Experimental Evaluation of Deep Neural Network Resistance Against Fault Injection Attacks

Xiaolu Hou1, Jakub Breier2, Dirmanto Jap2, Lei Ma3, Shivam Bhasin2 and Yang Liu2

1National University of Singapore, Singapore,2Nanyang Technological University, Singapore,3Kyushu University, Japan

Email: ho0001lu@e.ntu.edu.sg, jbreier@jbreier.com, djap@ntu.edu.sg, malei@ait.kyushu-u.ac.jp, sbhasin@ntu.edu.sg, yangliu@ntu.edu.sg

Abstract—Deep learning is becoming a basis of decision making systems in many application domains, such as autonomous vehicles, health systems, etc., where the risk of misclassification can lead to serious consequences. It is necessary to know to which extent are Deep Neural Networks (DNNs) robust against various types of adversarial conditions.

In this paper, we experimentally evaluate DNNs implemented in embedded device by using laser fault injection, a physical attack technique that is mostly used in security and reliability communities to test robustness of various systems. We show practical results on four activation functions, ReLu, softmax, sigmoid, and tanh. Our results point out the misclassification possibilities for DNNs achieved by injecting faults into the hidden layers of the network. We evaluate DNNs by using several different attack strategies to show which are the most efficient in terms of misclassification success rates. Outcomes of this work should be taken into account when deploying devices running DNNs in environments where malicious attacker could tamper with the environmental parameters that would bring the device into unstable conditions, resulting into faults.

1 Introduction

Connected technologies have become ubiquitous in everyday life. Small, single-purpose devices with sensing and responding capabilities have emerged into what has become known as Internet of things (IoT). Components of IoT are designed to be placed everywhere, allowing easy physical access to potential threats. At the same time, the developments in the area of artificial intelligence (AI) have widened the capabilities of automation in various domains, spreading into all aspects of modern digital society. Out of AI, one of the most promising technologies is deep learning, which tries to simulate the behavior of neurons in a human brain. Deep learning enables to analyze speech, text, and images to decide about complex tasks [1]. Deployment of deep learning has reached security-critical areas, such as autonomous driving, medical systems, etc., making misjudgement a risk that has to be taken into account.

In this work, we focus on a class of physical attacks known as fault attacks, which have become a reality owing to decreasing price and expertise required to mount such attack [2]. Fault attacks are active attacks on a given implementation which try to perturb the internal software/hardware computations by external means. The adversary uses methods like voltage glitches, electromagnetic pulses, or laser injection to introduce perturbations for various purposes, ranging from erroneous computation, denial of service etc. Such attacks are commonly used for mounting secret key recovery attacks in cryptography or for violating/bypassing security checks [3]. In this paper, we analyze deep learning under fault attacks.

Deep learning is a family of neural networks composed of an input layer, three or more hidden layers and an output layer. Based on the internal structure, several candidates exist like multi-layer perceptron (MLP), convolutional neural networks (CNNs), recurrent neural networks (RNNs) etc. These are popularly known as deep neural networks (DNN). While each of these architectures has unique functions, we focus on activation functions which remain common across architectures and are an important part of the algorithm to obtain non-linear behaviors [4]. These commonly used activation functions are: softmax, ReLu, sigmoid and tanh. Studying these functions under fault attacks allows to derive general conclusions on susceptibility of deep learning to fault attacks.

We implemented the most common activation functions used across DNNs on a low-cost microcontroller (often used in IoT). Next, we performed practical laser fault injection using a near-infrared diode pulse laser to inject faults during the processing of activation function. The use of laser facilitates a strong attacker model with extensive fault injection capabilities. With the models, derived from practical fault injection, we analyze the susceptibility of DNN against such attacks. The primary goal of the performed attacks is to achieve mis-classification during the testing phase. In the hindsight, the achieved mis-classification can jeopardize the functioning of DNN-based paradigms like smart city.

