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Abstract. We present UniqueChain, a proof-of-stake based blockchain proto-
col that is secure against a mildly adaptive adversary in open setting, where
newly joining parties can be initialized securely without any additional trusted
assumptions. What’s more, UniqueChain provides secure best local chains for
existing honest parties and achieves fast messages (transactions) confirmation.
Security of protocol holds if majority of overall stakes are controlled by honest
parties.

To achieve the above guarantees, we formalize a secure bootstrapping mecha-
nism for new parties, a best local chain selection rule for existing honest parties
and propose a new form of two-chain structure that realizes uniqueness of the
chains, which contain messages, held by honest parties. Further, we prove that
UniqueChain satisfies security properties as chain growth, chain quality, com-
mon prefix and soundness, and two additional properties as uniqueness and high
efficiency.
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1 Introduction

Blockchain, the technique of the most concern, has been investigated in various fields
in recent years and believed to make huge changes to the future world. Bitcoin [23]
is the first successful implementation of blockchain. Parties compete to extend chains
by solving a computational puzzle (proof-of-work), which is a moderately hard hash
inequality [11, 26], and the opportunity of a party to be winner is related to the amount
of computational power that he has invested. The core of bitcoin system has been
extracted and analyzed under specific assumptions in [16, 24, 17]. These works show
that, assuming the majority of overall computational power are controlled by honest
parties, bitcoin system satisfies security properties as chain growth, chain quality and
common prefix.
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The proof-of-work (PoW) based protocols typically possess the following character-
istics. There is no free block, which means that any valid block must consume computa-
tional power, so it is rational that a party extends one chain all the time. Under honest
majority assumption, the longest chain selection rule enables the existing parties who
have already participated in and maintained protocol execution and the new parties
who intend to join protocol execution to select local chains correctly. So PoW based
protocols can scale to a large network in open setting.

However, the PoW based protocols have wasted a huge amount of computational
power, which is non-recyclable physical resource. Proof-of-stake (PoS) [2] is the most
desirable mechanism to replace PoW, which enables a party to provide a proof that
he is elected as leader to extend the chain. Precisely, the process of leader selection
is related to some properties of the parties themselves, such as the balance of their
accounts. The probability of being permitted to issue a block is proportional to the
stake a party has in the system, as reported by the blockchain (ledger) itself.

It is attractive to design a PoS based blockchain protocol that is as secure as
PoW based ones. Unfortunately, we have got the negative results of constructing a
blockchain protocol in open setting via PoS mechanism without any additional trust
[3]. By nothing-at-stake attack [?], the adversary can generate an alternative chain even
if only minority of stakes are controlled by him, which may lead honest parties to reject
the honest chains (the chains held by honest parties) and tend to the malicious one. The
secure best chain selection rule for the existing honest parties and secure initialization
mechanism for new parties are necessary to identify the correct version of local chains.
Further, efficiency has always been a problem of constructing blockchain protocols. It
is meaningful to achieve PoS based consensus among honest parties in open setting
and, to this end, there are three challenges, posterior corruptions, secure initialization
of new parties and low efficiency, to be handled. Here, we have the interesting question:

Is it possible to construct a fast and provably secure proof-of-
stake based blockchain protocol in the open setting, which provides

secure initialization for new parties without any trusted assumptions?

1.1 Our Contributions

In this paper, we obtain a positive result of the above question. First, we introduce
three main challenges of designing PoS based protocols in open setting.

– Posterior Corruptions. PoS mechanism is vulnerable to posterior corruption
that the adversary can rewrite history freely by corrupting the elected honest par-
ties at some point in the future. It means that the adaptive adversary can generate
an alternative blockchain without losing anything to mislead the existing honest
parties to make wrong selections.

– Secure Initialization of New Parties. As discussed above, posterior corrup-
tions attack enables the adversary to hold a chain that is indistinguishable from
the existing honest parties’. This results in the newly joining parties choosing the
wrong version of initial states (chains) successfully.
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– Low Efficiency. Efficiency has always been a problem of blockchain protocols
to be solved. Note that, the existing schemes can only guarantee a common prefix
of chains held by honest parties and the main reasons can be concluded as (1).
more than one parties may be elected synchronously or an elected adversary may
behave maliciously (i.e., hide new blocks or broadcast more than one blocks at the
same time in PoS based protocols), so it is unavoidable that honest parties hold
different views of the latest several blocks, and (2). messages depend tightly on a
newly created block. Consequently, it is impossible to confirm messages immediately
when the valid block with messages is received by honest parties. We stress that
the major cause is that, in honest parties’ views, there are more than one eligible
parties to handle messages at some time during protocol execution.

To handle the above challenges, we present UniqueChain, a provably secure PoS
based protocol that provides secure local chain selection rule for existing parties and
secure initialization for new parties without any additional trust. Using a new form
of two-chain structure , our UniqueChain, for the first time, achieves fast message
confirmation that the valid block contains messages can be confirmed as soon as it is
received by all honest parties. What’s more, our two-chain structure presented in this
paper is of independent interest, since it is applicable to both PoW and PoS based
protocols.

Our main ideas and results are briefly summarized in the following outline.
Handling Posterior Corruptions. Our protocol guarantees security of chains

held by existing honest parties even if the mildly adaptive adversary re-issues past
blocks by declaring corrupt instructions, which takes a while to be effective, during
protocol execution. Inspired by the solution in [3], we design a best chain selection
protocol BestV alid′ (Fig.6). By it the existing honest parties can pick out the best local
chains among the set of chains received from network, which contains the simulated
chains created by adversary. Intuitively, the existing honest parties can compare local
chains with the ones received from network and the malicious chains can be identified
easily since, when the corrupt instruction takes effect, the point of forks diverges from
honest chains too far back. What’s more, BestV alid′ can resist the attack that, in PoS
based protocols, the elected adversary may create and broadcast multiple valid blocks
at the same time to fork honest parties’ local chains.

Achieving Secure Initialization of Newly Joining Parties. A critical problem
of designing PoS based protocols in open setting is achieving secure initialization of new
parties. [3] solves this issue by providing new parties with a trusted list of parties, and in
[1], new parties are initialized securely from genesis block, which contains initial parties.
We can see that, in addition to the assumption that honest parties control majority
of overall stakes, these given solutions require an additional trust that providing new
parties with a trusted list of parties. Inspired by these solutions, we aim to discard the
additional trust and propose a mechanism that only depends on the honest majority
assumption.

Informally, our designed mechanism allows new parties to request and obtain ini-
tial states for secure joining, which consists of two new types of transactions called
requesting transaction Txr and responsive transaction Tx′r, and a best chain selec-
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tion protocol BestV alid′′ (Fig.7). The main idea is to let new parties send requests
for secure joining by broadcasting a defined Txr and obtain a reliable set of chains
from the corresponding Tx′r broadcasted by some eligible parties who are neither fixed
nor predictable, firstly. And then with the reliable set of chains and a set of chains
received from network, the new parties determine initial chains via executing protocol
BestV alid′′. The reason is that we should ensure the new parties to distinguish the
chains of honest parties from the malicious ones. We note that the new parties can
join at any time during protocol execution. More details are showed in section 2.2 and
BestV alid′′ (Fig.7).

Achieving High Efficiency of Handling Messages. In PoS based block-
chain protocol, there are two main ways to handle messages (1) an elected party creates
a block with payloads [20, 9, 1], and (2) an elected party first creates an empty block,
then this block is viewed as a random beacon to select a party to generate a block with
payloads [15, 10]. The processes of handling messages depends on the newly created
blocks tightly, so messages will be confirmed if the backed block has been confirmed by
honest parties. As discussed above, honest parties cannot hold a consistent view of the
latest several blocks. Consequently, the newly created valid blocks cannot be confirmed
immediately as soon as they are received by all honest parties, so are the messages
packed in the blocks.

In our protocol, we divide time into fixed size unites called slot. Fast messages
confirmation means once a valid block with messages is received by an honest parties,
then it must be confirmed finally by all honest parties within a slot (in slot-synchronous
network) without waiting for being backed by several blocks. To achieve fast messages
confirmation, we propose a new form of two-chain structure that one is leader chain
consisting of leader blocks and the other is transaction chain consisting of transaction
blocks. In our two-chain structure, transaction block with payloads links to a confirmed
empty leader block, instead of a newly created one. Formally, an elected party is allowed
to create an empty leader block firstly, and then deciding whether he is eligible to issue a
transaction block is decided by whether his leader block has been confirmed by honest
parties.

Obviously, if all honest parties hold a consistent view of the party who is eligible
to create block, then they must hold a same view of the current valid block. In our
protocol, the latest confirmed leader block determines the party who is eligible to
extend the current transaction chain. As a result, based on the common prefix property
of leader chains held by honest parties (section 5.1), there is at most one valid newly
created transaction block in honest parties’ views at any time (Lemma 6), which
determines uniqueness of honest parties’ transaction chains. Note that the attack that
the eligible adversary broadcasts multiple valid transaction blocks to mislead honest
parties does not work here, as these blocks with the same creator and created time
(BestV alid′,Fig.6).

We stress that transaction chain is extended until the length of leader chain is at
least K+2 ∈ N, where K is parameter of common prefix property, and these two chains
will not grow together in that the elected adversary may not create or broadcast valid
blocks. In short, in our protocol, honest parties hold forked leader chains that enjoy a
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common prefix and an unique transaction chain that is at least K + 1 blocks shorter
than the corresponding leader chain.

Main Results. Putting all the above together, we construct a secure PoS based
blockchain protocol, UniqueChain (Fig.2). Our protocol tolerates a mildly adaptive ad-
versary to achieve secure best local chain selection for existing honest parties and secure
initialization for new parties without any additional trust. Furthermore, UniqueChain
with a new form of two-chain structure achieves fast messages confirmation. Finally,
with overwhelming probability, we prove that the chains held by honest parties satisfy
four fundamental security properties, as chain growth, chain quality, common prefix
and soundness, and two additional properties as uniqueness and high efficiency (section
5.1).

