNAFJ34rPUVdSlItAiuQiKCLguCuqxgH9CEMplO2qGTSZi5EUvIzo2/4saFIm79BXf+jZM2C209MHDmnHu5954g4UyB43wbC4tLyyurlbXq+sbm1ra5s9tScSoJbZKYx7ITYEU5E7QJDDjtJJLiKOC0HYwuC799T6VisbiDcUL9CA8ECxnBoKWeeeBFGIYE8+zaA/oAIpaR/thXTGCe5z2z5tjOBNY8cUtSQyUaPfPL68ckjagAwrFSXddJwM+wBEY4zateqmiCyQgPaFdTgSOq/GxyR24da6VvhbHUT4A1UX93ZDhSahwFurLYWs16hfif100hvPAzJpIUqCDTQWHKLYitIhSrzyQlwMeaYCKZ3tUiQywxAR1dVYfgzp48T1qntuvY7u1ZrX5YxlFB++gInSAXnaM6ukEN1EQEPaJn9IrejCfjxXg3PqalC0bZs4f+wPj8AfkwmeU=</latexit><latexit sha1_base64="eC5upA8a7zLS1T23Gzcv5BNAK4g=">AAACB3icbVDLSsNAFJ34rPUVdSlItAiuQiKCLguCuqxgH9CEMplO2qGTSZi5EUvIzo2/4saFIm79BXf+jZM2C209MHDmnHu5954g4UyB43wbC4tLyyurlbXq+sbm1ra5s9tScSoJbZKYx7ITYEU5E7QJDDjtJJLiKOC0HYwuC799T6VisbiDcUL9CA8ECxnBoKWeeeBFGIYE8+zaA/oAIpaR/thXTGCe5z2z5tjOBNY8cUtSQyUaPfPL68ckjagAwrFSXddJwM+wBEY4zateqmiCyQgPaFdTgSOq/GxyR24da6VvhbHUT4A1UX93ZDhSahwFurLYWs16hfif100hvPAzJpIUqCDTQWHKLYitIhSrzyQlwMeaYCKZ3tUiQywxAR1dVYfgzp48T1qntuvY7u1ZrX5YxlFB++gInSAXnaM6ukEN1EQEPaJn9IrejCfjxXg3PqalC0bZs4f+wPj8AfkwmeU=</latexit>

Figure 1: Illustration of the SEC/I experiment, which has three “phases”: first, the adversary A chooses the game

context α and initializes the game G; second, A plays G and interacts with I; and third, A finalizes G and the

experiment outputs the outcome win.

captures an attack model—that is, the capabilities and goal of the adversary—and establishes boundaries on

the permitted uses of Π . Model-specific adversarial capabilities are captured as oracle procedures specified

by G, which the adversary may query during its attack. Its goal is formalized by an explicit winning condition

that depends on its queries and the random choices of the game. The security of the scheme, when used as

specified by G, is measured by executing an adversary with G.

Suppose that Π is specified in terms of calls to an underlying interface I, which defines the set of

operations that can be performed on the secret key. Our goal is to measure the security of Π in the sense

of G when the adversary playing the game is also provided direct access to I, i.e., when the adversary is able

to mount exposed interface attacks on the security of Π that G codifies.

We formalize our syntax for interfaces and games in Section 3. Rather than refer explicitly to Π , we

allow the game G to realize Π as pseudocode that makes calls to I. Interfaces may expose conventional

primitive operations like signing or decryption, or they may expose lower level operations that are composed

into higher level ones by the game. (This is precisely what TPM does; more on this in Section 5.1.) Our

syntax for interfaces admits operations on symmetric and asymmetric keys. In the latter case, all secret-key

operations are handled by the interface, and all public-key operations are specified by the game.

Security under exposed interface attack. The objects of our study are an interface and a target

application; we formalize the latter as a game that defines the scheme, how it is used, and what is its goal.

With some details suppressed, Figure 1 visualizes the execution flow of our main security experiment SEC/I,

which acts as an analysis harness for an interface I, game G, and adversary A. The experiment first generates

the public and secret keys (pk , sk) as specified by I, then runs A on input of pk and with access to oracles

Init, Call, and Final used to “play” the game G. The game is comprised of three algorithms: the first,

G.Init, takes pk as input and outputs the game’s initial state; the second, G.Call, specifies the capabilities ofA
in the game and advances the state in response to its queries; and the last, G.Final, computes the game’s

winning condition and outputs a bit win. Both G.Call and G.Final are given access to I for performing

secret key operations, and the adversary is given direct access to I via a fourth oracle Op. As usual [12],

the adversary must call Init first and Final last; the outcome of the experiment is the value of win.

The central goal of our work is to measure the security “gap” between this and the “usual setting” in

which the underlying interface is only used for the target application. This setting is formalized by the SEC

experiment, which is defined just like SEC/I, except the adversary is denied access to Op. We will formalize

both experiments in Section 4.

Context separability. Security in our setting often requires a property we call context separability.

Loosely, a context-separable interface is one whose operations can be bound to the context in which they are

4



used. When context separation is enforced, this binding prevents context-separable games from interacting

in unintended ways. Let us consider an illustrative example. TLS is designed to prevent signatures produced

in the context of the protocol from being used in other applications, and vice versa. To accomplish this,

whenever a message is to be signed, it is signed together with a short context string that uniquely identifies

the protocol version and the signer (i.e., the client or server, see [55, Section 4.4.3]). This makes it unlikely

that another protocol would inadvertently produce a signature that could be used in TLS, but nothing about

the protocol or the signature scheme ensures this; depending on how signing operations are exposed and

whether key separation is enforced, this could lead to practical cross-protocol attacks [15].

As reflected in both our syntax and security notions, our framework sheds formal light on the affect of

these design challenges on security. In addition to the secret key and operand, an interface is formalized

to take as input a context string ctx , which is meant to uniquely identify the application making the

API call; correspondingly, a game is initialized with context that is meant to uniquely identify it. In the

SEC/I experiment, the game G is initialized with an adversarially chosen game context string α, which the

adversary may not use for its interface queries. (See Figure 1.) This is akin to enforcing non-repeating

nonces in the security experiment for symmetric encryption; in practice, it is an operational requirement

that the environment must enforce.

On the role of context separation. The high-level goal of our work is to provide a framework for

reasoning about the security of interfaces that expose secrets to applications. We uncover context separability

as a useful design pattern for achieving security in the presence of key reuse. In fact, this operational

requirement can be seen as a generalization of key separation; an interface could enforce key separation by

generating a unique key for each unique application (identified by a context string) it intends to support.

But when doing so is infeasible, interfaces and their applications can be designed so that reuse is secure as

long as context separation is enforced.

We stress that context separation is not essential to security in the presence of key reuse. We could

have formalized other operational requirements; it may suffice to ensure that no single operation is used

in multiple applications, or that distinct applications provide distinct inputs, etc. However, our choice to

enforce context separation in the SEC/I experiment was not arbitrary. First and foremost, it reflects a

design pattern often explicit (but sometimes implicit) in real standards, two of which we analyze in this

paper (EdDSA and Noise). Second, it is our hope that clarifying this simple requirement will reduce some

of the complexity inherent to protocol design.

A composition theorem. To measure the “gap” between SEC and SEC/I—that is, to measure the security

impact of exposing the underlying interface—in Section 4.2 we formulate and prove sufficiency of a condition

under which security in the former sense implies security in the latter. The GAP1 experiment is associated

to an interface I, a game G, a simulator S, and a distinguisher D. The experiment allows D to play the

game via Init, Call, and Final as above; likewise, the adversary can query the interface via Op. In the

“real” world, Op exposes I, but in the “simulated” world, the distinguisher’s queries are evaluated by S,

which is given the public key but no access to I. The adversary’s goal is to distinguish between these two

worlds. We show that for any I and G, if I is both SEC and GAP1 secure for G, then I is also SEC/I secure

for G (Theorem 1(i)). Thus, proving GAP1 security of I for G will be our primary goal, as it succinctly

characterizes conditions under which it is safe to compose applications that share the same interface.

We also consider the security impact of changing an interface, by, for example, exposing additional

operations on the key. The GAP2 experiment is similar to GAP1, except it involves a pair of interfaces

(I1, I0). In the “real” world, both the game and distinguisher are given oracle access to I1; in the “simulated”

world, the game is given an oracle for I0 and the distinguisher’s Op queries are answered by the simulator,

which is also given an oracle for I0. We prove that if (I1, I0) is GAP2 secure for G and I0 is SEC/I secure

for G, then so is I1 (Theorem 1(ii)). We also formulate a necessary condition, wGAP2, that allows us to
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characterize key operations that are not generally safe to expose in an interface.

Application to discrete log interfaces. We apply our framework to various discrete log (DL) interfaces,

whose key pairs are (p = gs, s) where g is the generator of a finite, cyclic group. They are so named

because the security of their applications is predicated on the hardness of computing discrete logarithms

(in particular, s = logg p) in the given group. They are particularly interesting in our setting because they

admit a wide variety of primitives and protocols.

Diffie-Hellman and EdDSA. A well-known design challenge for DL interfaces is avoiding accidental

exposure of a static Diffie-Hellman (DH) oracle [3, 20]: given p and an oracle that on input of q returns qs,

there is an algorithm [19] for computing s that is much faster than generic DL [54]. As a first exercise of our

framework, we rule out the security of (inadvertently) exposing static DH in any DL interface by proving

wGAP2 insecurity of their composition (Section 5.1). We then consider the security of the EdDSA signature

scheme [14] in our setting (Section 5.2). The standardized version of this algorithm [35] admits variants

that are context separable, allowing us to prove in the random oracle model (ROM) [11] that the signing

operation is GAP1 secure for any game in which all signing and verification operations use the game context.

We also show (in the ROM) that exposing the signing operation of any EdDSA variant in a DL interface

that meets certain requirements is GAP2 secure in general.

Noise. Having addressed the security of these relatively simple operations, in Section 6 we turn to analyzing

Noise [53], a framework for designing two-party secure-channel protocols. Participants in these protocols

negotiate and execute handshake patterns, which define the sequence of messages sent between them and

thereby the security of the communication channel they establish. We specify as an interface the set of

processing rules that determine how each party consumes and produces messages, and how their state is

updated as a side-effect. This allows handshake patterns to be executed by making calls to this interface.

Our results for Noise are largely positive. With a simple tweak of the processing rules, we are able to

prove GAP1 security of our interface while making only minimal (and natural) assumptions about the target

application. This implies, in particular, that all handshake patterns that can be executed by our interface are

jointly secure (up to context separation). We cannot support all patterns, however, because some give rise

to GAP1 distinguishing attacks in any interface that could be used to implement them. As a result of these

limitations, our analysis leaves the security of key-reuse in Noise as it is an open question. Nevertheless, our

work shows that Noise’s approach to protocol design makes it possible to reason about protocol interactions

in a very general way.

Finally, Section 6.4, we will directly address the composition of the security of using a key deployed for

EdDSA in Noise (and vice versa).

Limitations of the framework. Our syntax for games is such that a wide variety of security goals can be

expressed with them. However, the execution semantics of games in the SEC/I experiment excludes some

important settings, including the multi-user setting [13] and those captured by multi-stage adversaries [56].

In Section 4 we will briefly discuss how to formalize these settings as extensions to the SEC/I experiment.

In addition, our interfaces are all stateless, which we found necessary for composition in general. (This is in

line with prior works that address related problems [56].)

Related work. Our framework generalizes the setting of Shrimpton, Stam, and Warinschi [60], who study

HSMs implementing the PKCS#11 standard for cryptographic APIs [31]. Their formulation of a “primitive”

is closely related to our formulation of interfaces, and their framework allows for expressing arbitrary security

goals for primitives, as ours does for interfaces. One important distinction is that our interfaces are only

meant to expose operations on secret keys; public key operations such as encryption or signature verification

are specified as part of the game. Our attack model is also much stronger than theirs, since it exposes the

interface used in the game to the adversary.
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Our security goals are reminiscent of joint security, and many of the proof techniques we use are borrowed

from that area [34, 22]. However, our notions are ultimately incompatible with theirs. To adapt our

framework to the consideration of joint security, one would partition the set of operations exposed by the

interface into those available to the target system (i.e., the game) and those available to the adversary.

The GAP2 notion can be viewed as a restricted form of indifferentiability [47]. In particular, the GAP2

experiment for (I1, I0), G, adversaryA, and simulator S is equivalent to the indifferentiability of (I1, I0) with

respect to the specific distinguisher D that is the composition of G andA prescribed by the GAP2 experiment.

To be clear, this does not allow us to directly use the indifferentiability composition theorem. Our own result

is about composing game G with interfaces I1 and, separately, I0; and although our composition theorem

looks quite similar to [56, Theorem 1], the things being composed are not the same.

Examples of API-design flaws. There are several, well-documented examples of API-design flaws

leading to vulnerabilities in deployed systems. Degabriele et al. [22] provide an analysis of the EMV standard

for credit-card payments. To reduce overhead in this highly constrained environment, the interface permits

signing and decryption operations involving the same RSA secret key. Degabriele et al. exhibit a practical

forgery attack that uses the decryption operation.

An analysis by Künnemann et al. [41] points out a flaw in the API for Yubico’s YubiHSM that admits

an oracle for a blockcipher keyed by the same key used to encrypt in CBC mode, leading to a simple

plaintext-recovery attack.

In recent years, Intel and other chip manufacturers have moved to develop, implement, and deploy

protocol standards allowing for remote attestation of the state of a host, often called trustworthy computing.

Since the host is often an end-user system (e.g., a laptop or cellphone), performing an attestation in a privacy-

preserving manner is paramount. The TPM (“trusted platform module”) standard exposes an interface for

direct anonymous attestation (DAA) [18] in a variety of protocols. The is made possible by a very flexible

API that, unfortunately, leads to security issues [3]. Designing an interface for TPM that is both sufficiently

flexible and secure has proved challenging. A solution was recently devised by Camenish et al. [20]. Their

contribution is two-fold: first, they modify the protocol so that it can be proven secure (analyses of prior

versions of TPM remote attestation were erroneous); and second, they redesign the interface to mitigate the

static DH oracle.

Keyless SSL is a protocol deployed by Cloudflare used to proxy TLS connections between clients and

servers without the need to have the server’s signing key on premise. In this protocol, the server exposes

a signing API to mutually authenticated peers. To sign a handshake with a client, the server sends the

message to be signed to the server, who responds with the signature. Instead of operating on the message M

itself, the API operates on a hash of the message H(M), which is an intermediate value in certain signature

schemes. Bhargavan et al. [15] show that this interface admits a cross-protocol attack with QUIC, another

widely-deployed transport-security protocol. In the absence of mutual authentication of the peer (which

Keyless SSL provides), their attack would allow anyone to impersonate a QUIC server.

API usability. The current work could be viewed as a formal treatment of a small piece of the much larger

problem of API usability. Since Adams and Sasse’s seminal work “Users are not the Enemy” [5], usability

being necessary for the deployment of secure systems has emerged as an axiom in the research community.

Recently, this focus on usability has shifted from the end user to the developer of the system [33]: specifically,

towards understanding how developers think about and use APIs, how API misuse leads to vulnerabilities,

and how to design APIs that are easy to use securely and hard to use insecurely. Much of this work has

been catalyzed by vulnerabilities that are generally believed to result from the complexity and poor quality

of existing cryptographic APIs [30, 27, 26]. User studies have been especially fruitful in corroborating this

belief [4, 51]. In their study of the psychological factors involved in the development of vulnerable code,

Oliviera et al. [50] point out that developers tend to trust that APIs are secure, which leads to blind spots

in their mental model of how the API is to be used securely.
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1.1 Revision history

Note the following change from the proceedings version of this paper [52].

• 2020/07/13. Revise statement of Theorem 1. The original bound was incorrect, though numerically

close to the bound provided here. The error has to do with the distribution of range points programmed

in the random oracle table by the simulator. In the proceedings version, we assumed the range points

have only high min-entropy, but this turns out to be insufficient. Here we require these points to be

uniform. Note that this change does not impact any of the results in Sections 5 or 6.

2 Pseudocode and Conventions

This section enumerates our conventions for pseudocode, algorithms, adversaries, and experiments. The

reader may wish to skip this section and refer to it later as needed.

Pseudocode. Our pseudocode is based on Rogaway and Stegers [57]. Variables are statically typed.

Available types are set (a set), tup (a tuple), bool (an element of {0, 1}), int (an element of Z), and str

(an element of {0, 1}∗). In general, if X ∈ X , then we say that X has type elemX . Variables are declared

with the keyword dec, e.g., dec int x; strA. Variables need not be explicitly declared, in which case

their type must be inferable from their initialization (i.e., the first use of the variable in an assignment

statement). There are two compound types. The first is associative arrays, denoted by “[ ]”, which map

tuples (that is, a finite sequence of quantities of any type) to values of a specific type. For example, dec

str π[ ] declares an associative array π whose values are strings. We let π[k] and πk denote the value in π

associated with k. The second is struct, which is used to recursively define new types; see Figure 7 for an

example. We will also refer to the type of a procedure (i.e., an algorithm) by its interface. For instance, the

type A(strX,Y ) 7→ (int i, strA) indicates that A takes as input a pair of strings (X,Y ) and outputs an

integer i and a string A.

Nil and bottom. Uninitialized variables implicitly have the value �, read “nil”. If a variable of one type

is set to a value of another type, then the variable takes the value �. The symbol � is interpreted as ∅ in

an expression involving sets, as the 0-length tuple in an expression involving tuples, as 0 (i.e., false) in a

boolean expression, as 0 in an expression involving integers, and as ε in an expression involving strings. A

non-bool variable X is interpreted as “(X 6= �)” (i.e., “X is defined”) in a boolean expression. If X is an

associative array, then X ← � “resets” the array so that Xk = � for all k. Likewise, if X is a struct, then

X ← � sets each field of X to �. The symbol ⊥, read “bottom”, can be assigned to any variable regardless

of type. Unlike �, its interpretation in an expression is always undefined, except that X = ⊥ and ⊥ = X

should evaluate to true just in case the previous assignment to X was ⊥. (We remark that ⊥ has the usual

semantics in cryptographic pseudocode.)

Represented groups. We say that a group G is represented if � 6∈ G. We define an additional type, elemG,

parameterized by a represented group G. We emphasize that, unlike set, tup, bool, int, or str, using the

symbol � in an expression involving values of this type is not well-defined, since � has no interpretation as

an element of G.

Refined types. Variable declarations may be written as set-membership assertions. For example, dec

int s; elemGP may be written like dec s ∈ Z; P ∈ G. Where appropriate, these types may also be refined,

e.g. dec s ∈ N.

String and tuple operations. Let |X| denote the length of a string (or tuple) X. We denote the

i-th element of X by Xi or X[i]. We define X ‖Y to be the concatenation of X with string (or tuple) Y .

Let X[i:j] denote the sub-string (or sub-tuple) Xi ‖ · · · ‖Xj of X. If i 6∈ [1..j] or j 6∈ [i..|X|], then define

X[i:j] = �. Let X[i:] = X[i:|X|] and X[:j] = X[1:j].
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Encoding of types. A value of any type can be encoded as a string. We will not define this encoding

explicitly, but assume it possesses the following properties. Let x1, . . . , xm denote the encoding of a tuple

(x1, . . . , xm) as a string. Decoding is written as x1, . . . , xm ← X and works like this (slightly deviating

from [57, Section 2]): if there exist y1, . . . yn such that X = y1, . . . , yn, m = n, and each yi has the same

type as xi, then set xi ← yi for each 1 ≤ i ≤ m. Otherwise, set xi ← � for each 1 ≤ i ≤ m. Let xn denote

the encoding of an integer x ≥ 0 as an n-bit string. We write xn ← X to denote decoding X as an n-bit,

non-negative integer and assigning it to x. Finally, we say that a group G is v-encoded if it is represented

and for all X ∈ G it holds that |X| = v.