Extensive studies have been performed on adversarial attacks, that crafts the input data with little perturbation to fool deep learning systems [5], [6], [7], [8], [9], [10], [11]. In our study we explore practical (physical) fault injection on deep neural network, where we focus on attacking the DNNs itself instead of creating input data to fool DNNs like adversarial attack does. We evaluate different ways of selecting neurons to fault, from random selection to optimized method using a genetic algorithm. Our results indicate that in some cases, a relatively small number of faulted neurons (\(\approx 10\% \)) can already present a high risk of misclassification.
probability of a given input belonging to class i. It takes a vector ReLU, softmax

The activation functions we consider are the following:

2.2 Activation Functions

In this section, we recall basic concepts of deep neural networks, activation functions and fault injection attacks.

2.1 Deep Neural Networks

Artificial neural networks (ANNs) are computing units designed on basis of biological neural networks. ANN is a network of interconnected nodes or neurons where a signal is transmitted from input neurons towards output neurons. Arranged in layers, each neuron computes an output based on sum of (weighted) inputs from other neurons, followed by a non-linear function. The weights are determined during the training process. The non-linear layer function, also known as the activation function, is what gives an ANN its power to learn and classify difficult problems. A simple ANN can be composed of an input layer, one hidden layer and an output layer. To train the network, the backpropagation algorithm is used, which is a generalization of the least mean squares algorithm in the linear perceptron. Backpropagation is used by the gradient descent optimization algorithm to adjust the weights of neurons by calculating the gradient of the loss function [12].

Deep neural networks (DNNs) are fairly new variants of ANNs with three or more hidden layers. DNNs have become realistic with the latest advances in computing power, thanks to high performance graphical processing units (GPU). Several variants of DNN exist, including multi-layer perceptron (MLP), convolutional neural networks (CNNs), recurrent neural networks (RNNs), etc. Owing to the deep architecture, they have shown great success across domains – the most prominent being image classification, with the biggest ones composed of as many as 152 layers (Resnet [13]).

As it was pointed out in [14], in case of large neural networks, there are many nodes that do not contribute to the neural network function. However, there are some nodes which are crucial for correct functionality and if these are faulted, it can result in a failure.

2.2 Activation Functions

The activation functions we consider are the following: softmax, ReLU, sigmoid and Tanh[4].

Softmax is normally used as the activation function for output layer. It takes a vector \mathbf{x} as input, ith entry of the output gives the probability of a given input belonging to class i:

$$\text{softmax}(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}, \quad (1)$$

where \exp is the exponentiation function with base e.

In modern neural networks, the default recommendation for activation function is the rectified linear unit or ReLU defined as follows:

$$\text{ReLU}(x) = \max(0, x). \quad (2)$$

It is a piecewise linear function which preserves properties that make the optimization of linear model easy.

Before the introduction of ReLU, commonly used activation functions are logistic sigmoid activation function

$$\text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}, \quad (3)$$

and hyperbolic tangent function

$$\text{tanh}(x) = \frac{2}{1 + \exp(-2x)} - 1. \quad (4)$$

The sigmoid function is normally used to introduce non-linearity in the model. A reason for its popularity comes from the simple equation between its derivative and itself

$$\text{sigmoid}'(x) = \text{sigmoid}(x)(1 - \text{sigmoid}(x)).$$

However, sigmoid functions becomes insensitive to inputs with large absolute values. In such cases, the hyperbolic tangent activation function is used as an alternative.

2.3 Fault Injection Attacks

Fault injection attacks are a popular physical attack vector used against cryptographic circuits [15]. By changing intermediate values during the cryptographic algorithm execution, they can efficiently provide information on secret values, helping to recover the secret key in just a few encryptions [16], [17], [18]. Normally, the secret key recovery would require infeasible amount of computing time. Similarly, these attacks can be used against verification circuits, such as PIN verification on a smartcard, where a comparison function can be skipped and grant access to a malicious user [19].

When it comes to fault injection techniques, there are several options one can use, mostly depending on the adversary budget and expertise [20]. The most basic methods include variations in voltage or clock signal, allowing disturbance of instruction sequences in microcontrollers [21]. Electromagnetic fault injection allows more precise location targeting, enabling faults in memories [22], [23]. Laser fault injection is the most precise from commonly used techniques, being capable of flipping single bits [24].