1.2 Related Work

Chaum introduces the first e-cash system with a central bank[8]. Bitcoin is the first
fully decentralized currency system [23], which brings us the first scalable consensus
protocol in open setting, where parties can join or leave freely. Recently, a number of
works focus on security of bitcoin system. Garay et al. formally analyze the core of
Nakamoto’s blockchain protocol in synchronous network [16] and propose two security
properties as chain quality and common prefix. [21] defines chain growth property. Pass
et al. extend their works to asynchronous network [24]. In [17], Garay et al. further
consider the difficulty target recalculation function in adaptive setting. Chain quality,
chain growth and common prefix have been considered as the fundamental properties
of blockchain protocols. [12, 14, 27, 28] analyze bitcoin system in rational setting.

Despite the success of PoW based blockchain protocols, they have some inevitable
flaws, i.e., consuming a huge amount of non-recyclable physical resources. It is mean-
ingful to construct blockchain protocols that rely on environment-friendly resource.
PoS mechanism [2] enables a party to prove ownership of some stakes and a number of
works have been studied PoS based blockchain protocols.

Sleepy [25] studies the distributed protocols in a sleepy model of computation where
parties can be on-line (alert) or off-line (asleep), and considers a fixed stakeholder
distribution and sporadic participation at any given point. Ouroboros, presented in
[22], is the first PoS based blockchain protocol with rigorous security guarantees. But
it does not consider sporadic participation that parties are fixed in genesis block. The
elegant work Algorand [18] is an adaptive secure PoS based blockchain protocol. But it
requires the elected committee members being online and makes progress if majority of
committee members do show up. What’s more, it only be secure against 1

3 adversary,
because the current committee runs a Byzantine agreement protocol. Snow White [3]
is the first to formally articulate the robust requirements for PoS based blockchain
protocols. A negative result is concluded that it is impossible for a newly joining party
correctly identifying the true version of history without additional trusted advices. [9]
presents the first PoS based blockchain protocol, Ouroboros Praos, that can against a
fully adaptive adversary in semi-synchronous setting with cryptographic techniques as
verifiable random function and forward secure digital signature scheme. [1] improves
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Ouroboros Praos to achieve dynamic availability as bitcoin system. In this protocol,
the new or off-line parties can safely (re-)join and bootstrap their local chains from
genesis block, which includes initial parties who provide their local states for new
parties. However, [1] ignores a condition that the adaptive adversary may corrupt most
of initial parties and provide the wrong version of local states for the requesting parties.

The two-chain structure blockchain protocols have been studied in recent works. [10]
combines PoW and PoS mechanisms and proposes a two-chain structure protocol, which
consists of two types of chains as PoW-chain and PoS-chain, that can against a mali-
cious majority of computing power in open setting. [15] shows a PoS based blockchain
with two chains to mimic PoW based blockchain. [13] achieves high throughput via
proposing two types of blocks called key-block and micro-block, in which the current
leader do not stop handling transactions (micro-block) until the next leader is elected
(key-block). In these proposed schemes, the blocks with messages (transactions) link
to the newly created empty blocks, which have not been confirmed by honest parties.
So that they only guarantee common-prefix property of honest parties’ local chains
and messages (transactions) are confirmed only when the corresponding block is deep
enough. Consequently, fast messages confirmation is still not achieved.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. In section 2, we present the pre-
liminaries of our protocol. The ideal functionalities used in our protocol are showed in
section 3. Then we give the detailed construction of our protocol in section 4. Security
analysis is in section 5. Conclusion is presented in section 6.

2 Preliminaries

In this section, we follow Canetti’s formulation of the multiparty protocol execution
[6, 7] and Pass’s cryptographic model for blockchain protocol [24] to give the formal
model of protocol execution and some related definitions.

2.1 The Model of Protocol Execution

Epoch-Based Execution. Protocol executes in disjoint and consecutive time intervals
called epoch. Concretely, time is divided into fixed size unites called slot (denoted by
sl) and each epoch consists of R ∈ N slots. We denote the ith (i > 0) epoch as
ei = {sleij , j ∈ {1, ..., R}} and e0 = {sle01 , sl

e0
2 } is initial epoch. We assume that parties

holds almost synchronous local clock. For each epoch ei (i > 0), there are specific
random value nonceei for hash functions H,H∗ (section 2.2), and difficult target T ei

for stable growth of chain. What’s more, nonceei and T ei (i > 1) are determined by the
random values and distribution of stakes in transaction blocks of ei−1. And noncee1

and T e1 are determined by initial parties in e0.
The Parties. In open setting, parties can join or leave the network safely without

any permissions. We only consider the parties who are maintaining or intend to main-
tain protocol execution. It is denoted by E all parties who have caught up with, and
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by J all parties who intend to catch up with protocol execution. When a party P ∈ J
is initialized successfully, then E = E ∪ {P} and J = J/{P}. Further, E consists of
honest parties H and corrupted parties C. Since the ordinary parties, who do nothing
but enjoy the services provided by the system, do not affect the security of system, we
ignore them in what follows.

The Adversary. In our epoch-based protocol, a mildly adaptive adversary is al-
lowed to dynamically corrupt parties that his corrupt instruction takes effect after
δ > R + ε (ε > 0) slots since it is sent. Parameter δ guarantees the adversary can
control the whole leaders of the current epoch with negligible probability, even if he
can determine the leaders at the beginning of the epoch (the time that leader election
function is determined). We set a secure duration ε so that the block created by the
last honest leader of an epoch to be confirmed by all honest parties before the corrupt
instruction takes effect.

Note that parameter δ should be set reasonably in that (1). a small δ means stronger
security, but it will lead existing honest parties to reject honest chains, and (2). a big
δ means that protocol is secure with a relative static adversary.

To describe easily, we borrow flat model from [16] where each party holds one unite
of stake and security holds if majority of existing parties are honest. There is a constant

ϕ > 0 such that, during protocol execution, |H||C| ≥ 1 + ϕ. Moreover, we assume that

|E| · p << 1, where p = T ei

2k
(security parameter k) is probability that a party with one

unit stake is elected at a given slot of ei.

FUNCTIONALITY FNET

FNET is parameterized by ∆, interacts with an ideal adversary S and a set of parties P ⊆ J∪E
. At slot sleij (i ∈ N, j ∈ {1, ..., R}), it proceeds as follows.

– Upon receiving input (Broadcast,m) from a party Pi′ ∈ P, sends (Broadcast, Pi′ ,
m) to S and records (Pi′ ,m, b = 0, sleij ).

– Upon receiving (Broadcast,m, P ′i′ , t) from S, where P ′i′ ∈ P, then
• if there is a record (Pi′ ,m, b = 0, sleij ) and t 6 sleij +∆, then sends (m,P ′i′) to all the

other parties at time t and sets b = 1.
• else, if t > sleij +∆, then sends (m,P ′i′) to all the other parties at time sleij +∆ and

sets b = 1.
• else, ignores the message.

Fig. 1. The Communication Network Functionality FNET

Communication Network. In blockchain protocol, parties communicate with
each other via a diffusion mechanism that guarantees messages sent by a party can be
eventually received by the other parties. We assume a slot-synchronous network and
parties (in E or J) have access to a functionality FNET that is parameterized with an
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upper bound of network latency ∆. To guarantee that messages sent by honest parties
are delivered within a slot, ∆ is not more than one slot. FNET proceeds as follows.
Upon receiving an instruction to diffuse messages from a party at slot sleij , then FNET
asks adversary for delivery time. If the specified time t ≤ sleij + ∆, then set delivery
time as t′ = t, else t′ = sleij +∆. Note that adversary can modify the source of messages
and no messages delivery is delayed by more than one slot. FNET is described in Fig.1.

2.2 Notations

Cryptographic Techniques.

1. Collision-Resistant Hash Functions H and H∗.
– H : {0, 1}∗ → {0, 1}k, where k is security parameter. H is used to determine

the leaders of each slot
– H∗ : {0, 1}∗ → {0, 1}k′ , where l̃ = 2k

′
is the expected number of parties being

elected during a given epoch. H∗ is used to determine the serial number of
requesting transaction’s output that the corresponding responsive transaction
responds to.

In each epoch ei, there is an unique random seed nonceei for H and H∗.
2. Public Key Encryption Scheme. (Gen,Enc,Dec) is denoted as a semantically secure

public key encryption scheme.
3. Digital Signature Scheme. (Gen, Sig, V er) is denoted as an unforgeable digital sig-

nature scheme.
4. Commitment Scheme. (Com,Open) is denoted as a commitment scheme with se-

curity properties as correctness, binding and hiding.

Two Types of Blocks. In our protocol, we propose two types of blocks B =
(h−1, sl, pk, σ) and B̃ = (h̃−1, h−1, sl, pk,X, nonce, σ). leader block B is an empty
block created by elected parties of each slot and transaction block B̃ contains payloads
created by a party whose former leader block B′ has been confirmed by all honest
parties.

– Bi′ = (h−1, sl
ei
j , pki′ , σi′) is valid (V(Bi′) = 1) if:

• h−1 = H(Bi′−1). Bi′ links to its parent leader block correctly.
• Bi′ .sl > Bi′−1.sl. Leader chain with a strictly increasing sequence of time.
• H(nonceei , pki′ , sl

ei
j ) < s ∗ T ei . Party Pi′ with address pki′ and stake s is the

leader of sleij exactly, where nonceei determines the leader election function of
ei, T

ei is the difficult target of ei and s = 1.
• V erpki′ ([Bi′ ], σi′) = 1. The signature σi′ on (h−1, sl

ei
j , pki′) under Pi′ ’s signing

key is correct.

– B̃j′ = (h̃−1, h
′

−1, sl
ei
j , pkj′ , X, noncej′ , σj′) is valid (Ṽ(B̃j′) = 1) if:

• h̃−1 = H(B̃j′−1). B̃j′ links to its parent transaction block correctly.

• B̃j′ .sl > B̃j′−1.sl. Transaction chain with a strictly increasing sequence of time.

• h′−1 = H(B′). B̃j′ links to its parent leader block B′ correctly.
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• Fresh(B′) = 1. B′ is the latest leader block confirmed by honest parties up to
the beginning of sleij .

• B̃j′ .pk = B′.pk. The creator pkj′ of a confirmed leader block B′ is eligible to
create a transaction block.

• V (X) = 1. The messages packed in transaction block are valid.
• noncej′ ∈R {0, 1}k. A random value that is sampled uniformly from {0, 1}k

and used for generating nonceei+1 (i > 0).
• V erpkj′ ([B̃j′ ], σj′) = 1. The signature σj′ on (h−1, h

′

−1, sl
ei
j , pkj′ , X) under Pj′ ’s

signing key is correct.