Passing variables by reference. It is customary in cryptographic pseudocode to pass all variables by

value; we also permit variables to be passed by reference. (This idea is due to Rogaway and Stegers [57],

but our semantics deviates from theirs.) Specifically, variables passed to procedures may be embellished

with the symbol “&”. If the variable appears on the left hand side of an assignment statement, then this

immediately changes the value of the variable; when used in an expression, the variable is treated as its value.

A procedure’s interface makes explicit each input that is passed by reference. For example, in a procedure

A(&int x, int y) 7→ int z, variable y is passed by value, while x is passed by reference. For example, after

executing x, y ← 0; z ←← A(&x, y), the value of x may be non-0, but y is necessarily equal to 0.

Algorithms, experiments, and adversaries. Algorithms are randomized unless stated otherwise. An

algorithm is t-time if for every choice of random coins, the algorithm halts in at most t time steps.1 When

an algorithm A is deterministic we write y ← A(x) to denote executing A on input of x and assigning its

output to y; if A is randomized, then we write y ←← A(x). Let [A(x)] denote the set of possible outputs

of A when run on input x. Algorithms may have access to one or more oracles, written as superscripts, e.g.,

y ←← AO,... (x). When this notation becomes cumbersome we may write y ←← 〈A: O, . . . 〉(x) instead. When

we specify a procedure, if the procedure halts without an explicit ret-statement (i.e., a “return” statement),

then it returns ⊥.

We regard security experiments as algorithms whose output is always a bit. If “XXX” is an experiment

associated with an adversary A, we write Expxxx(A) to denote the event that the experiment is run with A
and the output is 1, i.e., Pr

[
Expxxx(A)

]
denotes the probability that XXX run with A outputs 1, where

the probability is over the coins of XXX and A. An adversary is an algorithm associated to a security

experiment in which it is executed exactly once. (Thus, in this paper we restrict ourselves to the single-stage

adversary setting [56].) Our convention will be that an adversary is t-time if its experiment is t-time. That

is, an XXX-adversary A is t-time if Expxxx(A) is t-time.

Miscellaneous. Logarithms are base-2 unless the base is given explicitly. If X is a set, then we write

x ←← X to denote sampling x randomly from X according to some distribution associated to X ; if X is

finite and the distribution is unspecified, then it is uniform. For every integer n ≥ 1 let [n] denote the set

{1, . . . , n}. Let Dom f denote the domain of function f and let Rng f denote its range. Let ∆(U, V ) denote

the statistical distance between random variables U and V . We write X � Y if string (or tuple) X is a

prefix of string (or tuple) Y (i.e., (∃T )X ‖T = Y ). We write S ∼ X if |S| > 0 and S is a sub-string (or

sub-tuple) of X (i.e., |S| ≤ |X| and (∃ i)X[i:i+ |S|] = S).

Pseudocode in this paper implicitly treats strings over the alphabet Σ = {A, . . . ,Z, a, . . . , z, 0, . . . 9, } as

bit strings (i.e., of type str). We do so by fixing an injection f : Σ∗ → {0, 1}∗ and write s instead of f(s). For

example, when we write “dh” or “sig”, we really mean “f(dh)” or “f(sig)”. Such an f is easy to construct;

it might map each element of Σ to its ASCII encoding.

1What constitutes a “time step” depends on the model of computation, which we leave implicit.
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3 Interfaces and Games

In this section we define the syntax for interfaces and games, the fundamental components of our framework.

A game captures an attack model (the capabilities and goals of an adversary) as well as an intended use of

cryptographic operations that are provided (via black-box calls) by an interface. Typically, this use will be

to realize some cryptographic scheme (i.e., primitive or protocol) that is under attack.

Definition 1 (Interfaces). An interface is a pair of algorithms I = (Gen,Op) defined as follows:

• Gen( ) 7→ str pk , sk . The key generator outputs pair of key strings.

• Op(str sk , ctx , op, in) 7→ str out . The key operator exposes operations involving the key sk . It takes

as input the context ctx , the operation identifier op, and the operand in, and it outputs the result out .

For compactness, we may denote I.Op(sk , ctx , op, in) by Isk (ctx , op, in) in the remainder. �

In our security experiments, the “public key” pk will be made available to all parties, but the “secret key” sk

will be kept private by the interface. We note that pk = ε is allowed, so that symmetric-key operations are

within scope.

Definition 2 (Games). A game is a triple of algorithms G = (Init,Call,Final) defined as follows:

• Init(str pk , α) 7→ str st , out . This is the game initiator. It takes as input the public key pk and game

context α and outputs the initial state st and a string out .

• CallO(&str st , str in) 7→ str out . The caller is used to advance the state of an already initialized game.

It abstracts all oracle queries except initialization and finalization. The first input is a reference to

the game state, which may be updated as a side-effect of invoking the caller; the interpretation of

the second input is up to the game. The caller expects access to an oracle O, which we will call the

interface oracle. It takes as input three strings and returns one.

• FinalO(str st , in) 7→ bool r. The finalizer is used to decide if a game is in a winning state. Its inputs

are the game state st and a string in, which is used to compute the winning condition. Oracle O is as

defined for the caller.

For compactness, we occasionally denote G.CallO(&st , in) by GOst (in). We say that G is c-bound if the caller

and finalizer each make at most c calls to O during any one execution of the algorithm. �

4 Security Under Exposed Interface Attack

The goal of this work is to understand the security of cryptographic schemes when they are realized by

an interface that may also be exposed to other, possibly insecure or (or even malicious) applications. The

following experiment (SEC/I) captures this formally, allowing us prove or disprove security of a scheme (both

codified by a game G) when a given interface I is callable by both the game G and the adversary A. An

adversary in this experiment is said to be mounting an exposed interface attack on G. We define another

experiment (SEC) that captures the usual setting in which the adversary does not have this access.

Definition 3 (SEC/I and SEC security). Figure 2 defines two security experiments: SEC/I includes the

boxed statement (but not the shaded one), and SEC includes the shaded statement (but not the boxed one).

Both experiments begin by running the key generator I.Gen and executing the adversary A on input of the

public key and with access to four oracle procedures:

• Init initializes G by calling the initiator G.Init on the public key and the game context chosen by A
and returns the output out of the initiator.
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Exp
sec/i
I,G (A) / Expsec

I,G(A)

1 dec str sk , st , α; bool win

2 (pk , sk)←← I.Gen( )

3 〈A: Init,Final,Call,Op〉(pk)

4 〈A: Init,Final,Call〉(pk)

5 ret win

Init(ctx )

6 (st , out)←← G.Init(pk , ctx )

7 α← ctx ; ret out

Final(in)

8 win ←← G.FinalI.Op(sk,·,·,·)(st , in)

9 ret win

Call(in)

10 ret G.CallI.Op(sk,·,·,·)(&st , in)

Op(ctx , op, in)

11 if ctx = α then ret ⊥
12 ret I.Op(sk , ctx , op, in)

Figure 2: The SEC/I and SEC experiments for interface I, game G, and adversary A.

• Call advances the game by invoking the caller G.Call on input in provided by A and with oracle access

to the interface I.Op(sk , ·, ·, ·). It returns the output out of the caller.

• Op exposes I.Op(sk , ·, ·, ·) to A directly with the restriction that each query use a context string ctx

that is different from the game context used to initialize the game.

• Final finalizes G by running the finalizer G.Final on input in provided by A and setting win to the

output and returning the value of win to A.

The outcome of the experiment is the value of win when A halts. A valid SEC/I adversary makes a single

query to Init, this being its first; it may then make any number of queries to Call and Op.2 It completes

its execution by making a single query to Final. We define the advantage of a (valid) SEC/I-adversary A
in attacking I with respect to G as

Adv
sec/i
I,G (A) = Pr

[
Exp

sec/i
I,G (A)

]
.

We call a SEC/I adversary (t, qG, qI)-resource if it is t-time and makes at most qG and qI queries to Call

and Op respectively. We define the maximum advantage of any r-resource SEC/I-adversary as Adv
sec/i
I,G (r).

SEC security of I with respect to G is defined in kind, except that Op is not given to A. We denote the

advantage of SEC-adverseary A in attacking I with respect to G by Advsec
I,G(A) = Pr

[
Expsec

I,G(A)
]
, and

we define Advsec
I,G(r) as above. Informally, we say that I is SEC/I (resp. SEC) secure for G if every efficient

SEC/I (resp. SEC) adversary has small advantage.

Finally, if each of G.Call’s and G.Final’s interface queries is a triple (α, op, in) such that α is the context

with which the game was initialized, then we say G is regular for SEC/I (resp. SEC). �

Regular games and context separation. We remark that a game being regular is a property of

the execution semantics of the game in the experiment, and not a syntactic property of the game itself.

This is because an experiment might execute the game differently; for example, instead of invoking the

initiator before the caller, the experiment could invoke the caller with state st = ε each time. This may

sound silly, but we have not given a syntactic condition on games that excludes this execution semantics.

Because all experiments will run the game in the same way, we silently extend this definition of regularity

to all experiments in the remainder of the paper. In our analyses in Sections 5 and 6, we will prove SEC/I

security with respect to regular games. This condition is sufficient for ensuring context sepparability between

operations performed by the adversary via direct access to the interface and those performed by the game.

2Disallowing Op queries prior to Init is necessary for enforcing context separation. This restriction could be lifted by, say,

allowing pre-Init access to Op, but demanding that none of these queries uses the (adversarially chosen) game context α.

11



Indistinguishability variants. We note that our definitions of SEC/I and SEC advantage are not ap-

propriate for every game. For example, G might be a bit-guessing game (e.g., IND-CCA) in which the

initiator flips a coin and the finalizer interprets its input as the adversary’s guess. In order to normalize

the adversary’s advantage in such games, we define the IND-SEC/I advantage of SEC/I-adversary A as

Adv
ind-sec/i
I,G (A) = 2Adv

sec/i
I,G (A)− 1. (Similarly for IND-SEC.)

Limitations of the SEC/I experiment. The execution semantics of our experiments restrict our setting

to single-staged games as defined by Ristenpart, Shacham and Shrimpton [56]. In particular, the adversary

may keep arbitrary state throughout its run. This means that we cannot address, for example, the SEC/I

security of certain games capturing properties of deterministic or hedged public-key encryption [8, 9], key-

dependent message security [16], or security against related-key attacks [10] when one allows related-key

functions that can depend on some ideal primitive [6]. Modeling multi-stage adversaries would require defin-

ing a new experiment in which the execution semantics of each stage is precisely defined. That said, many

important security goals are captured by single-stage games, including classic notions of privacy (IND-CCA)

of encryption schemes, unforgeability (UF-CMA) of signatures, entity authentication (EA), and authenti-

cated key exchange (AKE).

Our experiments allow for modeling corruption of secret state associated with the game (for example,

when modeling forward secrecy of an AKE protocol), but not of the secret key exposed by the interface.

(Unless the interface provides an operation that returns sk , in which case SEC/I security is a lost cause.)

Corruption of such long-term secrets held by interfaces could be modeled by introducing a new oracle to the

experiment.

Finally, we note that the SEC/I experiment is not well-suited for analyzing games in the multi-user

setting. (See related work in Bellare and Tackmann [13] for a nice overview of this area.) One may wish to

define an experiment that is played with multiple interfaces, perhaps corresponding to multiple parties. One

way to do this would be to “wrap” the adversary’s Call queries so that it specifies which interface the game

should call. However, we will leave the details to future work.

4.1 Simulatability of an Interface

Intuitively, the “gap” between the SEC/I and SEC security of an interface I with respect to game G is

driven by any extra leverage the attacker gains by interacting with I directly. In this section, we formalize

an experiment that aims to measure the size of this gap for a given I and G. We also define a related

experiment that measures the relative security “gap” between a pair of interfaces (I1, I0) with respect to a

given game. This is particularly useful when the operations permitted by I1 are a superset of those permitted

by I0. For example, in Section 5, we will use this notion to analyze the change in security when operations

are added to an existing interface. Both of these experiments will make use of simulators, so let us first

define these.

Definition 4 (Simulators). A simulator S is a tuple of algorithms (Init,Op) defined as follows:

• Init(str pk) 7→ str σ. The initiator takes as input a public key and outputs the simulator’s initial

state σ.

• OpO(&str σ, str ctx , op, in) 7→ str out . The operator takes as input a reference to the simulator state

(which it may update as a side-effect) and a triple of strings (ctx , op, in) and outputs a string out .

Oracle O is an interface oracle defined just as for games.

In the remainder, we may denote S.OpO(&σ, ctx , op, in) by SOσ (ctx , op, in). We say that S is (t, qI)-resource

if each algorithm is t-time and the caller makes at most qI queries to its oracle. �

Definition 5 (GAP1/2 security). Figure 3 defines two experiments: GAP1 and GAP2. Each involves a

simulator S, an adversary D, and a game G; GAP1 involves a single interface I, while GAP2 involves a pair
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Expgap1
I,G (S,D)

1 dec str sk , st , σ, α; b←← {0, 1}
2 (pk , sk)←← I.Gen( ); σ ←← S.Init(pk)

3 d←← 〈D : Init,Final,Call,Op〉(pk)

4 ret (d = b)

Init(ctx )

5 (st , out)←← G.Init(pk , ctx )

6 α← ctx ; ret out

Final(in)

7 ret G.FinalIsk (st , in)

Call(in)

8 ret G.CallIsk (&st , in)

Op(ctx , op, in)

9 if ctx = α then ret ⊥
10 if b = 1 then ret Isk (ctx , op, in)

11 ret S.Op⊥(&σ, ctx , op, in)

Expgap2

I1,I0,G(S,D)

12 dec str sk , st , σ, α; b←← {0, 1}
13 (pk , sk)←← Ib.Gen( ); σ ←← S.Init(pk)

14 d←← 〈D : Init,Final,Call,Op〉(pk)

15 ret (d = b)

Init(ctx )

16 (st , out)←← G.Init(pk , ctx )

17 α← ctx ; ret out

Final(in)

18 ret G.FinalI
b
sk (st , in)

Call(in)

19 ret G.CallI
b
sk (&st , in)

Op(ctx , op, in)

20 if ctx = α then ret ⊥
21 if b = 1 then ret I1

sk (ctx , op, in)

22 ret S.OpI
0
sk (&σ, ctx , op, in)

Expwgap2

I1,I0,G(S,D)

23 dec str sk , st , σ; b←← {0, 1}
24 (pk , sk)←← Ib.Gen( ); σ ←← S.Init(pk)

25 d←← DOp(pk); ret (d = b)

Op(ctx , op, in)

26 if b = 1 then ret I1
sk (ctx , op, in)

27 ret S.OpI
0
sk (&σ, ctx , op, in)

Figure 3: Top-left: The GAP1 experiment for interface I, game G, simulator S, and adversary D. Top-right: The

GAP2 experiment for interfaces I1 and I0, G, S, and D. Bottom: The wGAP2 experiment for (I1, I0) respectively.

interfaces (I1, I0). Both begin by choosing a challenge bit b at random, executing the key generator (I.Gen

in GAP1 and Ib.Gen in GAP2), and initializing the simulator via S.Init on input of the public key. The

adversary is then executed on input of the public key and with four oracles:

• Init, Final, and Call execute the game just like in the SEC/I experiment; interface queries are

answered by I.Op in GAP1 and Ib.Op in GAP2.

• Op processes (ctx , op, in) as follows. If ctx is equal to the game context, then it returns ⊥ (just as in

SEC/I). If b = 1, then it returns I.Op(sk , ctx , op, in) in GAP1 and I1.Op(sk , ctx , op, in) in GAP2; if

b = 0, theni the oracle returns S.Op⊥(&σ, ctx , op, in) in GAP1 and S.OpI
0
sk (&σ, ctx , op, in) in GAP2.

(The “⊥” oracle given to S denotes the interface oracle that just returns ⊥ on any query.)

The outcome of the experiment is the bit d output by D when it halts. A valid GAP1 (resp. GAP2) adversary

makes a single query to Init, this being its first query; it may then make any number of queries to Call and

Op. It completes its execution by making a single query to Final. We define the advantage of a (valid)

GAP1-adversary D in attacking I with respect to G as

Advgap1
I,G (S,D) = 2 Pr

[
Expgap1

I,G (S,D)
]
− 1 .

We call an GAP1 adversary (t, qG, qI)-resource if it is t-time and makes at most qG and qI queries to Call and

Op respectively. We define the maximum advantage of any r-resource GAP1 adversary (for a given I,G,S)

as Advgap1
I,G (S, r). Define Advgap2

I1,I0,G(S,D) and Advgap2
I1,I0,G(S, r) in kind. Informally, we say that I (resp.
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(I1, I0)) is GAP1 (resp. GAP2) secure for G if for every efficient GAP1 (resp. GAP2) adversary D there

exists an efficient S such that D has small advantage.

Finally, we say that a simulator is regular for GAP1 (resp. GAP2) if each time it is called with input

context ctx , each of its interface queries have the form (ctx , op, in) for some op, in ∈ {0, 1}∗. �

4.2 The Composition Theorem

An interface I being GAP1 secure for G means that whatever information an SEC/I adversary learns in its

attack against G it can (efficiently) compute on its own without interacting with the Op oracle. Thus, if I
is both SEC and GAP1 secure for G, then it should be that I is also SEC/I secure for G. Relatedly, for

any pair of interfaces (I1, I0) and game G, if (I1, I0) is GAP2 secure for G and I0 is SEC/I secure for G,

then I1 is SEC/I-secure for G, too. Theorem 1 makes these claims precise. To support upcoming results in

Sections 5 and 6, we state and prove our composition theorem in the ROM. So, let us first formalize the

ROM in our setting.

The ROM. When modeling a function H : X → Y as a random oracle (RO) in an experiment, we declare

an associative array elemY π[ ] and a set Q (initially empty) and define three oracles: P, Q, and R. The

last of these is the usual RO: on input of X ∈ X , oracle R checks to see if πX is defined (i.e., πX 6= �);
if not, then it samples πX from Y according to the distribution induced on Y by H. (Usually Y will be

finite and the distribution will be uniform.) Finally, it returns πX . We call an algorithm qR-ro-bound if it

makes at most qR queries to R during any execution; a game, interface, or simulator is qR-ro-bound if each

of its constituent algorithms is qR-ro-bound. Experiments are lifted to the ROM by providing each named

algorithm oracle access to R. In addition, each query X to R made by the adversary is added to the set Q.

Just as we measure an adversary’s runtime using the experiment in which it is executed, our convention

will be that an adversary’s RO-query budget accounts for all queries to R made by it or any other algorithm

(including the simulator) during the course of the experiment. That is, XXX-adversary A is qR-ro-bound

if Expxxx(A) is qR-ro-bound. We say an algorithm is (r ‖ qR)-resource if it is r-resource and qR-ro-bound.

(Note that r ‖ qR is a tuple, since r is a tuple and qR is a singleton.) Let ψ : {0, 1}∗ × X → {0, 1} be a

function. We say that a game G is ψ-ro-regular (for the associated experiment) if each of its RO queriesX ∈ X
satisfies ψ(α,X), where α is the game context used to initialize it in the experiment. Similarly, we say that

an interface I is ψ-ro-regular if each of I.Op’s RO queries X ∈ X satisfies ψ(ctx , X), where ctx is the

provided context string.

The other two oracles (P and Q) are used to specify additional powers made available to simulators in

security proofs. Oracle P takes as input a pair (X,Y ) ∈ X ×Y and sets π[X]← Y , allowing the simulator to

“program” the RO. Oracle Q simply returns the set Q of RO queries made by the adversary so far, allowing

the simulator to “observe” the adversary’s RO queries as it makes them.