Up to date, to the best of our knowledge, only [25] describes fault injection attack on neural networks. In their paper, they only provide a white box attack on deep neural network through software simulation, while observing the changes in the output after introducing faults in the network’s values. However, they do not provide insight on practicality of such attack. Whether such attacks could also be applied physically remained an open problem. Therefore, in our paper, we experimentally show what types of faults are achievable in practice and we further use this information to develop a realistic attack on DNNs.
2.4 Difference from Adversarial Learning

A huge amount of research is undergoing towards adversarial learning [26]. It basically involves constructing special inputs which are capable of confusing the machine learning models, often leading to output misclassification. In this work, we explore an alternate avenue to arrive at the same but by different means. The proposed fault attacks target the implementation of the DNN, particularly the critical activation function to achieve misclassification without any perturbation of the input. Depending on the application scenario and adversary model, one attack might be more suited than the other.

3 Practical DNN Attack feasibility analysis

In this part we first show the practical laser fault attack setup in Section 3.1. In Section 3.2 we show the possible fault attacks on activation functions that we have discovered with practical experiments. In Section 4, those attacks will be used for simulating misclassification attacks on MNIST DNNs.

3.1 Attack Equipment Setup

The main component of the experimental laser fault injection station is the diode pulse laser. It has a wavelength of 1064 nm and pulse power of 20 W. This power is further reduced to 8 W by a 20x objective lens which reduces the spot size to 15×3.5 μm².

As the device under test (DUT), we used ATMega328P microcontroller, mounted on Arduino UNO development board. The package of this chip was opened so that there is a direct visibility on a back-side silicon die with a laser. The board was placed on an XYZ positioning table with the step precision of 0.05 μm in each direction. A trigger signal was sent from the device at the beginning of the computation so that the injection time could be precisely determined. After the trigger signal was captured by the trigger and control device, a specified delay was inserted before laser activation. Laser activation timing was also checked by a digital oscilloscope for a greater precision. Our setup is depicted in Figure 1.

3.2 DNN Activation Function Fault Analysis

To evaluate different activation functions, we implemented three simple 3-layer neural networks with sigmoid, ReLu and tanh as the activation function for the second layer respectively. The activation function for the last layer was set to be softmax. The neural networks were implemented in C programming language, which were further compiled to AVR assembly and uploaded to the DUT.

We surrounded the activation functions in the second layer with a trigger signal that raised a voltage on a selected Arduino board pin to 5 V, helping us to determine the proper laser timing.

As instruction skip/change are one of the most basic attacks on microcontrollers, with high repeatability rates [18], we aimed at this fault model in our experiments. The microcontroller clock is 16 MHz, one instruction takes 62.5 ns. Some of the activation functions took over 2000 instructions to execute. To check what are the vulnerabilities of the implementations, we have carefully varied the timing of the laser glitch from the beginning until the end of the function execution so that every instruction would be eventually targeted.

Please note that we used a single fault adversarial model, meaning that exactly one fault was injected during one activation function execution. We consider an attack is successful for a given input data if the output classification is different from the classification obtained by the original network. And we refer to such a successful attack as misclassification.

After we observed a successful missclassification, we determined the vulnerable instructions by visual inspection of the compiled assembly code and by checking the timing of the laser in that particular fault injection instance. Area of the chip vulnerable to these disturbances is depicted in Figure 2. The chip area is 3×3 mm², while the area sensitive to laser is ≈ 70×100 μm². With a laser power of 4.5% we were able to disturb the algorithm execution, when tested with reference codes. More details on the behavior on this particular microcontroller under laser fault injection can be found in [18] while the sample preparation and guidance on the laser experiments is provided in [27].

In this exploratory study, we implemented a random neural network, consisting of 3 layers, with 19, 12, and 10 neurons in input layer, hidden layer, and output layer, respectively. Our fault attack was always targeting the computation of one of the activation functions in hidden layer. In the following, we will explain the experimental results on different activation functions in detail.