In our protocol, a blockchain C∗ = {C, C̃} consists of two chains called leader chain
C = B0, B1, ..., Bn and transaction chain C̃ = B̃1, ..., B̃m, where B0 is genesis block
created by initial parties in epoch e0, Bn and B̃m are the heads of C and C̃. Let
len(C) = n+1 and len(C̃) = m denote the length of C and C̃ respectively. What’s more,
n−m ≥ K, where K ∈ N is the parameter of common prefix property. Let Cdκ denotes
a chain by pruning the κ rightmost blocks of C and if κ ≥ len(C), then Cdκ = ε is an
empty string. C1 � C2 means that C1 is a prefix of C2. C∗ is valid if V(Bi) = 1 and
Ṽ(B̃j) = 1, where Bi ∈ C (i ∈ {1, ..., n}) and B̃j ∈ C̃ (j ∈ {1, ...,m}). More formally,
C∗ is pictured in Fig.2.

Fig. 2. UniqueChain Structure
The black arrows denote leader chain C and the blue arrows denote the transaction chain
C̃. Dark blue blocks denote the blocks that have been confirmed by honest parties and the
red blocks denote the unstable blocks. C̃ starts when block B1 has been backed by K blocks.
Block Bi+1 is the latest confirmed leader block held by honest parties and n−m ≥ K. Note
that C and C̃ do not grow synchronously at some slots.

Three Types of Transactions. For secure joining of new parties who is eligible
for maintaining system execution, we introduce three types of transactions. Txg is
general transactions between payer and payee, Txr is requesting transaction that
enables the new parties to send the requesting messages for secure joining and Tx′r is
the corresponding responsive transaction that enables the most recent elected parties
to provide new parties with local leader chains.
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– Txg = (h−1, v, sl, π, b = 0, ω). General transaction denotes Pi′ pays for Pj′ , where
h−1 is index of the spent transactions Tx′g, v is transaction value, sl ∈ ei (i > 0)
denotes the time that Txg is created, π specifies the conditions that Txg can be
spent, b = 0 indicates that Txg is a general transaction and ω is witness to make
Txg be evaluated true (Tx′g.π(Txg) = 1).

– Txr = (h−1, v, sl, π, b = 1). Requesting transaction with value v = 0, no input
(h−1 = ∧) and l̃ outputs created by a new party P who intends to join and maintain
protocol execution at slot sl ∈ ei (i > 0). l̃ = p∗|E|∗R is expected number of elected
parties in epoch ei, π is used to verify the corresponding responsive transactions
and b = 1 denotes Txr is a transaction for initialization of new parties.

– Tx′r = (h−1, v, sl, b = 1, ω). Responsive transaction of Txr broadcasted by party
P ′ with address pk′ at slot sl ∈ ei (i > 0) is valid (Txr.π(Tx′r) = 1) if
• h−1 is index of Txr and v = 0.
• Tx′r.sl = Txr.sl + 1 for Txr.sl < sleiR or Tx′r.sl = sl

ei+1

1 for Txr.sl = sleiR .
• ω = (sleij , c, σ)
∗ H(nonceei , pk′, sleij ) < T ei . P ′ is a leader of slot sleij of epoch ei.
∗ c = Encpk(C′loc). The encryption of the latest l > K consecutive blocks
C′loc of P ′’s local leader chain Cloc under P ’s public key pk.

∗ V erpk′([Tx′r], σ) = 1. The signature on (h−1, v, sl, b, sl
ei
j , c) under P ′’s sign-

ing key is correct.
• H∗(nonceei , pk′, sleij ) mod l̃ + 1 = i′. Tx′r responds to the i′th (i′ ∈ {1, ..., l̃})

output of Txr.

Remarks. With the common-prefix property of leader chains and uniqueness prop-
erty of transaction chains held by honest parties (section 5.1), and the tight relation
between leader chains and transaction chains, new parties can be initialized securely
with leader chains received from the corresponding responsive transactions and a set
of chain pairs received from the network (Fig.7). Here we explain that our method is
practical. (1). It is feasible to treat new parties as ordinary users to broadcast trans-
actions. (2). Txr with value v = 0 is just treated as a mechanism to help new parties
to initiate quickly and securely, and it is not a permission for joining the system. Ex-
isting honest parties are willing to provide new parties with local states honestly so
that increases honest parties’ power, and further guarantees security of system and
honest parties’ interests. (3). In slot-synchronous network, Txr must be received by
honest parties at the end of Txr.sl and the corresponding responsive transactions Tx′r
broadcasted by honest parties must be received by new parties at the end of Tx′r.sl,
so that new parties can be initialized securely within two slots. (4). Under honest
majority assumption, more than half of elected parties of an epoch are honest and
H∗(nonceei , pk′, sleij ) mod l̃ + 1 = i′ determines that P ′ can only respond to the i′th
output of Txr successfully, so that more than half of chains obtained by new parties are
provided by honest parties. (5). c ensures fairness among parties that only new parties
who have sent the requesting transactions can get the corresponding set of chains and
c can be not verified publicly in that (4) guarantees secure initialization of new parties
(BestV alid′′, (Fig.7)). (6). Transactions Txr and Tx′r can be not handled by leaders
in that they without value are not transferred further as general transactions and their
validity is guaranteed by the honest majority assumption (4).
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2.3 Overview of Protocol ΠUC

In this section, we present a high overview of protocol ΠUC . In our protocol, the two
chains C and C̃ are plaited tightly. Precisely, as described in section 2.2 and pictured
in Fig.2, a leader block Bi links to its former block Bi−1, a transaction block B̃j links

to its former block B̃j−1 and a confirmed leader block B′. Informally, our protocol
consists of four phases and proceeds as follows.

1. Initialization. In initial epoch e0 = {sle01 , sl
e0
2 }, initial parties agree on a diffi-

cult target T e1 and a random value noncee1 for epoch e1 together, where T e1 is
determined by the distribution of initial parties’ stakes and noncee1 is a random
beacon for hash functions of epoch e1. More concretely, each party Pi first com-
putes and broadcasts the commitment of his stake si and uniformly selected values
ri, r

′
i as Com(si, ri; r

′
i). Then he collects the received commitments at the end of

sle01 , opens and broadcasts messages as (si, ri). Finally, he collects all the valid
openings and computes the genesis block as B0 := (T e1 , noncee1) locally at the end
of sle02 . What’s more, based on the uniqueness property of transcation chains held
by honest parties, T ei and nonceei are determined by the stakes distribution and
the nonce in transaction blocks of epoch ei−1 (i > 1) respectively. During proto-
col execution, for initialization of newly joining parties, they are bootstrapped by
broadcasting the defined requesting transactions Txr.

2. Fetching Information from Network. During protocol execution, parties collect
information from network that consists of transactions, blockchains, ect. At slot
sleij , the elected parties of ei extract the set of requesting transactions and provide
the new parties with local states (chains) by broadcasting the defined responsive
transactions. The elected parties of sleij extract the set of chains. The parties whose
former leader blocks have been backed by K blocks extract the set of chains and
general transactions. The new parties extract the set of corresponding responsive
transactions to get a trusted set of chains.

3. Update Local State. With the information received from network, the existing
parties determine the best local state via executing protocol BestV alid′

(Fig.6) and the new parties execute protocol BestV alid′′ (Fig.7) to determine the
initial state (chain).

4. Extend Chain. At slot sleij , each existing party tries to extend local chain. Formal-

ly, party Pi′ with local chain C∗i′ = (Ci′ , C̃i′) first determines whether he is elected
as a leader by computing H(nonceei , pki′ , sl

ei
j ) ≤ T ei and if it is true, he creates

a leader block B to extend Ci′ . At the same time, if a leader block B′ created by
Pj′ with local chain C∗j′ = (Cj′ , C̃j′) has been backed by K blocks in his local chain,

then he creates a transaction block B̃ to extend C̃j′ . Finally, the elected parties
broadcast their updated local states (chains).

2.4 Security Properties

The security properties of blockchain protocols have been well defined in [16, 21, 24].
In our protocol, we consider chain growth and chain quality of the leader chains and
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transaction chains held by existing honest parties, common prefix of the leader chains
held by existing honest parties and chain soundness [15] of chains held by new parties.

Definition 1 (Chain Growth). Consider protocol ΠUC , chain growth property with
parameters g and g̃ states that during protocol execution EXECΠUC ,A,Z , for any two

existing honest parties P1 and P2 with local chains C∗1 = {C1, C̃1} at slot sl and C∗2 =
{C2, C̃2} at slot sl′ respectively. Let t = sl′−sl > 0, then it holds that len(C2)−len(C1) ≥
g · t and len(C̃2)− len(C̃1) ≥ g̃ · t, where g ≥ g̃ are the lower bound of chain growth rate.

Definition 2 (Chain Quality). Consider protocol ΠUC , chain quality property with
parameters µ ∈ (0, 1), µ̃ ∈ (0, 1) and l ∈ N states that during protocol execution
EXECΠUC ,A,Z , for any existing honest party P with local chain C∗ = {C, C̃}. It holds

that for any large enough l consecutive blocks of C and C̃, the ratios of blocks created
by adversary are at most µ and µ̃ respectively.

Definition 3 (Common Prefix of leader chain). Consider protocol ΠUC , common pre-
fix property with parameter K ∈ N states that during protocol execution EXECΠUC ,A,Z ,

for any two existing honest parties P1 and P2 with local chains C∗1 = {C1, C̃1} at slot sl

and C∗2 = {C2, C̃2} at slot sl′ respectively. Let sl′ ≥ sl, then it holds that CdK1 � C2.

Definition 4 (Soundness). Consider protocol ΠUC , soundness property with parame-
ter K ∈ N states that during protocol execution EXECΠUC ,A,Z , for a new party P1

initialized with chain C∗1 = {C1, C̃1} and an existing honest party P2 with local chain

C∗2 = {C2, C̃2} at slot sl, then it holds that CdK1 � C2, CdK2 � C1 and C̃1 = C̃2.

Based on the above four properties, we prove that the transaction chains held by
honest parties satisfy uniqueness and further high efficiency of handling messages is
achieved.

