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Abstract

Game-playing proofs constitute a powerful framework for non-quantum cryptographic
security arguments, most notably applied in the context of indifferentiability. An essential
ingredient in such proofs is lazy sampling of random primitives. We develop a quantum
game-playing proof framework by generalizing two recently developed proof techniques.
First, we describe how Zhandry’s compressed quantum oracles (Crypto’19) can be used
to do quantum lazy sampling of a class of non-uniform function distributions. Second,
we observe how Unruh’s one-way-to-hiding lemma (Eurocrypt’14) can also be applied to
compressed oracles, providing a quantum counterpart to the fundamental lemma of game-
playing. Subsequently, we use our game-playing framework to prove quantum indifferen-
tiability of the sponge construction, assuming a random internal function.
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1 Introduction

The modern approach to cryptography relies on mathematical rigor: Trust in a given cryp-
tosystem is mainly established by proving that, given a set of assumptions, it fulfills a security
definition formalizing real-world security needs. Apart from the definition of security, themen-
tioned assumptions include the threat model, specifying the type of adversaries we want to be
protected against. One way of formalizing the above notions is via games, i.e. programs inter-
acting with the adversaries and outputting a result signifying whether there has been a breach
of security or not. Adversaries in this picture are also modeled as programs, or more formally
Turing machines.

The framework of game-playing proofs introduced by Bellare and Rogaway in [BR06]—
modeling security arguments as games, played by the adversaries—is especially useful because
it makes proofs easier to verify. Probabilistic considerationsmight become quite involvedwhen
talking about complex systems and their interactions; the structure imposed by games, how-
ever, simplifies them. In the game-playing framework, randomness can be, for example, con-
sidered to be sampled on the fly, making conditional events easier to analyze. A great example
of that technique is given in the proof of the PRP/PRF switching lemma in [BR06].

In this work we focus on idealized security notions; In the Random Oracle Model (ROM)
one assumes that the publicly accessible hash functions are in fact random [BR93]. This is a
very useful assumption as it simplifies proofs, but also cryptographic constructions designed
with the ROM in mind are more efficient.

We are interested in the post-quantum threat model, which is motivated by the present
worldwide efforts to build a quantum computer. It has been shown that quantum computers
can efficiently solve problems that are considered hard for classical machines. Hardness of
the factoring and discrete-logarithm problems is, e.g., important for public-key cryptography,
but these problems can be solved efficiently on a quantum computer using Shor’s algorithm
[Sho94]. The obvious formalization of the threat model is to include adversaries operating
a fault-tolerant quantum computer, which is in particular capable of running the mentioned
attacks. This model is the basis of the field of post-quantum cryptography [BBD09].

While the attacks based on Shor’s algorithm are themostwell-known ones, public-key cryp-
tography may not be the only area with quantum vulnerabilities. Many cryptographic hash
functions are based on publicly available compression functions [Mer90; Dam90; Ber+07] and
as such they could be run on a quantum machine. This fact motivates us to analyze adver-
saries that have quantum access to the public building blocks of the cryptosystem. Therefore,
the quantum threat model takes us from the Random-Oracle Model [BR93]—often used in the
context of hash functions—to the Quantum Random-Oracle Model [Bon+11] (QROM), where
the random oracle can be accessed in superposition.

Having highlighted a desirable proof structure—fitting the clear and easy-to-verify game-
playing framework—and the need of including fully quantumadversarieswith quantumaccess
to randomoracles into the threatmodel, we encounter an obvious challenge: defining a quantum
game-playing framework. In this article, we resolve that challenge and apply the resulting
framework to the setting of hash functions. In the following paragraphs we describe our results
and the main proof techniques we used to achieve them.

Our Results. We devise a quantum game-playing framework for security proofs that involve
fully quantum adversaries. Our framework is based on a combination of two recently devel-
oped proof techniques: compressed quantum random oracles by Zhandry [Zha19] and the
One-Way to Hiding (O2H) lemma by Unruh [Unr14; AHU19]. The former provides a way to
lazy-sample a quantum-accessible random oracle, and the latter is a quantum counterpart of
the Fundamental Game-Playing lemma—a key ingredient in the original game-playing frame-
work. As our first main result we obtain a clean and powerful tool for proofs in post-quantum
cryptography. The main advantage of the framework is the fact that it allows the translation of
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certain classical security proofs to the quantum setting, in a way that is arguably more straight-
forward than for previously available proof techniques.

On the technical side, we begin by re-formalizing Zhandry’s compressed-oracle technique,
which, as a by-product, makes a generalization to some non-uniform distributions of oracles
relatively straightforward. In particular, we generalize the compressed-oracle technique of
[Zha19] to a class of non-uniform distributions over functions, allowing a more general form
of (quantum) lazy sampling. Our result allows to treat distributions with outputs that are
independent for distinct inputs. Subsequently, we observe that the techniques of “punctur-
ing oracles” proposed in [AHU19] can also be applied to compressed oracles, yielding a more
general version of the O2H lemma which forms the quantum counterpart of the fundamental
game-playing lemma.

There are already some examples in the literaturewhere generalized compressed oracles for
non-uniform distributions have been used, e.g. [Ala+20] (superposition oracle without com-
pression that outputs 1 with probability ε, we define the sampling procedure for such distri-
bution in Appendix D) and [HM20] (a generalization similar to ours but presented after our
paper was posted online). We believe that the generalized formalism developed here will con-
tinue to be useful.

Punctured oracles are quantum oracles measured after every adversarial query. An impor-
tant lemma that we prove is a bound on the probability that any of these measurements suc-
ceeds. We provide two proofs, one making heavy use of the results from [Chu+20], and one
that has a potential of beingmore general but is considerablymore complicated1. The bound on
the probability of any of the measurements in a punctured oracle succeeding, together with the
O2H lemma for compressed oracles provides a bound on the distinguishing advantage between
a regular compressed oracle and a punctured one. In Lemma 9 in [Zha19] indistinguishabil-
ity of a compressed oracle and a punctured compressed oracle is also proven. The method,
however, is different from ours and much fewer details are shown. A crucial difference though
is that there are two nontrivial technical claims left implicit. According to [Zha20], however,
there is a proof that maintains the claimed bound. As that proof is not publicly available at this
point, we state and prove our indistinguishability bound for punctured oracles with almost the
same bound. As far as we can tell, our bounds seem tight.

We go on to apply our quantum game-playing framework by proving quantum indifferen-
tiability of the sponge construction [Ber+07] used in SHA3. More precisely, we show that the
sponge construction is indifferentiable from a random oracle in case the internal function is a
random function. We leave it as an interesting open question to extend our results to the setting
of SHA3which uses a permutation as internal function. A reader mostly interested in the main
result of this paper can go directly to section 5. In the introduction of that section we give a
high level explanation of the main concepts used in the proof of quantum indifferentiability.

