Towards a Practical Clustering Analysis over Encrypted Data

Jung Hee Cheon, Duhyeong Kim and Jai Hyun Park
Department of Mathematical Sciences, Seoul National University
{jhcheon,doodoo1204,jhyump}@snu.ac.kr

Abstract. Clustering analysis is one of the most significant unsupervised machine learning tasks, and it is utilized in various fields associated with privacy issues including bioinformatics, finance and image processing. In this paper, we propose a practical solution for privacy-preserving clustering analysis based on homomorphic encryption (HE). Our work is the first HE solution for the mean-shift clustering algorithm. To reduce the super-linear complexity of the original mean-shift algorithm, we adopt a novel random sampling method called dust sampling which perfectly fits in HE and achieves the linear complexity. We also substitute non-polynomial kernels by a new polynomial kernel so that it can be efficiently computed in HE.

The HE implementation of our modified mean-shift clustering algorithm based on the approximate HE scheme HEAAN shows prominent performance in terms of speed and accuracy. It takes about 30 minutes with 99% accuracy over several public datasets with hundreds of data, and even for the dataset with 262,144 data it takes only 82 minutes applying SIMD operations in HEAAN. Our results outperform the previously best known result (SAC 2018) over 400 times.

Keywords: clustering, mean-shift, homomorphic encryption, privacy

1 Introduction

For a decade, machine learning has received a lot of attention globally in various fields due to its strong ability to solve various real world problems. Since many frequently-used data such as financial data and biomedical data include personal or sensitive information, privacy is an inevitable issue on machine learning in such fields. There have been several non-cryptographic approaches for privacy-preserving machine learning including anonymization, perturbation, randomization and condensation [34, 44]; however, these methods commonly accompany the loss of information which degrades the utility of data.

On the other hand, Homomorphic Encryption (HE), which allows computations over encrypted data without any decryption process, is theoretically one of the most ideal cryptographic primitives to preserve the privacy without loss of any data information. There have been a number of studies on privacy-preserving machine learning based on HE, especially for supervised machine
Clustering analysis is one of the most significant unsupervised machine learning tasks, which aims to split a set of given data into several subgroups, called clusters, in such a way that data in the same cluster are “similar” in some sense to each other. As well as classification and regression, clustering is also widely used in various fields dealing with private information including bioinformatics, image segmentation, finance, customer behavior analysis and forensics [22, 20, 36].

Contrary to classification and regression, there are only few works [4, 29] on privacy-preserving clustering based on HE, and even only one of these works provides a full HE solution, i.e., the whole procedure is done by HE operations without any decryption process or trusted third party setting. The main reason for the slow progress of the research on HE-based clustering is that there are a lot of HE-unfriendly operations such as division and comparison. Recently, Cheon et al. [14] proposed efficient HE algorithms for division and comparison of numbers which are encrypted word-wisely, and this work takes a role of initiating active research on HE-based clustering.

1.1 This Work

In this paper, we propose a practical solution of privacy-preserving clustering analysis based on HE. Our solution is the first HE algorithm for mean-shift clustering which is one of the representative algorithms for clustering analysis. For given \(n \)-dimensional points \(P_1, P_2, ..., P_p \) and a function called kernel \(K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0} \), the mean-shift clustering utilizes the gradient descent algorithm which finds local maxima (called modes) of the kernel density estimator \(F(x) = \frac{1}{p} \cdot \sum_{i=1}^{p} K(x, P_i) \) where \(K(x, P_i) \) outputs a value close to 0 when \(x \) and \(P_i \) are far from each other.

Core Ideas. The main bottlenecks of the original mean-shift algorithm to be applied on HE are (1) super-linear computational complexity \(O(p^2) \) for each mean-shift process and (2) non-polynomial operations in kernel which are hard to be efficiently computed in HE. To overcome these bottlenecks, we suggest several novel techniques to modify the original mean-shift algorithm into an HE-friendly form:

- Rather than mean-shifting every given point, we randomly sample some points called dusts and the mean-shift process is done only for the dusts. As a result, the computational cost to seek the modes is reduced from \(O(p^2) \) to \(O(d \cdot p) \) where \(d \) is the number of dusts which is much smaller than \(p \).
- After the mode-seeking phase, one should match given points to the closest mode, which we call point-labeling. We suggest a carefully devised algorithm for labeling points with the modes which only consists of polynomial operations so that it can be implemented by HE efficiently.
- We propose a new HE-friendly kernel \(K(x, y) = (1 - ||x - y||^2)^{2^n+1} \). The most commonly used kernel functions in clustering are Gaussian kernel and
Epanechnikov kernel. However, the derivatives of those functions, which we should compute for each mean-shift process, are either exponential or discontinuous. Our new kernel is a simple polynomial which requires only log(\textit{degree}) complexity to compute its derivative, and the clustering analysis based on this HE-friendly kernel is very accurate in practice.

Practical Performance: Fast and Accurate. To the best of our knowledge, the work in [29] has been a unique full HE solution to privacy-preserving clustering so far. While their implementation takes as much as 619 hours for 400 2-dimensional data, our algorithm takes only about 1.4 hours for the same dataset which is more than 400 times faster than the previous result. Using a multi-threading option with 8 threads, the running time is even reduced to half an hour. The fast and accurate performance of our algorithm implies that the research on HE-based privacy-preserving clustering is approaching to a practical level.

Why Mean-shift Clustering? K-means clustering is another representative algorithm for clustering, and many of the previous works on privacy-preserving clustering exploited the K-means clustering algorithm. However, there are some critical drawbacks in K-means clustering in the perspective of HE applications. Firstly, K-means clustering requires a user to pre-determine the exact number of clusters. However, there is no way to determine the number of clusters when the only encrypted data are given. Therefore, the data owner should additionally provide the number of clusters, but determining the exact number of clusters from a given dataset also requires a costly process even in unencrypted state [41]. Secondly, K-means clustering is generally incapable when the shape of clusters is non-convex, but the shape of clusters is also non-predictable information from encrypted data.
1.2 Related Works

In the case of HE-based privacy-preserving clustering, to the best of our knowledge, there has been proposed only a single solution [29] which does not require any decryption process during the analysis. They transform the K-means clustering algorithm into an HE algorithm based on the HE scheme TFHE [16, 17] which encrypts data bit-wisely. One of their core ideas is to modify the original K-means clustering algorithm by substituting a homomorphic division of a ciphertext, which is very expensive, with a simple constant division. As a result, to run their modified algorithm with TFHE over 400 2-dimensional data, it takes about 619 hours (≈ 26 days) on a virtual machine with an Intel i7-3770 processor with 3.4 GHz without parallelization options. Before this work, there has been an attempt [4] to perform K-means clustering based on HE with trusted third party; however, the HE scheme they used [32] was proved to be insecure [46].