Joint security in the ROM. We emphasize that P and Q formalize powers of the simulator that are

usually left implicit, but are essential to certain proof techniques [34, 22]. The usual approach to proving

joint security of cryptosystems is to show that the oracle cryptosystem is efficiently simulatable without

knowledge of the secret key. Haber and Pinkas [34] elicit two techniques for doing so in the ROM: the first

requires the ability to observe the adversary’s queries (via Q), and the other requires the ability to program

the RO (via P). We will illustrate the latter. (Note that these techniques are also sometimes applied in the

generic group model [59], cf. [22].)

A Schnorr signature [58] of a message M under secret key s ∈ Zn over a finite group 〈G〉 of order n is a pair

(x, t), where x = r−st (mod n), t = R(rG ‖M), and r is a random element of Zn. Valid Schnorr signatures

can be simulated without knowledge of s by choosing random x, t ∈ Zn, computing R = xG + tP , where

P = sG is the public key, and setting P(R ‖M, t). The idea is that, in a security reduction for the target

cryptosystem, an adversary that simulates the RO can program it in this way without significantly changing
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the distribution of the RO-query responses. However, when composing the simulator with an adversary in

a security reduction, one must take care to ensure that whatever power the simulator is endowed with is

also available in the reduction. For example, suppose we find a reduction from a problem—say, decisional

Diffie-Hellman (DDH)—to the IND-CCA security of an encryption scheme with key pair (sG, s). If we

want to prove that this scheme is secure in the presence of a Schnorr-signature oracle for s, then the DDH

adversary we construct must have the ability to program the RO. Indeed, this is often the case, as it is here;

the DDH adversary would simply simulate the RO itself. We introduce oracle-relative simulators as a means

of formalizing the requirements of the simulator for composition.

Definition 6 (Oracle-relative simulators). Let O be an oracle in an experiment. An O-relative simulator S
is one for which both the initiator and operator expect oracle access to O; we say that S is c-O-bound if

each algorithm makes at most c such queries on any execution. Let X and Y be sets and let µ, h ≥ 0 be real

numbers. In the ROM we say that a P-relative simulator is (µ, ρ)-min-entropy if for all (X ′, Y ′) ∈ X × Y
and each query (X,Y ) to P, it holds that Pr

[
X = X ′

]
≤ 2−µ and Pr

[
Y = Y ′

]
≤ 2−ρ. �

Theorem 1. Let I1 and I0 be interfaces, let G be a game, and let H : {0, 1}∗ → {0, 1}h be a function

modeled as a random oracle. Let qG, qI , qR, t, cI , cR, cP , s ≥ 0 be integers such that s = O(t/(qI + 1)), and

let µ ≥ 0 be a real number. Let r = (t, qG, qI , qR). Then, for every regular, P- and Q-relative simulator S
that is (s, cI , cR)-resource, cP -P-bound, and (µ, h)-min-entropy, it holds that

(i) Adv
sec/i
I1,G(r) ≤ ε+ Advsec

I1,G(O(t), qG, q̂R) + Advgap1
I1,G(S, r̂) and

(ii) Adv
sec/i
I1,G(r) ≤ ε+ Adv

sec/i
I0,G(O(t), qG, cIqI , q̂R) + Advgap2

I1,I0,G(S, r̂) ,

where ε = cP qIqR/2
µ, q̂R = qR + (cR + cP )(qI + 1), and r̂ = (O(t), qG, qI , q̂R).

We give the full proof in Appendix A.1. Except for accounting for the simulator’s powers in the ROM,

the proof is closely related to [56, Theorem 1]. A few observations about this result are in order. First,

we note that the ε term in the bound is only non-zero for simulators that program the RO. Second, it is

sufficient for the domain points programmed by the simulator to be high min-entropy, but we require that

the corresponding range points are uniform. (This is implied by the simulator being (µ, h)-min-entropy.)

When the programmed domain points are high min-entropy, neither the game nor the GAP2 distinguisher

is likely to call the RO on the domain points programmed by the simulator. This fact, and the uniformity of

programmed range points, allows us to compose the GAP1/2 distinguisher and the simulator S into a new

SEC/I adversary, despite the fact that S may program the RO, but the SEC/I adversary may not. Likewise,

the simulator “observing” the distinguisher’s RO queries is not an issue for this composition.

A necessary condition for Theorem 1(ii). Condition (ii) of the composition theorem characterizes

a sufficient property of (I1, I0) and G such that it is safe to replace I0 with I1 (GAP2). This tells us,

in particular, what sorts of operations are safe to expose in an API without breaking applications. We

would also like a characterization of what sorts of operations are not safe, i.e., a necessary condition for

Theorem 1(ii). We find that if wGAP2 security (defined below) does not hold for (I1, I0), then there are

games G for which I1 is not SEC/I secure, even if I0 is SEC/I secure for G (Theorem 2). We will use this

result to rule out certain API-design choices in the remainder of the paper.

Definition 7 (wGAP2 security). The wGAP2 experiment is defined in Figure 3. A wGAP2 adversary takes

as input a string and outputs a bit and expects access to an interface oracle. Let I1 and I0 be interfaces,

S be a simulator, and D be a wGAP2 adversary. The wGAP2 experiment for (I1, I0), S, and D, denoted

Expwgap2
I1,I0 (S,D), is defined just like the GAP2 experiment in Figure 3, except that D is only executed with

access to oracle Op, and since there is no game context, we remove line 3:20. Define the advantage of D
in distinguishing I1 from I0 with respect to simulator S as Advwgap2

I1,I0 (S,D) = 2 Pr
[
Expwgap2

I1,I0 (S,D)
]
− 1.
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Expidh
G,I(A)

1 dec X,Z ∈ G; y ∈ Zn
2 (X, sk)←← I.Gen( )

3 y ←← Zn
4 Z ←← AIsk (X, yG)

5 ret (Z = yX)

Expcdh
G (A) / Expgdh

G (A)

6 x, y ←← Zn
7 Z ←← A(xG, yG)

8 Z ←← ADDH(xG, yG)

9 ret (Z = xyG)

DDH(A,B,C)

10 a← logGA

11 b← logGB

12 c ← logG C

13 ret (c = ab)

Figure 4: Let G = 〈G〉 be a represented, additive group of order n and let I be a DL interface for G. Left: IDH

problem for (G, I). Right: CDH and GDH problems for G.

Informally, we say that (I1, I0) is wGAP2 secure if for every efficient adversary D, there is an efficient

simulator S such that D’s advantage is small. We say D is (t, qI)-resource if it is t-time and makes at

most qI queries to Op. �

Theorem 2 (wGAP2 is necessary for Theorem 1(ii)). Let I1 and I0 be interfaces, let B be an SEC/I

adversary, and let D be a wGAP2 adversary. There exist a game G, SEC/I-adversary A, and simulator S
such that

Advwgap2
I1,I0 (S,D) + Adv

sec/i
I0,G(B) ≤ Adv

sec/i
I1,G(A) .

Moreover, if D is (s, r)-resource, B is (t, qG, qI)-resource, and t = O(s), then A is (O(t), qG, qI + r)-resource

and S is (t, 1)-resource.

Note that this result is easily lifted to the ROM. The proof (provided in Appendix A.2) is in the same spirit

as that of [47, Theorem 1], but there are some subtleties. The crux of the argument, which was adapted

from Maurer, Renner, and Holenstein [47], is that the game G is defined using the adversary D so that the

winning condition depends on D doing something “bad” (in particular, outputting 1). This allows us to

relate B’s advantage to D’s. It may be that GAP2 is, itself, necessary, but we know no way of showing it. In

particular, the proof trick we use will not work, because D’s experiment would allow it to call the game G,

which in turn would run D, and so on.

Remark 1. We do not know of a necessary condition for Theorem 1(i). The obvious route of defining a “weak

version” of GAP1 (in the way that wGAP2 is a weak version of GAP2) and adapting Theorem 2 does not

work, since the simulator used in that proof uses its interface oracle in a crucial way. Our sense is that such

a necessary condition would depend on the details of the interface. We will leave addressing this apparent

asymmetry between GAP1 and GAP2 for future work.

5 Discrete Log Interfaces

In this section we bring our framework to bear on a few common operations for discrete log (DL) interfaces.

We first recall some standard definitions from the cryptographic literature and formally define DL interfaces

and signing interfaces.

Preliminaries. Refer to the CDH and GDH experiments in Figure 4. Define the advantage of an adver-

sary A in solving an instance of the computational DH (CDH) problem for G as Advcdh
G (A) = Pr[Expcdh

G (A)]

and let Advcdh
G (t) denote the maximum advantage of any t-time CDH-adversary. Define the advantage of an

adversary A in solving an instance of the gap DH (GDH) problem [49] for G as Advgdh
G (A) = Pr[Expgdh

G (A)].

Depending on the group G and the model of computation, it may not be possible to evaluate A’s DDH

queries efficiently; for the purpose of accounting for A’s resources, we will regard the discrete log computa-

tions on lines 4:7–8 as constant time operations. Let Advgdh
G (t, q) denote the maximum advantage of any
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t-time GDH-adversary that makes at most q queries to its DDH oracle. Informally, we say CDH (resp. CDH)

is hard for G if the CDH (resp. GDH) advantage of any efficient adversary is small.

Define the CR advantage of an adversary C( ) 7→ elemX×X in finding collisions for function H : X → Y
as Advcr

H(C) = Pr
[
X 6= Y ∧H(X) = H(Y ) : (X,Y )←← C( )

]
.

Definition 8 (DL and signing interfaces). Let G = 〈G〉 be a represented, additive group of order n. A DL

interface for G is an interface I with an associated scalar computer, a deterministic algorithm Scal(str sk) 7→
int s such that for every (pk , sk) ∈ [I.Gen( )] it holds that pk = sG, where s = I.Scal(sk). We say that I is

simple if I.Scal(sk) = s just in case sk = s.

A signing interface DS has an associated deterministic algorithm DS.Verify(str pk , ctx ,M, T ) 7→ bool v,

called the verifier, for which T ∈ [DS(sk , ctx , sig,M)] iff DS.Verify(pk , ctx ,M, T ) = 1 for all ctx ,M, T ∈
{0, 1}∗ and (pk , sk) ∈ [DS.Gen( )]. (This is analogous to the correctness condition for standard signature

schemes.) We may denote DS.Op(sk , ctx , sig,M) by DS.Sign(sk , ctx ,M) and refer to DS.Sign as the signer.

We say that a game is DS-regular (for the associated experiment) if each time it invokes DS.Verify, it does

so on input of (pk , α,M, T ), where α is the game context used to initialize it and pk ,M, T ∈ {0, 1}∗. �

5.1 Diffie-Hellman

Let G = 〈G〉 be an additive, represented group of order n. Let I be a DL interface for G and define I+dh as

the pair of algorithms (I.Gen,Op), where Op is defined as follows. On input of (sk , ctx , op, in), if op = dh

and Q ∈ G, where Q is the element of G ∪ {�} encoded by in, then return sQ, where s = I.Scal(sk);

otherwise return I(sk , ctx , op, in). We refer to dh as the DH operator. (Note that point validation [45] for

this operation is implicitly enforced by our conventions for represented groups; see Section 2.)

With the help of such a “static DH oracle”, an algorithm devised by Brown and Gallant [19] significantly

reduces the cost of computing discrete logarithms in many finite groups. Given a point P = sG ∈ G and an

oracle that computes sQ for a chosen input Q ∈ G, their algorithm correctly computes s in O(n1/3) time,

where n is the order of G. This is a significant improvement over the O(n1/2) complexity of the best known

classical algorithm for solving the discrete log problem [54]. But in order to be able to finish the computation

in this amount of time, their algorithm needs to perform about n1/3 queries; thus, choosing a large enough

group may render a key-recovery attack infeasible in practice. However, we can rule out the security of

exposing the DH operation (inadvertently or not) in a given interface as follows. We formalize a property

of I that, if it holds, implies that (I+dh, I) is wGAP2 insecure; by Theorem 2, this implies that I+dh is

not SEC/I secure in general. We then build on this result by considering whether it is safe to expose some

function of the output (e.g., a hash or key-derivation function); when we model the function as a random

oracle, we find that this is not wGAP2 secure.

Insecurity of exposing DH easily follows from the hardness of a variant of the CDH problem for G
associated with I. The problem is motivated by the strong DH (SDH) problem proposed by Abdalla,

Bellare, and Rogaway [1]. The SDH problem is similar to CDH, except that in addition to xG, Y ∈ G, the

adversary is given an oracle that, on input of (P,Q), returns true iff Q = xP . This is a kind of “restricted”

DDH oracle whereby one of the inputs (xG) is fixed.The interface-relative DH (IDH) problem for (G, I) is

as follows.

Definition 9 (The IDH problem). Refer to the IDH experiment for G and I in Figure 4. The experiment

first runs I.Gen to get the public key X and secret key sk . It then chooses a random y ∈ Zn and runs the

adversary A on input of (X, yG) and with oracle access to Isk ; the adversary wins if it outputs yX. Define

the advantage of IDH-adversary A as Advidh
G,I(A) = Pr

[
Expidh

G,I(A)
]
. An IDH adversary is (t, q)-resource if

it is t-time and makes at most q queries to its interface oracle; as usual, we denote the maximum advantage

of any r-resource IDH adversary by Advidh
G,I(r). Informally, we say the IDH problem is hard for (G, I) if

Advidh
G,I(A) is small for every efficient A. �
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We will use this problem as a sort of litmus test to rule out insecure API designs. In Section 5.2 we

show (via Theorem 1(i)) that CDH and IDH are equivalent relative to EdDSA, and in in Section 6 we show

that GDH and IDH are equivalent relative to Noise. To prove that hardness of the IDH problem for (G, I)

implies the wGAP2 insecurity of (I+dh, I), we exhibit a wGAP2 adversary D such that in order for any

simulator S to thwart D, it must solve an instance of IDH for (G, I).

Theorem 3. Suppose that n is prime and let t, qI ≥ 0 be integers. There is a (O(t), 1)-resource wGAP2-

adversary D such that for all (t, qI)-resource S, there is a (O(t), qI)-resource IDH-adversary A such that

Advwgap2
I+dh,I(S,D) = 1−Advidh

G,I(A).

Proof. Define adversary DOp(P ) as follows. First run r ←← Z∗n, then ask Z ←← Op(ε, dh, rG). If r−1Z = P ,

then return 1; otherwise return 0. Let db1 denote the probability that D outputs 1 conditioned on the event

that its challenge bit is b. First, if b = 1, then the response to D’s query will be Z = srG, where P = sG.

Since n is prime, r has a unique inverse 1/r (mod n), and so r−1Z = r−1srG = sG = P . It follows that

d11 = 1. Now consider the probability that r−1Z = P given that b = 0 and define adversary AO(P,Q)

as follows. It first executes σ ←← S.Init(P ), then Z ←← SO(&σ, ε, dh, Q). Finally, it returns Z. Then

the probability that A wins is precisely the probability that, in D’s game, simulator S outputs Z such

that r−1Z = P ⇐⇒ rP = Z, and so d01 = Pr
[
Expidh

G,I(A)
]
.

Functional DH. Many applications do not make direct use of static DH, but some function of its output.

In particular, it is common to apply a hash or key-derivation function to the shared secret, perhaps binding

it to some context, e.g., the transcript hash in TLS or, as we will see, the CipherState in Noise. Therefore,

it is worth considering whether exposing this intermediate functionality is secure.

Let F : G × {0, 1}∗ → {0, 1}h be a function. Define the interface I+fdh as the pair of algorithms

(I.Gen,Op), where Op is defined as follows. On input of (sk , ctx , op, in), if op = fdh and Q ∈ G, where Q

is the element of G ∪ {�} encoded by in, then return F(sQ, ctx ); otherwise return I.Op(sk , ctx , op, in). We

call op = fdh the functional DH operator.

Exposing functional DH is also wGAP2 insecure. The proof is more involved, but follows similar lines

as Theorem 3. We cannot directly exploit the algebraic structure of the DH operator as we did above, since

rather than getting sQ in response to its query, adversary D gets F(sQ, ctx ). Instead, we model F as a

random oracle and hope that the simulator manages to query the oracle with the correct point. We prove

the following in Appendix A.3:

Theorem 4. Suppose that n is prime and let t, qI , qR ≥ 0 be integers. When F is modeled as a random

oracle, there is a (O(t), 1, 1)-resource wGAP2-adversary D such that for all (t, qI , q)-resource, P- and Q-

relative, and p-P-bound S, there is a (O(t+ q), qI)-resource IDH-adversary A such that

Advwgap2
I+fdh,I(S,D) + ε ≥ 1−Advidh

G,I(A) ,

where I is 0-ro-bound, ε = q̂/n+ q̂2/2h−1, and q̂ = 2(q + p).

Discussion. The existence of a static DH oracle in an interface can be difficult to recognize, and its impact

on security is often quite subtle. Acar, Ngyuen, and Zavarucha [3] discovered that an early version of the

TPM standard exposed such an oracle via flexible API calls designed to support a wide variety of protocols.

Indeed, a rigorous analysis of the standard in our attack model would have unearthed this subtlety. It would

be worthwhile to study the proposal of Camenish et al. [20], which aims to remove the TPM oracle while still

supporting a large variety of useful applications. More generally, we suggest that the approach developed

in this paper could be used to vet API standards before they are implemented to help uncover such flaws.

Though the problem with TPM was obvious in hindsight, it is possible that more flaws lurk in this and other

API designs.
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Gen( )

1 K ←← {0, 1}b; s← Scal(K)

2 ret (sG,K)

Verify(pk , ctx ,M, T )

3 dec P,R ∈ G; x, t ∈ N
4 P ← pk ; R, x← T

5 if ¬R ∨ ¬x then ret 0

6 t2b ← H(vr(ctx ) ‖R ‖P ‖ ph(M))

7 ret
(
x2cG = 2cR+ t2cP

)

Scal(K)

8 ret cl(H(K)[:b])

Sign(K, ctx ,M)

9 dec r, t ∈ N
10 s← Scal(K); X ← H(K)[b+ 1:]

11 r2b ← H(vr(ctx ) ‖X ‖ ph(M))

12 t2b ← H(vr(ctx ) ‖ rG ‖ sG ‖ ph(M))

13 x← r + st (mod n)

14 ret rG, x

Figure 5: Signing/DL interface ED for EdDSA. Let b, c ∈ N and let G = 〈G〉 be a represented, additive group of

order n. Let H : {0, 1}∗ → {0, 1}2b, cl : {0, 1}b → Zn \ {0}, and vr , ph : {0, 1}∗ → {0, 1}∗ be functions.

5.2 EdDSA

Unlike signature schemes like RSA-PSS or ECDSA, the standardized version of EdDSA (RFC 8032 [35])

admits variants that are context separable, allowing us to prove it GAP1 secure (in the ROM) for any game

in which all signing and verifying operations are regular (Def. 8). We also show that any variant can be

securely composed with any simple DL interface. After presenting our results, we will make the case for

designing and deploying context-separable signatures in practice.

The standard specifies two concrete instantiations of EdDSA: Ed22519 and Ed448, whose names indicate

the underlying group. The signing interface ED defined in Figure 5 specifies generic EdDSA; a concrete

scheme is instantiated by selecting the group G, integers b and c, and functions H, cl , vr , and ph. The group

is determined by a prime number p > 2, parameters for a (twisted) Edwards curve E (see [14, Section 2]), and

a generator G of a prime order subgroup of E(Fp), where E(Fp) denotes the group of points (x, y) ∈ Fp×Fp
that lie on the curve E, and Fp denotes the finite field of order p. Define b so that 2b−1 > p and define c

so that #E(Fp) = n2c (i.e., 2c is the cofactor of G). This choice of b makes it possible to encode signatures

with 2b bits, and this choice of c is intended to mitigate small subgroup attacks [45]. The “clamping”

function cl is similarly tailored to the underlying group: for Ed25519 and its variants, this function clears

the first 3 bits, sets the second to last bit, and clears the last bit. (This ensures that s = 2254 + 8x for a

uniform random x ∈ Z2251 .) Finally, the algorithm variant is determined by the functions vr and ph. For

example, the most common Ed25519 variant is obtained by setting vr(X) = ε and ph(X) = X for all X,

but the standard also specifies variants that permit context (Ed25519ctx) and pre-hashing of the message

(Ed25519ph). To provide context separability, the function vr must be collision resistant.