Related Work. Indifferentiability is a security notion developed by Maurer, Renner, and
Holenstein [MRH04] commonly used for hash-function domain-extension schemes [Cor+05;
Ber+08]. Here, it captures the adversary’s access to both the construction and the internal
function.

The subject of quantum indifferentiability, addressed in our work, has been recently ana-
lyzed in two articles. Carstens, Ebrahimi, Tabia, and Unruh make a case in [Car+18] against
the possibility of fulfilling the definition of indifferentiability for quantum adversaries. Assum-
ing a technical conjecture, they prove a theorem stating that if two systems are perfectly (with
zero advantage) quantumly indifferentiable then there is a stateless classical indifferentiability
simulator. In the last part of their work they show that there cannot be a stateless simulator for
domain-decreasing constructions—i.e. most constructions for hash functions. Zhandry on the
other hand [Zha19] develops a technique that allows to prove indifferentiability for theMerkle-

1This second proof is presented in Appendix C.
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Damgård construction. His result does not contradict the result of [Car+18], as it handles the
imperfect case, albeit with a negligible error. The technique of that paper, compressed quantum
oracles, is one of the two main ingredients of our framework. Recent work by Unruh and by
Ambainis, Hamburg, and Unruh [Unr14; AHU19] form the second main ingredient of our re-
sult. They show the One-Way to Hiding (O2H) Lemma, which is the quantum counterpart of
the Fundamental Game-Playing lemma—a key ingredient in the original game-playing frame-
work. The O2H lemma provides a way to “reprogram” quantum accessible oracles on some set
of inputs, formalized as ”punctured” oracles in the latter paper.

The quantum security of domain-extension schemes has been the topic of several recent
works. [SY17; CHS19] study domain extension for message authentication codes and pseu-
dorandom functions. For random inner function, [Zha19] has proven indifferentiability of the
Merkle-Damgård construction which hence has strong security in the QROM. For hash func-
tions in the standard model, quantum generalizations of collision resistance were defined in
[Unr16b; Ala+20]. For one of them, collapsingness, some domain-extension schemes includ-
ing the Merkle-Damgård and sponge constructions, have been shown secure [Cza+18; Feh18;
Unr16a].

In a recent article [Unr19] Unruh developed quantum Relational Hoare Logic for computer
verification of proofs in (post-)quantum cryptography. There he also uses the approach of
game-playing, but in general focuses on formal definitions of quantum programs and predi-
cates. To investigate the relation between [Unr19] and our work in more detail one would have
to express our results in the language of the new logic. We leave it as an interesting direction
for the future. The proof techniques of [Zha19] and [AHU19] have been recently used to show
security of the 4-Round Feistel construction in [HI19] and of generic key-encapsulation mecha-
nisms in [JZM19] respectively. In [CEV20] the authors use compressed oracles for randomness
in an encryption scheme using a random tweakable permutation (that is given to the algorithm
externally). In [Chu+20] quantum query complexity results are proven using the compressed
oracles technique and provide a framework that simplifies such tasks.

Note. A previous version of this paper contained an additional set of results about quantum
lazy-sampling of random permutations and indifferentiability of SHA-3. Unfortunately there
was a flaw in the argument and the technique for quantum lazy sampling randompermutations
presented there does not work as claimed. The difficulty lies in the fact that that permutations
do not have independent outputs, which seems to require a completely different approach.

Organization. In Section 2 we introduce the crucial classical notions we use. We provide the
necessary definitions of the classical game-playing framework and indifferentiability needed
in the remainder of the paper. In Section 3 we generalize the compressed-oracle technique of
[Zha19] to non-uniform distributions over functions. In Section 4 we prove a generalization
of the O2H lemma of [Unr14], adapted to the use with compressed oracles for non-uniform
distributions. The quantum game-playing framework is defined via the general compressed
quantum oracles that appear in security games, and we derive an upper bound on the proba-
bility of the Find event for the case of puncturing a uniform oracle on collisions. In Section 5
we use these results to prove quantum indifferentiability of the sponge construction.

2 Preliminaries

We write [N ] := {0, 1, . . . , N − 1} for the set of size N . We denote the Euclidean norm of a
vector |ψ〉 ∈ Cd by ‖|ψ〉‖. By x ← A we denote sampling x from a distribution or getting the
output of a randomized algorithm. A summary of symbols used throughout the paper can be
found in the Symbol Index.
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2.1 Classical Game-Playing Proofs

Many proofs of security in cryptography follow the Game-Playing framework, proposed
in [BR06]. It is a very powerful technique as cryptographic security proofs tend to be simpler to
follow and formulate in this framework. The central idea of this approach are identical-until-bad
games. Say gamesG andH are two programs that are syntactically identical except for code that
follows after setting a flag Bad to one, then we call those games identical-until-bad. Usually in
cryptographic proofs G and H will represent two functions that an adversary A will have oracle
access to. In the following we denote the situation when A interacts with H by AH. Then we can
say the following about the adversary’s view.

Lemma 1 (Fundamental lemma of game-playing, Lemma 2 of [BR06]). Let G and H be identical-
until-bad games and let A be an adversary that outputs a bit b. Then∣∣∣P[b = 1 : b← AH]− P[b = 1 : b← AG]

∣∣∣ ≤ P[Bad = 1 : AG]. (1)

2.2 Indifferentiability

In the Random-Oracle Model (ROM) we assume the hash function used in a cryptosystem to
be a random function [BR93]. This model is very useful in cryptographic proofs but might not
be applicable if the discussed hash function is constructed using some internal function. The
ROM can still be used in this setting but by assuming the internal function is random. The
notion of security is then indistinguishability of the constructed functions from a random oracle.
In most constructions however (such as in SHA-2 [NIS15] and SHA-3 [NIS14]), the internal
function is publicly known, rendering the security notion of indistinguishability too weak. A
notion of security dealing with this issue is indifferentiability introduced byMaurer, Renner, and
Holenstein [MRH04].

Access to the publicly known internal function and the hash function constructed from it
is handled by interfaces. An interface to a system is an access structure defined by the format
of inputs and expected outputs. Let us illustrate this definition by an example, let the system
C under consideration be a hash function Hf : {0, 1}∗ → {0, 1}n, constructed using a function
f : {0, 1}n → {0, 1}n. Then the private interface of the system accepts finite-length strings as
inputs and outputs n-bit long strings. Outputs from the private interface are generated by the
hash function, so we can write (slightly abusing notation) Cpriv = Hf . The public interface
accepts n-bit long strings and outputs n-bit strings as well. We have that Cpub = f . Often we
consider one of the analyzed systems, R, to be a random oracle. Then both interfaces are the
same and output random outputs of appropriate given length.

The following definitions and Theorem 4 are the rephrased versions of definitions and the-
orems from [MRH04; Cor+05]. We also make explicit the fact that the definitions are indepen-
dent of the threat model we consider—whether it is the classical model or the quantummodel.
To expose those two cases we write “classical or quantum” next to algorithms that can be clas-
sical or quantum machines; Communication between algorithms (systems, adversaries, and
environments) can also be of two types, where quantum communication will involve quantum
states (consisting of superpositions of inputs)—explained in more detail in the remainder of
the paper.