ReLU. This function is implemented by a following code in C:

```c
if (Accum > 0) {
    HiddenLayerOutput[i] = Accum;
} else {
    HiddenLayerOutput[i] = 0;
}
```

where \(i \) loops from 1 to 12 so that each loop gives one output of the hidden layer. Accum is an intermediate variable that stores the input of activation function for each neuron.
The assembly code inspection showed that the result of successful attack was executing the statement after else such that the output would always be 0. The corresponding assembly code is as follows:

```
1 ldi r1, 0 ; load 0 to r1
2 cp r1, r15 ; compare MSB of Accum to r1
3 brge else ; jump to else if 0 >= Accum
4 movw r10, r15 ; HiddenLayerOutput[i] = Accum
5 movw r12, r17 ; HiddenLayerOutput[i] = Accum
6 jmp end ; jump after the else statement
7 else: clr r10 ; HiddenLayerOutput[i] = 0
8 clr r11 ; HiddenLayerOutput[i] = 0
9 clr r12 ; HiddenLayerOutput[i] = 0
10 clr r13 ; HiddenLayerOutput[i] = 0
11 end: ... ; continue the execution
```

where each float number is stored in 4 registers. For example, Accum is stored in registers r15, r16, r17, r18 and HiddenLayerOutput[i] is stored in r10, r11, r12, r13. Line 4,5 executes the equation HiddenLayerOutput[i] = Accum.

The attack was skipping the “jmp end” instruction that would normally avoid the part of code setting HiddenLayerOutput[i] to 0 in case Accum > 0. Therefore, such change in control flow renders the neuron inactive no matter what is the input value.

Sigmoid. This function is implemented by a following code in C:

```
HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));
```

After the assembly code inspection, we observed that the successful attack was taking advantage of skipping the negation in the exponent of exp() function, which compiles into one of the two following codes, depending on the compiler version:

A) neg r16 ; compute negation r16

B) ldi r15, 0x80 ; load 0x80 into r15

eor r16, r15 ; xor r16 with r15

Laser experiments showed that both neg and eor could be skipped, and therefore, significant change to the function output was achieved.

Hyperbolic tangent. This function is implemented by a following code in C:

```
HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) - 1;
```

Similarly to sigmoid, the experiments showed that the successful attack was exploiting the negation in the exponential function, leading to an impact similar to sigmoid.

Softmax. In case of softmax function, we were unable to obtain any successful misclassification. There were only two different outputs as a result of the fault injection: either there was no output at all, or the output contained invalid values. This lack of valid output prevented us to do further fault analysis to derive the actual fault model that happened in the device. Therefore, a thorough analysis of softmax behavior under faults would be an interesting topic for the future work.

Another line of future work would be to analyze bit flip attacks [24]. The first application of such attack would be to target IEEE 754 floating point representation that is used for storing the weights. The representation follows 32-bit pattern \((b_{31}...b_0)\): 1 sign bit \((b_{31})\), 8 exponent bits \((b_{23}...b_0)\) and 23 mantissa (fractional) bits \((b_{22}...b_0)\). The represented number is given by \((-1)^{b_{31}}\times 2^{b_{30}...b_{23}}\times \sum_{i=1}^{23} 2^{b_{23}...b_0}1.27 \times (1.b_{22}...b_0)\). A bit flip attack on the sign bit or on the exponent bits would make significant influence on the weight. Another application of bit flip attack would be to fault interconnecting weights, resulting to incorrect input to the next layer. We leave both directions for future investigation as they are out of scope for the current work.

If we let \(y\) and \(y'\) denote the correct and faulted output of the target activation function, the relation between \(y\) and \(y'\) is summarized in Table 1. For further illustration, the graph of original and faulted activation functions is depicted in Figure 3.

<table>
<thead>
<tr>
<th>Target activation function</th>
<th>Relation between (y) and (y')</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReLu</td>
<td>(y' = 0)</td>
</tr>
<tr>
<td>sigmoid</td>
<td>(y' = 1 - y)</td>
</tr>
<tr>
<td>tanh</td>
<td>(y' = -y)</td>
</tr>
</tbody>
</table>

TABLE 1 Relation between correct output \(y\) and faulted output \(y'\) when a single fault is injected in target activation function

4 Application to DNN

The results from previous section aiming at single functions can be directly used to alter the behavior of a neural network. In this section we extend the attack to a full network, while targeting several function computations at once with a multi-fault injection model. When it comes to deep neural networks, there are three possible places to introduce a fault:

- Input layer – such fault would be identical to introducing a change at the input data. Therefore, it is of little interest, since it would be normally easier for the attacker to directly alter the input data rather than injecting precise faults with an expensive equipment.