We begin our analysis by proving that the context-separable variants of EdDSA are GAP1 secure in

the ROM for games in which the signing and verifying operations are regular (Theorem 5). The upcoming

Corollary 1, which follows from Theorem 1(1) and Theorem 5, combined with the straightforward result that

IDH implies CDH, gives a qualitative equivalence between CDH and IDH in terms of the security of (any

variant of) EdDSA. We will then show that exposing any variant of EdDSA in any simple DL interface is

GAP2 secure in general (Theorem 6). Fix EdDSA parameters (G,H, cl , vr , ph, b, c) and let ED be the signing

interface instantiated with these parameters as specified in Figure 5. Let n = |G|.
Theorem 5. Let G be an (ED-)regular game and suppose that n ≤ 2b−1. When H is modeled as a random

oracle, there exists a regular, P-relative simulator S such that for all t, qG, qI , qR, c ≥ 0 there exists a

O(t+ qRqI)-time CR-adversary C such that Advgap1
ED,G(S, r) ≤ 2cqIAdvcr

vr (C) + 6qRqI/n, where G is c-bound,

S is (log n/2, 2b)-min-entropy, (O(t/(qI + 1)), 1, 0)-resource, and 1-P-bound, and r = (t, qG, qI , qR).

Refer to Appendix A.4 for the full proof. The simulator programs the random oracle with valid EdDSA
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signatures much like one would for Schnorr signatures. (See the discussion in Section 4.2.) We must ensure,

however, that signatures programmed by the simulator cannot be used by the adversary in an attack against

the game G. To do so, we use the collision resistance of vr to bound the probability that any interface query

made via Call coincides with an interface query made via Op. For this argument to work, we must require

that G is (ED-)regular.

If the game in Theorem 5 makes no interface queries (i.e., is 0-bound), then CR security of vr is not

required. This allows us to prove equivalence of IDH and CDH regardless of how vr is realized. The following

corollary follows almost immediately from Theorems 1(i) and 5.

Corollary 1. Let r = |Rng cl | and suppose that r | 2b and n ≤ 2b−1. Then for all t, qI , qR ≥ 0 it holds

that Advidh
G,ED(t, qI , qR) ≤ n/rAdvcdh

G (O(t + q̂)) + 7qRqI/n, where H is modeled as a random oracle and

q̂ = qR + qI + 1.

Proof. Let A be a (t, qI , qR)-resource IDH adversary and consider the following game Gcdh: on input of

(P , ctx ), the initiator ignores ctx , samples y ←← Zn, and returns (P, yP , yG); the caller simply returns ⊥
in response to any query; and on input of (P,Z, Z∗), the finalizer returns (Z = Z∗). Now consider the

following (O(t), 0, qI , qR)-resource SEC/I-adversary A′: On input of P , adversary A′ queries Q ←← Init(ε),

runs Z∗ ←← AOp(P,Q), queries Final(Z∗), then halts. It is clear that A′ perfectly emulates A in the IDH

experiment relative to ED, and so Advidh
G,ED(A) = Adv

sec/i

ED,Gcdh(A′).
By Theorem 1, Theorem 5, and the assumption that n ≤ 2b−1, there exists a (O(t), 0, 0, q + qI + 1)-

resource SEC/I-adversary B′ such that Adv
sec/i

ED,Gcdh(A′) ≤ 7qRqI/n+ Advsec
ED,Gcdh(B′). In the remainder, we

relate the advantage of B′ to the hardness of the CDH problem for G.

Observe that B’s experiment only uses ED for key generation, since neither Gcdh nor B′ makes use of

the operator. Consider the following CDH adversary B. On input of (P,Q), it first executes Z ←← 〈B′ :
Init′,Final′,⊥,⊥,R〉(P ), where the oracles are defined as follows: oracle R is its own RO; on input of ctx ,

oracle Init′ returns Q; and on input of Z∗ to oracle Final′, adversary B halts and outputs Z∗.

To complete the proof, we argue that B perfectly emulates B′ in its experiment if the scalar s corresponding

to its input P happens to fall in the range of cl . In B′’s experiment, the scalar s is equal to cl(R(K)[:b]).

Since π[K] is determined by the RO query made by the key generator (the key generator is the first algorithm

in the experiment to be executed with access to the RO), we may treat R(K)[:b] as a random variable V

uniformly distributed over {0, 1}b. Because r divides 2b, function cl partitions its domain into r sets of equal

size. It follows that cl(V ) is uniformly distributed over Rng cl . Conditioning on the event that s ∈ Rng cl

in B’s experiment, we conclude that Advcdh
G (B) ≥ r/nPr

[
Exp

sec/i

ED,Gcdh(B′)
]
.

Remark 2. For both Ed25519 and Ed448 the order of the main subgroup is less than 2b−1 [35]. Moreover,

function cl is specified so that |Rng cl | = 2a for some a < b, and so the number of distinct points in the

range divides 2b. The multiplicative factor n/2a is small for both algorithms. Function vr is only CR secure

for Ed25519ctx and Ed448ctx, and only so for a finite set of inputs: vr is injective for these variants, but

the standard imposes a maximum length on the context string. Therefore, to apply Theorem 5 directly to

the standard, it is necessary to limit the adversary’s queries in kind.

Finally, we show that EdDSA can be composed with any simple DL interface I without affecting the

security of I’s intended application. Let I be a simple DL interface for G. We define a new interface ED+I =

(ED.Gen,Op), where on input of (sk , ctx , op, in), algorithm Op returns ED.Sign(sk , ctx , in) if op = sig and

returns I.Op(s, ctx , op, in) otherwise, where s = ED.Scal(sk).

Theorem 6. Let G be a game and suppose that n ≤ 2b−1. When H is modeled as a random oracle, there exists

a regular, P-relative simulator S such that for all t, qG, qI , qR ≥ 0 it holds that Advgap2
ED+I ,I,G(S, r) ≤ 7qRqI/n,

where S is (log n/2, 2b)-min-entropy, (O(t/(qI + 1)), 1, 0)-resource, and 1-P-bound, and r = (t, qG, qI , qR).
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The restriction to simple interfaces is so that we can achieve context separation in the proof without using

collision resistance of vr . The argument leverages the fact that I does not make use of the string X computed

by the signer. Otherwise the proof is closely related to Theorem 5; we defer the details to to Appendix A.5.

Remark 3. While most signatures are not GAP1 secure (context separability is not a common design pattern

in signature schemes), it is likely that exposing many of them in an interface is GAP2 secure for large classes

of games. Haber and Pinkas [34] exhibit a programming simulator for RSA-PSS that is high min-entropy

in the sense required by Theorem 1. Degabriele et al. [22] show how to simulate ECDSA signatures in the

generic group model; in the ROM, techniques of Fersch, Kiltz, and Poettering [29] may be applicable to

ECDSA.

Discussion. The restrictions imposed on the game in Theorem 5 and the interface in Theorem 6 are very

mild, but are required for context separability. If the game encodes the UF-CMA security of ED, then

this ensures that a signature generated via the interface cannot be used as a forgery in the game. But

this “attack” is rather uninteresting and is only an artifact of our model. On the other hand, the game

might specify the use of a signature scheme in a complex protocol like TLS in which digital signatures have

a variety of uses, including client and server authentication and delegation of credentials for terminating

TLS on a party’s behalf [7]. In each of these cases the protocol binds the signature to a unique context

string identifying its use (e.g., [55, Section 4.4.3]). Our abstraction boundary makes the requirements for

such applications explicit. Because Ed25519ctx and Ed448ctx are context separable, Theorem 5 makes clear

the conditions under which these algorithms are secure for their intended application, no matter how else

they are used: the implementer must ensure that (1) the interface enforces context separation, and (2)

signing/verification operations in the application always use the context that identify the application. We

believe that exploiting this property of context-separable signatures would reduce the inherent complexity

of designing and deploying protocols. (Indeed, it is also not difficult to design signature schemes to have this

property.)

6 Noise

In this section we consider the GAP1 security of Noise [53], a framework for designing DL-based, two-party

protocols. Noise provides a set of rules for processing handshake patterns, which define the sequence of

interactions between an initiator and responder in a protocol. The processing rules involve three primitives:

Diffie-Hellman (DH), an AEAD scheme, and a hash function. Each message sent or received by a host

updates the host’s state, which consists of the host’s ephemeral (i.e., short-lived) and static (long-lived)

secret keys, the peer’s ephemeral and static public keys, shared state used to derive the symmetric key

and associated data, the current symmetric key, and the current nonce. The symmetric key, nonce, and

associated data are used to encrypt payloads accompanying each message, providing implicit authentication

of a peer via confirmation of knowledge of their static secret.

Noise admits a wide variety of protocols. The processing rules are designed to make it easy to verify

properites of handshake patterns, and considerable effort has gone into their formal analysis [25, 37, 46].

But the study of handshake patterns in isolation does not fully address the complexity of using Noise to

build and deploy protocols. In practice, it is often necessary for the communicants to negotiate the details

of the handshake, including the pattern, primitives, and cryptographic artifacts such as static keys and their

certificates. All of this is out of scope of the core Noise specification, which aims to be as rigid as possible.

As a result, there is an apparent gap between our understanding of the security that Noise provides and how

it might be used in practice. One question that arises, which we will address here, is whether it is safe to

reuse a single static key in many patterns.
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We cast the Noise framework as an interface that exposes a host’s static key for use in Noise protocols.

The interface specifies how the host consumes (resp. produces) messages sent by (resp. to send to) the peer,

and how its handshake state is updated as a side-effect. In other words, it implements the processing rules

such that Noise patterns can be executed by making calls to the interface. Our goal is to prove GAP1 security

with respect to the largest possible set of games, which would provide two benefits in practice. First and

foremost, it would imply joint security (up to context separation) of all patterns the interface implements;

second it would provide a degree of robustness to cross protocol attacks by ensuring that, as long as context

separation is enforced, vulnerabilities in one application cannot creep into another.

Our analysis sheds light on two limitations of Noise with respect to our security notions. The first is

that some handshake patterns, if implemented by our interface, would allow for GAP1 attacks. We provide

a formal characterization of the actions that give rise to these attacks, and we prove GAP1 security of our

interface when they are excluded. The second issue is more subtle. To prove GAP1 security with respect to

games in which the adversary may compromise the handshake state—for example, when modeling forward

secrecy—it is necessary to tweak the Noise spec slightly. The processing rules explicitly bind the protocol

context (i.e., a string that uniquely defines the handshake pattern and parameters) to the initial state of

the protocol. While this provides a certain degree of context separability, the lack of binding to each state

update precludes a proof of security relative to such games. We propose a simple and efficient modification

of the processing rules that ensures context separability under these conditions, allowing us to prove security

under minimal (and natural) assumptions about the game.

Of course, a consequence of these restrictions is that our analysis leaves open the security of key reuse

in Noise as it is. At the end of this section, we will discuss what our results mean for Noise in practice and

suggest directions for future work.

Preliminaries. Our analysis will use the standard notion of ciphertext integrity of AEAD schemes. A

scheme for authenticated encryption with associated data (AEAD) is a pair of deterministic algorithms AE =

(Enc,Dec). The first, Enc(strK,N,A,M) 7→ str C, maps a key K, nonce N , associated data A, and

plaintext M to a ciphertext C. The second, Dec(strK,N,A,C) 7→ strM , maps K, N , A, and C to M . We

respectively define the key, nonce, associated-data (AD), and message space as the sets K,N ,A,M⊆ {0, 1}∗
for which Enc(K,N,A,M) 6= ⊥ if and only if (K,N,A,M) ∈ K × N × A ×M; correctness requires that

Dec(K,K,N,A,Enc(K,N,A,M)) = M for every such (K,N,A,M). (This condition implies that AE is

both correct and tidy in the sense of Namprempre, Rogaway, and Shrimpton [48].) We say that AE has

key-length k if K = {0, 1}k and nonce-length n if N = {0, 1}n. We will use the standard notion of ciphertext

integrity (INT-CTXT) for AEAD schemes in the presence of nonce-respecting adversaries; refer to Figure 6

for its precise definition. Define the advantage of an adversary A in breaking the ciphertext integrity of AE
as Advint-ctxt

AE (A) = Pr
[
Expint-ctxt

AE (A)
]
. Let Advint-ctxt

AE (t, qE , qD) denote the maximum advantage of any

t-time adversary making at most qE (resp. qD) queries to Enc (resp. Dec).

6.1 Handshake and Message Patterns

By way of eliciting the formal tools we will need in our analysis, we begin this section with a brief overview

of how handshake patterns are specified. Figure 6 recalls four patterns from the standard [53]. The first,

referred to as the “NN” pattern, encodes an unauthenticated DH key exchange as a sequence of handshake

messages, which in turn encode sequences of tokens. In the first message (→ e) the initiator generates an

ephemeral DH key pair and sends the public key to the responder. In the next handshake message (← e, ee),

the responder generates an ephemeral key pair (e), computes the DH shared secret and derives a symmetric

key (ee), then sends the ephemeral public key in its response. Every message includes a possibly AEAD-

encrypted payload. Encryption is opportunistic. Once a shared secret is established, everything that can be

encrypted will be encrypted; if the caller does not provide a payload, then the payload is the empty string.
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Expint-ctxt
AE (A)

1 dec setQ, C; strK; bool win

2 K ←← K; AEnc,Dec ; ret win

Enc(N,A,M)

3 if N ∈ Q then ret ⊥
4 C ← AE .EncN,AK (M); C ← C ∪ {(N,A,C)}
5 Q ← Q∪ {N}; ret C

Dec(N,A,C)

6 if (N,A,C) ∈ C then ret ⊥
7 M ← AE .DecN,AK (C)

8 win ← win ∨ (M 6= ⊥)

9 ret M

NN:
→ e,
← e, ee

NK:
← s
. . .
→ e, es
← e, ee

NX:
→ e
← e, ee, s, es

IKpsk2:
← s
. . .
→ e, es, s, ss
← e, ee, se, psk

Figure 6: Top: INT-CTXT for AEAD scheme AE with key space K. Bottom: Examples of Noise handshake patterns.

The NK pattern is a variant of NN that provides authentication of the responder. The main difference is

an additional message preceding the ellipses (← s) indicating that the responder’s static public key is known

to the initiator before the protocol begins. In its first action, the initiator computes the shared secret between

this and its ephemeral secret (es) and uses it to encrypt the message payload. This has two effects: first, the

initiator proves knowledge of the shared secret to the responder; and second, the responder authenticates

itself by proving knowledge of the shared secret to the initiator. These properties are due to the sequence

of actions induced by the pattern; if decryption fails, then this indicates that the sender does not know the

correct shared secret. This works because each key derivation depends on all shared secrets computed in the

protocol so far.

The NX pattern is similar except that the public key is transmitted to the initiator during the handshake,

rather than out-of-band. For our purposes, the significant difference between NK and NX is that, in the

former pattern, the initiator confirms knowledge of the shared secret before the responder consumes the

message and produces its response. On the other hand, in the NX pattern the initiator can send an arbitrary

element of the DH group as its ephemeral key and observe a valid response without demonstrating knowledge

of its discrete logarithm. This leads to information leakage beyond what is learned by honest initiators (that

is, for computationally bounded attackers). It is akin to providing the adversary with a functional DH oracle,

which enables an attack against the GAP1 security of the interface; as we did in Theorem 4, one can exhibit

a distinguisher that gets high advantage if the IDH problem is hard for the underlying group. (More on

this attack in the next section.) To reason about this attack in our analysis, we require an abstraction for

handshake patterns and the actions they induce.

Definition 10 (Patterns, actions, and tokenizers). A handshake pattern is a sequence of message patterns

that specify the sequence of tokens processed when producing or consuming a message. A message pattern

is a string that can be parsed by a tokenizer, which determines the set of valid actions. A tokenizer is a

deterministic algorithm T (bool f, r , str pat) 7→ tup t, str err . String pat is the message pattern, f indicates

whether or not the host is producing a message, and r indicates whether the host is the initiator. The outputs

are a tuple t comprised of the sequence of tokens to be processed and a string err indicating whether an

error occurred. A valid action for T is a triple (f, r , pat) for which err = �, where (t, err) = Tf (r , pat). We

say that T has action count ` if |t| ≤ ` for every valid action (f, r , pat).

A token action is a triple (f, r , t) ∈ {0, 1} × {0, 1} × {0, 1}∗. We say that a tokenizer T includes a set of

token actions X if for each (f, r , t) ∈ X the following is true: there exists a valid pattern pat for T such that

t = ti for some 1 ≤ i ≤ |t| and (t, err) = Tf (r , t). If this condition holds for no such token action, then T
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Gen( )

1 K ←← {0, 1}b

2 s← cl(K)

3 ret (sG, s)

4 dec struct {
5 str P ,E ,S }msg

6 dec struct { str id , psk ;

7 int seq ; strK,N ; // CipherState

8 str L,A; // SymmetricState

9 Q,R ∈ G; e ∈ Zn } st

Op(sk , ctx , op, in)

10 dec st hs; msg req ; bool f, r ; str u, pat , err

11 s← Scal(sk); o, f, r , pat ← op; hs, in ← in

12 if o 6= noise ∨ hs.id 6= vr(ctx ) ∨ |hs.L| 6= h∨
13 |hs.psk | ∈ {u+ 8, h+ u+ 8} then ret ⊥
14 if f then // outbound payload

15 (resp, err)←←Write(&hs, s, r , pat , in)

16 if ¬err then ret hs, resp, �
17 else req ← in // inbound message

18 (out , err)←← Read(&hs, s, r , pat , req)

19 if ¬err then ret hs, out , �
20 if err ret �, �, err

Figure 7: Simple DL interface N for Noise. Let G = 〈G〉 be a v-encoded, additive group of order n and let h, b, u ≥ 0

be integers such that v 6∈ {u + 8, h + u + 8}. Let cl : {0, 1}b → Zn \ {0} and vr : {0, 1}∗ → {0, 1}u be functions.

Procedures Write and Read are defined in Figure 8.

excludes X . �

Remark 4. Our notion of message-pattern validity (relative to a tokenizer) is not rich enough to account

for all handshake-pattern validity rules in the Noise specification [53, Section 7.3]. In particular, while we

can say what it means for an action to be valid, our abstraction cannot account for the (in)validity of a

sequence of actions. For example, the spec only permits the use of one ephemeral key and one static key per

handshake, but this rule cannot be enforced by T . Nevertheless, this definition is sufficient for what we aim

to prove in the current work.

6.2 The Interface

The interface is specified as the composition of a tokenizer and the DH, AEAD, and hash primitives. Let G =

〈G〉 be a v-encoded, additive group of order n, and fix integers k, n′, h, b, u ≥ 0 such that v 6∈ {u+8, h+u+8}.
(The core spec mentions groups Curve25519 and Curve448 [53, Section 12], but other groups are permitted

and used in practice.) Let AE be an AEAD scheme (either AES-GCM or ChaCha20-Poly1305) with key-

length k and nonce-length n′. Let cl : {0, 1}b → Zn \{0}, vr : {0, 1}∗ → {0, 1}u, and H : {0, 1}∗ → {0, 1}h be

functions. Function H is a hash function (either SHA2 or BLAKE2) that will serve multiple purposes, one of

which is to derive symmetric keys using HKDF [38]. We will ignore the details of HKDF in this section and

simply denote key derivation by a function F : ({0, 1}∗)3 → ({0, 1}h)3 that maps an “information” string id ,

a “salt” X, and input key material Y to a triple of h-bit strings F(id , X, Y ). We will model F as a random

oracle in our analysis; in Appendix B we address the implications of this modeling choice.