Definition 2 (Indifferentiability [MRH04]). A cryptographic (classical or quantum) system C is
(q, ε)-indifferentiable fromR, if there is an efficient (classical or quantum) simulator S and a negligible
function ε such that for any efficient (classical or quantum) distinguisher D with binary output (0 or
1) the advantage∣∣∣P [b = 1 : b← D[Cpriv

k [Cpub
k ],Cpub

k ]
]
− P

[
b = 1 : b← D[Rpriv

k , S[Rpub
k ]]

]∣∣∣ ≤ ε(k) , (2)
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Cpriv Cpub

R S

Rpriv Rpub

A

Figure 1: A schematic representation of the notion of indifferentiability, Def. 2. Arrows denote
”access to” the pointed system.

where k is the security parameter. The distinguisher makes at most q (classical or quantum) queries to
C.

It is important to note that if R is the random oracle (which is often the case), then both
interfaces are the same. By efficient we mean with runtime that is polynomial in the security
parameter k. The definitions are still valid and the theorem below holds also if we interpret
efficiency in terms of queries made by the algorithms. Note that then we can allow the algo-
rithms to be unboundedwith respect to runtime, the distinction between quantum and classical
queries is still of crucial importance though. By square brackets we denote (classical or quan-
tum) oracle access to some algorithm, we also useAH if the oracle is denoted by amore confined
symbol. In Fig. 1 we present a a scheme of the situation captured by Def. 2.

Definition 3 (As secure as [MRH04]). A cryptographic (classical or quantum) system C is said to
be as secure as C′ if for all efficient (classical or quantum) environments Env the following holds: For
any efficient (classical or quantum) attacker A accessing C there exists another (classical or quantum)
attackerA′ accessingC′ such that the difference between the probability distributions of the binary outputs
of Env[C,A] and Env[C′,A′] is negligible, i.e.∣∣P [b = 1 : b← Env[C,A]]− P

[
b = 1 : b← Env[C′,A′]

]∣∣ ≤ ε(k) , (3)

where ε is a negligible function.

Indifferentiability is a strong notion of securitymainly because if fulfilled it guarantees com-
posability of the secure cryptosystem. In the following we say that a cryptosystem T is compat-
ible with C if the interfaces for interacting of T with C are matching.

Theorem 4 (Composability [MRH04]). Let T range over (classical or quantum) cryptosystems com-
patible with C and R, then C is (q, ε)-indifferentiable from R if and only if for all T, T[C] is as secure as
T[R].

Note that composability that is guaranteed by the above theorem holds only for single-stage
games [RSS11].

Indifferentiability is a strong security notion guaranteeing that a lower-level function (e.g.
a random permutation) can be used to construct a higher-level object (e.g. a variable input-
length random function) that is ”equivalent” to the ideal one—in the sense of Thm. 4. Here, an
adversary’s complexity is measured in terms of the number of queries to the oracles only, not in
terms of their time complexity. In quantum indifferentiability adversaries are allowed to access
the oracles in superposition. This is necessary in the post-quantum setting, as the building
blocks of many hash functions—like e.g those of SHA3 [NIS14]—are publicly specified and
can be implemented on a quantum computer.
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2.3 Quantum Computing

Themodel of quantumadversarieswe use is quantumalgorithmsmaking q queries to an oracle.
Each query is intertwined by a unitary operation acting on the adversary’s state and all her
auxiliary states. A general introduction to quantum computing can be found in [NC11]. Here
we will only introduce specific operations important to understand the paper.

Let us define the Quantum Fourier Transform (QFT), a unitary change of basis that we will
make heavy use of. For N ∈ N>0 and x, ξ ∈ [N ] = ZN the transform is defined as

QFTN |x〉 := 1√
N

∑
ξ∈[N ]

ωξ·xN |ξ〉, (4)

where ωN := e
2πi
N is the N -th root of unity. An important identity for some calculations is∑

ξ∈[N ]
ωx·ξN · ω̄

x′·ξ
N = Nδx,x′ , (5)

where ω̄N = e−
2πi
N is the complex conjugate of ωN and δx,x′ is the Kronecker delta function.

If we talk about n qubits the identity on their Hilbert space is denoted by 1n. We write UA
to denote that we act with U on register A.

3 Quantum-Accessible Oracles

In the Quantum-Random-Oracle Model (QROM) [Bon+11], one assumes that the random or-
acle can be accessed in superposition. Quantum-accessible random oracles are motivated by
the possibility of running an actual instantiation of the oracle as function on a quantum com-
puter, whichwould allow for superposition access. In this section, oracles implement a function
f : X → Y distributed according to some probability distribution D on the set F of functions
fromX toY . Without loss of generalitywe setX = ZM andY = ZN for some integersM,N > 0.

In this section we give a formal treatment of quantum accessible oracles. We explain with
special care the compressed-oracle technique of Zhandry [Zha19]. A quantum oracle can be
viewed as a purification (extension to a higher-dimensional Hilbert space) of the adversary’s
quantum state. The simplest purification extends the state to include a superposition of all full
function tables from the set F . Note that the oracle gives access to a random function from the
set F . The purification we talk about is called the oracle register. A quantum algorithm could
simulate the access to the quantum oracle by preparing the oracle register and performing the
correct update procedures every time the adversary makes a query. Such a simulator would
not be efficient though, as the oracle register we just defined holdsM entries (so one for each
element of the domain) of the table of values in [N ]. The brilliant idea of Zhandry was to
propose a procedure to lazy-sample a uniformly random function. By lazy-sampling we mean
here to store just the queries asked by the adversary, not thewhole function table. By doing that
we limit the number of entries held by the simulator to q (the bound on the number of queries
performed by the adversary). Our result in this section is generalizing Zhandry’s technique to
independent distributions on functions: Such that outputs are distributed independently for
any distinct inputs.

Classically, an oracle for a function f is modeled via a tape with the queried input xwritten
on it, the tape is then overwritten with f(x). The usual way of translating this functional-
ity to the quantum circuit model is by introducing a special gate that implements the unitary
Uf |x, y〉 = |x, y + f(x)〉. In the literature + is usually the bitwise addition modulo 2, but in
general it can be any group operation. We are going to use addition in ZN .2

2Note that introducing the formalism using the group ZN for some N ∈ N is quite general in the following sense:
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In the case where the function f is a random variable, so is the unitary Uf . Sometimes this
is not, however, the best way to think of a quantum random oracle, as the randomness of f is
accounted for using classical probability theory, yielding a hybrid description. To capture the
adversary’s point of view more explicitly, it is necessary to switch to the mixed-state formalism.
A mixed quantum state, or density matrix, is obtained by considering the projector onto the
one-dimensional subspace spanned by a pure state, and then taking the expectation over any
classical randomness. Say that the adversary sends the query state |Ψ0〉 =

∑
x,y αx,y|x, y〉 to the

oracle, the output state is then∑
f

P[f : f ← D] Uf |Ψ0〉〈Ψ0|U†f ⊗ |f〉〈f |F

=
∑
f

P[f : f ← D]
∑

x,x′,y,y′

αx,yᾱx′,y′ |x, y + f(x)〉〈x′, y′ + f(x′)| ⊗ |f〉〈f |F , (6)

where by ᾱ we denote the complex conjugate of α and we have recorded the random function
choice in a classical register F holding the full function table of f .