Contrary to HE, there have been a number of works [7, 21, 28, 33, 38, 39, 40, 43] on privacy-preserving clustering based on another cryptographic tool called Multi-party Computation (MPC), which is a protocol between several parties to jointly compute a function without revealing any information of their inputs to the others. For more details on MPC-based privacy-preserving clustering algorithms, we refer the readers to a survey paper written by Meskine and Nait-Bahloul [35]. MPC is normally known to be much faster than HE; however, MPC requires online computation of data owners and it yields significantly large bandwidth. On the other hand, HE computation can be totally done in offline after encrypted data are sent to a computing service provider. Since data owners do not need to participate in the computation phase, HE-based solutions can be regarded to be much more convenient and economic to data owners than MPC.

2 Backgrounds

2.1 Notations

We call each given data of the clustering problem a point. Let n be the dimension of each point, and $P = \{P_1, P_2, ..., P_p\}$ be the set of given points where p is the number of elements in P. We denote the set of dusts, which will be defined in Section 3, by $D = \{D_1, D_2, ..., D_d\}$ where d is the number of dusts. There are several auxiliary parameters for our new algorithms in Section 2 and Section 3: ζ, t, Γ and T denote the number of iterations for Inv, MinIdx, Kernel and Mode-seeking, respectively. \mathbb{R} denotes the real number field, and $\mathbb{R}_{\geq 0}$ is a subset of \mathbb{R} which consists of non-negative real numbers. The set $\mathbb{B}_n(1/2)$ denotes the n-dimensional ball of the radius $1/2$ with center 0. For an n-dimensional vector $x \in \mathbb{R}^n$, the L_2-norm of x is denoted by $||x||$. For a finite set X, $x \leftarrow U(X)$ means that x is sampled uniformly at random from X, and $|X|$ denotes the number of elements in X. For (row) vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, the concatenation of the two vectors is denoted by $(x|y) \in \mathbb{R}^{n+m}$. For a positive integer q, $[\cdot]_q$ denotes a residue modulo q in $[-q/2, q/2)$.
2.2 Approximate Homomorphic Encryption HEAAN

For privacy-preserving clustering, we apply an HE scheme called HEAAN proposed by Cheon et al. [13, 12], which supports approximate computation of real numbers in encrypted state. Efficiency of HEAAN in the real world has been proved by showing its applications in various fields including machine learning [15, 30, 31] and cyber-physical systems [11]. After the solution [30] based on HEAAN won the first place in privacy-preserving genome data analysis competition called iDash in 2017, all the solutions for the next-year competition which aimed to develop a privacy-preserving solution for Genome-wide Association Study (GWAS) computation were constructed based on HEAAN.

In detail, let \(\mathbf{ct} \) be a HEAAN ciphertext of a plaintext vector \(\mathbf{m} \in \mathbb{C}^N/2 \). Then, the decryption process with a secret key \(\mathbf{sk} \) is done as

\[
\text{Dec}_{\mathbf{sk}}(\mathbf{ct}) = \mathbf{m} + e \approx \mathbf{m}
\]

where \(e \) is a small error attached to the plaintext vector \(\mathbf{m} \). For formal definitions, let \(L \) be a level parameter, and \(q_{\ell} := 2^{\ell} \) for \(1 \leq \ell \leq L \). Let \(R := \mathbb{Z}[X]/(X^N + 1) \) for a power-of-two \(N \) and \(R_q \) be a modulo-\(q \) quotient ring of \(R \), i.e., \(R_q := R/qR \). The distribution \(\chi_{\text{key}} := \text{HW}(h) \) over \(R_q \) outputs a polynomial of \{−1, 0, 1\}-coefficients having \(h \) number of non-zero coefficients, and \(\chi_{\text{enc}} \) and \(\chi_{\text{err}} \) denote the discrete Gaussian distribution with some prefixed standard deviation. Finally, \([.]_q\) denotes a component-wise modulo \(q \) operation on each element of \(R_q \).

A plaintext vector \(\mathbf{m} \in \mathbb{C}^N/2 \) is firstly encoded as a polynomial in \(R \) by applying a (field) isomorphism \(\tau \) from \(\mathbb{R}[X]/(X^N + 1) \) to \(\mathbb{C}^N/2 \) called canonical embedding. A naive approach is to transform the plaintext vector as \(\tau^{-1}(\mathbf{m}) \in \mathbb{R}[X]/(X^N + 1) \); however, the naive rounding-off can derive quite a large relative error on the plaintext. To control the error, we round it off after scaling up by \(p \) bits for some integer \(p \), i.e., \([2^p \cdot \tau^{-1}(\mathbf{m})]\), so that the relative error is reduced.

The full scheme description of HEAAN is as following:

- **KeyGen.**
 - Sample \(s \leftarrow \chi_{\text{key}} \). Set the secret key as \(\mathbf{sk} \leftarrow (1, s) \).
 - Sample \(a \leftarrow U(R_{q_L}) \) and \(e \leftarrow \chi_{\text{err}} \). Set the public key as \(\mathbf{pk} \leftarrow (b, a) \in R^2_{q_L} \), where \(b \leftarrow [-a \cdot s + e]_{q_L} \).
 - Sample \(a' \leftarrow U(R_{q_L^2}) \) and \(e' \leftarrow \chi_{\text{err}} \). Set the evaluation key as \(\mathbf{evk} \leftarrow (b', a') \in R^2_{q_L^2} \), where \(b' \leftarrow [-a' s + e' + q_L \cdot s^2]_{q_L^2} \).

- **Enc\(_{\mathbf{pk}}(\mathbf{m})\).**
 - For a plaintext \(\mathbf{m} = (m_0, \ldots, m_{N/2 - 1}) \in \mathbb{C}^{N/2} \) and a scaling factor \(p > 0 \), compute a polynomial \(\mathbf{m} \leftarrow [2^p \cdot \tau^{-1}(\mathbf{m})] \in R \).
 - Sample \(v \leftarrow \chi_{\text{enc}} \) and \(c_0, c_1 \leftarrow \chi_{\text{err}} \). Output \(\mathbf{ct} = [v \cdot \mathbf{pk} + (\mathbf{m} + e_0, e_1)]_{q_L} \).

- **Dec\(_{\mathbf{sk}}(\mathbf{ct})\).**
 - For a ciphertext \(\mathbf{ct} = (c_0, c_1) \in R^2_{q_L} \), compute \(\mathbf{m}' = [c_0 + c_1 \cdot s]_{q_L} \).
 - Output a plaintext vector \(\mathbf{m}' = 2^{-p} \cdot \tau(\mathbf{m}') \in \mathbb{C}^{N/2} \).
for convenience. Let m of $\mu\in\mathbb{F}_q$ preserves the most significant bits of a plaintext, i.e., $\text{try} \[24\]$, enables us to overcome the limitation on the depth of computation. The parameters.

In other words, without some additional procedure the HE scheme only supports polynomial operations with a bounded degree predetermined by HEAAN parameters. The input ciphertexts, the homomorphic operation should be stopped when the ciphertext modulus becomes so small that no more modulus reduction can be done.