The high-level specification. Figure 7 specifies our Noise interface N at a high level and defines structures

st and msg for the handshake state and messages respectively. The key generator N .Gen chooses a random,

b-bit string K, sets s← cl(K), and returns (sG, s). (Thus, N is simple in the sense of Def. 8.) Function cl

serves the same purpose as cl in our specification of EdDSA; it maps a bit string of a particular length to

a suitable scalar s for use with the given group. (This captures the behavior of the X25519 and X448 DH

functions [43] as they are used in Noise.) The key operator N .Op is defined in terms of two procedures:

• Read(&st hs, int s,bool r , str pat ,msg req) 7→ str out , err . Called when consuming an inbound mes-

sage. It takes as input the static key s and processes the action (0, r , pat) on the message req and

current handshake state hs. It outputs a payload out .
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• Write(&st hs, int s,bool r , str pat , in) 7→msg resp, str err . Called when producing an outbound mes-

sage. It takes as input the static key s and processes the action (1, r , pat) on the payload in and current

handshake state hs. It outputs a message resp.

Read and Write are defined (Figure 8) in terms of T , AE , F , and H. The operand encodes the current

handshake state hs and the input in, and the operator op encodes an action (f, r , pat). If f = 1, then the

host interprets in as a payload to send to its peer in its next handshake message; it calls Write and returns

the updated state and outbound message. If f = 0, then the host interprets in as a message sent by the

peer; it calls Read and returns the updated state and inbound payload.

Context-to-action binding. The context ctx is bound to the handshake state via a field hs.id , which

should be equal to vr(ctx ) (7:12). We will call this the handshake identifier. Each call to F made by either

Read or Write uses hs.id as the label. In this way, interface N binds the string hs.id = vr(ctx ) to each key

derivation, thereby binding the context to the action being performed. We call this context-to-action binding.

This differs from Noise as it is, which uses an empty string as the information string for key derivation via

HKDF (see [53, Section 4.3]). (Formally, the processing rules as they are specified are recovered by defining

vr(ctx ) = ε for all ctx .) Noise binds the context to initialization of the handshake state (see [53, Section 5.3]),

but action binding is required in our attack model in order to provide context separation when the game

leaks its internal handshake state to the adversary. We will discuss the issue that arises in Section 6.3.

The low-level details. Procedures Read and Write are defined in Figure 8. Both begin by computing the

sequence of tokens t from the action (f, r , pat) via T . The tokens are then processed in order, updating the

handshake state as a side-effect. Once all of the tokens have been processed, procedure Write “encapsulates”

the outbound payload and attaches it to the outbound message; procedure Read “decapsulates” the inbound

payload attached to the inbound message and returns it. (We will define “capsulation” in a moment.)

Available tokens are e, s, ee, es, se, ss, and psk. The token-processing rules are specified by procedures rTok

and wTok (invoked by Read and Write respectively). Messages have three components (7:5): the payload

blob, the ephemeral key blob, and the static key blob. On token e, the reader interprets the ephemeral key

blob as the peer’s ephemeral public key hs.R (8:9), and the writer generates an ephemeral secret key hs.e

and uses (hs.e)G as its ephemeral key blob (8:37). On s, the reader decapsulates the static key blob in

the inbound message (8:11), and the writer encapsulates its static public key sG and adds the blob to the

outbound message. The remaining tokens update the symmetric key state (hs.L) and key (hs.K) and reset

the nonce (hs.N) as specified by mKeyTok. All key-update tokens but psk perform a DH operation; psk mixes

a pre-shared symmetric key (hs.psk) into the state. All tokens but the DH operations update the shared

hash state (hs.A) via mHash, which is used as associated data when encrypting or decrypting. Encryption is

opportunistic; if Cap is called and hs.K is set, then the input is encrypted if f = 1 and decrypted otherwise;

if no key is set, then the input is passed through in plaintext. The nonce is incremented after encrypting

or decrypting (8:21). When encapsulating (resp. decapsulating), the output (resp. input) is mixed into the

hash state via mHash. We refer to this process as capsulation.

A GAP1 attack against any NX-capable interface. Since the static secret is only ever used for DH,

we could have simply exposed mKeyDH (8:53–55) directly and left the rest of the processing logic to the

application (i.e., the game). Specifying as much processing logic as we have reflects a need to carefully

“wrap” this DH operator so that the interface does not give rise to a static DH oracle in our attack model.

Recall the NK pattern discussed in Section 6.1. The responder implicitly authenticates itself to the

initiator by transmitting a ciphertext encrypted under the correct symmetric key; in our security analysis,

we will need to exhibit an algorithm that simulates an interface performing this action without knowledge

of the static secret. We will do so by modeling F as a random oracle and have the simulator reconstruct

the correct key from the adversary’s RO queries. For this argument to work, it is crucial that the initiator
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Read(&st hs, int s,bool r , str pat ,msg in)

1 dec str out ; int i

2 (t, err)← T0(r , pat)

3 while ¬err ∧ i < |t| do i← i+ 1

4 err ← rTok(&hs, in, s, r , ti)

5 if err then ret (out , err)

6 (out , err)← Cap0(&hs, in.P)

7 ret (out , err)

rTok(&st hs,msg in, int s,bool r , str t)

8 switch (t)

9 case e: hs.R← in.E

10 ret mHash(&hs, in.E)

11 case s:

12 (X, err)← Cap0(&hs, in.S)

13 hs.Q← X

14 ret err

15 ret mKeyTok(&hs, s, r , t)

Cap(bool f, &st hs, str X )

16 if ¬hs.K then ret (X,mHash(&hs, X))

17 (K,A)← (hs.K, hs.A); N ← hs.seqn′

18 if f then Y ← AE .Enc(K,N,A,X)

19 else Y ← AE .Dec(K,N,A,X)

20 if Y = ⊥ then ret (�, err cap)

21 mHash(&hs, Y ); ret (Y, iNonce(&hs))

iNonce(&st hs)

22 if hs.seq ≥ 264 − 1 then

23 ret err nonce

24 hs.seq ← hs.seq + 1; ret �

mKeyPSK(&st hs, str psk)

25 if ¬hs.psk then ret err psk

26 (hs.L, L′, L′′)← F(hs.id , hs.L, psk)

27 hs.K ← L′′[:k]; hs.seq ← 0

28 ret mHash(&hs, L′)

Write(&st hs, int s,bool r , str pat , in)

29 dec msg out ; int i

30 (t, err)← T1(r , pat)

31 while ¬err ∧ i < |t| do i← i+ 1

32 err ←← wTok(&hs, &out , s, r , ti)

33 if err then ret (out , err)

34 (out .P , err)← Cap1(&hs, in)

35 ret (out , err)

wTok(&st hs, &msg out , int s,bool r, str t)

36 switch (t)

37 case e: (out .E , ek)←← Gen( )

38 hs.e← Scal(ek)

39 ret mHash(&hs, out .E)

40 case s:

41 (out .S , err)← Cap1(&hs, sG)

42 ret err

43 ret mKeyTok(&hs, s, r , t)

mKeyTok(&st hs, int s,bool r , str t)

44 Y0 ← hs.Q; Y1 ← hs.R

45 x0 ← s; x1 ← hs.e

46 switch (t)

47 case psk: ret mKeyPSK(&hs, hs.psk)

48 case ee: ret mKeyDH(&hs, x1, Y1)

49 case es: ret mKeyDH(&hs, xr , Y1−r )

50 case se: ret mKeyDH(&hs, x1−r , Yr )

51 case ss: ret mKeyDH(&hs, x0, Y0)

52 ret err token

mKeyDH(&st hs, int x, elemGY )

53 if ¬x ∨ ¬Y then ret err dh

54 (hs.L, L′, L′′)← F(hs.id , hs.L, xY )

55 hs.K ← L′[:k]; hs.seq ← 0; ret �

mHash(&st hs, str X )

56 hs.A← H(hs.A ‖X ); ret �

Figure 8: Low-level procedures for specifying N (Figure 7). Let k, n′, h ≥ 0 be integers such that h ≥ k. Let T be

a tokenizer, let AE be an AEAD scheme with key-length k and nonce-length n′, and let H : {0, 1}∗ → {0, 1}h and

F : ({0, 1}∗)3 → ({0, 1}h)3 be functions.

(i.e., the adversary) “proves” knowledge of the shared secret by, for example, encrypting the payload and

attaching it to its message.

NX is an example of a pattern in which the initiator need not prove knowledge of the shared secret. A

GAP1 attacker against N can learn F(vr(ctx ), u, sR) for any R ∈ G and ctx it wishes and u for which it

does not control, but can compute from the interface’s response. Consider the following GAP1 distinguisher

against an NX-capable interface. (It is similar to the wGAP2 distinguisher in Theorem 4.) The distinguisher

first generates an ephemeral key pair (E, e) ←← Gen( ) and sends a message with the public key to its Op

oracle just as it would send the first message to the responder in the NX protocol. Let hs, resp, err denote
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the reply. Given e, the public key P , and the contents of the response resp, the distinguisher can easily

determine if resp.P is a ciphertext encrypted under the correct symmetric key. It does so as follows. Let hs

denote its handshake state prior to consuming the message. Run err ← rTok(&hs, resp, �, 1, t) for each t in

(e, ee, s, es). If err 6= � at any point, then guess 0; otherwise guess 1. If the oracle’s response is well-formed,

then it is equivalent to running hs.A ← H(hs.A ‖ resp.E); R ← resp.E; (hs.L, L′, ∗) ← F(id , hs.L, eR);

hs.A ← H(hs.A ‖ resp.S); Q ← AE .Dec(L′[k:], 0n, hs.A, resp.S); (hs.L, L′, ∗) ← F(id , hs.L, eQ); and M ←
AE .Dec(L′[k:], 0nhs.A, resp.P ).

We claim that, when F is modeled as a random oracle and AE is INT-CTXT secure, the only way for the

simulator to thwart this distinguisher is to solve the IDH problem for G relative to our NX-capable interface.

(We will not prove it, as the details are closely related to Theorem 4.) The “unsafe” action (with respect

to GAP1) is handing the interface a DH public key without proving knowledge of the corresponding secret.

Related attacks are possible against any interface that induces this action. In the next section, we will prove

that it suffices to exclude a small number of token actions.

Other design notes. Our interface assumes a fixed choice of parameters, and so it is not possible to

negotiate these with our interface. As a result, our analysis does not address the issue of cryptographic

agility [2], particularly as it pertains to the set of AEAD schemes that can be negotiated. We remark that

the processing rules prevent the use of the same key with two different AEAD schemes by binding the name

of the scheme to the initial state, but our analysis does not address this mechanism. Not addressing agility

was a conscious choice made to focus the exposition, but which future work must address.

The operator N .Op requires that |hs.L| is equal to h and that |hs.psk | is not equal to u+ 8 or h+ u+ 8

(see 7:12–13). These requirements, as well as the restriction of the range of vr to u-bit strings and the

requirement that elements of G are encoded as v-bit strings (where v is not u+ 8 or h+ u+ 8), are imposed

in order to be able to use the indifferentiability of HKDF from a random oracle. We refer the reader to

Appendix B for details.

Lastly, our interface only encompasses a subset of the validity rules for Noise. We only include those

rules that are essential to the security goals in the current work, which we emphasize are orthogonal to the

security goals of particular protocols (i.e., (mutual) entity authentication or authenticated key exchange,

forward secrecy, etc.). Validity rules that are needed to achieve these goals would be enforced by the game.

6.3 Security

Interface N is GAP1 secure for any game G subject to the following restrictions. First, the tokenizer must

exclude any write action involving DH on the static secret. (It may, however, read messages that depend on

the static secret.) And second, each time G invokes F on an input (id , u, v) it must hold that id = vr(α),

where α is the game context.

Fix Noise parameters (G,AE , T ,H,F , cl , vr , k, n′, h, b, u) and let N be the DL interface instantiated with

these parameters as specified in Figure 7. Let n = |G| and let X = {(1, 0, es), (1, 0, ss), (1, 1, se), (1, 1, ss)}.
Define ψ : {0, 1}∗ × ({0, 1}∗)3 → {0, 1} as the map (ctx , (id , u, v)) 7→ (vr(ctx ) = id).

Theorem 7. Suppose that n is prime. Let G be a regular game and suppose that T is X -excluding and

has action count `. Let DDH be as defined in Figure 4. When F is modeled as a random oracle, there

exists a regular, DDH- and Q-relative simulator S such that for all t, qG, qI , qR, c ≥ 0 there exists a t̂-time

CR-adversary C such that

Advgap1
N ,G (S, r) ≤ 2cqIAdvcr

vr (C) + 2`qIAdvint-ctxt
AE (t̂, 0, qI) ,

where G is c-ro-bound and ψ-ro-regular; AE, T , H, cl , and vr are 0-ro-bound; simulator S is (O(t/(qI +

1)), qI , `)-resource, `qRqI-DDH-bound, and 2-Q-bound; r = (t, qG, qI , qR); and t̂ = O(t+ qRqI).
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We will sketch the main ideas of the proof; refer to Appendix A.6 for the details. To simulate static

DH computations on an input Y (either the peer’s static or ephemeral key), the simulator S computes the

set V of points incident to the adversary’s RO queries. For each Z ∈ V it uses its DDH oracle to check if

(logG P )(logG Y ) = logG Z, where P is the host’s static key. If so, then it uses Z to simulate the output of

the interface. This is only possible in general for read actions, since these require the adversary to compute

a ciphertext under the correct symmetric key, which can be obtained by querying the RO first. In fact, what

we show is that, short of breaking the CR security of vr or INT-CTXT security of AE , the only way to get

a valid response from Op is to compute the inbound message as specified by the processing rules.

The need for context-to-action binding and the restriction of the game’s RO queries arise in order to

ensure there is no “subliminal channel” between the game and the adversary conveying information about

the RO to the adversary beyond what it learns by making RO queries on its own. If the game provides

the outputs of its RO queries to the adversary (e.g., by compromising the handshake state), then without

action binding, these can be used by the adversary to compute ciphertexts without interacting with the RO.

Hence, there is no way for the simulator to correctly respond given only knowledge of the adversary’s RO

queries. (Allowing the simulator to observe more RO queries than this—in particular, the game’s—would

make composition impossible.)

Next, as we did in Section 5.2, we apply the GAP1 security of N and the composition theorem to the

IDH problem for N . We cannot reduce the CDH problem to it as we did in Corollary 1, since the simulator

requires a DDH oracle. Of course, this is precisely what the GDH experiment provides. The following

is obtained by applying Theorems 1 and 7. (We will not prove it, but the details are closely related to

Corollary 1.)

Corollary 2. Suppose that n is prime and that T is X -excluding and has maximum action count `. Let

r = |Rng cl | and suppose that r | 2b. Then for all t, qI , qR ≥ 0 it holds that

Advidh
G,N (t, qI , qR) ≤ n/rAdvgdh

G (O(t+ q̂), `qRqI) + 2`qIAdvint-ctxt
AE (t̂, 0, qI) ,

where F is modeled as a random oracle; AE, T , H, cl , and vr are 0-ro-bound; q̂ = qR + `(qI + 1); and

t̂ = O(t+ qRqI).

Remark 5. The use of the DDH oracle by the simulator in Theorem 7 is standard; it is used, for instance,

to prove joint security of encryption and signing in the ROM [22]. In fact, the Noise spec calls for a group

for which the GDH problem is hard; see [53, Section 4.1]. However, we are not certain that the DDH oracle

is essential to the argument. The current proof uses the DDH oracle and the adversary’s RO queries to

determine if the adversary knows the symmetric key used to encrypt the payload currently being processed.

It may be possible to simply check each symmetric key output by the adversary’s RO queries if the key

correctly decrypts the ciphertext. However, this argument would require that AE be “key-robust” in the

sense of Farshim, Orlandi, and Rosie [28], which demands, roughly, that it is difficult to find (K1,K2, N,A,C)

such that K1 6= K2 and (N,A,C) decrypts properly under both K1 and K2. AEAD schemes are not usually

designed to have this property; in particular, AES-GCM is not key robust due to an attack by Dodis et

al. [23].

6.4 Composition with EdDSA

In Section 5.2 we proved (modeling the underlying hash function as a random oracle) that EdDSA can be

securely composed with any simple DL interface. Because N is simple, by Theorem 1(ii) if N is SEC/I secure

for a game G, then so is their composition, which we denote ED+N . (We write it this way to denote the fact

that it uses ED’s key generator rather than N ’s.) We would also like to prove the complimentary statement:

that if ED is secure for a game G, then so is ED+N .
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This follows from a proof of GAP2 security of (I+N , I), where I+N = (I.Op,Op) is an interface con-

structed from N and DL interface I as follows. On input of (sk , ctx , op, in), the operator interprets op as

u, f, r , pat , where u is a string and (f, r , pat) is an action. If u = noise, then return N .Op(s, ctx , op, in),

where s = I.Scal(sk); otherwise return I.Op(sk , ctx , op, in). We can prove this using essentially the

same argument as in Theorem 7, but we also need to account for I’s RO queries. Fix Noise parameters

(G,AE , T ,H,F , cl , vr , k, n′, h, b, u) and fix token-action set X and predicate ψ as in the previous section.

Theorem 8. Suppose that n is prime. Let G be a regular game and suppose that T is X -excluding and

has action count `. Let DDH be as defined in Figure 4. When F is modeled as a random oracle, there

exists a DDH- and Q-relative regular simulator S such that for all t, qG, qI , qR, c ≥ 0 there exists a t̂-time

CR-adversary C such that

Advgap2
I+N ,I,G(S, r) ≤ 2cqIAdvcr

vr (C) + 2`qIAdvint-ctxt
AE (t̂, 0, qI) ,

where G is c-ro-bound and ψ-ro-regular; I is ψ-ro-regular and I.Gen is 0-ro-bound; AE, T , H, cl , and

vr are 0-ro-bound; simulator S is (O(t/(qI + 1)), qI , `)-resource, `qRqI-DDH-bound, and 2-Q-bound; r =

(t, qG, qI , qR); and t̂ = O(t+ qRqI).

(Note that the vr parameter in the CR-advantage term is the one for Noise and not for EdDSA.) We sketch

the proof in Appendix A.7. By Theorem 1 we conclude that if ED is SEC/I secure for a game G that meets

the conditions of Theorem 8, then so is ED+N .

Remark 6. In Theorem 6 we modeled the underlying hash function as a random oracle, and in Theorem 8 we

modeled the HKDF as a random oracle. Indeed, since HKDF may be constructed from the very same hash

function used with EdDSA, it is crucial that HKDF is indifferentiable from an RO when the hash function

is modeled as an RO. Otherwise, there may be an attack against ED+N with respect to some game G that

exploits the underlying structure of HKDF; such an attack would be out-of-scope of our analysis. Fortunately,

we are able to rule these out in Appendix B.

Discussion. So far, our treatment has elided an important detail regarding the composition of EdDSA and

Noise. Both are specified in terms of a generic group, and so for their composition to make sense, this must

be the same group for both interfaces. The curves used by Noise, Curve25519 and Cure448, are birationally

equivalent to the Edwarsd curves used by Ed25519 and Ed448 respectively [14]. Loosely speaking, this means

there is an efficiently computable map from points on one curve to points on the other. This map would be

used to transform the EdDSA key pair into a static key pair for Noise. We emphasize, however, that due to

our formalization of represented groups, the use of this transform is out-of-scope of our analysis.

6.5 Conclusion

Theorem 7 specifies conditions for N and G that suffice for N to be SEC/I secure for G. The restriction to

(ψ-ro-)regular games G is mild, but proving GAP1 security—at least, without making additional restrictions

on the protocol and security goal captured by G—requires modifying the processing rules. But the change

we suggest is a relatively simple one. Noise already provides a degree of context separability by binding the

handshake pattern and parameters to the initial state (see [53, Sec. 5.2]). This is provided by using the hash

of the protocol name (e.g. Noise NK 25519 AESGCM SHA256) as the initial HKDF salt. Our suggestion

is that by simply using the protocol name as the HKDF label instead, Noise protocols would be context

separable under a much wider set of circumstances (in particular, all conditions captured by G in Theorem 7).