In quantum information science, a general recipe for simplifying the picture and to gain
additional insight is to purify mixed states, i.e. to consider a pure quantum state on a system
augmented by an additional register E, such that discarding E recovers the original mixed
state. In [Zha19] Zhandry applies this recipe to this quantum-random-oracle formalism.

In the resulting representation of a random oracle, the classical register F is replaced by a
quantum register holding a superposition of functions fromD. The joint state before an adver-
sarymakes the first querywith a state |Ψ0〉XY is |Ψ0〉XY

∑
f∈F

√
P[f : f ← D] |f〉F . The unitary

that corresponds to Uf after purification will be called the Standard Oracle StO and works by
reading the appropriate output of f from F and adding it to the algorithm’s output register,

StO|x, y〉XY |f〉F := |x, y + f(x)〉XY |f〉F . (7)

Applied to a superposition of functions as intended, StO will entangle the adversary’s registers
XY with the oracle register F .

The main observation of [Zha19] is that if we change the basis of the initial state of the
oracle register F , the redundancy of this initial state becomes apparent. If we are interested in,
e.g., an oracle for a uniformly random function, the Fourier transform changes the initial oracle
state

∑
f

1√
|F|
|f〉 to a state holding only zeros |0M 〉, where 0 ∈ Y . The uniform case is treated

in great detail in [Unr21], there the case of random (invertible) permutations is also analyzed.
Let us start by presenting the interaction of the adversary viewed in the same basis, called

the Fourier basis. The unitary operation acting in the Fourier basis is called the Fourier Oracle
FO. Another important insight from [Zha19] is that the Fourier Oracle, instead of adding the
output of the oracle to the adversary’s output register, does the opposite: It adds the value of
the adversary’s output register to the (Fourier-)transformed truth table

FO|x, η〉XY |φ〉F := |x, η〉XY |φ− χx,η〉F , (8)

where φ is the transformed truth table f and χx,η := (0, . . . , 0, η, 0, . . . , 0) is a transformed truth
table equal to 0 in all rows except for row x, where it has the value η. Note that we subtract χx,η
so that the reverse of QFT returns addition of f(x).

Classically, a (uniformly) random oracle can be “compressed” by lazy-sampling the re-
sponses, i.e. by answering with previous answers if there are any, and with a fresh random
value otherwise. Is lazy-sampling possible for quantum accessible oracles? Surprisingly, the

Any finite Abelian group G is isomorphic to a product of cyclic groups, and the (quantum) Fourier transform with
respect to such a group is the tensor product of the Fourier transforms on the cyclic groups, given the natural tensor
product structure of CG. We use this formalism to define the most general compressed oracle technique. A reader
that focuses on bitstrings can just consider + to be the bitwise XOR and · the inner product of bitstrings.
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answer is yes. Thanks to the groundbreaking ideas presented in [Zha19] we know that there
exists a representation of a quantum random oracle that is efficiently implementable.

In the remainder of this section we present an efficient representation of oracles for func-
tions f sampled from product distributions. In the first part we introduce a general struc-
ture of quantum-accessible oracles. In the second part we generalize the idea of compressed
random oracles to deal with non-uniform distributions of functions. In Appendix D, we pro-
vide additional details on the implementation of the procedures introduced in this section and
step-by-step calculations of important identities and facts concerning compressed oracles. In
Appendix D.2 we recall in detail the compressed oracle introduced in [Zha19], where the dis-
tribution of functions is uniform and the functions map bitstrings to bitstrings. We show the
oracle in different bases and present calculations that might be useful for developing intuition
for working with the new view on quantum random oracles.

3.1 General Structure of the Oracles

In this subsection we describe the general structure of quantum-accessible oracles that will
give us a high-level description of all the oracles we define in this paper. A quantum-accessible
random oracle consists of

1. Hilbert spaces for the inputHX , outputHY , and state registersHF ,

2. a procedure SampD that, on input a subset of the input space of the functions in D, pre-
pares a superposition of partial functions on that subset of inputs with weights according
to the respective marginal of the distribution D,

3. an update unitary FOD that might depend on D (in the case of compressed oracles) or
not (in the case of full oracles, Eq. (8)).

First of all, let us note that we use the Fourier picture of the oracle as the basis for our discussion.
This picture, even though less intuitive at first sight, is simpler to handle mathematically. The
distribution of the functions we model by the quantum oracle are implicitly given by the pro-
cedure SampD that when acting on the |0〉 state generates a superposition of values consistent
with outputs of a function f sampled from D.

In the above structure the way we implement the oracle—in a compressed way, or acting on
full function tables—depends on the way we define FOD.

The definition of SampD is such that SampD(X )|0M 〉 =
∑
f∈F

√
P[f ← D]|f〉 and is a unitary

operator.
Quantum-accessible oracles work as follows. First the oracle state is prepared in an all-zero

state. Then at every query by the adversarywe run FOD which updates the state of the database.
Further details are provided in the following sections.

3.2 Non-uniform Oracles

One of the main results of this paper is generalizing the idea of purification and compression
of quantum random oracles to a class of non-uniform function distributions. We show that
the compressed-oracle technique can be used to deal with distributions over functions with
outputs independent of any prior interactions. Examples of such functions are randomBoolean
functions that output one with a given probability.

We want to compress the following oracle

StO|x, y〉XY
∑
f∈F

√
P[f : f ← D] |f〉F

=
∑
f∈F

√
P[f : f ← D] |x, y + f(x) mod N〉XY |f〉F , (9)
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where D is a distribution on the set of functions F = {f : X → Y}. The first ingredient we
need is an operation that prepares the superposition of function truth tables according to the
given distribution. More formally, we know a unitary that for all S ⊆ X

SampD(S)|0|S|〉F (S) =
⊗
x∈S

∑
yx∈Y

√
P[yx = f(x) : f ← D]|yx〉F (x), (10)

where by F (x) we denote the register corresponding to x. Later we give explicit examples
of SampD for different D. Applying QFT to the adversary’s register gives us the Phase Oracle
PhO that changes the phase of the state according to the output value f(x). This picture is
commonly used in the context of bitstrings but is not very useful in our context. Additionally
transforming the oracle register brings us to the Fourier Oracle, that we will focus on. This
series of transformations can be depicted as a chain of oracles:

StO
QFTYN←−−−→ PhO

QFTFN←−−−→ FO, (11)

going “to the right” is done by applying QFTN and “to the left” by applying the adjoint. Also
note that since register Y holds a single value in Y and register F holds values in YM , the
transform above is an appropriate tensor product of QFTN . The non-uniform Fourier Oracle is
defined as FO = QFTY FN ◦ StO ◦ QFT† Y FN , as a consequence of that definition we have

FO|x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ〉F

= |x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ− χx,η mod N〉F .