- Hidden layer(s) – since the structure of the hidden layer is normally unknown to the attacker, she cannot easily predict the outcome of the fault injection. However, she can still achieve the misclassification, although not necessarily to the class she decides. Therefore, such attack might be interesting in case the attacker does not care about the outcome class as long as it is different from the correct outcome.

- Output layer – normally, softmax is the function of choice for the output layer. According to our results, introducing a meaningful fault into softmax is harder compared to other functions.

\[\text{TABLE 1: Relation between correct output } y \text{ and faulted output } y' \text{ when a single fault is injected in target activation function} \]

\[\text{Input layer – such fault would be identical to introducing a change at the input data. Therefore, it is of little interest, since it would be normally easier for the attacker to directly alter the input data rather than injecting precise faults with an expensive equipment.} \]

\[\text{Hidden layer(s) – since the structure of the hidden layer is normally unknown to the attacker, she cannot easily predict the outcome of the fault injection. However, she can still achieve the misclassification, although not necessarily to the class she decides. Therefore, such attack might be interesting in case the attacker does not care about the outcome class as long as it is different from the correct outcome.} \]

\[\text{Output layer – normally, softmax is the function of choice for the output layer. According to our results, introducing a meaningful fault into softmax is harder compared to other functions.} \]

\[\text{Fig. 3: (a) Sigmoid, (b) Hyperbolic tangent, and (c) ReLu functions. Blue lines indicate original function, red lines indicate faulted ones.}\]
However, as we discussed, in case the attacker can alter registers storing the floating point data, she can easily misclassify the outcome to a chosen class, making it a very powerful attack model.

Deciding on what layer to attack, it makes sense to inject the fault as close to the output layer as possible to make the impact highest. Therefore, for our case, the attacker injects faults into the last hidden layer of the network, targeting multiple activation function computations.

In the following we consider DNNs severed for classification purposes and the activation function of the output layer is softmax. We further assume the output layer is dense and the goal of the attacker is to misclassify an input. In Section 4.1 we discuss the possible strategies of an attacker. In Section 4.2 we present the evaluation results using the strategies on a sample DNN.

4.1 Algorithms for attacking the last hidden layer

We model the last two layers of a DNN as follows: let \(x \) denote the output of the last hidden layer and \(W \) and \(B \) denote the matrix of weights and the vector of bias weights for output layer. Let \(z \) denote the input of softmax function. Suppose there are \(m \) neurons in the last hidden layer and \(n \) neurons in the output layer. Let \(W_l \), \(k = 1, 2, \ldots, n \) be the columns of \(W \). Then the output is given by

\[
\text{output}_i = \frac{\exp(z_i)}{\sum_{j=1}^n \exp(z_j)} = \frac{\exp(xW_l + B_l)}{\sum_{j=1}^n \exp(xW_j + B_j)}, \quad i = 1, 2, \ldots, n.
\]

The final classification is given by \(\ell \) such that \(\max_i \text{output}_i = \text{output}_\ell \). For any sequence of neurons \(j, j, \ldots, j \), we have

\[
\max_i \text{output}_i = \max_i \frac{\exp(z_i)}{\sum_{j=1}^n \exp(z_j)} = \frac{\max_i \exp(z_i)}{\sum_{j=1}^n \exp(z_j)} = \frac{\sum_{j=1}^n \exp(z_j)}{\sum_{j=1}^n \exp(z_j)}.
\]

Hence the output classification is equal to \(\ell \) such that \(\max_i z_i = z_\ell \).

The attacker injects faults in the computation of the activation functions for neurons in the last hidden layer and gets a faulted \(x' \). Correspondingly we have a faulted vector \(z' \). Thus, for a given input with correct classification \(\ell \), the goal of misclassification is equivalent to: achieve \(z' \) such that there exists \(j \) with \(z'_j > z_\ell \) or \(z'_j - z'_j > 0 \). Consequently, an input can be misclassified if and only if

\[
(x'W_j + B_j) - (x'W_\ell + B_\ell) > 0 \quad (xW_j + B_j + (x' - x)W_\ell) > 0 \quad xW_j + B_j - xW_\ell - B_\ell + (x' - x)(W_\ell - W_\ell) > 0 \quad z_j - z_\ell + (x' - x)(W_\ell - W_\ell) > 0 \quad z_j - z_\ell + \sum_{j \neq \ell} (x'_j - x_j)(W_\ell - W_\ell) > 0 \quad (5)
\]

Algorithm 1 gives matrix \(A \) such that \(A[k][j] = (x'_j - x_j)(W_\ell - W_\ell) \) and diagonal matrix \(D \) whose diagonal is given by \(x' - x \).