The more consequential finding of our analysis is that, in order to prove GAP1 security, we must exclude

handshake patterns that entail certain actions that are insecure with respect to GAP1 (in particular, the

set of token actions X ). By our count, of the 37 one-way, fundamental, and deferred handshake patterns in
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the spec [53], 19 would be supported by the initiator, 24 by the responder, and only 10 by both. We stress,

however, that we are not aware of an explicit SEC/I attack at this time. It is likely that, in many cases, our

analysis is more conservative than is necessary.

As a result of these restrictions, our work leaves the security of key-reuse among Noise protocols as they

are an open question. In particular, our work leaves open the possibility of a direct proof of SEC/I security

with respect to a particular game. One could also achieve meaningful results by considering joint security in

a weaker attack model wherein parties may negotiate one of a fixed set of concrete Noise patterns. However,

these results would be far less general than ours.

The primary goal of this work was not to analyze Noise as it is, but to demonstrate that the analytical

approach we developed can be applied to reason about protocol interactions in a very general way. The

design philosophy underlying Noise (build the framework first, then build protocols from the framework)

makes Noise an ideal case study. (Indeed, a similar analysis could be carried out in order to shed light on

protocol interactions among other DH-based protocols [32, 40, 42, 44].) It is not surprising that our analysis

would unearth limitations with respect to our security goals, since, to the best of our knowledge, these goals

have not been considered before.

(In)security with respect to GAP1 is akin to (in)security in the sense of indifferentiability [47]. For exam-

ple, while length-extension attacks against Merkle-Damg̊ard-style hash functions rule out indifferentiability

from a random oracle [21], whether these attacks are exploitable depends on how the hash function is used.

Analogously, whether these GAP1 attacks against Noise are exploitable in practice depends intrinsically

upon the protocol and its intended security goal. On the other hand, and analogous to indifferentiability,

security in our setting rules out these attacks altogether.

Finally, we believe the design philosophy underlying Noise has the potential to re-shape how our com-

munity approaches protocol design and analysis. It is our hope that this work will help lay the formal

foundations for this effort going forward.
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P(X,V ) G0 G1

1 if π[X] 6= � then bad ← 1; ret ⊥
2 U ←← {0, 1}h; π[X]← U

3 π[X]← V

P(X,V ) G1 G2

4 if π[X] 6= � then bad ← 1; ret ⊥
5 U ←← {0, 1}h; π[X]← U

6 π[X]← V

Figure 9: Specification of oracle P in experiments 0, 1, and 2 for the proof of Theorem 1.

by simulating A in the SEC/I experiment for G as follows. It runs A on its input pk : when A asks α of

its Init oracle, D returns the output of Init(α); when A asks (ctx , op, in) of Op, D returns Op(ctx , op, in)

if ctx 6= α and ⊥ otherwise; when A asks in of Call, D returns the output of Call(in); and when A asks X

of R, D returns R(X). Finally, when A asks in of Final, if Final(in) outputs 1, then D halts and outputs 1;

otherwise it halts and outputs 0. Let db1 denote the probability that D outputs 1 given that b is the challenge

bit in its experiment. Then d11 = Pr
[
Exp

sec/i
I1,G(A)

]
, since D perfectly simulates A in the SEC/I experiment

with G and I1 when b = 1.

Let G0(S,A) be an experiment defined just like Exp
sec/i
I0,G(A), but with the following changes: first, line

2:12 is replaced with ret 〈Sσ : I0R
sk ,P,Q,R〉(ctx , op, in), where σ ←← 〈S.Init : P,Q,R〉(pk) was executed

prior to running A; and second, the P oracle is as defined in Figure 9.

Note that d01 = Pr
[
G0(S,A)

]
. Then

Adv
sec/i
I1,G(A) = Pr

[
Exp

sec/i
I1,G(A)

]
− Pr

[
G0(S,A)

]
+ Pr

[
G0(S,A)

]
(1)

= d11 − d01 + Pr
[
G0(S,A)

]
(2)

= Advgap2
I1,I0,G(S,D) + Pr

[
G0(S,A)

]
. (3)

We proceed by a game-playing argument [12]. Define a new experiment G1 from G0 by modifying the P

oracle as shown in Figure 9. The only difference between G0 and G1 is that, in the latter experiment, if P

is queried on (X,V ) such that π[X] was previously defined, then the oracle P returns ⊥ without overwriting

the value of π[X]. By the Fundamental Lemma of Game Playing [12] it follows that

Pr
[
G0(S,A)

]
− Pr

[
G1(S,A)

]
≤ Pr

[
G1(S,A) sets bad

]
≤ qRP/2µ , (4)

where P = cP (qI + 1) is the maximum number of P queries made during the course of the experiment,

and since qR is the maximum number of R queries. Now define G2 just like G1, except that P is modified

as shown in Figure 9. Since the simulator is (µ, h)-min-netropy, the programmed range point is uniformly

distributed over {0, 1}h in both experiments. Thus,

Pr
[
G1(S,A)

]
= Pr

[
G2(S,A)

]
. (5)

Now consider the SEC/I-adversary B that composes S and A in experiment G2 as follows. Adversary B
declares a set Q, initially empty, and defines the following three oracles. On input of (X,V ), oracle P′ runs

R(X). Oracle Q′ just returns the current value of Q. On input of X, oracle R′ runs Q ← Q ∪ {X} and

returns R(X).

Adversary B first runs σ ←← S.InitP
′,Q′,R(pk), where pk is the public key that it gets as input. It then

runs 〈A : Init,Final,Call,Op′,R′〉(pk), where on input (ctx , op, in), oracle Op′ returns the output of

SσOp,P′,Q′,R(ctx , op, in). Since S is regular by assumption, none of its Op′ queries will coincide with the

game context. Then Pr
[
Exp

sec/i
I0,G(B)

]
= Pr

[
G2(S,A)

]
holds by construction, and

Pr
[
Exp

sec/i
I1,G(A)

]
≤ Advgap2

I1,I0,G(S,D) + qRP/2
µ + Pr

[
Exp

sec/i
I0,G(B)

]
. (6)
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Gb
G′(B,D)

1 dec str pk , sk , st , α; bool win

2 (pk , sk)←← Ib.Gen( )

3 〈B : Init,Final,Call,Op〉(pk)

4 ret win

Init(ctx )

5 (st , out)←← G′.Init(pk , ctx )

6 α← ctx ; ret out

Final(in)

7 win ←← 〈G′.Final: Ibsk 〉(st , in)

8 c←← {0, 1}; d←← 〈D : Ibsk 〉(pk)

9 if c = 1 then ret win ∨ (d = 1)

10 ret win ∧ (d = 1)

Call(in)

11 ret 〈G′st : Ibsk 〉(in)

Op(ctx , op, in)

12 if ctx = α then ret ⊥
13 ret Ibsk (ctx , op, in)

G.Init(pk , ctx )

14 (st ′, out ′)←← G′.Init(pk , ctx )

15 ret (pk , st ′, out ′)

G.CallO(&st , in)

16 dec str pk , st ′

17 pk , st ′ ← st

18 out ←← G′Ost′ (in)

19 st ← pk , st ′

20 ret out

G.FinalO(st , in)

21 dec str pk , st ′

22 pk , st ′ ← st

23 win ←← G′.FinalO(st ′, in)

24 c←← {0, 1}; d←← DO(pk)

25 if c = 1 then ret win ∨ (d = 1)

26 ret win ∧ (d = 1)

Figure 10: left: experiment Gb
G′(B,D); and right: game G for proof of Theorem 2.

To complete the proof, we need only to account for D and B’s resources. Both D and B make at most qG
queries to Call; adversary D (resp. B) makes at most qI (resp. cIqI) queries to Op; and both adversary D
and B make at most qR + (cR + cP )(qI + 1) = q̂R queries to R.

Condition (i) follows from essentially the same argument. The GAP1 adversary is identical to D, and

the SEC adversary is defined just like B, except that the simulator is given ⊥ instead of Op.

A.2 Theorem 2 (necessity of wGAP2 for Theorem 1(ii))

Define S as follows: on input of pk , the initiator S.Init returns ε; and on input of (&σ, ctx , op, in), the

operator S.OpO runs out ←← O(ctx , op, in) and returns out . Let dxy denote the probability that D outputs y

in the wGAP2 experiment with simulator S given that the challenge bit b is equal to x.

Let A = B. Let G′ be any game and define game G from D and G′ as specified in Figure 10. This game

acts as a shim for G′, but changes the winning condition as follows. It flips a coin c and runs d←← DO(pk)

(10:24). If c = 1 then the outcome is 1 if G′ is in a winning state or d = 1; if c = 0, then the outcome is 1

if G′ is in a winning state and d = 1.

Let gx denote the probability that Gx
G′(B,D) = 1, where Gx

G′(B,D) is as specified in Figure 10, and let

gxy denote the probability that Gx
G′(B,D) = 1 given that c = y (see line 10:7). Then

g1 = 0.5g11 + 0.5g10 (7)

2g1 = g11 − g01 + g01 + g10 − g00 + g00 (8)

= g01 + g00 + (g11 − g01) + (g10 − g00) (9)

= 2g0 + (g11 − g00) + (g10 − g01) . (10)

When c = 1, the probability that B wins is at least the probability that D outputs 1; this implies that

g11 ≥ d11 and g01 ≤ (1 − d00). When c = 0, the probability that B wins is at most the probability that D
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G0(S) / G1(S)

1 dec setR; strW ∗, π[ ]; P ∈ G; r ∈ Zn
2 (P , sk)←← I.Gen( ); r ←← Zn
3 W ∗ ←← {0, 1}h; π[rP, ε]←W ∗; R ← {W ∗}
4 σ ←← 〈S.Init: P,Q,R〉(P )

5 W ←← 〈Sσ : Isk ,P,Q,R〉(ε, fdh, rG)

6 W ∗ ←← R(rP, ε)

7 ret W = W ∗

P(X,V )

8 if X = (rP, ε) then π[X]← �
9 π[X]← V

R(X)

10 if X = (rP, ε) then π[X]← �
11 W ←← {0, 1}h

12 if π[X] then W ← π[X]

13 π[X]←W ; ret W

Q( ): ret ∅

P(X,V ) G1 G2

14 if V = W ∗ then ret ⊥
15 π[X]← V

R(X) G2 G3

16 W ←← {0, 1}h \R
17 if π[X] then W ← π[X]

18 R← R∪ {W}; π[X]←W ; ret W

P(X,V )

19 if V = W ∗ then ret ⊥
20 R← R∪ {V }; π[X]← V

AO(P,Q)

21 dec setR; str π[ ]; elemG ρ[ ]

22 σ ←← 〈S.Init: P,Q,R〉(P )

23 W ←← 〈Sσ : O,P,Q,R〉(ε, fdh, Q)

24 ret ρ[W, ε]

P((Z, ctx ), V )

25 R← R∪ {V }; π[Z, ctx ]← V

R(Z, ctx )

26 W ←← {0, 1}h \ R
27 if π[Z, ctx ] then W ← π[Z, ctx ]

28 ρ[W, ctx ]← Z; π[Z, ctx ]←W

29 R← R∪ {W}; ret W

Q( ) : ret ∅

Figure 11: Experiments 0 – 3 and IDH-adversary A for proof of Theorem 4.

outputs 1; this implies that g00 ≤ d01 and g10 ≥ (1− d10). It follows that

2g1 ≥ 2g0 + (d11 − d01) + (1− d10)− (1− d00) (11)

= 2g0 + (d11 − d01) + (d00 − d10) (12)

g1 ≥ g0 + Advwgap2
I1,I0 (S,D) . (13)

The last equation follows by conditioning on the outcome of the coin flip b in the wGAP2 experiment. Noting

that g1 = Pr
[
Exp

sec/i
I1,G(A)

]
and g0 = Pr

[
Exp

sec/i
I0,G(B)

]
completes the proof.

A.3 Theorem 4 (wGAP2 insecurity of functional DH)

Define 〈D : Op,R〉(P ) as follows. Run r ←← Zn, W ←← Op(ε, fdh, rG), and W ∗ ←← R(rP, ε). Return 1 if

and only if W = W ∗. Note that if b = 1, then the response will be π[srG] = π[rP ] = W ∗, and so D will

output 1. Let G0(S) be the experiment specified in Figure 11. While the game sets the value π[rP, ε] to W ∗

before invoking the simulator, if one of the simulator’s RO queries coincide with (rP, ε), then the value of

π[rP, ε] will be overwritten (line 11:9 and 13). Thus, this experiment is equivalent to running the wGAP2

game with D and S. Then

Advwgap2
I+fdh,I(S,D) = 1− Pr

[
G0(S)

]
. (14)
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We proceed with a game-playing argument. Our goal is to rewrite the R and P oracles so that we can use S
to solve the IDH problem for (G, I). In particular, we will exhibit a game G3 in which S must query R

on the correct point in order to do any better than just guessing W ∗. Consider the experiment G1, also

defined in Figure 11. The difference between it and G0 is that the value of π[rP, ε] is no longer overwritten

by S’s RO queries. These experiments are identical as long as none of S’s RO queries coincide with the

point rP . Since |G| = n is prime and P ∈ G, by Lagrange’s Theorem we have that G = 〈P 〉. Since r is

chosen uniform randomly from Zn, for any query X the probability that X = (rP, ε) is at most 1/n. The

simulator initiator S.Init and operator S.Op are both run exactly once, and so by the Fundamental Lemma

of Game Playing [12] we have that

Pr
[
G0(S)

]
≤ 2(q + p)

n
+ Pr

[
G1(S)

]
. (15)

Next, G2 is defined just like G1, except oracle P does as follows. On input of ((Z, ctx ), V ), if V 6= W ∗, then

set π[Z, ctx ]← V ; otherwise do nothing. Since S.Init and S.Op are each executed once, we have that

Pr
[
G0(S)

]
≤ 2(q + p)

n
+

2p

2h
+ Pr

[
G2(S)

]
. (16)

Next, modify G2 to get a new game, G3, as follows. The game declares a set R, initially containing just W ∗.

On input of ((Z, ctx ), V ), if P sets π[Z, ctx ] ← V , then it also adds V to the set R. Moreover, on input

of (Z, ctx ), instead of sampling W from {0, 1}h, oracle R samples W from {0, 1}h \ R. After doing so it

adds W to R. Then experiments G2 and G3 are identical up to the collision of two or more range points

sampled by R (11:17). This at most (2p+ 1)/2h for the first of these queries, since the size of |R| ≤ 2p+ 1;

for the i-th query, this probability is at most (2p+ i)/2h. Summing over all R queries, we have

Pr
[
G2(S)

]
≤ Pr

[
G3(S)

]
+

2q∑
i=1

2p+ i

2h
(17)

= Pr
[
G3(S)

]
+

4pq

2h
+

2q∑
i=1

i

2h
(18)

≤ Pr
[
G3(S)

]
+

4pq

2h
+

4q2

2h
. (19)

Combining Eq. (16) with Eq. (19) we obtain

Pr
[
G0(S)

]
≤ Pr

[
G3(S)

]
+

2(q + p)

n
+

2p

2h
+

4pq

2h
+

4q2

2h
(20)

≤ Pr
[
G3(S)

]
+

2(q + p)

n
+

4p2 + 4pq + 4q2

2h
(21)

= Pr
[
G3(S)

]
+
q̂

n
+
q̂2

2h
. (22)

Now consider the IDH-adversary A specified in Figure 11. It executes the simulator S just as in the proof

of Theorem 3 except that it must also answer S’s RO queries. It does so using oracles P, Q, and R specified

in the same figure. For each query (Z, ctx ) to R it records the response W in an associative array ρ by

setting ρ[W, ctx ] ← Z. Since each W is distinct, each element of ρ is set exactly once. When the simulator

halts and outputs W , adversary A halts and outputs ρ[W, ε]. Consider the probability that G3(S) = 1

conditioned on the event that S queries its oracle on rP . If this happens, then A wins its game, and so the

probability that A wins is at least the probability that the game outputs 1. Now suppose that S does not

guess the point rP ; then the probability it manages to output the correct string W ∗ is at most 1/2h. Then
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Pr
[
G3(S)

]
≤ Advidh

G,I(A) + 1/2h. It follows that

Pr
[
G0(S)

]
≤ q̂

n
+
q̂2

2h
+

1

2h
+ Advidh

G,I(A) (23)

≤ q̂

n
+

q̂2

2h−1
+ Advidh

G,I(A) , (24)

which yields the claimed bound.

A.4 Theorem 5 (GAP1 security of EdDSA)

Lemma 1. For all Q ∈ G and N ≥ n it holds that Pr
[
Q = rG : r ←← ZN

]
≤ 2/n, where G = 〈G〉 is an

additive group of order n.

Proof. Let Q ∈ G and let k ≥ 1 be the largest integer such that kn ≤ N . Conditioning on the event that

r < kn we have

Pr
r

[
Q = rG

]
= Pr

r

[
Q = rG | r < kn

]kn
N

+ Pr
r

[
Q = rG | r ≥ kn

]N − kn
N

, (25)

where r ←← ZN . If r < kn, then for each Q ∈ G the probability that Q = rG is exactly 1/n. If r ≥ kn, then

rG is one of N − kn equiprobable points in G, and so the probability that Q = rG is at most 1/(N − kn).

Then

Pr
r

[
Q = rG

]
≤ 1

n
· kn
N

+
1

N − kn ·
N − kn
N

=
k + 1

N
≤ 2k

N
. (26)

Since kn ≤ N it follows that 2k/N ≤ 2/n.

The proof is by a game-playing argument. Let D be a r-resource GAP1-adversary. In Figure 12 we define

an experiment G0(S,D), which is similar to Expgap1
ED,G(S,D), except that it performs some additional book

keeping. First, it declares the following additional variables: strX, ρ[ ]; bool bad ; and set Y. Second, set Y
is populated with each context string ctx 6= α passed to Op; if ED (via G) ever makes an RO query u such

that vrR(ctx ) � u for some ctx ∈ Y, then the flag bad gets set. Third, string X is set to a random element

of {0, 1}b immediately after executing the key generator (and prior to running the simulator or adversary).

This will be used as a global variable later on, but for now the value of X has no impact on the outcome

of the game. We note that G0(S,D) is O(t + qRqI)-time since D is t-time and the bookkeeping overhead

for bad is O(qRqI).

Next, we define an experiment G1 by modifying G0 so that, immediately after setting bad (line 12:12),

oracle R′ halts and returns ⊥. Because G is regular, this change ensures that in the new experiment, no

queries made by ED via Call, except those involved in computing the scalar s and randomizer X (12:23–24),

coincide with those made by Op via Op. If a query u to R′ sets bad , then this implies that vrR(α) = vrR(ctx )

for some ctx ∈ Y for which ctx 6= α. Thus, one can easily exhibit a O(t + qRqI)-time CR-adversary C such

that

Pr
[
G0(S,D)

]
− Pr

[
G1(S,D)

]
≤ cqIAdvcr

vr (C) . (27)

The adversary executes G0(S,D): if bad gets set, then it searches Y for a string ctx that collides with α

under vr and outputs (ctx , α).