(12)

The main difference between uniform oracles and non-uniform oracles is that in the latter, the
initial state of the oracle in the Fourier basis is not necessarily an all-zero state. That is because
the unitary SampD—that is used to prepare the initial state—is not the adjoint of the transfor-
mation between oracle pictures, like it is the case for the uniform distribution.

Before we give all details of SampD let us discuss the two bases: the Fourier basis and the
prepared basis. To deal with the difference between the initial 0 state and the initial Fourier
basis truth tables we use yet another alphabet and define Д (pronounced as [dε]) which de-
notes the unprepared database. We call it like that because the initial state of Д is the all-zero
state. Moreover only by applying QFTDN ◦ SampDD we transform it to ∆, i.e the Fourier basis
database. As we will see, operations on Д are more intuitive and easier to define. We denote an
unprepared database by |Д〉D = |x1, и1〉D1 |x2, и2〉D2 · · · |xq, иq〉Dq (where the Cyrillic letter и is
pronounced as [i]). By ∆Y (x) we denote the η value corresponding to the pair in ∆ containing
x and by ДX we denote the x values in Д. The intuition behind the preparation procedure is
to initialize the truth table of the correct distribution in the correct basis. This notion is not
visible in the uniform-distribution case, because there the sampling procedure for the uniform
distribution U is the Fourier transform: SampU = QFT†N , and the database pictures ∆ and Д are
equivalent. The following chain of databases similar to Eq. (11) represents different pictures,
i.e. bases, in which the compressed database can be viewed

|Д〉 SampD←−−−→ |D〉
QFTD

Y

N←−−−−→ |∆〉. (13)

Before defining compressed oracles for non-uniform function distributions, let us take a step
back and think about classical lazy sampling for such a distribution. Let f be a random function
from a distributionD. In principle, lazy sampling is always possible as follows. When the first
input x1 is queried, just sample from the marginal distribution for f(x1). Say the outcome is
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y1 for the next query with x2, we sample from the conditional distribution of f(x2) given that
f(x1) = y1, etc.

Whether actual lazy sampling is feasible depends on the complexity of sampling from the
conditional distributions of function values given that a polynomial number of other function
values are already fixed.

The method for quantum lazy sampling that we generalize in this paper is applicable only
to a certain class of distributions. The distributions that we analyze must be independent for
every input. By f(S) we denote the part of the full truth table of f corresponding to inputs
from S. Below we provide a definition of product distributions:

Definition 5 (Product distribution). A distribution D on a set of functions F ⊆ {f : X → Y}
is called product if for all disjoint S1,S2 ⊆ X , f(S1) and f(S2) are independently distributed when
f ← D.

The situation when constructing compressed superposition oracles for non-uniformly dis-
tributed random functions is very similar. In this case we need the operations SampD(S) to be
efficiently implementable for the compressed oracle to be efficient. Here, S ⊆ X . By inputting
a set to SampD we mean that the operation will prepare a superposition of outputs to elements
of the set.

Let us now come back to Definition 5, we want to translate the constraint on distributions to
constraints on the quantum sampling procedure. The definition requires that the distribution is
independent for anyS1 andS2, this leads to the following requirement on sampling procedures:

∀S1,S2 ⊆ X : SampD(S1 ∪ S2) = SampD(S1) ◦ SampD(S2). (14)

Let us present a detailed definition of sampling procedures for product distributions.

Definition 6 (Sampling procedure for a product D). A sampling procedure SampD for a product
distribution D (as defined in Def. 5) is a family of unitary operators

{SampD(S1) : S1 ⊆ X} , (15)

where each operator fulfills the following conditions:

(i) It is efficiently implementable in the number of inputs |S1|.

(ii) It prepares the appropriate superposition on the zero state:

SampD(S1)|0|S1|〉F1 =
∑

~y1∈Y|S1|

√
P

f←D
[f(S1) = ~y1]|~y1〉F1 . (16)

(iii) The operators are independent, so for S1,S2 ⊆ X such that S1 ∩ S2 = ∅ we have:

SampF1F2
D (S1 ∪ S2) = SampF1

D (S1) ◦ SampF2
D (S2) (17)

and F1 and F2 are different quantum registers.

Note that for SampD(S) to be efficient, it is not sufficient that the probability distributionsD
are classically efficiently samplable. This is because running a reversible circuit obtained from a
classical sampling algorithm on a superposition of random inputs will, in general, entangle the
sample with the garbage output of the reversible circuit. The problem of efficiently creating a
superpositionwith amplitudes

√
p(x) for some probability distribution p has appeared in other

contexts, e.g. in classical-client quantum fully homomorphic encryption [Mah18].
An interesting example of a distribution that is not product but which we can quantumly

lazy-sample is the following: It is uniform for inputs in {0, 1}n \ {x} for any x and is fully
determined on the “last” input: f(x) =

⊕
x′ 6=x f(x′).

12



Before we state the algorithm that realizes the general Compressed Fourier Oracle CFOD we
provide a high-level description of the procedure. The oracle CFOD is a unitary algorithm
that performs quantum lazy sampling, maintaining a compressed database of the adversary’s
queries. For the algorithm to be correct—indistinguishable for all adversaries from the full
oracle—it has to respect the following invariants of the database: The full oracle is oblivious
to the order in which a set of inputs is queried. Hence the same property has to hold for the
compressed oracle, i.e. we cannot keep entries (x, η) in the order of queries. We ensure this
property by keeping the database sorted according to x.

The second issue concerns the danger of storing too much information. If after the query
we save (x, η) in the database but the resulting entry mapped to (x, 0) in the unprepared basis,
i.e. the basis before applying Samp, then the compressed database would entangle itself with
the adversary, unlike in the case of the full oracle. Hence the database cannot contain 0 in the
unprepared basis.

In the following we sketch the workings of the quantum algorithm CFOD responsible for
updating the oracle register. The set of inputs X is expanded by the symbol ⊥, denoting an
empty entry in the quantum database.

CFOD: On input |x, η〉 do the following:

1. Find the index l ∈ [q] of the register holding the first xl from the right that is xl < x, we
should insert (x, η) into this register.

2. If x 6= xl: insert x in a register after the last element of the database and shift it to position
l, moving the intermediate registers backwards.

3. Apply QFTD
Y
l

N ◦ SampDlD (x) to change the basis to the Fourier basis (in which the adver-
sary’s η is encoded) and update register Dl to contain (xl, ηl − η), change the basis back
to original by applying Samp†DlD (x) ◦ QFT†D

Y
l

N .