Single fault strategy. When a single fault model is considered, \(x \) and \(x' \) only differs in one entry, say \(x_k \). Equation (5) becomes

\[
(6)
\]

For given DNN and a target input, Algorithm 2 outputs \(k \), the neuron to attack so that a misclassification can be achieved. Line 2 calculates the matrix \(A \) with column \(i \) given by \(W_i - W_\ell \). Depending on the activation function, \(x' \) is related to \(x \) as described in Table 1. After line 13, the \((k, j)\)-entry of matrix \(A \) is given by \((x'_j - x_j)(W_\ell - W_\ell)\). Line 15 checks if Equation (6) is satisfied for any \(j, k \). If it can be satisfied for some \(k, j \), the target input can be misclassified with a fault attack on neuron \(k \).

For multiple fault model, a natural strategy is random faults, i.e. random number of neurons in the last hidden layers are faulted. Here we provide another strategy which utilizes the information of weights and bias of the last layer.

Multiple faults strategy. For a target input with correct class \(\ell \), we aim to find a list of neurons to attack so that the probability of class \(\ell \) in the output will be reduced. Details are given in Algorithm 3.

Algorithm 1: Calculation of matrix A

Input: \(W \): matrix of weights for the last layer with columns \(W_1, W_2, \ldots, W_n \); \(B \): vector of bias weights for the last layer; \(\ell \): the correct class of target input; \(x \): output of the last hidden layer for target input; activation function: ReLu, sigmoid or Tanh.

Output: Matrices \(A, D \).

1. for \(i = 1, 2, \ldots, n \) \n2. \[A[i] = W_i - W_\ell; \]
3. if activation function is ReLu then \n4. for \(k = 1, 2, \ldots, m \) \n5. \[x'[i] = 0; \]
6. if activation function is sigmoid then \n7. for \(k = 1, 2, \ldots, m \) \n8. \[x'[i] = 1 - x[i]; \]
9. if activation function is Tanh then \n10. for \(k = 1, 2, \ldots, m \) \n11. \[x'[i] = -x[i]; \]
12. \[D = \text{diagonal matrix with diagonal } x' - x; \]
13. \[A = DA; \]
14. return \(A, D; \)

Algorithm 2: Single fault strategy

Input: \(A \): obtained from Algorithm 1; \(z \): input of softmax function.

Output: True/False indicating if an attack exists or not; \(k \) s.t. the input can be misclassified with fault attack on neuron \(k \).

1. for \(k = 1, 2, \ldots, m \) \n2. for \(j = 1, 2, \ldots, n \) \n3. if \(z_j - z_\ell + A[k][j] > 0 \) then \n4. output \(k; \)
5. return True;
6. return False;

Algorithm 3: Multiple faults strategy

Input: \(D \): obtained from Algorithm 1; \(W_\ell \): the \(\ell \)th column of \(W \); \(M \): number of faults.

Output: \(\text{indices} \): a list of neurons to attack.

1. \(\text{indices} = []; \)
2. \(B = DW_\ell; \)
3. for \(k = 1, 2, \ldots, m \) do \n4. if \(B[k][j] < 0 \) then \n5. add \(k \) to \(\text{indices}; \)
6. if length of \(\text{indices} \) == \(M \) then \n7. return \(\text{indices}; \)
4.2 Evaluation of a sample DNN

To test how our attack can influence a real-world DNN, we trained and evaluated different DNNs with the attack strategies described above. The attack vectors considered are as described in Section 3.2. We have selected a popular MNIST dataset [28]. The training of DNNs was accomplished using Keras (ver.2.1.6) [29] and Tensorflow libraries (ver.1.8.0) [30]. The structures of the DNNs are detailed in Table 2. For each target function (ReLu, sigmoid and tanh), 10 DNNs with different number of neurons \(n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500\) in hidden layer 4 were evaluated. We used a partially fixed structure of DNN in order to study the effects of fault attacks on different activation functions. The prediction accuracy we obtained is summarized in Table 3. The accuracy shows that although the DNNs we choose are relatively simple, their accuracy is comparable with the state of the art. Success rates are calculated for 800 random inputs.