Definition 5 (Uniqueness of transaction chain). Consider protocol ΠUC , uniqueness
property states that during protocol execution EXECΠUC ,A,Z , for any two honest par-

ties P1 and P2 with local chains C∗1 = {C1, C̃1} and C∗2 = {C2, C̃2} at the end of slot sl
respectively. Then it holds that C̃1 = C̃2.

Definition 6 (High Efficiency). Consider protocol ΠUC , high efficiency property states
that during protocol execution EXECΠUC ,A,Z , if a valid transaction block B̃ has been

received by an existing honest party P at slot sl, then B̃ will be received and confirmed
finally by all the existing honest parties at the end of sl.

3 Ideal Functionalities

Following Canetti’s formulation of the real world protocol executions [4], we present
our blockchain protocol ΠUC (UniqueChain) in the {FinitFres,FNET }-hybrid model.
Formally, the execution ΠUC is directed by an environment Z(1k) with security pa-
rameter k. Z activates a number of parties (stakeholders) with inputs X. Moreover, Z
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communicates with a mildly adaptive adversary A who controls a certain number of
parties freely. In this section, we introduce the ideal functionalities used in our protocol
and their implementations are presented in appendix A and B.

Finit. At the beginning of protocol execution, a genesis block that includes diffi-
cult target T e1 and random value noncee1 of epoch e1 is created. Formally, Finit is
parameterized by the initial parties P1, ..., Pn and their respective stakes s1, ..., sn, and
proceeds as follows. In initial epoch e0 = {sle01 , sl

e0
2 }, based on the stakes distribution

of initial parties, Finit computes T e1 and choose a random value noncee1 ∈R {0, 1}k,
and then generates genesis block as B0 = (T e1 , noncee1). Now, the initial parties are
initialized and get into epoch e1 to start protocol execution. In non-initial epoch, upon
receiving the request of secure joining from new parties, Finit returns B0. The formal
description of Finit is given in Fig.3.

Fres. In non-initial epoch, each party has access to Fres to determine if he is eligi-
ble to create a leader block or a transaction block and ask for the validity of blocks.
Formally, each party first sends the register command for joining and unregister com-
mand for leaving the execution. At slot sleij (i > 0), Fres grants each registered party
with one unit of stake and sets a party as leader to create a leader block with prob-
ability p. What’s more, Fres maintains a set (Ctr,P) = {(Ctreij ,P

ei
j )}i>0, j∈{1,...,R},

where Ctreij is a counter and initialized as 0, and Peij is a set of elected parties at sleij
and initialized as an empty set φ. If at least one parties are elected at sleij , then set
Ctreij = Ctreij−1 + 1 and adds the corresponding elected parties to Peij , otherwise, set
Ctreij = Ctreij−1 and Peij = φ. Further, if Ctreij − K = Ctreij′ > 0 and Peij′ 6= φ, then
Fres uniformly selects a party P ∈ Peij′ to create a transaction block, where Ctreij is
the current counter. At any time, each party has access to the verification process of
Fres to verify blocks. The formal description of Fres is given in Fig.4.

FUNCTIONALITY Finit

Finit is parameterized by initial parties P1, ..., Pn and their respective stakes s1, ..., sn, interacts
with initial parties, new parties and ideal adversary S. Upon receiving any forms of messages,
it first gets the current slot from local clock and proceeds as follows.

– Upon receiving (Initialize, Pi′ , si′) from Pi′ at sleij (i ∈ N, j ∈ {1, ..., R})
• if i = 0 and j = 1, then
∗ computes the difficult target T e1 , samples a random value noncee1 ∈R {0, 1}k

and creates a genesis block B0 = (T e1 , noncee1), then stores B0 and sends
(Initialized,B0) to Pi′ at sle02 .

• else, if i > 0 and B0 has been created, then sends (Initialized,B0) to Pi′ .
• else, sends (Error) to Pi′ .

Fig. 3. Initialization Functionality Finit
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FUNCTIONALITY Fres

Fres with probability p, security parameter k, and interacts with an ideal adversary S, parties
Pi′ ∈ E (i′ ∈ {1, 2, ..., |E|}) and Pi′′ ∈ J ∪ E (i′′ ∈ {1, 2, ..., |J |+ |E|}).

– Registration
1. Upon receiving (Register, Pi′) from party Pi′ , if there is a record (Pi′ , rei′ = 1),

then ignore the message. Otherwise, send (Register, Pi′) to S. Upon receiving
(Registered, Pi′) from S, then record (Pi′ , rei′ = 1) and send (Registered) to Pi′ .
(Pi′ registered)

2. Upon receiving (Unregister, Pi′) from party Pi′ , if there is no record (Pi′ , rei′ =
1), then ignore the message. Otherwise, update record (Pi′ , rei′ = 0) and send
(Unregistered) to Pi′ . (Pi′ unregistered)

– Stake Election. At slot sleij (i > 0, j ∈ {1, ..., R}).
1. Creating Leader Block: we set Ctre11 = 0 and Ctreij = Ctreij−1 or Ctreij = Ctr

ei−1

R

for i > 1, j = 1, and Pei
j = φ. Every registered party Pi′ is granted with one unite

stake seij,i′ = 1.
• Upon receiving (L-Elect, Pi′) from Pi′ , proceed as follows.
∗ If there is a record (Pi′ , rei′ = 1, seij,i′ = 1), then

· with probability p, set Pei
j = Pei

j ∪ {Pi′}, record the entry ((Pi′ , rei′ =
1, seij,i′ = 0),Pei

j ) and send (L-Elected, Pi′ , f = 1) to Pi′ . (Pi′ is elected)

· with probability 1− p, record the entry ((Pi′ , rei′ = 1, seij,i′ = 0),Pei
j ) and

send (L-Elected, Pi′ , f = 0) to Pi′ . (Pi′ is not elected)
∗ Otherwise, send (L-Elected, Pi′ , f = 0) to Pi′ . (Pi′ is not elected)

If Pei
j 6= φ, then set Ctreij = Ctreij + 1. Update record as (Pei

j , Ctr
ei
j ). (Record

the elected parties Pei
j and the corresponding counter Ctreij of sleij )

• Upon receiving (Compute,B−1, Pi′) from Pi′ . (Compute the index of the former
leader block B−1)
∗ If Pi′ ∈ Pei

j and there is a record (B−1, h−1), then send (Computed, h−1) to

Pi′ . Otherwise, choose a random value h−1 ∈ {0, 1}k, record (B−1, h−1) and
send (Computed, h−1) to Pi′ .

∗ Otherwise, send (Error) to Pi′ .
• Upon receiving (Sign, Pi′ , B) from Pi′ . (Compute the signature of B)
∗ If there is a record Pi′ ∈ Pei

j , then send (Sign, Pi′ , B) to adversary. Upon
receiving (Signed, (Pi′ , B), σ) from the adversary, record (B, σ) and then send
(Signed, (B, σ)) to Pi′ .

∗ Otherwise, send (Error) to Pi′ .
2. Creating Transaction Block:

• Upon receiving (T -Elect, Pj′) from Pj′ , then compute Ctreij − K = Ctreij′′ . If

Ctreij′′ > 0 and Pei
j′′ 6= φ, then uniformly choose a party Pj̃ ∈R Pei

j′′ . (Only one
party Pj̃ is elected to create transaction block).

∗ If Pj′ = Pj̃ , then record (Pj′ , Ctr
ei
j , Ctr

ei
j′′) and send (T -Elected, Pj′ , f̃ = 1)

to Pj′ . (Pj is elected)
∗ Otherwise, send (T -Elected, Pj′ , f̃ = 0) to Pj′ . (Pj′ is not elected)

• Upon receiving (Compute, B̃−1, B−1, Pj′). (Compute the index of the former
transaction block B̃−1 and the corresponding leader block B−1)
∗ If there is a record (Pj′ , Ctr

ei
j , Ctr

ei
j′′), then if there is a record

(B̃−1, h̃−1), (B−1, h−1)), send (Computed, h̃−1, h−1) to Pj′ . Otherwise,
choose h̃−1, h−1 ∈ {0, 1}k, record ((B̃−1, h̃−1), (B−1, h−1)) and send
(Computed, h̃−1, h−1) to Pj′ .

∗ Otherwise, send (Error) to Pj′ .
• Upon receiving (Sign, Pj′ , B̃) from Pj′ . (Compute the signature of B̃)
∗ If there is a record (Pj′ , Ctr

ei
j , Ctr

ei
j′′), then send (Sign, Pj′ , B̃) to adversary.

Upon receiving (Signed, (B̃, σ̃)) from the adversary, then record (B̃, σ̃) and
send (Signed, (B̃, σ̃)) to Pj′ .

∗ Otherwise, send (Error) to Pj′ .
– Verification Upon receiving (V erify, Pi′ , B(B̃), σ(σ̃)) from a party Pi′′ .
• If there is a record of the form (Pi′ , B(B̃), σ(σ̃)), then send f ′(f̃ ′) = 1 to Pi′′ .
• Otherwise, send f ′(f̃ ′) = 0 to Pi′′ .

Fig. 4. Resource Functionality Fres
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4 Protocol ΠUC

In this section, we present the detailed description of our protocolΠUC in the {Finit,Fres,FNET }-
hybrid model and give the corresponding sub-protocols.

4.1 The Formal Description of Protocol ΠUC

We now present protocol ΠUC in {FinitFres,FNET }-hybrid model. First each party is
initialized via Finit to get genesis block B0 and then gets information from the network
via FNET that consists of blockchains, transactions, ect. Then, each party performs
some validations locally via BestV alid′ (Fig.6) or BestV alid′′ (Fig.7) to get the best
local state and try to extend local chain via Fres. Finally, each party updates and
broadcasts local state via FNET . More details are presented in Fig.5.

4.2 The Best Chain Algorithm: BestV alid

In decentralized setting, at slot sleij (i > 0, j ∈ {1, ..., R}), each party determines the
local best state independently. Algorithm BestV alid allows honest parties to hold the
consistent best local states. In our protocol, we introduce two algorithms BestV alid′

and BestV alid′′ for the existing parties and new parties respectively.
BestV alid′. It is parameterized with two content validation predicates V(·) and

Ṽ(·) to determine the validity of leader blocks and transaction blocks, and parameter
K ∈ N. It takes a set of chains Ceij received from network and party Pi′ ’s local chain
C∗loc as inputs and proceeds as follows. A detailed description is showed in Fig.6.