We omitted the parameters (N, L, h, p) as an input of the above algorithms for convenience. Let c_t_1 and c_t_2 be ciphertexts of plaintext vectors m_1 and m_2. Then, the homomorphic evaluation algorithms Add and Mult satisfy

$$\text{Dec}_{sk}(\text{Add}(c_t_1, c_t_2)) \approx m_1 + m_2,$$

$$\text{Dec}_{sk}(\text{Mult}_{evk}(c_t_1, c_t_2)) \approx m_1 \odot m_2$$

where \odot denotes the Hadamard (component-wise) multiplication, i.e., addition and multiplication can be internally done in a Single Instruction Multi Data (SIMD) manner even in encrypted state. For more details of the scheme including the correctness and security analysis, we refer the readers to [13].

To deal with a plaintext vector of the form $m \in \mathbb{C}^K$ having length $K \leq N/2$ for some power-of-two divisor K of $N/2$, HEAAN encrypts m into a ciphertext of an $N/2$-dimensional vector $(m_1|\cdots|m) \in \mathbb{C}^{N/2}$. This implies that a ciphertext of $m \in \mathbb{C}^K$ can be understood as a ciphertext of $(m_1|\cdots|m) \in \mathbb{C}^K'$ for power-of-two K and K' satisfying $K \leq K' \leq N/2$.

Bootstrapping of HEAAN. Since the output ciphertext of a homomorphic multiplication has a reduced modulus by the scaling factor p compared to the input ciphertexts, the homomorphic operation should be stopped when the ciphertext modulus becomes so small that no more modulus reduction can be done. In other words, without some additional procedure the HE scheme only supports polynomial operations with a bounded degree predetermined by HEAAN parameters.

A bootstrapping algorithm, of which the concept was firstly proposed by Gentry [24], enables us to overcome the limitation on the depth of computation. The bootstrapping algorithm gets a ciphertext with the lowest modulus $ct \in \mathbb{R}_q^2$ as an input, and outputs a refreshed ciphertext $ct' \in \mathbb{R}_q^2$, where L' is a predetermined parameter smaller than L. The important fact is that the bootstrapping preserves the most significant bits of a plaintext, i.e., $\text{Dec}_{sk}(ct) \approx \text{Dec}_{sk}(ct')$.

In 2018, a first bootstrapping algorithm for HEAAN was proposed by Cheon et al. [12], and later it was improved by several works concurrently [8, 10].

Even though the performance of bootstrapping has been improved by active studies, the bootstrapping algorithm is still regarded as the most expensive part of HE. In the case of HEAAN, the performance of bootstrapping depends on the number of plaintext slots K; roughly the computational complexity is $O(\log K)$ considering SIMD operations of HEAAN.

2.3 Non-polynomial Operations in HEAAN

Since HEAAN basically supports homomorphic addition and multiplication, performing non-polynomial operations in HEAAN is clearly non-trivial. In this sec-
tion we introduce how to perform the division and a comparison-related operation called min-index in word-wise HE including HEAAN, which are required for our mean-shift clustering algorithm. Note that the following methods are essentially efficient polynomial approximations for the target operations.

Division. The Goldschmidt’s division algorithm [26] is an approximate algorithm to compute the inversion of a positive real number in \((0, 2)\), and has been used in various cryptographic applications [14, 18] to deal with inversion and division operations through a polynomial evaluation. The algorithm approximates the inversion of \(x \in (0, 2)\) by

\[
\frac{1}{x} = \prod_{i=0}^{\infty} \left(1 + (1 - x) 2^i\right) \approx \prod_{i=0}^{\zeta-1} \left(1 + (1 - x) 2^i\right)
\]

where \(\zeta\) is a parameter we choose considering the approximation error. If the range of an input is \((0, m)\) for large \(m > 0\) which is known, then the Goldschmidt’s division algorithm can be easily generalized by simply scaling down the input into the range \((0, 2)\) and scaling up the output after the whole process.

Algorithm 1 Inv \((x; m, \zeta)\)

Input: \(0 < x < m, \zeta \in \mathbb{N}\)

Output: an approximate value of \(1/x\)

1: \(a_0 \leftarrow 2 - (2/m) \cdot x\)
2: \(b_0 \leftarrow 1 - (2/m) \cdot x\)
3: for \(i \leftarrow 0\) to \(\zeta - 1\) do
4: \(b_{i+1} \leftarrow b_i^2\)
5: \(a_{i+1} \leftarrow a_i \cdot (1 + b_{i+1})\)
6: end for
7: return \((2/m) \cdot a_\zeta\)

Min Index. In [14], Cheon et al. proposed the iterative algorithm \(\text{MaxIdx}\) to compute the max-index of an array of positive numbers which can be homomorphically computed by HEAAN efficiently. More precisely, for an input vector \(x = (x_1, x_2, ..., x_m)\) where \(x_i \in (0, 1)\) are distinct numbers, then the output of the max-index algorithm is a vector \((x_i^2 / (\sum_{j=1}^{m} x_j^2))_{1 \leq i \leq m}\) for sufficiently large \(t > 0\), whose \(i\)-th component is close to 1 if \(x_i\) is the maximal element, and is approximately 0 otherwise. If there are several maximal numbers, say \(x_1, ..., x_\ell\) for \(1 \leq \ell \leq m\) without loss of generality, then the output vector is approximately \((1/\ell, 1/\ell, ..., 1/\ell, 0, ..., 0)\).

As a simple application of max-index, one can also compute the min-index of an array of positive numbers in \((0, 1)\) by running the \(\text{MaxIdx}\) algorithm for input \((1 - x_1, 1 - x_2, ..., 1 - x_m)\). The following algorithm describes the min-index algorithm denoted by \(\text{MinIdx}\).
Algorithm 2 MinIdx((x_i)_{i=1}^m; t, ζ)

Input: (x_1,...,x_m) ∈ (0,1)^m where t ≥ 1 elements are minimal, t ∈ N
Output: (y_1,...,y_m) where y_i ≈ 1/t if x_i is a minimal element and y_i ≈ 0 otherwise;

1: sum ← 0
2: for i ← 1 to m do
3: y_i ← 1 - x_i
4: end for
5: for j ← 1 to t do
6: y_i ← y_i · y_i
7: end for
8: sum ← sum + y_i
9: inv ← Inv(sum; m, ζ)
10: for i ← 1 to m do
11: y_i ← y_i · inv
12: end for
13: return (y_1,...,y_m)

2.4 Mean-shift Clustering

The mean-shift clustering algorithm is a non-parametric clustering technique which does not restrict the shape of the clusters and not require prior knowledge of the number of clusters. The goal of the algorithm is to cluster the given points by finding the local maxima (called modes) of a density function called Kernel Density Estimator (KDE), and this process is essentially done by the gradient descent algorithm. For given n-dimensional points P_1, P_2,...,P_p and a function K : ℝ^n × ℝ^n → ℝ_{≥0} so-called kernel, the KDE map F : ℝ^n → ℝ^n is defined as

\[F(x) = \frac{1}{p} \sum_{i=1}^{p} K(x, P_i). \]

The kernel K is defined by a profile k : ℝ → ℝ_{≥0} as \(K(x, y) = c_k \cdot k(||x - y||^2) \) for some constant \(c > 0 \). Through a simple computation, one can check that \(\nabla F(x) \) is parallel to \(\sum_{i=1}^{p} k'(||x - P_i||^2) \cdot P_i - x \) where \(k' \) is the derivative of \(k \).