For multiple fault model, we evaluated the DNNs with number of faults equal to 10, 20, 30, 40, 50 percent of the number of neurons in hidden layer 4. The simulation results for targeting activation function being ReLu, Sigmoid and tanh are presented in Figures 4, 5 and 6 respectively.

Overall, it can be concluded that in case of sigmoid and tanh, if the attacker wants to have a reasonable success rate (>50%), she should inject faults in at least 40% of the neurons using multiple faults strategy in the chosen layer. But for ReLu, when the number of neurons is big, the DNN becomes more resistant to fault attacks.

The results also show that sigmoid and tanh functions follow the same trend, which is caused by the same type of fault as explained in the previous section – skipping the negation in the exponentiation function.

5 Genetic algorithm for attacking the whole DNN

A natural question to ask is what if we assume the attacker can target any neurons in the whole DNN? And how many neurons does she need to attack to achieve a certain percentage of misclassification?

To find answer these questions, we analyzed three different DNNs with structures given in Table 4, where the target activation functions are ReLu, Sigmoid, tanh, respectively. Similarly to Section 4.2, the DNNs were trained using Keras (ver 2.1.6.) on MNIST dataset.

The aim of the experiment was to check the effect on the DNN when a certain percentage of neurons is attacked. For this purpose, we have adopted the genetic algorithm to help in searching for the vulnerable collections of neurons in a given DNN.

Genetic Algorithm (GA) is a heuristic algorithm normally used for optimization problems, based on the concept of natural selection. For optimization problems with large search space, it

Algorithm 4: Genetic Algorithm (GA) for attacking the whole DNN

\[
\begin{align*}
\text{Input} & : \text{DNN structure, noOfFaults: number of faults, noGen: number of generation} \\
\text{Output:} & \text{indices: a list of neurons to attack.} \\
1 & P = \text{Generate Population(noOfFaults);} \\
2 & \text{Evaluate}(P); \\
3 & \text{for } i \text{ in range(noGen) do} \\
4 & \quad \text{Crossover}(P); \\
5 & \quad \text{Mutation}(P); \\
6 & \quad \text{Evaluate}(P); \\
7 & \quad \text{Selection}(P); \\
8 & \text{return the best individual in } P;
\end{align*}
\]
is often a preferable choice compared to brute-force search, since it can help to reduce the search time for finding the solution. While it does not guarantee finding a perfect solution, it is an alternative approach that finds a good enough solution, while saving the computational resources significantly. GA itself has been applied as well for fault attacks problems, for example, to search for optimal experiment parameters for fault injection [31].

Typically, the standard GA method is to assign fitness values for each individuals within the search space. A population of these individuals is initialized randomly according to the specification for the population. For each generation (or iteration), the algorithm selects better individuals and removes the worse ones, while combining different individuals using crossover algorithm to generate new ones. The evaluation is performed according to the fitness function defined, and the aim is to find an individual which could optimize the fitness value in the search space. Normally, to avoid converging to local optima, a mutation function is introduced by randomly changing parts of the new individuals.

In our experiment, we use DEAP [32] for the GA implementation. DEAP is an evolutionary algorithm library in Python. Since we are using Keras for our DNN implementation, DEAP can be easily adopted and integrated for the experiments. Our GA follows a standard structure as shown in Algorithm 4. Here we explain how each component of GA was implemented:

- **Individual**: Each individual is generated as a binary vector whose length is the number of neurons in the hidden layers of the neural network. For DNNs we evaluated (see Table 4), each individual has length 800. As we consider faults to be inserted randomly in the hidden layers, we do not differentiate to which layer the faulted neuron belongs, that is why the individual is of vector shape. A 0 in index i would indicate the ith neuron is not attacked and a 1 in index j would indicate the jth neuron will be attacked. Naturally, the number of 1s is equal to the number of faults allowed.

- **Fitness function**: The fitness of an individual is the corresponding misclassification rate – more precisely, we calculate the percentage of misclassified image by faulting the network according to the fault model represented by the individual.