4. Check if register l contains a pair of the form (xl, 0), if yes subtract x from the first part to
yield (⊥, 0) and shift it back to the end of the database.

5. Uncompute3 l.

If after q queries the database has a suffix of u pairs of the form (⊥, 0), we say the database has
s = q − u non-padding entries.

Using this notation, Alg. 1 defines the procedure of updates of the database of the com-
pressed database. We refer to Appendix D.3 for the fully detailed description of CFOD.

Below in Alg. 2 we explain how to uncompute l in line 12 of Algorithm 1.
In Alg. 1 we use the fact that SampD is a local sampling procedure, Def. 6; Note that wewrite

SampD(x)
D (x), so the sampling is independent from all queries that are already in the database.

We would like to stress that to keep the compressed oracle CFOD a unitary operation we
always keep the database of size q. This can be easily changed by always appending an empty
register (⊥, 0) at the beginning of each query of adversary A. The current formulation of CFOD

assumes that there is an upper bound on the number of queries made by the adversary, this is
not a fundamental requirement.

The interface corresponding to the compressed Fourier oracle CFOD interprets the adver-
sary’s output register in the Fourier basis. When we want to change the basis to the standard

3Uncomputing a function means in the context of quantum computing applying the conjugate of the unitary
calculating this function.
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Algorithm 1: General CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 Count in register S the number of non-padding (ДX 6=⊥) entries s in D
2 if x 6∈ ДX then // add
3 Insert x to ДX in the right place and add 1 to S // keeping ДX sorted

4 Apply QFTD
Y (x)

N SampD
Y (x)

D (x) // prepare the database: Д(x) 7→ ∆(x)
5 Subtract η from ∆Y (x) // update entry with x

6 Apply Samp†D(x)
D (x)QFT†D

Y (x)
N // unprepare the database: ∆(x) 7→ Д(x)

7 In register L save location l of x in Д
8 if ДY

l = 0 then // remove or do nothing
9 Remove x from DX

l and shift register DX
l to the back // ДX

l 7→⊥
10 if ДX

l 6= x then // x was removed
11 Shift DY

l to the back and subtract 1 from S

12 Uncompute l from register L // Algorithm 2
13 Uncompute s from register S
14 Return |x, η〉XY |Д′〉D // Д′ is the modified database

Algorithm 2: Uncompute L in line 12 of Alg. 1
1 Control on registers X and DX

2 for i = 1 . . . , s− 1 do
3 if ДX

i = x then
4 Subtract i from L

5 else if ДX
i < x and x < ДX

i+1 then
6 Subtract i+ 1 from L

one, we apply QFTDYN to the database register and QFTYN to the adversary’s output register.
These basis changes give rise to the versions of oracle analogous to the full-oracle case:

CStO
QFTYN←−−−→ CPhO

QFTD
Y

N←−−−−→ CFO. (18)

The intermediate oracle is the compressed phase oracle.
The decompression procedure for the general Compressed Fourier Oracle is given byAlg. 3.

The output of the decompression procedureφ(Д) is the state holding the prepared Fourier-basis
truth table of the functions from D, which by construction is consistent with the adversary’s
interaction with the compressed oracle.

The decompression can be informally described as follows. The first operation coherently
counts the number of ДX 6=⊥ and stores the result in a register S. Next we prepare a fresh all-
zero initial state of a function from X to Y , i.e. X registers of dimensionN , all in the zero state.
These registers will hold the final FO superposition oracle state. The next step is swapping each
Y -type register of the CFO-database with the prepared zero state in the FO at the position indi-
cated by the correspondingX-type register in theCFO database. This FOR loop is controlled on
register S. Note that after preparing S we do not modify S anymore in this step. The task left
to do is deleting x’s fromD. It is made possible by the fact that the non-padding entries of the
CFO database are nonzero and ordered. That is why we can iterate over the entries of the truth
table F and, conditioned on the entry not being 0, delete the last entry of DX and reducing S
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Algorithm 3: General Decompression Procedure DecD
Input : Unprepared database: |Д〉D
Output: Prepared, Fourier-basis truth table: |φ(Д)〉

1 Count in register S the number of non-padding (x 6=⊥) entries s
2 Initialize register F in the state

⊗
x∈X |0〉

3 for i = 1, 2, . . . , s do // Controlled on S
4 Swap register DY

i with F (xi)
5 for x ∈ X in descending order do
6 if F (x) holds a value 6= 0 then
7 Subtract x from register DX

s

8 Subtract 1 from register S

9 Discard D and S
10 Apply QFTFNSampFD(X ) // Prepare the database

by one to update the number of remaining non-padding entries in the CFO-database. Here the
loop range does not depend on the size of the database, just the size of the domain. Finally, we
switch to the correct basis to end up with a full oracle of Fourier type, i.e. a FO.

Theorem 7 (Correctness ofCFOD). SayD is a product distribution (Def. 5) over functions, letCFOD

be defined as in Alg. 1 and FO as in Eq.(12). Let z be a random arbitrarily distributed string. Then for
any quantum adversary A making q quantum queries we have∣∣∣P [b = 1 : b← AFO(z)

]
− P

[
b = 1 : b← ACFO(z)

]∣∣∣ = 0. (19)

Proof Proof sketch. We will show that

|ΨFO〉AF = DecDD |ΨCFO〉AD, (20)

where |ΨFO〉AF is the joint state of the adversary and the oracle resulting from the interaction
of A with FO and |ΨCFO〉AD is the state resulting from the interaction of A with CFOD. The state
|ΨFO〉AF is generated by applying

∏q
i=1 Ui ◦ FO to the |ψ0〉A|0M 〉F , where |ψ0〉A is the initial

state of the adversary. In the case of the compressed oracle, the state |ΨCFO〉AD is generated by
applying

∏q
i=1 Ui ◦ CFO to |Ψ0〉A|(⊥, 0)q〉D, where (⊥, 0)q denotes q pairs (⊥, 0).

We can focus on the state equality from Eq. (20) because if they are indeed equal, then any
adversary measurement on |ΨFO〉AF will yield the output b = 1 with the same probability as
on DecDD |ΨCFO〉AD.

To prove that Eq. (20) indeed holds we calculate a single query made to the compressed
oracle. We can perform a detailed calculation of that procedure thanks to the assumption that
D is a product distribution (Def. 5) and the sampling procedure that constructed accordingly
(Def. 6).

Afterwe calculated the updated compressed databasewe can easily decompress it and com-
pare with the corresponding updated full oracle register. All the details of this proof can be
found in Appendix A.

4 One-way to Hiding Lemma for Compressed Oracles

The fundamental game-playing lemma, Lemma 1, is a very powerful tool in proofs that in-
clude a random oracle. A common use of the framework is to reprogram the random oracle
in a useful way. The fundamental lemma gives us a simple way of calculating how much the
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reprogramming costs in terms of the adversary’s advantage—the difference between probabil-
ities of A outputting 1 when interacting with one game or the other. The lemma that provides
a counterpart to Lemma 1 valid for quantum accessible oracles is theOne-Way to Hiding (O2H)
Lemma first introduced by Unruh in [Unr14].