We define experiment G2 from G1 by modifying the Op procedure called by Op as follows: remove line

line 12:24 (execution of X ←← R(K)[b + 1:]); instead, this procedure will use the X generated at the start

of the experiment (12:3). These experiments are identical unless D manages to ask K of R, and so we can

show that

Pr
[
G1(S,D)

]
− Pr

[
G2(S,D)

]
≤ qR/2b . (28)
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G0(S,D)

1 dec strK,X, st , σ, α, ρ[ ], π[ ]

2 dec set Y; bool c, d, bad ; P ∈ G
3 (P ,K)←← GenR( ); X ←← {0, 1}b

4 c←← {0, 1}; σ ←← S.InitP,R(P )

5 d←← 〈D : Init,Final,Call,Op,R〉(P )

6 ret (d = c)

Op(ctx , op, in)

7 if ctx = α then ret ⊥
8 Y ← Y ∪ {ctx}
9 if c = 1 then ret OpR

K (ctx , op, in)

10 ret S⊥,P,Rσ (ctx , op, in)

R′(u)

11 if (∃ ctx ∈ Y) vrR(ctx ) � u then

12 bad ← 1

13 ret R(u)

P(u, v)

14 πu ← v

R(u)

15 if ¬πu then πu ←← {0, 1}2b; ret πu

Init(ctx )

16 (st , out)←← G.InitR(pk , ctx )

17 α← ctx ; ret out

Final(in)

18 ret 〈G.Final: EDR′
K ,R〉(st , in)

Call(in)

19 ret 〈G.Call : EDR′
K ,R〉(&st , in)

GenR( )

20 K ←← {0, 1}b; s←← clR(R(K)[:b])

21 ret (sG,K)

OpR
K (ctx , op, in)

22 dec r, t ∈ N
23 s← clR(R(K)[b:])

24 X ←← R(K)[b+ 1:]

25 if op 6= sig then ret ⊥
26 A← vrR(ctx ); B ← phR(in)

27 r2b ←← R(A ‖X ‖B)

28 t2b ←← R(A ‖ rG ‖P ‖B)

29 x← r + st (mod n); R← rG

30 ret R, x

Op(sk , ctx , op, in) G2 G3

31 dec r, t ∈ N
32 s← clR(R(K)[b:])

33 if op 6= sig then ret ⊥
34 A← vrR(ctx ); B ← phR(in)

35 r2b ←← R(A ‖X ‖B)

36 if ρA,B = � then
37 ρA,B ←← {0, 1}4b

38 r2b ← ρA,B [:2b]; t2b ← ρA,B [2b+ 1:]

39 x← r (mod n)

40 t2b ←← R(A ‖ rG ‖P ‖B)

41 x← r + st (mod n); R← rG

42 ret R, x

Op(sk , ctx , op, in) G3 G4

43 dec r, t ∈ N
44 s← clR(R(K)[b:])

45 if op 6= sig then ret ⊥
46 A← vrR(ctx ); B ← phR(in)

47 if ρA,B = � then
48 ρA,B ←← {0, 1}4b

49 r2b ← ρA,B [:2b]; t2b ← ρA,B [2b+ 1:]

50 x← r (mod n)

51 t2b ←← R(A ‖ rG ‖P ‖B)

52 x← r + st (mod n); R← rG

53 P(A ‖R ‖P ‖B, t2b)
54 ret R, x

Op(sk , ctx , op, in) G4 G5

55 dec r, t ∈ N
56 s← clR(R(K)[b:]);

57 if op 6= sig then ret ⊥
58 A← vrR(ctx ); B ← phR(in)

59 if ρA,B = � then
60 ρA,B ←← {0, 1}4b

61 r2b ← ρA,B [:2b]; t2b ← ρA,B [2b+ 1:]

62 x← r (mod n)

63 x← r + st (mod n); R← rG

64 R← xG− tP
65 P(A ‖R ‖P ‖B, t2b)
66 ret R, x

Sed.InitP,R(pk)

67 dec str ρ[ ]; P ∈ G
68 P ← pk ; ret P, ρ

Sed.OpO,P,R(&σ, ctx , op, in)

69 dec str ρ[ ]; bool a; P ∈ G; x, t ∈ N
70 if op 6= sig then ret O(ctx , op, in)

71 P, ρ← σ; A← vrR(ctx ); B ← phR(in)

72 if ρA,B = � then a← 1

73 ρA,B ←← {0, 1}4b; σ ← P, ρ

74 x2b ← ρA,B [:2b]; t2b ← ρA,B [2b+ 1:]

75 x← x (mod n); R← xG− tP
76 if a = 1 then P(A ‖R ‖P ‖B, t2b)
77 ret R, x

Figure 12: Experiment 0, and revisions for 4, 4, and 5, and P-relative simulator Sed for proof of Theorem 5.40



Next, experiment G3 is constructed from G2 as follows (see Figure 12). Replace r2b ←← R(A ‖X ‖B) on line

12:35 with the following procedure: if ρ[A,B] is undefined, then sample ρ[A,B]←← {0, 1}4b; then set r2b ←
ρ[A,B][:2b]. (We also set t2b ← ρ[A,B][2b + 1:] and x ← r (mod n), but these variables get overwritten

immediately thereafter, and so these statements have no affect on the outcome of the experiment.) Since G is

ED-regular, experiment G3 is identical to G2 unless D manages to ask A ‖X ‖B of R, where A = vrR(ctx )

and B = phR(in) coincide with any one of its sig-operator queries. Hence,

Pr
[
G2(S,D)

]
− Pr

[
G3(S,D)

]
≤ qRqI/2b . (29)

Next, experiment G4 is defined from G3 by modifying Op as follows: remove t2b ←← R(A ‖ rG ‖P ‖B) on

line 12:51 and add the statement P(A ‖R ‖P ‖B, t2b) just prior to the return statement. These experiments

are identical unless D manages to guess an input A ‖ rG ‖P ‖B to R that coincides with one of its sig-

operator queries. To bound this probability, first consider the probability that Q = rG for any Q ∈ G and a

randomly sampled r2b ←← {0, 1}2b. Note that sampling r in this way is equivalent to sampling r as r ←← Z22b

(cf. Section 2). Lemma 1 implies that this probability is at most 2/n, and so

Pr
[
G3(S,D)

]
− Pr

[
G4(S,D)

]
≤ 2qRqI/n . (30)

Finally, in G5, instead of returning R = rG and x ≡ r + st (mod n), we return R = xG − tP and x ≡ r

(mod n). This does not change the outcome of the experiment, however, since R and x have the same

relationship in both experiments (namely, xG = R+ tP ). Observe that the behavior of the Op in case b = 1

is the same as when b = 0, and so Pr
[
G5(S,D)

]
= 1/2. Summarizing, we have that

Pr
[
Expgap1

ED,G(S,D
]
≤ cqIAdvcr

vr (C) + Pr
[
G1(S,D)

]
(31)

≤ cqIAdvcr
vr (C) +

qR
2b

+ Pr
[
G2(S,D)

]
(32)

≤ cqIAdvcr
vr (C) +

qR
2b

+
qRqI
2b

+ Pr
[
G3(S,D)

]
(33)

≤ cqIAdvcr
vr (C) +

qR
2b

+
qRqI
2b

+
2qRqI
n

+ Pr
[
G4(S,D)

]
(34)

≤ cqIAdvcr
vr (C) +

3qRqI
n

+ Pr
[
G5(S,D)

]
(35)

≤ cqIAdvcr
vr (C) +

3qRqI
n

+
1

2
, (36)

where Eq. (35) follows from our assumption that n ≤ 2b−1. The claimed bound follows by applying the

definition of D’s GAP1 advantage.

Note that S is O(t/qI)-time since, by convention (see Section 2), adversary D’s runtime includes the

time required to evaluate its queries, It is (log n/2, 2b)-min-entropy because each query to P is of the form

(A ‖xG− tP ‖P ‖B, t2b), where x and t are random elements of Z2b; by Lemma 1 the probability that any Q

is equal to xG− tP is at most 2/n = 1/2logn/2.

A.5 Theorem 6 (GAP2 security of EdDSA)

The proof is closely related to Theorem 5, except we needn’t rely on the collision resistance of vr for context

separation. In Theorem 5, this property was used to bound the probability of an adversary distinguishing

between an experiment in which the random scalar r is generated honestly and an experiment in which it

is computed using a table ρ that is independent of X = R(K). (See the middle-left panel of Figure 12.)

Since I is simple, it is independent of X by definition, and so we can instead use the unpredictability of X

to bound this probability.

Let D be a r-resource GAP2-adversary. We begin with an experiment G0(S,D) (Figure 12) that is similar

Expgap2
ED+I ,I,G(S,D), but with some changes that will help clarify our argument. First, before executing D, we
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G0(S,D)

1 dec strK,X, st , σ, α, π[ ]

2 dec bool c, d, bad ; P ∈ G; s ∈ N
3 c ←← {0, 1}; K ←← {0, 1}b; π[K]←← {0, 1}2b

4 s← cl(π(K)[:b])

5 P ← sG; σ ←← S.InitP,R(P )

6 d←← 〈D : Init,Final,Call,Op,R1〉(P )

7 ret (d = c)

Init(ctx )

8 (st , out)←← G.InitR2(pk , ctx )

9 α← ctx ; ret out

Final(in)

10 ret 〈G.Final: Ic,R2〉(st , in)

Call(in)

11 ret 〈G.Call : Ic,R2〉(&st , in)

Op(ctx , op, in)

12 if ctx = α then ret ⊥
13 if c = 1 then ret I1(ctx , op, in)

14 ret 〈Sσ : I0,P,R〉(ctx , op, in)

Ix(ctx , op, in)

15 if x = 1 ∧ op = sig then

16 ret EDR
K (ctx , op, in)

17 ret IR2
s (ctx , op, in)

R′(u)

18 if u ∼ X then bad ← 1

19 ret R(u)

P(u, v)

20 πu ← v

R(u)

21 if ¬πu then πu ←← {0, 1}2b; ret πu

Figure 13: Experiments 0 and 1 for proof of Theorem 5.

explicitly compute the public and secret keys. This does not change semantics of the experiment. Second,

only the simulator and ED have direct access to R; all other algorithms’ RO queries are proxied by an

oracle R′ that checks if u ∼ X, i.e., if X is non-empty and is a sub-string of u. If so, then it sets a flag bad .

Note that G0(S,D) is O(t)-time if D is t-time.

The first change reflects the second change in the proof of Theorem 5. Define experiment G1 from G0

as follows. Modify the call to ED in Op with the procedure Op defined in the top panel of Figure 12. Now,

remove the statement X ←← R(K)[b + 1:] on line 12:24 and add the statement X ←← {0, 1}b just prior to

running the adversary. Then

Pr
[
G0(S,D)

]
− Pr

[
G1(S,D)

]
≤ qR/2b . (37)

Next, we construct G2 from G1 by modifying R′ so that the oracle halts and outputs ⊥ immediately after

bad gets set. The probability that any query to R′ for any x sets bad1 is at most 1/2|X| = 1/2b. Since the

number of queries is at most qR it follows that

Pr
[
G1(S,D)

]
− Pr

[
G2(S,D)

]
≤ Pr

[
G1(S,D) sets bad1

]
≤ qR/2b . (38)

To complete the proof, we can apply the same rewrites in the bottom panel of Figure 12 to obtain an

experiment G3 such that

Pr
[
G0(S,D)

]
≤ 2qR/2

b + qRqI/2
b + 2qRqI/n+ Pr

[
G3(S,D)

]
(39)

and in which D has no advantage. The only difference is that it uses I to answer non-sig-operator queries,

rather than return nothing (12:57). We have that Pr
[
G2(S,D)

]
= 1/2 since this is precisely the behavior

of S. Then

Pr
[
G0(S,D)

]
≤ 2qR/2

b + qRqI/2
b + 2qRqI/n+ 1/2 (40)

Advgap2
ED+I ,I,G(S,D) ≤ 4qR/2

b + 2qRqI/2
b + 4qRqI/n (41)

≤ 3qRqI/2
b−1 + 4qRqI/n ≤ 7qRqI/n , (42)

yielding the desired bound.
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A.6 Theorem 7 (GAP1 security of Noise)

The proof is by a game-playing argument in which we rewrite the Op oracle so that its output is independent

of the challenge bit b. Our strategy is to change the pseudocode executed by Op when b = 1 so that it is

functionally equivalent to the simulator S indicated in the theorem statement. We will specify S at the very

end; for now, let S be any DDH- and Q-relative simulator. Let D be a r-resource GAP1-adversary.

Consider the experiment G0(S,D) defined in Figure 14. This game is similar to Expgap1
N ,G (S,D), except

it performs some additional bookkeeping. In particular, it declares a variable g of type sst (defined in

the bottom-left panel of Figure 14), which we will refer to as the game’s “shadow state”. First, when the

key generator is executed, its output is assigned to (g .P, g .s). Second, the experiment sets a flag g .bad1 if

the game G (or N via G) ever makes an RO query (id , u, v) that satisfies ψ(ctx , (id , u, v)) for some context

string ctx 6= α used in a query to Op. Third, each time it is executed, the Op oracle processes the adversary’s

fresh RO queries as follows: for each (u, v) ∈ g .Q \ Q, it adds u to the set g .U , and if v encodes a valid

point Z ∈ G, it adds Z to the set g .V. Finally, it adds Q to the set g .Q. One can easily verify that none of

these changes affect the outcome of the experiment; note, however, that G0(S,D) is O(t+ qRqI)-time since

D is t-time and the bookkeeping overhead is O(qRqI).

Experiment G1 is also specified in Figure 14. It is identical to G0 until g .bad1 gets set, after which

point R2 returns ⊥. By the (ψ-ro-)regularity of G and the definition of N , and by assumption that each

of N ’s constituents is 0-ro-bound, this implies that vr(ctx ) = vr(α). But since ctx 6= α, we can bound the

probability that flag g .bad1 gets using the collision resistance of vr . In particular, one can easily exhibit a

O(t+ qRqI)-time CR-adversary C such that

Pr
[
G0(S,D)

]
− Pr

[
G1(S,D)

]
≤ cqIAdvcr

vr (C) . (43)

The adversary executes G0(S,D): if g .bad1 is set, then it searches Y for a string ctx that collides with α

under vr and outputs (ctx , α).

The next transition rewrites the call to N made by Op in order to set up the reduction to the INT-CTXT

security of AE . Consider procedures SimCap, mKeySimPSK, mKeySimDH, and mKeySimTok defined in

the top-right panel of Figure 14. These are variants of Cap, mKeyPSK, mKeyDH, and mKeyTok (Fig-

ure 8) respectively that use the shadow state instead of the static key. We first describe each procedure’s

functionality, then specify the changes made in experiment G2.

SimCap works precisely like Cap, except it does some additional bookkeeping. In particular, if encryption

or decryption succeeds and a flag g .known is not set, then it sets a another flag g .bad2. Flag g .known is set

or unset as defined below.

mKeySimPSK works precisely like mKeyPSK, except it performs some additional bookkeeping. In par-

ticular, if the first input to the RO u = hs.id ‖ hs.L is in the set g .U , then it sets g .known; otherwise it

unsets g .known (i.e., it runs g .known ← 0). After the symmetric key state and key are updated (14:40–41)

it adds the new key K to a set g .Kx, where x = g .known. If K ∈ g .K1, then we will say that K is (possibly)

known to the adversary; otherwise will say that K is (certainly) unknown.

mKeySimDH is called when processing a key update involving the static secret key. It first attempts

to perform the update without using static secret key by invoking a procedure SimDH (14:46) with access

to DDH and R and on input of the shadow state, the handshake state, and the input point Y . (We will

define SimDH in a moment.) Let Z denote the output, and let u = hs.id ‖ hs.L. If Z ∈ G (i.e., Z 6= �) and

u ∈ g .U , then the procedure sets g .known and unsets it otherwise. Next, if g .known is set, then the state is

updated using Z (the output of SimDH); otherwise it uses (g .s)Y . Finally, the new key is added to the set

g .Kx, where x = g .known. Procedure SimDH uses the DDH oracle as defined in Figure 15. On input of Y ,

it updates the shadow state as follows. For each R ∈ g .R and W ∈ g .V, if g .ρR is undefined, then it asks

r ← DDH(g .P,R,W ): if r = 1, then it sets g .ρR ←W . After updating the shadow state, SimDH halts and

outputs g .ρY , which is either a point in G or equal to �.
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G0(S,D) / G1(S,D)

1 dec str st , σ, α, str π[ ]; bool b, d

2 dec setQ,Y; sst g ; s ∈ N
3 (g .P , g .s)←← N .Gen( ); s← g .s

4 σ ←← S.InitDDH,Q,R(g .P ); b←← {0, 1}
5 d←← 〈D : Init,Final,Call,Op,R1〉(g .P )

6 ret (d = b)

Init(ctx )

7 (st , out)←← G.InitR2(g .P , ctx )

8 α← ctx ; ret out

Final(in)

9 ret 〈G.Final: NR2
s ,R2〉(st , in)

Call(in)

10 ret 〈G.Call : NR2
s ,R2〉(&st , in)

Op(ctx , op, in)

11 if ctx = α then ret ⊥
12 g .known ← 1; Y ← Y ∪ {ctx}
13 for each (id , u, v) ∈ Q \ g .Q do Z ← v

14 g .U ← g .U ∪ {(id , u)}
15 if Z then g .V ← g .V ∪ {Z}
16 g .Q ← g .Q∪Q
17 if b = 1 then ret NR

s (ctx , op, in)

18 ret S⊥,DDH,Q,R
σ (ctx , op, in)

Rc(id , u, v)

19 if c = 1 then // caller is D
20 Q ← Q∪ {(id , u, v)}
21 if c = 2 then // caller is G (or N via G)

22 if (∃ ctx ∈ Y)ψ(ctx , (id , u, v)) then

23 g .bad1 ← 1; ret⊥
24 ret R(id , u, v)

R(id , u, v)

25 if ¬πid,u,v then πid,u,v ←← ({0, 1}h)3

26 ret πid,u,v

Q( )

27 ret Q

28 dec struct {
29 tup π[ ]; elemG ρ[ ]; setK[ ],Q,R,U ,V;

30 bool known, bad [ ]; P ∈ G; s ∈ Zn } sst

SimCap(bool f, &sst g , &st hs, str X ) G2

31 if ¬hs.K then ret (X ,mHash(&hs,X ))

32 (K,A)← (hs.K, hs.A); N ← hs.seqn′

33 if f then Y ← AE .Enc(K,N,A,X)

34 else Y ← AE .Dec(K,N,A,X)

35 if Y = ⊥ then ret (�, err cap)

36 if ¬g .known then g .bad2 ← 1

37 mHash(&hs, Y ); ret (Y, iNonce(&hs))

mKeySimPSKR(&sst g , &st hs, str psk)

38 if ¬hs.psk then ret err psk

39 g .known ← ((hs.id , hs.L) ∈ g .U)

40 (hs.L, L′, L′′)←← R(hs.id , hs.L, psk)

41 hs.K ← L′′[:k]; hs.seq ← 0

42 x← g .known; g .Kx ← g .Kx ∪ {hs.K}
43 ret mHash(&hs, A)

mKeySimDHDDH,R(&sst g , &st hs, elemGY )

44 dec str L′, L′′; Z ∈ G
45 if ¬Y then ret err dh

46 Z ←← SimDHDDH,R(&g , &hs, Y )

47 g .known ← (Z ∧ (hs.id , hs.L) ∈ g .U)

48 if g .known then (hs.L, L′, L′′)←← R(hs.id , hs.L, Z)

49 else (hs.L, L′, L′′)←← R(hs.id , hs.L, (g .s)Y )

50 hs.K ← L′[:k]; hs.seq ← 0

51 x← g .known; g .Kx ← g .Kx ∪ {hs.K}
52 ret �

mKeySimTokDDH,R(&sst g , &st hs,bool f, r , str t)

53 switch (f, r , t) // “∗” means “match any”

54 case (0, ∗, psk):

55 ret mKeySimPSKR(&hs, hs.psk)

56 case (0, 0, se), (0, 1, es), (0, ∗, ss) :

57 ret mKeySimDHDDH,R(&g , &hs, hs.Q)

58 case (0, 0, es), (0, 1, se), (0, ∗, ee):
59 ret mKeySimDHDDH,R(&g , &hs, hs.R)

60 case (1, ∗, psk):

61 ret mKeyPSKR(&hs, hs.psk)

62 case (1, ∗, ee):
63 ret mKeyDHR(&hs, hs.e, hs.R)

64 case (1, 0, se), (1, 1, es):

65 ret mKeyDHR(&hs, hs.e, hs.Q)

66 case (1, 0, es), (1, 1, se), (1, ∗, ss):
67 ret ⊥ // excluded by T
68 ret err token

Figure 14: Experiments 0 — 2 and definition of type sst (bottom-left) for proof of Theorem 7.
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Lastly, mKeySimTok is much like mKeyTok, except that it operates on token actions rather than tokens so

that it can explicitly disallow the write actions excluded by T (i.e., the set X ). Write actions permitted by T
are processed with the normal procedures (14:60–67), but read actions are processed using their simulated

counterparts (54–59).