As a result, the mean-shift process is to update the point \(x \) as

\[x ← x + \left(\sum_{i=1}^{p} \frac{k'(||x - P_i||^2)}{\sum_{j=1}^{p} k'(||x - P_j||^2)} \cdot P_i - x \right) = \sum_{i=1}^{p} \frac{k'(||x - P_i||^2)}{\sum_{j=1}^{p} k'(||x - P_j||^2)} \cdot P_i, \]

which is the weighted mean of given points. The most usual choices of the kernel function are the Gaussian kernel \(K_G(x, y) = c_{k_G} \cdot \exp \left(-||x - y||^2/\sigma^2\right) \) and the Epanechnikov kernel \(K_E(x, y) = c_{k_E} \cdot \max(0, 1 - ||x - y||^2/\sigma^2) \) for \(x, y ∈ ℝ^n \) with an appropriate parameter \(\sigma > 0 \) and constants \(c_{k_G} \) and \(c_{k_E} \). Algorithm 3 is a full description of the original mean-shift clustering algorithm with Gaussian kernel.
Algorithm 3 MS-clustering-original($P = \{P_1, ..., P_p\}, T; \sigma$)

Input: $P_1, P_2, \cdots, P_p \in \mathbb{R}^n$, the number of iterations $T \in \mathbb{N}$
Output: Label vector M of given points P_1, \ldots, P_p

1: for $i \leftarrow 1$ to p do
2: $M_i \leftarrow P_i$
3: end for
4: for $i \leftarrow 1$ to T do
5: for $j \leftarrow 1$ to p do
6: $sum \leftarrow 0$
7: $A \leftarrow 0$
8: for $k \leftarrow 1$ to p do
9: $a \leftarrow \exp(-||P_k - M_j||^2/\sigma^2)$
10: $A \leftarrow A + a \cdot P_k$
11: $sum \leftarrow sum + a$
12: end for
13: $M_j \leftarrow (1/sum) \cdot A$
14: end for
15: end for
16: return $M = (M_1, ..., M_p)$

Freedman-Kisilev Mean-shift. A decade ago, Freedman and Kisilev [23] proposed a novel fast mean-shifting algorithm based on the random sampling. As the first step, for the given set $P = \{P_1, P_2, \ldots, P_p\}$ which consists of n-dimensional points, they randomly choose a subset $P' \subset P$ of the cardinality p'. Here the cardinality p' is indeed smaller than p but should not be too small so that the subset P' approximately conserves the distribution of the points. For example, if the random sampling factor p/p' is too high, then Freedman-Kisilev mean-shift algorithm shows a quite different result compared to that of the original mean-shift algorithm. After the random sampling phase, the second step is simply to run the original mean-shift algorithm on the randomly chosen subset P' and obtain the modes of KDE constructed by P' not P. Since only p' points are used for mean-shifting process, the computational complexity of this phase is $O(p'^2)$, not $O(p^2)$. The last step so-called “map-backwards” is to find the closest point in $P' \in P'$ for each point in $P_i \in P$ and then output the mode mean-shifted from P'_j. The last step takes $O(p' \cdot p)$ computational complexity which is still smaller than $O(p^2)$. Note that the last step map-backwards in Freedman-Kisilev mean-shift algorithm is not required in the original mean-shift algorithm, since every point converges to some mode which takes a role of the label.

2.5 Clustering Quality Evaluation Criteria

To evaluate the quality of our clustering analysis results, we bring two measures: accuracy and silhouette coefficient. The accuracy is measured by comparing the clustering analysis result and the given true label information. Let L_i and $C(P_i)$
be the true label and the label obtained by clustering analysis of the point \(P_i \), respectively, then the accuracy is calculated as

\[
\text{Accuracy} = \frac{\left| \{1 \leq i \leq p : L_i = C(P_i)\} \right|}{p}.
\]

Note that the measure is valid only if the number of clusters of the given true label information equals to that of the clustering analysis result.

The silhouette coefficient [37] is another measure which evaluates the quality of clustering analysis, which does not require true label information to be given. Let \(Q_1, ..., Q_k \) be the clusters of the given dataset \(P \) obtained by clustering analysis. For each point \(P_i \) which belongs to the cluster \(Q_{k_i} \), we first define two functions \(A \) and \(B \) as

\[
A(P_i) = \frac{1}{|Q_{k_i}| - 1} \cdot \sum_{P_\ell \in Q_{k_i}, \ell \neq i} \text{dist}(P_i, P_\ell), \quad B(P_i) = \min_{j \neq i} \frac{1}{|Q_{k_j}|} \cdot \sum_{P_\ell \in Q_{k_j}} \text{dist}(P_i, P_\ell).
\]

Then, the silhouette coefficient is defined as

\[
\text{SilhCoeff} = \frac{1}{p} \cdot \sum_{i=1}^{p} \frac{B(P_i) - A(P_i)}{\max(B(P_i), A(P_i))},
\]

which indicates how well the points are clustered. It is clear that \(-1 \leq \text{SilhCoeff} \leq 1\), and the silhouette coefficient closer to 1 implies the better result of clustering.

3 HE-friendly Modified Mean-shift Clustering

In this section, we introduce several modifications on the mean-shift algorithm so that the modified algorithm can be efficiently performed by HE. One big drawback of the original mean-shift algorithm to be implemented by HE is the evaluation of kernel functions. They usually contain non-polynomial operations, but these operations cannot be easily computed with HE algorithms. To overcome the problem, we suggest a new HE-friendly kernel function in Section 3.1 which is computationally efficient and shows a good performance.

Another big drawback of the original mean-shift algorithm to be implemented by HE is its high computational cost. The usual mean-shift process classifies data by seeking modes and mapping points to its corresponding mode at the same time. This strategy eventually forces us to perform mean-shift process on all data, so it is computationally inefficient to be implemented by HE which necessarily accompanies more than hundreds or thousands times of overhead. To address this issue, we adopt a random sampling method called dust sampling, and separate the total mean-shift clustering process into two phases: mode-seeking phase and point-labeling phase. One can check the details on these two phases in Section 3.2 and Section 3.3 respectively, and the full description of our modified mean-shift clustering algorithm is described in Section 3.4.
3.1 HE-friendly Kernel

As described in Section 2.4, the most popular kernel functions for mean-shift algorithm are Gaussian kernel and Epanechnikov kernel. However, the derivatives of both kernel functions, which should be computed in the mean-shift clustering algorithm, are either exponential or discontinuous that cannot be directly computed with HE.