– Discard chains in Ceij that the leader chains fork more than K blocks or the
transaction chains fork more than one blocks from local one. This comes from
the common prefix property of leader chains and the uniqueness of transaction
chains held by honest parties (theorem 3 and theorem 7).

– Discard invalid chains in the updated set Ceij,1. Validation predicates V(·) and Ṽ(·)
evaluate every leader block and transaction block in Ceij,1 sequentially.

– Discard chains in the updated set Ceij,2, where there are more than one different
blocks with the same slot created by a same party. The elected adversary may create
and broadcast multiple valid blocks to honest parties. What’s more, we believe that
each honest elected party only creates one valid block.

– Compare local chain with the chains in the updated set Ceij,3 and determine the
best local one.

BestV alid′′. It is parameterized with parameters K ∈ N, l > K, content validation
predicates V(·) and Ṽ(·). It takes two sets of chains Ceij received from network and

C′eij received from the corresponding responsive transactions as inputs and proceeds as
follows. A detailed description is showed in Fig.7.

– Discard chain C′i′ ∈ C′eij if len(C′i′) 6= l, where i′ ∈ {1, ..., |C′eij |}. We believe honest
parties must provide chains correctly. What’s more, l > K ensures new parties to
get the latest confirmed part of honest parties’ local chains.
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PROTOCOL ΠUC

The protocol is parameterized by content validation predicates V and Ṽ, interacts with parties
Pi′ ∈ J ∪ E (i′ ∈ {1, 2, ...}) and adversary A at slot sleij (i ∈ N, j ∈ {1, 2, ..., R}) of epoch ei.
Proceeds as follows.

1. Initialization.
– if i = 0 and j = 1, then party Pi′ sends (Initialize, Pi′ , si′) to Finit and gets

(Initialized,B0).
– else, party Pi′ sends (Initialize, Pi′) to Finit, gets (Initialized,B0) and sends

(Broadcast, Txr, Pi′) to FNET .
Return (Initialized, Pi′) to the environment Z.

2. Fetching Information from Network. Each party fetches information from network
via FNET .

– Collect the information Mei
j received from network at sleij .

• the existing elected parties of sleij extract the set of chains Cei
j from Mei

j . (The
elected parties of sleij are eligible to extend leader chain).

• the existing elected parties of ei
∗ extract the set of requesting transactions Tei

j,r from Mei
j .

∗ create and broadcast the corresponding responsive transactions Tx′r of Txr ∈
Tei
j,r. (The elected parties of ei provide the new parties with their local states

by broadcasting the responsive transactions).
• the parties whose former leader blocks have been backed by K blocks extract the

set of chains Cei
j and the set of general transactions Tei

j,g fromMei
j . (The parties

are eligible to create transaction blocks that contain payloads)
• the new parties
∗ extract the set of chain pairs Cei

j from Mei
j .

∗ extract the set of corresponding valid responsive transactions T′eij,r fromMei
j ,

decrypt c in each Tx′r ∈ T′
ei
j,r and get a set of leader chains C′eij . (The new

parties get a trusted set of leader chains).
3. Update Local State. After receiving information from FNET , then

– each existing party with local chain C∗loc, updates local chain as C∗loc :=
BestV alid′(C∗loc,C

ei
j ).

– each new party gets the initial local state as C∗loc := BestV alid′′(C′eij ,C
ei
j ).

4. Extend Chain. Each party Pi′ tries to extend local chain C∗loc = {C, C̃}. We assume that
Pi′ has registered to Fres and been granted with stakes seij,i′ = 1.

– Upon receiving (Input-Stake, Pi′) from environment Z, Pi′ extends chain C.
• send (L-Elect, B, Pi′) to Fres and then receive (L-Elected, Pi′ , f).
• if f = 1, then send (Compute,B−1, Pi′) to Fres and receive (Computed, h−1).
• send (Sign, Pi′ , B) to Fres and receive (Signed, (B, σ)).
• set C := C ||B, C∗loc := {C, C̃} and send (Broadcast, C∗loc, Pi′) to FNET .

Return (Return-Stake, Pi′) to environment Z.
– Upon receiving (Input-Stake,X, Pi′) from the environments Z, where X is the block

payloads, Pi′ extends chain C̃.
• send (T -Elect, Pi′) to Fres and receive (T -Elected, Pi′ , f̃).
• if f̃ = 1, then send (Compute, B̃−1, B−1, Pi′) to Fres and receive

(Computed, h̃−1, h−1).
• send (Sign, B̃, Pi′) to Fres and receive (Signed, (B̃, Pi′), σ̃).
• set C̃ := C̃ || B̃, C∗loc := {C, C̃} and send (Broadcast, C∗loc, Pi′) to FNET .

Return (Return-Stake, Pi′) to environment Z.

Fig. 5. The Unique Chain Protocol ΠUC
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BestV alid′

BestV alid′ with parameter K ∈ N and two content validation predicates V(·) and Ṽ(·). At
slot sleij (i > 0, j ∈ {1, ..., R}), it takes a set of chains Cei

j and party P ’s (P ∈ E) local chain

C∗loc := (C, C̃) as inputs and proceeds as follows.

1. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j (i′ ∈ {1, ..,

∣∣Cei
j

∣∣}), do

– if Ci′ forks from C with more than K blocks or C̃i′ forks from C̃ with more than one
blocks, then
• remove (Ci′ , C̃i′) from Cei

j and set Cei
j,1 := Cei

j /{C
∗
i′}

2. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j,1 (i′ ∈ {1, ..,

∣∣Cei
j,1

∣∣}), do

– for each leader block B ∈ Ci′ and transaction block B̃ ∈ C̃i′
• if V(B) 6= 1 or Ṽ(B̃) 6= 1, then
∗ remove (Ci′ , C̃i′) from Cei

j,1 and set Cei
j,2 = Cei

j,1/{C
∗
i′}

3. For each given C∗i′ ∈ C
ei
j,2 (i′ ∈ {1, ..,

∣∣Cei
j,2

∣∣}), do

– for C∗j′ ∈ C
ei
j,2/{C

∗
i′}, if (B.sl = B′.sl∧B.pk = B′.pk)∨ (B̃.sl = B̃′.sl∧ B̃.pk = B̃′.pk),

where B, B̃ ∈ C∗i′ , B′, B̃′ ∈ C∗j′ . Then
• remove C∗i′ and C∗j′ from Cei

j,2, and set Cei
j,3 := Cei

j,2/{C
∗
i′ , C∗j′}

4. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j,3 (i′ ∈ {1, ..,

∣∣Cei
j,3

∣∣}), do

– set C∗loc := (C, C̃)
– if len(Ci′) > len(C) or len(C̃i′)− len(C̃) = 1, then set C∗loc := C∗i′ = (Ci′ , C̃i′)
– otherwise, set C∗loc := C∗loc

Return C∗loc

Fig. 6. The Best Valid Chain Protocol BestV alid′

– Clarify the chains in the updated set C′eij,1 into several subsets {C′eij,11, ...,C′
ei
j,1m}.

As described in BestV alid′ that the leader chains held by honest parties cannot
fork by more than K blocks. Let C′eij,1h (h ∈ {1, ...,m}) be the set of chains that
fork no more than K blocks with each other, so that ensures the chains provided
by honest parties are in one set.

– Compare the size of C′eij,1h (h ∈ {1, ...,m}), and choose the one whose size is bigger

than 1
2 |C
′ei
j |, i.e., C′eij,11. Based on security assumption, at any time of protocol

execution, the majority of parties are honest, so are the elected parties during an
epoch. As a result, we believe that C′eij,11 must contains all the chains sent by honest
parties. Now, we stress that the new parties have determined the correct version of
honest parties’ local leader chains.

– Find a set of chains pairs (leader and transaction chains) from Ceij that match

with the leader chains in C′eij,11 and get a set of chain pairs C′eij,2. Clarify the set
C′eij,2 into several subsets {C′eij,21, ...,C′

ei
j,2n}. In our protocol, the honest parties hold

a same local transaction chain, which will be proved in the uniqueness property.
So let C′eij,2h′ (h′ ∈ {1, ..., n}) be the set of chain pairs that with a same transaction
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chain. Without loss of generality, we assume that the size of C′eij,21 is the biggest

one and if |C′eij,21| > 1
2 |C
′ei
j |, then continue the process. Otherwise, halt.

– Verify every chain in C′eij,21 and discard the invalid ones. If the updated set C′eij,3
satisfies |C′eij,3| > 1

2 |C
′ei
j |, then uniformly choose a chain C′∗ ∈ C′eij,3 and set it as

the initial local chain C∗loc := C′∗.

BestV alid′′

BestV alid′′ with parameters K ∈ N and l > K, and two content validation predicates V(·)
and Ṽ(·). It takes two sets of chains C′eij and Cei

j as inputs, and proceeds as follows.

1. For each C′i′ ∈ C′eij (i′ ∈ {1, ..., |C′eij |}), do
– if len(C′i′) 6= l, then remove C′i′ from C′eij and set C′eij,1 := C′eij /{C′i′}.

2. Set C′eij,1h = φ ( 1 ≤ h ≤ |C′eij,1|}), where φ denotes an empty set.
– for each chain C′i′ ∈ C′eij,1 (i′ ∈ {1, ..., |C′eij,1|})
• if C′i′ forks more than K blocks from C′h (1 ≤ h < i′), then set C′eij,1i′ :=

C′eij,1i′ ∪ {C
′
i′}.

• else, set C′eij,1h := C′eij,1h ∪ {C′i′}.
– set C′eij,11 be the set with the biggest size in {C′eij,1h, 1 ≤ h ≤ |C′eij,1|}.
• if |C′eij,11| > 1

2
|C′eij |, then find a set of chains pairs from Cei

j that match with the
leader chains in C′eij,11 and get a set of chain pairs C′eij,2.

• else, halt.
3. Set C′eij,2h′ = φ (1 ≤ h′ ≤ |C′eij,2|}), where φ denotes an empty set.

– for every chain C′∗i′ = (C′i′ , C̃′i′) ∈ C′eij,2 (i′ ∈ {1, ..., |C′eij,2|})
• if C̃′i′ = C̃′h′ , where 1 ≤ h′ < i′, then set C′eij,2h′ := C′eij,2h′ ∪ {(C

′
i′ , C̃′i′)}.