In this sectionwe generalize the O2H lemma toworkwith the compressed oracle technique.
The oracle register in this technique is a superposition over databases of input-output pairs. A
relation on a database is a specific set of databases that fulfill some requirement, e.g., contains a
collision (two entries with distinct inputs and the same output). The O2H lemma, as stated in
[AHU19], works with punctured oracles, these are quantum oracles that include a binary mea-
surement after every query. After introducing the notion of relations on databases we bring
the concept of punctured oracles to the compressed oracles technique. Punctured compressed
oracles involve measurements on the superposition of databases. These measurements allow
to analyze adversaries that had access to oracles that e.g. never output colliding outputs, this
is a very useful situation, considering how often we lazy-sample functions is cryptographic
proofs and then want to focus on some transcripts of input-output pairs. Our version of the
O2H lemma provides a bound on the distinguishing advantage between an oracles that is not
punctured and an oracle that is. The bound in the O2H lemma is stated in terms of the prob-
ability of any measurement in the punctured oracle succeeding, i.e., finding a database in the
oracle register that fulfills the relation we discuss. The strength of our result lies in how versa-
tile the new O2H lemma is, moreover the proof of the lemma is almost the same as the one in
[AHU19].

In the original statement of the O2H lemma, the main idea is that there is a marked subset
of inputs to the random oracle H, and an adversary tries to distinguish the situation in which
she interacts with the normal oracle from an interaction with an oracle G that differs only on
this set. The lemma states a bound for the distinguishing advantage which depends on the
probability of an external algorithm measuring the input register of the adversary and seeing
an element of the marked set. This probability is usually small, for random marked sets.

Recently this technique was generalized by Ambainis, Hamburg, and Unruh in [AHU19].
The main technical idea introduced by the generalized O2H lemma is to exchange the oracle G
with a so-called punctured oracle that measures the input of the adversary after every query. The
bound on the adversary’s advantage is given by the probability of this measurement succeed-
ing. This technique forms the link with the classical identical-until-bad games: we perform a
binarymeasurement on the “bad” event and bound the advantage by the probability of observ-
ing this bad event.

In this work we present a generalization of this lemma that involves the use of compressed
oracles. Our idea is to measure the database of the compressed oracle, which makes the lemma
more versatile and easier to use for more general quantum oracles.

Below we state our generalized O2H lemmas. Most proofs of [AHU19] apply almost word
by word so we just describe the differences and refer the reader to the original work.

4.1 Relations on databases

The key concept we use are relations on the database of the compressed oracle.

Definition 8 (Classical relationR onD). LetD be a database of size at most q pairs (x, y) ∈ X ×Y .
We call a subset4 R ⊆

⋃
t∈[q+1] (X × Y)t a classical relation R on D.

An example of such a relation is a collision, namely

Rcoll := {((x1, y1), · · · , (xs, ys)) ∈
⋃

t∈[q+1]
(X × Y)t : ∃i,j i 6= j, xi 6= xj , yi = yj}. (21)

4Note that [q + 1] = {0, 1, . . . , q}
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Note however, that it is only reasonable to check if the non-padding entries are in R, omitting
the (⊥, 0) pairs at the end of D. If D is held in a quantum register, the classical relation R has
a corresponding projective measurement JR such that ‖JR|(x1, y1), · · · , (xq, yq)〉D‖ = 1 if and
only if for some s it holds that

(
(x1, y1), · · · , (xs, ys)

)
∈ R and for the remaining i > s, the (xi, yi)

are padding entries.
We also state an explicit algorithm to implement the measurement of a relation R, given

that membership in R is efficiently decidable. To denote the single-bit membership decision
by D ∈ R, the bit is 1 if and only if database D is in R. To measure the relation we define a
unitary VSDJR that XORs a bit D ∈ R to register J ; This unitary is controlled on registers S and
D, the former holds the information about the size of the database and the latter the database
itself. Alg. 4 defines the measurement procedure of measuring R on quantum databases in the
standard basis.

Algorithm 4:Measurement of a relation R
Input : Database |D〉D in the standard basis
Output: Outcome p and post-measurement state |D′〉D

1 Count in register S the number of non-padding (DX 6=⊥) entries s in D
2 Initialize a new qubit register |0〉J
3 Apply VSJDR that XORs a bit j := D ∈ R to register J
4 Uncompute register S, measure register J , output the outcome j

An important issue concerning measuring relations is the basis in which we store the quan-
tum database. For the measurement to be meaningful it has to be done in the standard basis,
so it is easiest to analyze CStOD or CPhOD, defined by Eq. (18).

While not directly relevant to our applications, we keep the generality of [AHU19] by intro-
ducing the notion of query depth as the number of sets of parallel queries an algorithm makes.
We usually assume quantum algorithms make q quantum queries in total and d (as in “query
depth”) sequentially, but those queries in sequence may involve a number of parallel queries.
A parallel query of width p to an oracle H involves p applications of H to p query registers. Note
that if H is considered to be a compressed oracle, p-parallel queries are processed by sequen-
tially applying the compressed oracle unitary p times.

First we define a compressed oracle H punctured on relation R, denoted by H \R.

Definition 9 (Punctured compressed oracle H \ R). Let H be a compressed oracle and R a relation
on its database. The punctured compressed oracle H \ R is equal to H, except that R is measured after
every query as described in Alg. 4. By Find we denote the event that R outputs 1 at least once among
all queries.

Full oracles can be punctured aswell, the relation is then checked only on the queried entries
of the function table—those queried entries need to be identified (like inDecD fromAlg. 3) prior
to the measurement of R.

In many applications of punctured oracles wemight want to apply H\R only if some condi-
tion is fulfilled. Moreover, this condition might be quantum—in other words we control H \R
on some quantum register. To avoid the situation of a measurement being performed or not
depending on a state of a quantum register—which is not permitted by quantum mechanics—
we propose the following solution: We postpone the measurement to the end of the quantum
query. Namely, we omit themeasurement of register J in Alg. 4 and perform it at the end of the
compressed-oracle algorithm. After the measurement we can uncompute the outcome register
J . We are not changing notation and implicitly assume the postponement of puncturing—e.g.
in Alg. 7.
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4.2 One-way to Hiding Lemma

Using the definitions from the previous sections we can prove a theorem similar to Theorem 1
of [AHU19].

Let us also comment on the differences of the O2H lemma in [AHU19] and our paper. The
main difference is that in our generalization we no longer focus solely (we can recover the
original O2H lemma though) on the adversary’s inputs but also treat the outputs of the oracle.
Function outputs are also important in [AHU19], but the oracle is not lazy sampled, there they
pick a subset of the domain such that e.g. the output is 0 and then puncture on inputs in this
random set. We use lazy sampled functions and puncture on databases, so functions defined
only on the queried inputs. In addition, defining the puncturing operation on the compressed
oracle-database is more expressive, as it allows puncturing conditions depending onmore than
one input-output pair.