To overcome those drawbacks, we propose a new HE-friendly kernel function which is a polynomial. We aim to construct a kernel function that vanishes rapidly as its input goes far from the origin. Also, we consider about reducing the number of multiplications during the computation of the kernel as well. For each \(x \in [0, 1] \), our new profile \(k \) is calculated as following:

\[
k(x) = (1 - x)^{2\Gamma + 1}.
\]

(1)

The degree was set \(2\Gamma + 1 \) to reduce the computational complexity of the derivative function \(k' \) which should be computed for mean-shift. Using this profile, a new HE-friendly kernel is defined as following: For \(x, y \in B_n(1/2) \), the kernel function \(K \) based on the profile \(k \) is

\[
K(x, y) = c \cdot (1 - \|x - y\|^2)^{2\Gamma + 1}
\]

(2)

for some constant \(c > 0 \). The following algorithm, denoted by Kernel, shows a very simple computation of \(k'(\|x - y\|^2) \) up to constant \(-1/(2\Gamma + 1)\) which will be eliminated. If one chooses bigger \(\Gamma \), the kernel function will decrease more rapidly, so the mean-shift process will focus more on closer points. Conversely, if one chooses smaller \(\Gamma \), the kernel function decreases slowly so that the mean-shift process references wider area.

\[
\begin{array}{l}
\textbf{Algorithm 4 Kernel}(x, y; \Gamma) \\
\textbf{Input:} x, y \in B_n(1/2), \Gamma \in \mathbb{N} \\
\textbf{Output:} \text{HE-friendly kernel value between } A \text{ and } B \\
1: \ a \leftarrow 1 - \|x - y\|^2 \\
2: \ \textbf{for } i \leftarrow 1 \ \textbf{to } \Gamma \ \textbf{do} \\
3: \ \ a \leftarrow a^2 \\
4: \ \textbf{end for} \\
5: \ \text{return } a
\end{array}
\]

Our new kernel function is composed of \((\Gamma + 1)\) multiplications and one constant addition, while \(\Gamma \) is very small compared to the degree of the kernel polynomial \((\Gamma = \log(\text{degree}))\). Thus, our new kernel function is very HE-friendly. At the same time, it is non-negative and strictly decreasing, which are core conditions of a kernel function for mean-shift algorithm. Moreover, its rapid decreasing property provides high performance for mean-shift. The performance of our new
kernel function is experimentally proved under various datasets (See Section 4). In unencrypted state, the mean-shift clustering with our kernel shows almost same performance with that with the Gaussian kernel under same datasets described in Section 4.1.

3.2 Mode-seeking Phase

The biggest drawback of the original mean-shift clustering algorithm is its high time complexity. It requires super-linear operations in the number of data points. Since HE consumes considerably long time to compute each operation, it is strongly demanded to modify mean-shift algorithm to practically use it with HE.

To overcome those drawbacks, we use random sampling to reduce the total number of operations for each mean-shift process. Instead of performing mean-shift on every point, we perform the mean-shift process only on selected points which we shall call dusts. Obviously each mean-shift process references all the data so that dusts move to some modes of the KDE map. After sufficiently many iterations, each dust converges to a mode, so we can seek all modes if we selected enough dusts.

Advantage of the Dust Sampling Method. Our modification has a great advantage on the number of operations. In the original mean-shift clustering algorithm, every point shifts its position by referencing all of the other points.

Algorithm 5 Mode-seeking $(P = \{P_1, ..., P_p\}, d, T; \Gamma, \zeta)$

Input: Points $P_1, P_2, \cdots, P_p \in \mathbb{B}_n(1/2)$, the number of dusts $d \in \mathbb{N}$, the number of mean-shift iterations $T \in \mathbb{N}$

Output: Mean-shifted dusts $D_i \in \mathbb{B}_n(1/2)$ close to modes for $1 \leq i \leq d$

1: for $i \leftarrow 1$ to d do
2: \hspace{1em}$D_i \leftarrow U(P)$ \hspace{1em} // selecting dusts among P_i’s
3: end for
4: for $i \leftarrow 1$ to T do
5: \hspace{1em}for $j \leftarrow 1$ to d do
6: \hspace{2em}$sum \leftarrow 0$
7: \hspace{2em}$A \leftarrow 0^d$
8: \hspace{2em}for $k \leftarrow 1$ to p do
9: \hspace{3em}$a \leftarrow \text{Kernel}(P_k, D_j; \Gamma)$
10: \hspace{3em}$A \leftarrow A + a \cdot P_k$
11: \hspace{2em}end for
12: \hspace{1em}$D_j \leftarrow \text{Inv}(sum; p, \zeta) \cdot A$ \hspace{1em} // $D_j \leftarrow \sum_{i=1}^{p} \frac{k'(||D_j - P_i||^2)}{\sum_{i=1}^{p} k'(||D_j - P_i||^2)} \cdot P_i$
13: end for
14: end for
15: return D
Hence, it needs $O(p^2)$ operations for each loop where p is the number of given points. However, in our approach, only selected dusts shift their positions, so we can complete each mean-shift loop with $O(p \cdot d)$ operations, where d is the number of selected dusts. This drastically reduces the total number of operations because we select only few dusts among numerous points.

Even though our approach requires less operations, its performance is acceptable. Since we exploit the KDE map over all given points, the dusts converge to modes exactly in the same way to the original mean-shift algorithm. Consequently, we can seek all modes by selecting sufficiently many dusts.

How to Sample Dusts? There are many possible ways to set the initial position of dusts. We consider two candidates of initializing the dusts. One is to uniformly select dusts from the space (so that can form a *grid*) and the other is to select dusts among the given points. The first strategy is tempting because it guarantees high probability to seek all the modes. However, as the dimension of the data set becomes higher, it requires too many dusts which directly increases the total time complexity. On the other hand, the second strategy provides stable performance with less number of dusts even if the dimension and shape of the data vary. Moreover, it chooses more dusts from the denser regions, so we can expect that it succeeds in detecting all centers of clusters. Thus, we use the second strategy, selecting dusts among given points as described in Algorithm 5.

Comparison to Freedman-Kisilev’s Method. At first glance, our approach looks similar to that of Freedman and Kisilev [23]. Remark that they pick p' random samples among the data, and run the original mean-shift clustering algorithm only on the randomly sampled points.

Compared to Freedman-Kisilev mean-shift, the number of selected dusts d in our mean-shift can be set smaller than the number of randomly sampled points p'. While our sampling method use the original KDE itself, Freedman-Kisilev algorithm use KDE of the selected samples instead of the original KDE. As a consequence, Freedman and Kisilev have to select substantially many samples that can preserve the original KDE structure in some sense, while we do not have such restriction on the number of dusts.

The computational complexity of each mean-shift process in Freedman and Kisilev’s algorithm is $O(p'^2)$, while ours is $O(d \cdot p)$. If p' is large enough so that $d \cdot p < p'^2$, our mean-shift process requires even less computations. And even if p' has been set small enough so that $p'^2 < p \cdot d$, the computational complexity of the map-backwards process in Freedman-Kisilev mean-shift $O(p \cdot p')$ is still larger than that of point-labeling process in our mean-shift $O(p \cdot d)$ since $p' > d$.