• else, set C′eij,2i′ := C′eij,2i′ ∪ {(C
′
i′ , C̃′i′)}.

– set C′eij,21 be the set with the biggest size in {C′eij,2h′ , 1 ≤ h
′ ≤ |C′eij,2|}.

• if |C′eij,21| > 1
2
|C′eij |, then for every chain C′∗i′ = (C′i′ , C̃′i′) ∈ C′eij,21, where i′ ∈

{1, ..., |C′eij,21|}
∗ if V(B) 6= 1 or Ṽ(B̃) 6= 1, where B ∈ C′i′ and B̃ ∈ C̃′i′ , then remove C′∗i′ from
C′eij,21 and set C′eij,3 = C′eij,21/{C′

∗
i′}.

• else, halt.

4. If |C′eij,3| > 1
2
|C′eij |, then uniformly choose a chain C′∗ = (C′, C̃′) ∈ C′eij,3 and set C∗loc := C′∗.

Return C∗loc

Fig. 7. The Best Valid Chain Protocol BestV alid′′

5 Security Analysis of ΠUC

In this section, we give a detailed security analysis of our protocol ΠUC . Formally, we
first prove that ΠUC satisfies the security properties defined in section 2.4 and then
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conclude that ΠUC indeed solves the challenges of designing PoS based blockchain
protocols in the open setting better.

Main Parameters. Before showing the proofs of security properties, we present
some parameters that make the description of proofs more convenient.

1. Let α := 1− (1− p)|H| be the probability that at least one honest party is elected
to create leader block at a given slot.

2. Let β := 1−(1−p)|C| be the probability that at least one corrupted party is elected
to create leader block at a given slot.

3. Xei
j and Y eij are boolean random variables, where i ≥ 1, j ∈ {1, ..., R}. Let Xei

j = 1
if at least one honest party is elected at the jth slot of epoch ei, otherwise, Xei

j = 0.
Let Y eij = 1 if at least one corrupted party is elected at the jth slot of epoch ei,
otherwise, Y eij = 0. Further, we have that Pr[Xei

j = 1] = α and Pr[Y eij = 1] = β.

Remarks. In PoS based blockchain protocols, the chain can only be extended by one
valid block even if more than one parties are elected at a slot.

5.1 Proofs of Security Properties

In this section, we present the proofs of security properties with respect to leader chains
and transaction chains held by honest parties.

The Security Analysis of Leader Chain.

1. Achieving Chain Growth Property.

Lemma 1. During protocol execution, for a given slot sleij , suppose that an honest
party P1 holds leader chain C1 at the beginning of sleij and Xei

j = 1. At the end of
sleij , an honest party P2 with leader chain C2. Then, with overwhelming probability,
it holds that len(C2)− len(C1) = 1.

Proof. Consider protocol execution, a broadcasted block can be received by all the
parties within a slot in slot-synchronous network, so that the chains held by honest
parties with the same length at the end of any slot. Further, an elected honest
party must create a leader block honestly that will be received by all the honest
parties at the end of current slot. Note that, when Xei

j = 1, the honest parties may
receive several valid blocks and choose different blocks to extend local chains. So
that with overwhelming probability, each honest party’s local chain is increased by
one block. This completes the proof.

Lemma 2. During protocol execution, suppose that an honest party P1 holds leader
chain C1 at the beginning of sleij . At the beginning of sleij+t (t > 0), an honest
party P2 with leader chain C2. Then, with overwhelming probability, it holds that
len(C2)− len(C1) ≥

∑j+t−1
j Xei

j .

Proof. From lemma 1, we can see that honest parties’ local leader chains must be
extended by one block when Xei

j = 1. Moreover, a broadcasted valid block that
created by a corrupted party can also be received and accepted by honest parties.
So that len(C2)− len(C1) ≥

∑j+t−1
j Xei

j (t > 0). This completes the proof.
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Theorem 1. (Chain Growth). During protocol execution EXECΠUC ,A,Z , for any
two existing honest parties P1 and P2 with local leader chains C1 and C2 at the
beginning of sleij and sleij+t (t > 0) respectively. Then the probability that len(C2)−
len(C1) ≥ g · t, where g = (1− ε)α, is at least 1− e−Ω(t).

Proof. From the definition of variable Xei
j , we have that Pr[Xei

j = 1] = α. Let

ω =
∑j+t−1
j Xei

j , by Chernoff bound, we have Pr[ω < (1− ε)α · t] < e−Ω(t). From

lemma 2, we have len(C2)− len(C1) ≥
∑j+t−1
j Xei

j . Thus,

Pr[len(C2)− len(C1) ≥
∑j+t−1
j Xei

j ≥ (1− ε)α · t] ≥ 1− e−Ω(t)

Let g = (1− ε)α. This completes the proof.

2. Achieving Chain Quality Property.

Lemma 3. During protocol execution, any l ∈ N consecutive blocks of a leader
chain C are created in at least l

α+β consecutive slots.

Proof. Gathering all the resources in the network, we have that C will be extended
by one block when Xei

j = 1 or Y eij = 1 at a slot. At slot sleij , C can be extended by
one block with probability α+ β. Let S be a set of consecutive slots during which
these l consecutive blocks are created. So we get that |S| ≥ l

α+β . This completes
the proof.

Theorem 2. (Chain Quality). During protocol execution EXECΠUC ,A,Z , for any
existing honest party P with local leader chain C. Then with probability at least
1 − e−Ω(l), for any l ∈ N consecutive blocks of C, the ratio of blocks created by
adversary is at most µ = 1+ε

1−ε ·
1

1+ϕ .

Proof. From lemma 3, we have that these l consecutive blocks are created in at least
l

α+β consecutive slots. Further, let X(S) and Y (S) be the number of blocks that are
created during S by honest and corrupted parties respectively. By Chernoff bound,
with overwhelming probability, we have that Y (S) ≤ (1 + ε)β|S| and X(S) ≥
(1− ε)α|S|. Then, we get the following inequality:

Y (S)
l ≤ Y (S)

X(S) ≤
(1+ε)β|S|
(1−ε)α|S| = (1+ε)β

(1−ε)α = 1+ε
1−ε ·

p|C|
p|H| ≤

1+ε
1−ε ·

1
1+ϕ

Where the second equality follows from the fact that |E| · p << 1 and the last

inequality follows from |H|
|C| ≥ 1 + ϕ. Let µ = 1+ε

1−ε ·
1

1+ϕ , this completes the proof.

3. Achieving Common Prefix Property.
First, we analysis two cases that may cause the honest parties’ local leader chains
diverge with more than K blocks.
– Case 1: At some slot, the adversary broadcasts a hidden leader chain that forks

more than K blocks from honest parties’ local ones.
– Case 2: For K consecutive slots, there are more than one parties being elected

as leaders at each slot. Note that, the elected parties can be honest or corrupted
as long as they create and broadcast valid leader blocks.
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Based on protocol BestV alid′ (Fig.6), we know that honest parties cannot choose
a chain that forks more than K blocks from local leader chains. So that Case 1
happens with eligible probability.
For Case 2, let A1 denotes the event that more than one parties are elected as
leaders at a given slot and the block created by each of them is valid. A2 denotes
the event that A1 happens for K consecutive slots. Then we have:

Pr[A2]=(Pr[A1])K ≤ (1− (1− p)|E| − |E|p(1− p)|E|−1)K

Based on the assumption that p · |E| << 1, we have that

Pr[A2] ≤ p2|E|(|E| − 1) ≈ 0

Theorem 3. (Common Prefix). During protocol execution EXECΠUC , for any
two existing honest parties P1 with local leader chain C1 at slot sl and P2 with local

leader chain C2 at slot sl′. Let sl′ ≥ sl, then the probability that CdK1 � C2 is at
least 1− e−Ω(K).

Proof. Based on analysis of the two cases above, with overwhelming probability, we
have that the leader chains held by honest parties cannot diverge with more than
K blocks at any slot. What’s more, in our slot-synchronous network, the chains
held by honest parties with the same length at the end of some slot. Assume that

P2 holds chain C3 at sl, then we have that CdK1 = CdK3 . Further, we have that

CdK3 � C2 (that follows from BestV alid′). So, with probability at least 1− e−Ω(K),

we have CdK1 � C2. This completes the proof.

4. Achieving Soundness Property
We say that a new party is initialized securely, if his initial chain C∗1 = (C1, C̃1)

satisfies (CdK1 � C2) ∧ (CdK2 � C1) ∧ (C̃1 = C̃2), where C∗2 = (C2, C̃2) is local chain
of an existing honest party. The main challenge for new parties joining securely
is determining the correct version of leader chains’ common part held by honest
parties. We stress that C̃1 = C̃2 is guaranteed by uniqueness property of transaction
chains held by honest parties.

Theorem 4. During protocol execution EXECΠUC ,A,Z , a new party P1 initialized
with leader chain C1 and an existing honest party P2 with local leader chain C2 at

slot sl. Then with overwhelming probability, it holds that CdK1 � C2 and CdK2 � C1.

Proof. Based on protocol BestV alid′′, C1 is chosen from a set C′eij,3 uniformly, where
the leader chains satisfy common prefix property with parameter K ∈ N. And C′eij,3
contains all the chain pairs of the honest elected parties in epoch ei. Based on the
common prefix property of leader chains held by honest parties (theorem 3) and
the fact that, in slot-synchronous network, the chains held by honest parties with
the same length at the end of any slot. With overwhelming probability, we have

that CdK1 � C2 and CdK2 � C1. This completes the proof.

.
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The Security Analysis of Transaction Chain.

1. Achieving Chain Growth Property.

Lemma 4. During protocol execution, suppose that a leader block B is backed by
K blocks at the beginning of slot sleij in an honest party’s local leader chain and

created by an honest party P . Then the transaction chain C̃ held by any honest
party must be extended with one valid transaction block B̃ at the end of sleij .

Proof. During protocol execution, we believe that an elected honest party must
create and broadcast blocks honestly. Based on the common prefix property of
leader chains held by honest parties (theorem 3), at the beginning of sleij , B has
been in the common part of honest parties’ local leader chains. So that P is eligible
to create a transaction block B̃. As a result, there is at least one valid transaction
block received by all the other honest parties at the end of sleij . This completes the
proof.