Now that we have defined the low-level simulation procedures, we are ready to specify the changes to

the experiment. Experiment G2 is defined from G1 by replacing pseudocode with calls to the procedures

defined in Figure 14, as well as variants of the higher-level procedures that we will define.

1. Define wSimTok from wTok as follows: (a) replace execution of mKeyTokR(&hs, s, r , t) with execution

of mKeySimTokR(&g , &hs, 1, r , t); (b) replace Cap1(&hs, sG) with SimCap1(&g , &hs, g .P ); and (c) change

the signature by removing int s and adding &sst g as the first argument.

2. Define rSimTok from rTok in kind: (a) replace execution of mKeyTokR(&hs, s, r , t) with execution

of mKeySimTokDDH,R(&g , &hs, 0, r , t); (b) replace Cap0(&hs, sG) with SimCap0(&g , &hs, g .P ); and (c)

change the signature just like 1(c).

3. Define SimWrite from Write as follows: (a) replace execution of wTokR(&hs, &out , s, r , ti) with ex-

ecution of wSimTokR(&g , &hs, &out , r , ti); (b) replace Cap1(&hs, in) with SimCap1(&g , &hs, in); and

(c) change the signature just like 1(c).

4. Define SimRead from Read in kind: (a) replace execution of rTokR(&hs, in, s, r , ti) with execution

of rSimTokDDH,R(&g , &hs, in, r , ti); (b) replace Cap0(&hs, in.P) with SimCap0(&g , &hs, in.P); and (c)

change the signature just like 1(c).

5. Define SimOp from Op as follows: (a) replace execution of WriteR(&hs, s, r , pat , in) with execution

of SimWriteR(&g , &hs, r , pat , in) immediately preceded by the statement g .known ← 1; (b) replace

execution of ReadR(&hs, s, r , pat , req) with SimReadDDH,R(&g , &hs, r , pat , req) immediately preceded

by the statement g .known ← 1; (c) remove s← ScalR(sk) from line 7:11; and (d) change the signature

by removing str sk and adding &sst g as the first argument.

6. Finally, modify the Op oracle by replacing NR
s (ctx , op, in) with SimOpDDH,R(&g , ctx , op, in).

We claim that G2(S,D) and G1(S,D) are equivalent. The main change is in the way static DH operations are

performed (via mKeySimDH). First note that if SimDH outputs any point at all, then the output is correct;

this is made possible by the DDH oracle, which allows the procedure to decide if (logG P )(logG Y ) = logG Z

for the input Y and some Z ∈ g .V. Thus, if the solution coincides with one of D’s queries, then SimDH will

find it in O(qRqI) time. Otherwise mKeySimDH will compute the correct solution using g .s.

The remaining changes addresses this dependence on g .s. First, experiment G3 is defined from G2 by

modifying SimCap as specified in the top-left panel of Figure 15. The experiments are identical until g .bad2

gets set, after which SimCap halts and outputs (�, err cap) in G3. SimCap gets called when encapsulating or

decapsulating a payload or static key blob; flag g .bad2 only gets set if encryption/decryption succeeds and

¬g .known holds. Since variable g .known can only be unset by a read action (mKeySimPSK or mKeySimDH),

this event is always triggered by a successful decryption under a key in the set g .K0.

The set of keys g .K0 is unknown to D in the sense that, by definition, each key was derived from an RO

query for which at least one of the inputs (i.e., the key state or DH secret), is not incident to any RO query

made by D. However, this fact alone does not preclude the possibility of D learning information about g .K0,

since Call or Op oracles may leak the handshake state to the adversary. Indeed, upon a successful Op query,

the adversary gets the symmetric key used to encapsulate/decapsulate the payload, since it is contained in

the state; and the Call oracle might leak keys if, for example, the game G admits state-corruption queries

(e.g., when modeling forward secrecy). But the (ψ-ro-)regularity of G ensures that symmetric keys used in
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SimCap(bool f, &sst g , &st hs, str X ) G2 G3

1 if ¬hs.K then ret (X ,mHash(&hs,X ))

2 (K,A)← (hs.K, hs.A); N ← hs.seqn′

3 if f then Y ← AE .Enc(K,N,A,X)

4 else Y ← AE .Dec(K,N,A,X)

5 if Y = ⊥ then ret (�, err cap)

6 if ¬g .known then g .bad2 ← 1

7 ret (�, err cap)

8 mHash(&hs, Y ); ret (Y, iNonce(&hs))

mKeySimDHR(&sst g , &st hs, elemGY ) G3 G4

9 dec str L′, L′′; Z ∈ G
10 if ¬Y then ret err dh

11 Z ←← P R(&g , &hs, Y )

12 g .known ← (Z ∧ (hs.id , hs.L) ∈ g .U)

13 if g .known then (hs.L, L′, L′′)←← R(u, Z)

14 else (hs.L, L′, L′′)←← R(u, (g .s)Y )

15 X ← (u, (g .s)Y )

16 if ¬g .πX then g .πX ←← ({0, 1}h)3

17 (hs.L, L′, L′′)← g .πX

18 hs.K ← L′[:k]; hs.seq ← 0

19 x← g .known; g .Kx ← g .Kx ∪ {hs.K}
20 ret �

SimDHDDH(&sst g , &st hs, elemGY )

21 g .R← g .R∪ {Y }
22 for each (R,W ) ∈ g .R× g .V do

23 if ¬g .ρR ∧DDH(g .P,R,W ) then

24 g .ρR ←W

25 ret g .ρY

〈Sns[P].Init: DDH,Q,R〉(pk)

26 dec sst g ; g .P ← pk ; ret g

〈Sns[P].Op: O,DDH,Q,R〉(&σ, ctx , op, in)

27 dec sst g ; st hs; msg req

28 dec bool f, r ; str u, pat , err

29 g ← σ; u, f, r , pat ← op; hs, in ← in

30 for each (id , u, v) ∈ Q( ) \ g .Q do Z ← v

31 g .U ← g .U ∪ {(id , u)}
32 if Z then g .V ← g .V ∪ {Z}
33 g .Q ← g .Q∪Q( )

34 if u = noise ∧ hs.id = vr(ctx ) then

35 ret SimOp[P]DDH,R(&g , ctx , op, in)

36 else ret O(ctx , op, in)

Figure 15: Left: Experiments 3 (top) and 4 (bottom) for the proof of Theorem 7. Right: Procedure SimDH (top)

and simulator S = Sns[P] (bottom) for proof of Theorem 7. Procedure P has signature P(&sst g , &st hs, elemGY ) 7→
elemGZ (and can be instantiated via SimDH); procedure SimOp[P] is as defined in experiment 5; type sst is defined

in Figure 14; and oracle DDH is defined in Figure 4.

the game G are independent of g .K0; any keys leaked by the interface are either in g .K1, or the leakage

occured only after g .bad2 got set.

These observations allow us to bound the probability that G3(S,D) sets g .bad2 using the INT-CTXT

security of AE . Consider the following INT-CTXT adversary. It executes G3(S,D), but replaces all encryp-

tion or decryption operations incident to some K ∈ g .K0 with queries to its own Enc or Dec oracle. (Note

that only Dec will be used, since g .known is only unset by read actions.) This is made by possible by virtue

of the fact that K is never revealed to D, since the operator will return only an error (err cap) instead of

the handshake state. Such an attack succeeds only if the experiment sets g .bad2 and decryption operation

incident to this event was evaluated using Dec.

Let Ai be like the adversary just described, but it simulates actions involving the i-th key entered

into g .K0 using its own oracle. Note that |g .K0| ≤ `qI and define AEnc,Dec as follows: choose i ←← [`qI ],

run AEnc,Dec
i , and halt. Let Hi(S,D) be an experiment defined just like G2, except that after i-th key is

entered into the set g .K0, if g .bad2 gets set, then SimCap halts and outputs an error (as in G3). Then G2
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is the same as H`qI , experiment G3 is the same as H0, and

Pr
[
G2(S,D)

]
− Pr

[
G3(S,D)

]
=

`qI∑
i=1

Pr
[
Hi(S,D)

]
− Pr

[
Hi−1(S,D)

]
(44)

≤
`qI∑
i=1

Pr
[
Hi(S,D) sets g .bad2

]
(45)

≤
`qI∑
i=1

Pr
[
Expint-ctxt

AE (Ai)
]

(46)

= `qIAdvint-ctxt
AE (A) , (47)

where the last line follows by conditioning on the outcome of A’s sampling i uniformly from [`qI ].

Observe that in G3, the output of SimCap is independent of g .K0, since if ¬g .known holds, then it outputs

(�, err cap) regardless of the outcome the decryption operation. This allows us to rewrite mKeySimDH so

that it is independent of g .s. We do so in two steps. First, experiment G4 is defined from G3 in the bottom-

left panel of Figure 15 by replacing evaluation of R in case ¬g .known holds (15:14) with a simulation using

the shadow state. Specifically, it checks an associative array g .π for X = (u, (g .s)Y ); if g .πX is undefined,

then sets it to a random element of ({0, 1}h)3. It then sets (hs.L, L′, L′′)← g .πX . This does not change the

distribution of the experiment, however, because ¬g .known implies that πX is undefined. It follows that

Pr
[
Expgap1

N ,G (S,D)
]
≤ cqIAdvcr

vr (C) + `qIAdvint-ctxt
AE (A) + Pr

[
G4(S,D)

]
. (48)

Finally, define experiment G5 from G4 as follows. On line 15:15, replace “(g .s)Y ” with just “Y ”. Because n

is prime, by Langrange’s Theorem, scalar multiplication of an element of G by g .s ∈ Zn is injective. In

particular, it holds that (g .s)X = (g .s)Y ⇐⇒ X = Y for all X,Y ∈ G, and so the distribution of the

experiment (in particular, the distribution on the key state hs.L and derived values) does not change.

Let SimOp[P] denote SimOp as it is specified in experiment G5 and where P is the DH-simulation

procedure used to instantiate mKeySimDH. (We write it this way in order to emphasize that, while we use

P = SimDH in the current proof, there may be other instantiations that do not require a DDH oracle.)

Since SimOp[P] does not depend on the secret key, we may use it as a sub-routine in the specification of

our simulator. Let S = Sns[SimDH] be as specified in Figure 15. One can easily verify that, when the

simulator is defined in this way, the output of Op in G5(S,D) is independent of b. We conclude that

Pr
[
G5(S,D)

]
= 1/2. The claimed bound follows.

We conclude by accounting for C’s, A’s, and S’s resources. Both A and C are O(t + qRqI)-time, which

accounts for the bookkeeping overhead inherited from experiment G0. AdversaryAmakes no queries to Enc,

but at most qI queries to Dec. Finally, the simulator is (O(t/qI), qI , `)-resource, `qRqI -DDH-bound, and

2-Q-bound.

A.7 Sketch of Theorem 8 (GAP2 security of Noise)

The proof of GAP2 security of (I+N , I) for G is closely related to the proof of Theorem 7, so we will only

enumerate the differences here. First, experiment G0 has the following differences:

1. Instead of (g .P , g .s)←← N .Gen( ) we run (g .P , sk)←← I.Gen( ) and set g .s← I.Scal(sk). (Recall that

I.Gen is 0-ro-bound by assumption.)

2. We modify Final and Call to use I+N .Opsk if b = 1 and Isk otherwise. Both are given R2 as the

RO just as in Theorem 7. Notice that since I is ψ-ro-regular by assumption, the same condition as

before will trigger g .bad1 getting set: if a RO query made by via Call coincides with an RO query

made via Op, then the result will be ⊥ in G2.
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Expindiff
F1,F0

(T ,D)

1 dec str st , σ; bool b, d

2 b←← {0, 1}
3 st ←← Fb.Init( )

4 σ ←← T .Init( )

5 d←← DFunc,Prim

6 ret (b = d)

Func(in)

7 ret Fb.Hon(&st , in)

Prim(in)

8 if b = 1 then

9 ret F1.Adv(&st , in)

10 ret T .OpF0.Adv(&st,·)(&σ, in)

R[X ,Y].Init( )

11 dec elemY π[ ]; ret π

R[X ,Y].Hon(&st , in)

12 dec elemX X; elemY π[ ]

13 π ← st ; X ← in

14 if ¬πX then πX ←← Y
15 st ← π; ret πX

R[X ,Y].Adv(&st , in)

16 ret Hon(&st , in)

HKDF[F , j].Init( )

17 ret F .Init( )

HKDF[F , j].Hon(&st , in)

18 dec int j; strX,Y, L[ ]; tup r

19 id , X, Y ← in

20 K ←← F .Hon(&st , X, Y ) // Extract

21 for i← 1 to j do // Expand

22 v ← Li−1 ‖ id ‖ i8
23 Li ←← F .Hon(&st ,K, v)

24 r ← r ‖Li
25 ret r

HKDF[F , j].Adv(&st , in)

26 ret F .Adv(&st , in)

Figure 16: Left: INDIFF experiment for funcionalities F1 and F0, primtive-simulator T , and adversary D. Middle:

The random oracle functionality R[X ,Y] for a function with domain X and finite range Y. Right: The HKDF

functionality HKDF[F , j] defined in terms of functionality F (an idealization of HMAC) and integer 0 ≤ j < 255.

3. We modify Op so that I+N .Opsk is used if b = 1 and 〈S.Opσ : IRsk 〉 is used otherwise.

The remaining steps are the same as in the proof of Theorem 7.

B Indifferentiability of HKDF

In our analysis of the SEC/I security of Noise (Section 6) we modeled the key-derivation function as a random

oracle (RO). Noise uses HKDF [38] instantiated with a hash function H. This modeling choice is only valid if

the attacker is unable to exploit the underlying structure of HKDF. This section provides formal justification

for this choice.

Definition 11 (Indifferentiable functionalities). We recall the notion of indifferentiable functionalities (for

single-stage adversaries) of Ristenpart, Schacham, and Shrimpton [56]. A functionality F is a triple of

algorithms (Init,Hon,Adv):

• Init( ) 7→ str st . Returns the initial state of the functionality.

• Hon,Adv(&st , str in) 7→ str out . The honest and adversarial interfaces of the functionality take as

input a string in and the current state st and return a string out . Each may update st as a side-effect.

The INDIFF experiment (left panel of Figure 16) is associated with functionalities F1 and F0, an adversaryD,

and an INDIFF-simulator T . The INDIFF simulator is a pair of algorithms (Init,Op): the first takes no

inputs and outputs a string σ representing the simulator’s initial state; and the second, Op(&str σ, str in) 7→
str out processes an input and updates σ. Algorithm Op expects access to an oracle for an adversarial

interface. Let Advindiff
F1,F0

(T ,D) denote the advantage of D in differentiating F1 from F0 with respect to T .

Informally, we will say that F1 is indifferentiable from F0 if there exists an efficient INDIFF-simulator T
such that the advantage of any efficient adversary in differentiating F1 from F0 with respect to T is small.

We call an INDIFF adversary (XF ,XP )-restricted if each of its Func queries encodes an elment of XF and

each of its Prim queries encodes an element of XP . We call an INDIFF simulator (t, c)-resource if each of

its constituent algorithms are t-time and the operator makes at most c queries to its oracle on any given

execution. �
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HKDF uses HMAC [39] instantiated with a hash function H : {0, 1}∗ → {0, 1}h. HMAC requires H be

computed by iterating an underlying compression function on fixed-length blocks of data, where the block size

is at least h bits. Therefore, in order to instantiate HKDF with a particular hash function, the hash function

must be suitable for HMAC. Many widely used hash function are, including SHA2 and BLAKE2 (both

specified for use with Noise). Although designed for message authentication, HMAC is used for randomness

extraction in a wide variety of settings. As a result, it is common to model HMAC as a random oracle when

anaylzing the security of these schemes.

In the single-stage setting [56] and under appropriate restrictions of the key space, HMAC is known to

be indifferentiable from an RO when H is modeled as an RO [24]. Dodis et al. define (in [24, Section 4.4])

allowed key sets for a particular hash function H, and they show that for all allowed key sets K, the function

HMACH : K × {0, 1}∗ → {0, 1}h is indifferentiable from an RO when H is modeled as an RO. They note

that for any k < d − 1, where d is the block size of H, the set {0, 1}k is an allowed key set for H; see [24,

Section 4.4]. We will focus our attention on hash functions for which d > h (e.g., SHA2 and BLAKE2) and

require the salt string used for HKDF to be of length h. That is, we restrict ourselves to the key set {0, 1}h,

which is allowed for the class of hash functions that we consider. (Note that a direct proof is required for

Merkle-Damg̊ard-style hash functions such as SHA2; see [24, Theorem 4.4].)

In Figure 16 we express HKDF as a functionality HKDF[F , j] defined in terms of a functionality F and

an integer j ≥ 0. The functionality F is an idealization of HMAC, which the adversarial interface exposes

directly (16:26). We realize F as an RO functionality, which is also defined in Figure 16. An RO functionality

R[X ,Y] is equivalent to modeling some function H : X → Y as an RO in an experiment (see Section 4.2);

its initializer declares an associative array used to lazy-compute a random function from X to Y. Its honest

and adversarial interfaces are the same. Note that the RO functionality is only well-defined if Y is finite.

Like HMAC, this HKDF functionality is also not indifferentiable from an RO in general. Lipp et al. [46]

prove that it is necessary to restrict the input key material so that no input to HKDF coincides with the

input to a call to HMAC induced by HKDF. In particular, suppose that the information string is always of

length u. Then, by [46, Lemma 8], the HKDF functionality is indifferentiable from an RO as long as the

input key material is a string of any length other than u+ 8 (the length of the input to HMAC for the first

extracted block) or h+ u+ 8 (the length of the input to HMAC for each subsequent block).

Fix integers 0 ≤ j ≤ 255 and h ≥ 0 and a function H : {0, 1}∗ → {0, 1}h suitable for HMAC with block

size d > h. Let XH = {0, 1}h ×{0, 1}∗ and let XF = {0, 1}u ×{0, 1}h × ({0, 1}∗ \ ({0, 1}u+8 ∪ {0, 1}h+u+8)).

Let H = R[XH , {0, 1}h], F = HKDF[H, j], and R = R[XF , ({0, 1}h)j ] as defined in Figure 16.

Lemma 2 ([46], Lemma 8). Fix integers 0 ≤ qF , qP ≤ 2h. There exists an INDIFF-simulator T such for

every t-time INDIFF-adversary D making qF queries to Func and qP queries to Prim, it holds that

Advindiff
F,R (T ,D) ≤ (qF + 2qP )2/2h ,

where D is (XF ,XH)-restricted and T is (O(t/(qP + 1)2, 2)-resource.

In light of this result, our interface for Noise makes the following restrictions. First the hash function

must be suitable for HMAC [39]; second, the hash function must have a block size strictly greater than the

output size h and that the salt length is exactly h bits [24]; and third, the information string is of some

fixed length u, and the input key material is of any length other than u + 8 and h + u + 8 (Lemma 2).

This translates to the following restrictions on interface N (Figure 7): Function vr is restricted to an output

length of u (the length of the information string provided to HKDF); elements of G must all be encoded as

strings of some fixed length other than u+ 8 or h+u+ 8; the length of the chain key hs.L must be h (7:12);

and the length of the PSK hs.psk must not be u+ 8 or h+ u+ 8 (7:13).
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