More importantly, the less number of selected dusts in our approach has a huge advantage on HE implementation. Bootstrapping is the most expensive part in HE, so minimizing the cost of bootstrapping, by reducing the number of bootstrappings or setting the number of plaintext slots as small as possible, is very important to optimize HE implementations. Since the mean-shift clustering algorithm requires very large amount of computations, we have to repeatedly execute bootstrapping on d dusts in the case of our algorithm and p' samples in the case of Freedman-Kisilev. Since $d < p'$, the total bootstrapping procedure
takes much less time in our mean-shift algorithm than the Freedman-Kisilev
mean-shift algorithm.

3.3 Point-labeling Phase

Let us move on to the second phase, point-labeling. After finding all the modes,
we should label each point by mapping it to its closest mode. A naive way to
label a point \(P_i \) is as followings:

\[
C_{\text{naive}}(P_i) = \arg\min_{1 \leq j \leq d} \text{dist}(D_j, P_i)
\]

where each \(D_i \) denotes the mean-shifted dust after the mode-seeking phase.
However, the \(\arg\min \) function is very hard to compute in HE, and furthermore
this naive approach would label the points in the same cluster with different
indices. For example, let two dusts \(D_1 \) and \(D_2 \) converge to a same mode \(M \)
after the mean-shift process, and \(P_1 \) and \(P_2 \) are unselected points of which the
closed dusts are \(D_1 \) and \(D_2 \) respectively. We expect \(P_1 \) and \(P_2 \) to be classified
as a same cluster because both points are close to the same mode \(M \). However,
with the naive way of point-labeling above, \(C_{\text{naive}}(P_1) = 1 \) does not match with
\(C_{\text{naive}}(P_2) = 2 \) due to the slight difference between \(D_1 \) and \(D_2 \).

Fortunately, exploiting \(\text{MinIdx} \) algorithm in Section 2.3 resolves both prob-
lems of the naive approach. Let us define a modified point-labeling function \(C' \)
as

\[
C'(P_i) = \text{MinIdx}\left((||P_i - D_k||^2)_{1 \leq k \leq d}; t, \zeta \right)
\]

Since \(\text{MinIdx} \) algorithm consists of polynomial operations, it can be evaluated by
HE for sure. Moreover, for appropriate parameters \(t \) and \(\zeta \), \(\text{MinIdx}((x_1, ..., x_m); t, \zeta) \)
outputs a vector close to \((\frac{1}{2}, \frac{1}{2}, 0, ..., 0)\) when \(x_1 \) and \(x_2 \) are (approximately) min-
imal among \(x_i \)'s, rather than \((1, 0, ..., 0)\) or \((0, 1, ..., 0)\). Therefore, in the same
setting to above, we get \(C'(P_1) \approx C'(P_2) \approx (\frac{1}{2}, \frac{1}{2}, 0, ..., 0) \).

However, \(C' \) cannot be a complete solution when considering the case that a
lot of \(D_i \)'s converge to a same mode. Let \(D_1, ..., D_\ell \) converged to the same mode
\(M \) after the mean-shifting process. Then for a point \(P_i \) which is close to the
mode \(M \), it holds that \(C'(P_i) \approx (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, ..., 0) \). When \(\ell \) is sufficiently large,
then we may not be able to distinguish between \(\frac{1}{2} \) and an approximation error
of \(\text{MinIdx} \) attached to 0. We refine this problem by adopting a vector \(\text{NBHD} \in \mathbb{R}^d \)
of which \(i \)-th component indicates the number of \(D_j \)'s very close to \(D_i \):

\[
\text{NBHD} = \left(\sum_{k=1}^{d} \text{Kernel}(D_j, D_k; \Gamma) \right)_{1 \leq j \leq d}
\]

for proper parameter \(\Gamma \geq 1 \), and define our final point-labeling function \(C \) as

\[
C(P_i) = C'(P_i) \odot \text{NBHD}.
\]

Since \(\text{Kernel}(D_j, D_k; \Gamma) \) outputs approximately 1 if \(D_j \simeq D_k \) and 0 otherwise,
the \(j \)-th component \(\text{NBHD}_j \) an approximate value of the number of dusts close to
Algorithm 6 Point-labeling($P = \{P_1, \ldots, P_p\}, D = \{D_1, \ldots, D_d\}; \Gamma, \zeta, t$)

Input: $P_1, \ldots, P_p \in \mathbb{R}_n(1/2), D_1, \ldots, D_d \in \mathbb{R}_n(1/2), \Gamma \in \mathbb{N}$
Output: Cluster index $C_i \in [0,1]^d$ of each P_i for $1 \leq i \leq p$

1: for $i \leftarrow 1$ to d do
2: \hspace{1em} NBHD$_i \leftarrow 0$
3: \hspace{1em} for $j \leftarrow 1$ to d do
4: \hspace{2em} NBHD$_i \leftarrow NBHD$_i + \text{Kernel}(D_i, D_j; \Gamma)$
5: \hspace{1em} end for
6: end for
7: \hspace{1em} NBHD $\leftarrow (\text{NBHD}_i)_{1 \leq i \leq d}$ \hspace{1em} // $\text{NBHD}_i = \sum_{j=1}^d \text{Kernel}(D_i, D_j; \Gamma)$
8: for $i \leftarrow 1$ to p do
9: \hspace{1em} $C'_i \leftarrow \text{MinIdx} \left((||P_i - D_k||^2)_{1 \leq k \leq d}; t, \zeta \right)$
10: \hspace{1em} $C_i \leftarrow C'_i \odot \text{NBHD}$
11: end for
12: return $C = (C_i)_{1 \leq i \leq p}$

D_j. Therefore, each component of $C(P_i)$ is approximately 0 or 1 for $1 \leq i \leq p$. More precisely, for $1 \leq j \leq d$, $C(P_i)_j \approx 1$ if and only if D_j is one of the closest dusts to P_i.

To sum up, with mean-shifted dusts $D = \{D_1, \ldots, D_d\}$, we label each point P_i by

$$C(P_i) = \text{MinIdx} \left((||P_i - D_k||^2)_{1 \leq k \leq d}; t, \zeta \right) \odot \left(\sum_{k=1}^d \text{Kernel}(D_j, D_k; \zeta) \right)_{1 \leq j \leq d}.$$

Parameters t and ζ control the accuracy of MinIdx, and the parameter ζ control the accuracy of counting the number of converged dusts in each mode. Note that the return type of C is a d-dimensional vector where the i-th component C_i denotes $C(P_i)$.

Other Approaches of Point-labeling. Another possible choice of the point-labeling function is coordinate-of-dust function that simply returns the dust closest to the input point, i.e., $C_{\text{coord}}(P_i) = D_{\text{argmin}_{1 \leq j \leq d} \text{dist}(D_j, P_i)}$. However, the minimum distance between $C_{\text{coord}}(P_i)$'s cannot be bounded by any constant. This limitation makes it unclear to determine whether two points P_i and P_j satisfying $C_{\text{coord}}(P_i) \approx C_{\text{coord}}(P_j)$ in some sense belong to the same cluster or not. Since we are using several approximate algorithms including mode-seeking, this obscure situation occurs quite often. Therefore, C_{coord} is not the best choice for point labeling.