Theorem 5. During protocol execution EXECΠUC ,A,Z , for any two existing hon-

est parties P1 and P2 with local transaction chains as C̃1 and C̃2 at the begin-
ning of slot sleij and sleij+t respectively, where t > 0. Then the probability that

len(C̃2)− len(C̃1) ≥ g̃ · t, where g̃ = (1− ε)α · 1+ϕ2+ϕ , is at least 1− e−Ω(t).

Proof. Note that we consider the chain growth property of transaction chain when
the length of the corresponding leader chain is at least K + 2.
Gathering all the resources in the network, at a given slot sleij , the expected num-
ber of elected parties is p|E|. At any slot, Let A1 denotes the event that the con-
firmed leader block is created by an honest party, A2 denotes the event that the
transaction chain will grow with one block as the corresponding leader chain grows
with one block.
We have Pr[A1] ≥ p|H|

p|E| ≥
1+ϕ
2+ϕ . Following from the result of lemma 4, with over-

whelming probability, we have that Pr[A2] ≥ Pr[A1] · α. Further, we have

Pr[len(C̃2)− len(C̃1) ≥ (1− ε)α · 1+ϕ2+ϕ · t] ≥ 1− e−Ω(t)

Let g̃ = (1− ε)α · 1+ϕ2+ϕ . This completes the proof.

2. Achieving Chain Quality Property.

Lemma 5. During protocol execution, an honest party with local transaction chain

C̃, then the probability that a block B̃ ∈ C̃ created by the adversary is at most |C||E| .

Proof. From protocol execution, we know that B̃ is created by the adversary if and
only if the corresponding leader block B is created by him. Based on the analysis
of theorem 5, we get that the probability that B is created by the adversary is at

most |C||E| . This completes the proof.
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Theorem 6. During protocol execution EXECΠUC , for an existing honest party
P with local transaction chain C̃. Then with probability at least 1− e−Ω(l), for any
l ∈ N consecutive blocks of C̃, it holds that the ratio of blocks created by adversary
is at most µ̃ = 1

1+ϕ .

Proof. Suppose that these l consecutive transaction blocks are created during S̃.
Following from the result of lemma 5, at any slot, the probability that a leader

block created by adversary is confirmed by honest parties is at most |C||E| . What’s

more, the transaction chain must be extended with one block when a leader block
created by an honest party is confirmed by honest parties (theorem 5). So we have
that the number of transaction blocks created by adversary in the l consecutive

blocks is at most |C||E| · |S̃|.
Let X̃(S̃) and Ỹ (S̃) denote the number of transaction blocks created by honest
paries and adversary during S̃ respectively, then we have

Ỹ (S̃)
l ≤ Ỹ (S̃)

X̃(S̃)
≤
|C|
|E| ·|S̃|
|H|
|E| ·|S̃|

= |C|
|H| ≤

1
1+ϕ

Let µ̃ = 1
1+ϕ . This completes the proof.

3. Achieving Uniqueness Property.

Lemma 6. During protocol execution EXECΠUC ,A,Z , at slot sleij , there are at
most one valid transaction block in honest parties’ views. (Based on BestV alid′,
we do not consider the condition that the elected adversary may create and broadcast
more than one valid transaction blocks at sleij )

Proof. Consider a contradiction that, at sleij , there are two different valid transaction

blocks B̃1 and B̃2 in honest parties’ views. Let B1 and B2 are the corresponding
leader blocks that are linked by B̃1 and B̃2 respectively. Based on protocol exe-
cution, B1 and B2 must be the latest confirmed blocks up the beginning of sleij ,
which are backed by K blocks. So that B1 and B2 are in two different leader chain-
s. Suppose that honest party P1 with local leader chains C1, where B̃1 ∈ C1, and
honest P2 with local leader chains C2, where B̃2 ∈ C2 at sleij . Further, we get that

CdK1 � C2 and CdK2 � C1, which contradicts the common prefix property of leader
chains held by honest parties (theorem 3). This completes the proof.

Theorem 7. During protocol execution EXECΠUC , at the end of slot sleij , two ex-

isting honest parties P1 and P2 with local transaction chains C̃1 and C̃2 respectively.
Then with overwhelming probability, it holds that C̃1 = C̃2.

Proof. Consider a contradiction that C̃1 6= C̃2, which means that len(C̃1) 6= len(C̃2)
or there are some different blocks in these two chains.
For condition 1, we assume that len(C̃1) < len(C̃2). Without loss of generality, let
len(C̃2) − len(C̃1) = 1. Based on lemma 6, it must be the case that the last block
B̃len(C̃2) of C̃2 is not accepted or received by P1 at the end of sleij . Further, we can
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see that B̃len(C̃2) must be valid in that it has been accepted by an honest party P2.

What’s more, in our slot-synchronous network, B̃len(C̃2) must have been received

by all the honest parties at the end of sleij . As a result, if a valid transaction block

B̃len(C̃2) has been received by an honest party, then with overwhelming probability,
it must be confirmed by all honest parties within a slot. So that condition 1 happens
with negligible probability.
For condition 2, we assume that the last blocks of C̃1 and C̃2 are different, which
are denoted as B̃1 and B̃2. What’s more, Based on protocol execution, these two
blocks must be valid and received by all the honest parties at the end of sleij , which
contradicts to the result of lemma 6. This completes the proof.

4. Achieving Soundness Property

Theorem 8. During protocol execution EXECΠUC ,A,Z , a new party P1 initialized

with transaction chain C̃1 and an existing honest party P2 with local transaction
chain C̃2 at slot sleij . Then with overwhelming probability, it holds that C̃1 = C̃2.

Proof. Based on protocol BestV alid′′, C̃1 is chosen from a set C′eij,3 uniformly. And
C′eij,3 with a same transaction chain contains all the chain pairs of honest elected
parties in epoch ei. Based on the uniqueness property of transaction chains held by
honest parties (theorem 7), with overwhelming probability, we have that C̃1 = C̃2.
This completes the proof.

5. Achieving High Efficiency Property

Theorem 9. During protocol execution EXECΠUC , at slot sl, once a valid transaction
block B̃ is received by an honest party P . Then with overwhelming probability, B̃
must be confirmed finally by all honest parties at the end of sl.

Proof. Based on uniqueness property of transaction chains held by honest parties
(theorem 7), at the end of each slot, all honest parties hold a same view of local
transaction chain. So with overwhelming probability, if B̃ is confirmed by an honest
party, then in the slot-synchronous network, B̃ will be confirmed by all honest
parties within a slot. This completes the proof.

5.2 Further Discussions

Compared with previous related works [20, 9, 1, 15, 10, 3, 18, 13], UniqueChain solves
the challenges of designing PoS based blockchain protocols better (section 1.1). Pre-
cisely, (1). we propose a best chain selection protocol BestV alid′, which allows existing
honest parties to pick out a local best chain correctly from a set of chains in the pres-
ence of a mildly adaptive adversary. (2). New parties can join protocol execution at any
time and be initialized securely without any additional trusted assumptions. What’s
more, we achieve the fairness among new parties that a new party can be initialized
securely if and only if he has broadcasted a valid request (requesting transaction). (3).
We have identified that the essential cause of low efficiency for handling messages is
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that honest parties hold different views of the latest several blocks, so it always takes
a long time to uniform the honest parties’ views. In our protocol, based on the com-
mon prefix property of leader chains held by honest parties, we propose a new form of
two-chain structure protocol. As a result, once a block with messages is accepted by
an honest party, then, in our slot-synchronous network, it must be accepted and con-
firmed finally by all the honest parties within a slot without waiting for being backed
by several blocks.

However, in our protocol, an elected honest party of the current epoch is responsible
to help the new parties to be initialized securely and might be eligible to create a
transaction block at some point of future, so that our protocol cannot support a fully
adaptive adversary as in [9, 1]. We will continue to optimize our protocol to achieve the
better security properties.

6 Conclusion

In this work, we propose a fast and provably secure proof-of-stake based blockchain
protocol UniqueChain in open setting, which executes in a slot-synchronous network
and resists a mildly adaptive adversary. Based on honest majority assumption, except
for three fundamental security properties of blockchain protocols as chain growth, chain
quality and common prefix, our protocol also achieves soundness of chains held by newly
joining parties without any additional trusted assumptions and uniqueness of chains
that contain messages held by honest parties, which guarantees the high efficiency of
handling messages.
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A The Implementation of Finit

We denote ϕinit as the ideal protocol of Finit, where the parties are dummy that
they only forward messages sent by environment Z to Finit and then forward the
messages sent by Finit to environment Z. Further, we denote Πinit as the protocol
that implements ϕinit securely. Informally, the genesis epoch consists of two slots e0 =
{sle01 , sl

e0
2 }, each party Pi′ first commits to his local stake si′ (si′ = 1 in our protocol)
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and a random value ri′ ∈ {0, 1}k, and broadcasts the commitment Ci′ via FNET .
Then, Pi′ collects all the received commitments and opens his commitment to others
via FNET . Finally, they determine the difficult target T e1 and random value noncee1

for epoch e1. During protocol execution, the new parties obtain these messages from
the genesis block B0. Πinit is formally described in Fig.8.

Let EXECFinit

ϕinit,S,Z be the random variable that denotes the joint outputs of al-
l the parties by executing protocol ϕinit with adversary S and environment Z. Let
EXECFNET

Πinit,A,Z be the random variable that denotes the joint outputs of all the par-
ties by executing protocol Πinit with adversary A and environment Z. We have the
following lemma.

Lemma 7. Consider the ideal protocol described above and the real protocol Πinit

(Fig.8), it holds that these two random variables EXECFNET

Πinit,A,Z and EXECFinit

ϕinit,S,Z
are indistinguishable.

Proof. Consider the adversary A for Πinit, we construct the adversary S for ϕinit with
security parameter k. Note that S maintains a local table T .

Upon receiving (Initialize, Pi′ , si′) from A, if it has a record B0 ∈ T , then send
(Initialized,B0) to A. Otherwise, pass the message to the functionality Finit and
receive (Initialized,B0) from Finit, then record B0 and send (Initialized,B0) to A.