- **Population**: In our experiments, we set size of population to be 200 and number of generations to be 120. These numbers were selected for practical reasons, as higher values would yield impractical computation times.

- **Selection**: The selection of next generation follows tournament selection with tournament size 3.

Regarding the crossover and mutation, we followed the selection guidelines stated in [33]. In general, it is advised to select lower values for these parameters in case of binary values.

- **Crossover**: For each pair of individuals in the population, the crossover rate is set to be 0.78. This value is relatively high because of the size of the search space in our problem – crossover handles the exploration part of the GA, which means searching through the available space [34]. The offsprings are obtained by performing two-point crossover.

- **Mutation**: Mutation is performed in order to avoid falling for local minima in the search space. In this experiment, flip bits are used for mutation. The mutation rate was chosen to be 0.05. We chose a relatively low mutation rate to avoid reducing the algorithm to a random search, but significant enough to get a good convergence.

In each generation, new individuals have to be checked to ensure that they satisfy the constraint in the original problem, namely, the number of 1s is equal to number of faults allowed. We include this constraint in the evaluation step – we penalize the outliers by assigning zero score, to exclude them from the next generation.

Figure 7 shows the success rate of misclassification when the neurons are selected by using GA, compared to random selection. It shows that especially in case of Sigmoid and ReLu, careful choice of which neurons to fault can increase the success rate significantly. To summarize, the result can be improved up to 62% in case of ReLu, 31% in case of Sigmoid, and 20% in case of tanh.

Table 3: Training/testing accuracy of DNNs used in evaluation.

<table>
<thead>
<tr>
<th>Target</th>
<th>ReLu</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train. Acc.</td>
<td>97.2</td>
<td>99.1</td>
</tr>
<tr>
<td>Test. Acc.</td>
<td>97.4</td>
<td>97.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Sigmoid</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train. Acc.</td>
<td>99.2</td>
<td>99.0</td>
</tr>
<tr>
<td>Test. Acc.</td>
<td>98.0</td>
<td>97.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Tanh</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train. Acc.</td>
<td>99.0</td>
<td>99.0</td>
</tr>
<tr>
<td>Test. Acc.</td>
<td>98.0</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Table 4: Structure of the DNN used in evaluation for attacking the whole network.

<table>
<thead>
<tr>
<th>Layer</th>
<th>No. of neurons</th>
<th>Activation function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input layer</td>
<td>784</td>
<td>-</td>
</tr>
<tr>
<td>Hidden layer 1</td>
<td>200</td>
<td>target activation function</td>
</tr>
<tr>
<td>Hidden layer 2</td>
<td>200</td>
<td>target activation function</td>
</tr>
<tr>
<td>Hidden layer 3</td>
<td>200</td>
<td>target activation function</td>
</tr>
<tr>
<td>Hidden layer 4</td>
<td>200</td>
<td>target activation function</td>
</tr>
<tr>
<td>Output layer</td>
<td>10</td>
<td>Softmax</td>
</tr>
</tbody>
</table>

Table 5: Training/test accuracy of DNNs used in evaluation for attacking the whole network.

<table>
<thead>
<tr>
<th>Activation function</th>
<th>Training Accuracy</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReLu</td>
<td>99.9</td>
<td>98.7</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>99.3</td>
<td>97.6</td>
</tr>
<tr>
<td>Tanh</td>
<td>99.9</td>
<td>98.1</td>
</tr>
</tbody>
</table>
Fig. 7: Evaluation results using genetic algorithm (GA) to select neurons versus random selection.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the first physical fault injection attack technique on the major activation functions of deep neural networks. We stated implications how such attack can alter the behavior of targeted network, together with simulations. Our results demonstrate practicality of the attack on ReLu, sigmoid, and tanh.

It will also be interesting to look at possible countermeasures. While there are already techniques available that correct non-malicious alterations of the processed values in DNN (due to environmental conditions) [35], the fault tolerance techniques against malicious entities have to be developed in the same way as in the area of applied cryptography [36], [37], [38].

REFERENCES

0. Sensor requires power during the operation, therefore there is a power overhead of ≈ 5.3% per 16-bit multiplier.