Freedman and Kisilev [23] uses another strategy called the map-backwards strategy. In this strategy, we label points by referencing the initial position of dusts instead of their final position. For example, we can compute the label of each point $P_i \in P$ by a vector-matrix multiplication as followings:

$$C_{\text{back}}(P_i) = \text{MinIdx} \left((||P_i - D^0_k||^2)_{1 \leq j \leq d}; t, \zeta \right) \cdot (\text{Kernel}(D_j, D_k))_{1 \leq j, k \leq d}$$
where D_j^0 is the initial position of each $D_j \in D$. Note that we treat the first term as a $1 \times d$ matrix and the second term as $d \times d$ matrix, and multiply them by a matrix multiplication. As a result, the j-th entry of $C_{\text{back}}(P_i)$ would designate the set of dust-neighborhood of the dust closest to P_i at the initial state.

This strategy is also reasonable, since the points close to the initial position of each dust are generally expected to move close to the same mode through the mean-shift process. We may regard this strategy as partitioning the points as several regions through the initial position of dusts. However, the map-backwards strategy is relatively inefficient compared to our point-labeling strategy in the perspective of HE implementation. As we explained in Section 3.2, a less number of dusts is better for HE implementation. However, in the map-backwards strategy with only small number of dusts, Furthermore, a vector-matrix multiplication is much more expensive than a Hadamard multiplication of two vectors in HE.

3.4 Our Modified Mean-shift Clustering Algorithm

In summary, our modified mean-shift clustering procedure is done by two phases: mode-seeking phase and point-labeling phase. In the first phase, we seek all the modes which are candidates for center of clusters, and in the second phase, we map each point to its closest mode with well-devised point-labeling function. Algorithm 7 describes our HE-friendly modified mean-shift clustering algorithm:

Algorithm 7 Mean-shift-clustering

\(P = \{P_1, ..., P_p\}, d, T; \Gamma_1, \Gamma_2, \zeta_1, \zeta_2, t \)

Input: \(P_1, P_2, \ldots, P_p \in \mathbb{R}^n(1/2), \Gamma_1, \Gamma_2, d, T \in \mathbb{N} \)

Output: A label vector of \(P_1, P_2, \ldots, P_p \)

1: \(D \leftarrow \text{Mode-seeking}(P, d, T; \Gamma_1, \zeta_1) \)

2: \(C \leftarrow \text{Point-labeling}(P, D, \Gamma_2, \zeta_2, t) \)

3: return \(C = (C_1, ..., C_p) \)

Complexity Analysis. In the mode-seeking phase, the mean-shift process is iterated for \(T \) times. For each iteration, we calculate the kernel value between all pairs of points and dusts. Note that the computational complexity of \(\text{Kernel} \) between two \(n \)-dimensional points is \(O(n) \), so each mean-shift iteration takes \(O(n \cdot d \cdot p) \) and hence the computational cost of \(\text{Mode-seeking} \) is \(O(n \cdot d \cdot p \cdot T) \).

The point-labeling phase consists of calculating vectors \(\text{NBHD} \) and \(C'_i \), and Hadamard multiplications \(\text{NBHD} \odot C'_i \) for \(1 \leq i \leq p \). To obtain \(\text{NBHD} \), we calculate the kernel values between all pairs of dusts, so it takes \(O(n \cdot d^2) \) computations. Also, to calculate \(C'_i \), we measure the distances from the given point to dusts, so it requires \(O(n \cdot d) \) computations. Note that the cost \(O(n) \) of a Hadamard multiplication is negligible. As a result, the computational cost of \(\text{Point-labeling} \) is \(O(n \cdot d \cdot p) \) because \(d \) is always strictly smaller than \(p \). To sum up, the cost of
mode-seeking phase is $O(n \cdot d \cdot p \cdot T)$ and that of point-labeling phase is $O(n \cdot d \cdot p \cdot T)$. Consequently, the computational cost of our algorithm is $O(n \cdot d \cdot p \cdot T)$.

We can reduce the computational cost of Mean-shift-clustering by at most $N/2$, since HEAAN supports $N/2$ parallel computations in a SIMD manner where N is a HEAAN parameter. Fortunately, we can apply SIMD efficiently to our algorithm. The most heaviest parts of our algorithm are mean-shift process and MinIdx both of which require $O(n \cdot p \cdot d)$ computations. For mean-shift process, we compute kernel values between all pairs of points and dusts. When we have one ciphertext of

$$(P_1 || P_2 || \cdots || P_p || P_1 || P_2 || \cdots || P_p)$$

and another ciphertext of

$$(D_1 || D_1 || \cdots || D_1 || D_2 || D_2 || \cdots || D_2 || D_k || D_k || \cdots || D_k)$$

with $k = \frac{N}{2p}$, then we can compute $k \cdot p = \frac{N}{2n}$ kernel computations simultaneously, and the computational cost of each kernel reduces to $O(\log n)$. As a result, we can run Mode-seeking with $O\left(\frac{n^2 \cdot d \cdot p \cdot T}{\log n \cdot N}\right)$ computations in HEAAN. Similarly we can reduce the number of computations for Point-labeling as well. Thereby the total computational cost of our algorithm would be $O\left(\frac{n^2 \cdot d \cdot p \cdot T}{\log n \cdot N}\right)$.

4 Experimental Results

4.1 Dataset Description

To monitor the performance, we implement our algorithm over four datasets (Hepta, Tetra, TwoDiamonds, Lsun) with true labels which are publicly accessible from fundamental clustering problems suite (FCPS) [42] and one large-scale dataset (LargeScale) randomly generated by ourselves. LargeScale dataset consists of four clusters following Gaussian distributions with small variance and distinct centers. Table 1 describes the properties of each dataset:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dimension</th>
<th># Data</th>
<th># Clusters</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepta</td>
<td>3</td>
<td>212</td>
<td>7</td>
<td>Different densities</td>
</tr>
<tr>
<td>Tetra</td>
<td>3</td>
<td>400</td>
<td>4</td>
<td>Big and touching clusters</td>
</tr>
<tr>
<td>TwoDiamonds</td>
<td>2</td>
<td>800</td>
<td>2</td>
<td>Touching clusters</td>
</tr>
<tr>
<td>Lsun</td>
<td>2</td>
<td>400</td>
<td>3</td>
<td>Different shapes</td>
</tr>
<tr>
<td>LargeScale</td>
<td>4</td>
<td>262,144</td>
<td>4</td>
<td>Numerous points</td>
</tr>
</tbody>
</table>
4.2 Parameter Selection

Our implementation is based on the approximate HE library HEAAN [1, 13]. We set HEAAN parameters \((N, q_L, h, \chi_{\text{err}}) \) to satisfy 128-bit security, where \(N \) is the ring dimension, \(q_L \) is the initial modulus of a ciphertext, \(h \) is a hamming weight of a secret polynomial, and \(\chi_{\text{err}} \) is the error distribution. As mentioned in Section 2.2, we used Albrecht’s security estimator [2, 3] to estimate the bit security of those HEAAN parameters. Note that since the modulus of the evaluation key evk is \(q_L^2 \), the input on the security estimator is a tuple \((N, Q = q_L^2, h, \chi_{\text{err}})\). As a result, we set HEAAN parameters \(N = 2^{17} \) and \(\log_q q_L = 1480 \), and followed the default setting of HEAAN library [1] for error and secret distributions \(\chi_{\text{err}}, \chi_{\text{enc}} \) and \(\chi_{\text{key}} \).