Now, we can see that for each query from A, the form of output is (Initialized,B0),
where B0 = (T e1 , noncee1), T e1 is determined by the distribution of initial parties’
stakes and noncee1 is sampled uniformly from {0, 1}k. Therefore, EXECFNET

Πinit,A,Z and

EXECFinit

ϕinit,S,Z are indistinguishable.
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Protocol Πinit

Πinit is parameterized by security parameter k, interacts with initial parties Pi′ (i′ ∈ {1, 2, ...}),
adversary A and environment Z. For each Pi′ , it proceeds as follows.
Upon receiving (Initialize, Pi′ , si′) from Z, Pi′ gets the current slot sleij (i ∈ N, j ∈ {1, ..., R})
from the local clock.

– If i = 0 and j = 1, then chooses random values r′i′ , ri′ ∈ {0, 1}k, computes commitment
as Ci′ := Com(; si′ , ri′ ; r

′
i′) and sends (Broadcast, Pi′ , Ci′) to FNET .

• collects all the received commitments C := {Ci′ , i
′ ∈ {1, 2, ...}}, opens commitment

as (si′ , ri′) and sends (Broadcast, Pi′ , (si′ , ri′)) to FNET at slei2 .
• collects all the received openings O := {(si′ , ri′), i′ ∈ {1, 2, ...}}, computes the difficult

target T e1 according to the distribution of stakes {si′ , i′ ∈ {1, 2, ...}} and random
value noncee1 := ⊕i′ri′

• set B0 = (T e1 , noncee1)
– Else, collects the message received from FNET , extracts the set Cei

j of chains and sets B0

as the first common block of the majority of leader chains in Cei
j

Output (Initialized,B0) to the environment Z.

Fig. 8. The Initialization Protocol Πinit

B The Implementation of Fres

As described above, we denote ϕres as the ideal protocol of Fres, where the parties are
dummy that they only forward the messages sent by environment Z to Fres and then
forward the messages sent by Fres to Z. Further, we denote Πres as the protocol that
implements ϕres securely. Informally, at any slot, first each party determines whether he
is the leader by computing a hash function. Moreover, a party also checks if his leader
block is deep enough in local chain and determines whether he is eligible to crete a
transaction block. After that, any parties can verify the validity of leader blocks and
transaction blocks. We show Πres in the {FRO,FSIG}-hybrid model (Fig.9), where
functionalities FRO and FSIG have been well defined in [19] and [5] respectively.

Let EXECFres

ϕres,S,Z be the random variable that denotes the joint outputs of al-
l the parties by executing protocol ϕres with adversary S and environment Z. Let
EXECFRO,FSIG

Πres,A,Z be the random variable that denotes the joint outputs of all the par-
ties by executing protocol Πres with adversary A and environment Z. We have the
following lemma.

Lemma 8. Consider the ideal protocol describes above and the real protocol Πres in
Fig.9, it holds that these two random variables EXECFres

ϕres,S,Z and EXECFRO,FSIG

Πres,A,Z
are indistinguishable.

Proof. Consider the adversary A for Πres, we construct the adversary S for ϕres with
security parameter k. Note that S maintains a local table T . At sleij (i ∈ N, j ∈
{1, ..., R}) and it proceeds as follows.
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1. Simulating Registration Phase
Upon receiving (Register, Pi′) from A, send (Register, Pi′) to Fres and obtain
(Registered, Pi′), then send (Registered, Pi′) toA. Upon receiving (Unregister, Pi′)
from A, send (Unregister, Pi′) to Fres and obtain (Unregistered, Pi′), then send
(Unregistered, Pi′) to A.

2. Simulating Stake Election Phase
– Creating Leader Blocks
• Upon receiving (L-Elect, Pi′) from A, if there is a record (Pi′ , h), then send
h toA. Otherwise, send (L-Elect, Pi′) to Fres and obtain (L-Elected, Pi′ , f).
If f = 1, choose random value h ∈ {0, 1}k such that h ≤ T ei . Otherwise,
choose random value h ∈ {0, 1}k such that h > T ei . Then record (L-
Elected, Pi′ , h) and send h to A.

• Upon receiving (Compute,B−1, Pi′) from A, if their is a record (B−1, h−1),
then send h−1 to A. Otherwise, send (Compute,B−1, Pi′) to Fres and ob-
tain (Computed, h−1), then record (B−1, h−1) and send h−1 to A.

• Upon receiving (Sign,B, Pi′) from A, if there is a record (B, σ), then send
(Signed, (B,Pi′), σ) to A. Otherwise, send (Sign,B, Pi′) to Fres and obtain
(Signed,B, σ), then record (B, σ) and send (Signed,
(B,Pi′), σ) to A.

– Creating Transaction Blocks
• Upon receiving (T -Elect, Pj′) from A, if there is a record (Pj′ , f̃), then send

f̃ to A. Otherwise, send (T -Elect, Pj′) and obtain (T -Elected, Pj′ , f̃), then

record (Pj′ , f̃) and send f̃ to A.

• Upon receiving (Compute, B̃−1, B−1, Pj′) fromA, if there is a record (B̃−1, B−1, h̃−1, h−1),

then send (h̃−1, h−1) to A. Otherwise, send (Compute, B̃−1, B−1, Pj′) to

Fres and obtain (Computed, h̃−1, h−1), then record (B̃−1, B−1, h̃−1, h−1)
and send (h̃−1, h−1) to A.

• Upon receiving (Sign, B̃, Pj′) from A, if there is a record (B̃, σ̃), then send

(Signed, (B̃, Pj′), σ̃) toA. Otherwise, send (Sign, B̃, Pj′) to Fres and obtain

(Signed, (B̃, σ)), then record (B̃, σ̃) and send (Signed, (B̃, Pj′), σ̃) to A.
3. Simulating Verification Phase

– Upon receiving (V erify, (B,P ′i′), σ) fromA, if there is a record ((P ′i′ , h), (B, σ)),
then send (h, y′i′ = 1) toA. Otherwise, choose h ∈ {0, 1}k such that h > T ei and
send (h, y′i = 0) to A or choose h ∈ {0, 1}k such h > T ei and send (h, y′i′ = 1)
to A or choose h ∈ {0, 1}k such that h ≤ T ei and send (h, y′i′ = 0) to A.

– Upon receiving (V erify, (B̃, P ′i′), σ̃) fromA, if there is a record ((P ′i′ , f̃), (B̃, σ)),

then send ỹ′i′ = f̃ to A. Otherwise, send ỹ′i′ = 0 to A.

Now, from the above simulation, we can see that the environment Z gets what he
should gets in the real protocol execution. Precisely, for each Elect, Compute and Sign
query, Free chooses uniformly from {0, 1}k. For each V erify query, S responds accord-
ing to the records in T , which also come from Fres. In fact, S just transfers message
between Z and Fres. As a result, we have that EXECFres

ϕres,S,Z and EXECFRO,FSIG

Πres,A,Z
are indistinguishable.
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Protocol Πres

Πres is parameterized by probability p, security parameter k, interacts with parties Pi′ ∈
E (i′ ∈ {1, 2, ...|E|}) and Pi′′ ∈ J ∪ E (i′′ ∈ {1, ..., |J | + |E|}), adversary A and environment
Z. At slot sleij (i > 0, j ∈ {1, ..., R}), it proceeds as follows.

– Registration.
1. Upon receiving (Register, Pi′) from Z, if Pi′ has registered with rei′ = 1, then ignore

the message. Otherwise, set rei′ = 1, record (Pi′ , rei′ = 1) and send (Registered, Pi′)
to Z.

2. Upon receiving (Unregister, Pi′) from environment Z, if Pi′ has not registered with
rei′ = 1, then ignore the message. Otherwise, set rei′ = 0, record (Pi′ , rei′ = 0) and
send (Unregistered, Pi′) to Z.

– Stake Election.
1. Creating leader Blocks: every registered party Pi′ with one unit stake seij,i′ = 1

proceeds as follows.
• Upon receiving (L-Elect, Pi′) from Z
∗ If there is a record (Pi′ , rei′ = 1, seij,i′ = 1), then query FRO with input

(pki′ , sl
ei
j ) and obtain h. If h ≤ T ei , send (L-Elected, Pi′ , f = 1) to Z,

otherwise, send (L-Elected, Pi′ , f = 0) to Z.
∗ Otherwise, if rei′ = 0 or seij,i′ = 0, then send (L-Elected, Pi′ , f = 0) to Z.

• Upon receiving (Compute,B−1, Pi′) from Z, query FRO with B−1 and obtain
h−1, then send (Computed, h−1, Pi′) to Z.

• Upon receiving (Sign,B, Pi′) from Z, send (Sign,B, Pi′) to FSIG, obtain
(Signed, (B,Pi′), σ), then send (Signed, (B,Pi′), σ) to Z.

2. Creating Transaction Blocks: if a leader block Bj′ is backed by K′ blocks created
by party Pj′ , then Pj′ proceeds as follows.
• Upon receiving (T -Elect, Pj′) from Z, if K′ = K, then send (T -Elected, Pj′ , f̃ =

1) to Z. Otherwise, send (T -Elected, Pj′ , f̃ = 0) to Z.
• Upon receiving (Compute, B̃−1, B−1, Pj′) from Z, query FRO with (B̃−1, B−1)

and obtain (h̃−1, h−1), then send (Computed, h̃−1, h−1, Pj′) to Z.
• Upon receiving (Sign, B̃, Pj′) from Z, then send (Sign, B̃, Pj′) to FSIG and ob-

tain (Signed, (B̃, Pj′), σ̃), then send (Signed, (B̃, Pj′), σ̃) to Z.
– Verification. Upon receiving (V erify, (B,P ′i′), σ) or (V erify, (B̃, P ′j′), σ̃) from Z, party
Pi′′ ∈ J ∪ E proceeds as follows.
• Send (pk′i′ , sl

ei
j ) to FRO and obtain h, if h ≤ T ei , then set yi′ = 1, otherwise set

yi′ = 0.
• Send (V erify, (B,P ′i′ , σ)) or (V erify, (B̃, P ′j′ , σ̃)) to FSIG and obtain y′i′ or ỹ′i′ .

• If (yi′ = 1 ∧ y′i′ = 1) or ỹ′i′ = 1, then send (V erified, f ′ = 1) or (V erified, f̃ ′ = 1)
to Z. Otherwise, send (V erified, f ′ = 0) or (V erified, f̃ ′ = 0) to Z.

Fig. 9. The Resource Protocol Πres