We flexibly chose the clustering parameters \(T, \Gamma_1, \Gamma_2, \zeta_1, \zeta_2 \) and \(t \) for each dataset to optimize the implementation results. Let us denote the a tuple of parameters by \(\text{params} = (T, \Gamma_1, \Gamma_2, \zeta_1, \zeta_2, t) \). In the case of Hepta dataset, the best choice of parameters was \(\text{params} = (5, 6, 6, 4, 4, 6) \), while \(\text{params} = (7, 6, 6, 5, 6, 6) \) was the best for Tetra dataset, \(\text{params} = (8, 5, 5, 5, 6, 5) \) was the best for TwoDiamonds dataset, \(\text{params} = (5, 6, 5, 5, 8, 6) \) was the best for Lsun dataset, and \(\text{params} = (5, 5, 3, 3, 5, 5) \) was the best for LargeScale dataset. We set the number of dusts to be as small as possible (e.g., \(d = 8 \)) to reduce the cost of bootstrapping.

4.3 Experimental Results

In this subsection, we present experimental results on our mean-shift clustering algorithm based on HEAAN. All experiments were performed on C++11 standard and implemented on Linux with Intel Xeon CPU E5-2620 v4 at 2.10GHz processor.

In Table 2, we present the performance and quality of our algorithm on various datasets. We use 8 threads for all experiments here. We describe the
Table 2. Experimental results for various datasets with 8 threads

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Comp. Time</th>
<th>Memory</th>
<th>Quality Evaluation</th>
<th>Comp. Time</th>
<th>Memory</th>
<th>Quality Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepta</td>
<td>25 min</td>
<td>10.7 GB</td>
<td>212/212</td>
<td>0.702</td>
<td></td>
<td>(0.702)</td>
</tr>
<tr>
<td>Tetra</td>
<td>36 min</td>
<td>10.7 GB</td>
<td>400/400</td>
<td>0.504</td>
<td></td>
<td>(0.504)</td>
</tr>
<tr>
<td>TwoDiamonds</td>
<td>38 min</td>
<td>9.6 GB</td>
<td>792/800</td>
<td>0.478</td>
<td></td>
<td>(0.485)</td>
</tr>
<tr>
<td>Lsun</td>
<td>24 min</td>
<td>9.4 GB</td>
<td>-</td>
<td>0.577</td>
<td></td>
<td>(0.443)</td>
</tr>
<tr>
<td>LargeScale</td>
<td>82 min</td>
<td>20.7 GB</td>
<td>262127/262144</td>
<td>0.781</td>
<td></td>
<td>(0.781)</td>
</tr>
</tbody>
</table>

The accuracy value is calculated by presenting both the number of well-classified points and the total number of points. We present two silhouette coefficients; the one without bracket is the silhouette coefficient of our clustering results, and the other one with bracket is that of the true labels.

We complete the clustering on various datasets within a few dozens of minutes. In the case of FCPS datasets, their sizes are much smaller than the number of HEAAN plaintext slots we can manage. On the other hand, the size of LargeScale dataset is big enough so that we can use full slots; therefore, we can fully exploit SIMD of HEAAN for the LargeScale dataset. Consequently, the performance of our algorithm for LargeScale dataset is quite nice in spite of its huge size.

For all the five datasets, our algorithm achieves high accuracy. In the case of Hepta, Tetra and LargeScale datasets, we succeed to label all data points by its exact true label. For the TwoDiamonds dataset, we succeed to classify 792 points out of 800 points properly. Even for the rest 8 points, the label vector of each point is close to its true label.

In the case of the Lsun dataset, our algorithm results in four clusters while there are only three clusters in the true labels. Thereby, it is impossible to measure the accuracy by comparing with the true labels, so one may think that our algorithm is inadequate to the Lsun dataset. However, it is also reasonable to classify the Lsun dataset with 4 clusters. In fact, our result shows even a better quality in aspect of the silhouette coefficient. The silhouette coefficient for our clustering result is 0.577, and that for the true labels is 0.443.
We also checked the performance of our algorithm with several numbers of threads for the Lsun dataset as described in Table 3. With a single thread, it consumes 9.4 GB memory and takes 83 minutes. This result is much faster than the result of the previous work in [29]; which takes 25.79 days to complete a clustering process for the same dataset. Obviously, we can speed up the performance by using much more number of threads. For example, the running time can be reduced to 16 minutes when using 20 threads with just small overhead of memory.

Table 3. Experimental results for various # threads with the Lsun dataset

<table>
<thead>
<tr>
<th></th>
<th>1 Thread</th>
<th></th>
<th>8 Threads</th>
<th></th>
<th>20 Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>83 min</td>
<td>Time</td>
<td>24 min</td>
<td>Time</td>
<td>16 min</td>
</tr>
<tr>
<td>Memory</td>
<td>9.4 GB</td>
<td>Memory</td>
<td>9.4 GB</td>
<td>Memory</td>
<td>10.0 GB</td>
</tr>
</tbody>
</table>

Comparison to Freedman-Kisilev’s Method. The experimental results of Freedman-Kisilev mean-shift clustering on the Tetra dataset under various p', the number of sampled points (see Section 2.4), shows how marginal p' may contaminate the performance. Note that our sampling method achieves 400/400 accuracy on the Tetra dataset with only 8 dusts.

In contrast, when p' is either 8 or 16, Freedman-Kisilev algorithm even fails to detect the correct modes from the original data. It detects only three clusters while there actually exist four clusters; it classifies two different clusters as a single cluster. Thus, the results on when p' is either 8 or 16 are not even comparable with the answer. This supports the argument that the KDE of Freedman-Kisilev mean-shift may not fully represent the original KDE unless p' is sufficiently big.

When p' is bigger than 16, Freedman-Kisilev algorithm succeed to detect four clusters as expected. However, the accuracy under each $p' = 32, 64, 128, 256$ is $377/400, 368/400, 393/400, 399/400$ respectively, while our sampling method achieves 400/400 with only 8 dusts. This implies that the approximate KDE of Freedman-Kisilev mean-shift may indicate modes with possible errors.

As a consequence, Freedman and Kisilev have to select substantially many samples that can preserve the original KDE structure in some sense, while we do not have such restriction on the number of dusts.

Acknowledgement

This work was supported in part by the Institute for Information & Communications Technology Promotion (IITP) Grant through the Korean Government (MSIT), (Development of lattice-based post-quantum public-key cryptographic schemes), under Grant 2017-0-00616, and in part by the National
Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No.2017R1A5A1015626). We also thank anonymous reviewers of SAC’19 for very usual comments.

References