Theorem 10 (Compressed oracle O2H). Let R1 and R2 be relations on the database of a quantum
oracle H. Let z be a random string. R and z may have arbitrary joint distribution. Let A be an oracle
algorithm of query depth d, then∣∣∣P[b = 1 : b← AH\R1(z)]− P[b = 1 : b← AH\R1∪R2(z)]

∣∣∣
≤
√

(d+ 1)P[Find2 : AH\R1∪R2(z)], (22)∣∣∣∣√P[b = 1 : b← AH\R1(z)]−
√
P[b = 1 : b← AH\R1∪R2(z)

∣∣∣∣
≤
√

(d+ 1)P[Find2 : AH\R1∪R2(z)], (23)

where Find2 is the event that measuring R2 succeeds.

Proof Proof sketch. The proof works almost the same as the proof of Theorem 1 of [AHU19].
Instead of checking register X for the success of the puncturing measurement we analyze the
oracle register. The rest follows exactly the same reasoning. All the details of the full proof can
be found in Appendix B

We continue by deriving an explicit formula for P[Find]. Let A be a quantum algorithmwith
oracle access to H, making at most q quantum queries with depth d. Let R be a relation on the
database of H and z an input to A. R and z can have any joint distribution. JR is the projector
from the measurement of R on D, UH

i is the i-th unitary performed by AH\R together with a
query to H, and |Ψ0〉 is the initial state of A. Then we have the formula

P[Find : AH\R(z)] = 1−
∥∥∥∥∥
d∏
i=1

(1− JR)UH
i |Ψ0〉

∥∥∥∥∥
2

. (24)

Let us now discuss the notion of “identical-until-bad” games in the case of compressed or-
acles. For random oracles, the notion was introduced in [AHU19]. The definition is rather
straightforward as H and G are considered identical until bad if they had the same outputs ex-
cept for somemarked set. When using compressed oracles, the outputs ofH andG are quantum
lazy-sampled, making the definition of what it means for two oracles to be identical until bad
require more care. Here we state a definition that captures useful notions of identical-until-bad
punctured oracles.

Definition 11 (Almost identical oracles). Let H and G be compressed oracles and Ri, i = 1, 2 re-
lations on their databases. We call the oracles H \ R1 and G \ R2 almost identical if they are equal
conditioned on the events ¬Find1 and ¬Find2 respectively, i.e. for any string z and any quantum algo-
rithm A

P[b = 1 : b← AH\R1(z) | ¬Find1] = P[b = 1 : b← AG\R2(z) | ¬Find2]. (25)
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Note that not punctured compressed oracles are a special case of punctured ones (for R =
∅), so the above definition can be applied to a pair of oracles where one is punctured and one is
not. We can prove the following bound on the adversary’s advantage in distinguishing almost
identical punctured oracles.

Lemma 12 (Distinguishing almost identical punctured oracles). If H \R1 and G \R2 are almost
identical according to Def.11 then for any b ∈ {0, 1}∣∣∣P[b← AH\R1(z)]− P[b← AG\R2(z)]

∣∣∣ ≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)]. (26)

Proof. We bound∣∣∣P[b← AH\R1(z)]− P[b← AG\R2(z)]
∣∣∣

Def. 11=
∣∣∣P[b← AH\R1(z) | ¬Find1]

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
+ P[b← AH\R1(z) | Find1]P[Find1 : AH\R1(z)]

−P[b← AG\R2(z) | Find2]P[Find2 : AG\R2(z)]
∣∣∣ (27)

4
≤

∣∣∣∣∣∣∣∣∣P[b← AH\R1(z) | ¬Find1]︸ ︷︷ ︸
≤1

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
︸ ︷︷ ︸

=P[Find2:AG\R2 (z)]−P[Find1:AH\R1 (z)]

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[b← AH\R1(z) | Find1]︸ ︷︷ ︸
≤1

P[Find1 : AH\R1(z)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[b← AG\R2(z) | Find2]︸ ︷︷ ︸
≤1

P[Find2 : AG\R2(z)]

∣∣∣∣∣∣∣ (28)

4
≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)], (29)

where by4we denote the triangle inequality.

Note that forR2 = ∅, the above lemma is essentially a special case of the well knownGentle-
Measurement Lemma of [Win99].

It is a fact of quantummechanics thatmeasurements disturb the state. Considering that, one
might be curious if measuring the database does not disturb it too much. As an example, note
that after a measurement of the collision relation, eq. (21), the database does not necessarily
consist of only non-Fourier-0 entries. Even though this is true, if the disturbance of the oracle
is low enough, then the adversary will not notice it. This is exactly the case of the O2H lemma,
the disturbance is low enough so the adversary does not notice any difference in the content of
the oracle’s output.

4.3 Calculating Find for the Collision and Preimage Relations

We state a lemma giving a bound on the probability of Find for the uniform distribution over
the set {f : X → Y}, and for the union of the collision and preimage relations. The preimage
relation is satisfied when the output of the oracle is 0:

Rpreim := {((x1, y1), · · · , (xt, yt)) ∈
⋃

s∈[q+1]
(X × Y)s : ∃i : yi = 0}. (30)

In the following we assume Y = [N ].
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Lemma 13. For any quantum adversary A interacting with a punctured oracle CStOY \ (Rpreim ∪
Rcoll)—where Rcoll is defined in Eq. (21) and Rpreim in Eq. (30)—the probability of Find is bounded
by:

P[Find : A[CStOY \ (Rpreim ∪Rcoll)]] ≤ 296q
2

N
, (31)

where q is the maximal number of queries made by A and N = |Y|.

Proof. The proof of this lemma is a fairly simple application of the techniques from [Chu+20].
Let ΠR be the projector onto the subspace of the database register on which R holds, and let
Π≤` be the projector onto the databases of size at most `. We can express the Find probability
as

P[Find : A[CStOY \ (Rpreim ∪Rcoll)]]
=
∑
i

P[Find at query i : A[CStOY \ (Rpreim ∪Rcoll)]] (32)

=
q∑
i=1

∥∥∥∥∥∥ΠRCStOYUi

 1∏
j=i−1

(1−ΠR)CPhOYUj

 |Ψ0〉

∥∥∥∥∥∥
2

(33)

=
q∑
i=1

∥∥∥∥∥∥ΠRCStOY(1−ΠR)Π≤i−1Ui

 1∏
j=i−1

(1−ΠR)CStOYUj

 |Ψ0〉

∥∥∥∥∥∥
2

(34)

≤
q∑
i=1
‖ΠRCStOY(1−ΠR)Π≤i−1‖2∞ , (35)

where |Ψ0〉 is the initial state of the adversary and the oracle andUi are the adversary’s unitaries.
We can now apply Corollary 5.26 in [Chu+20], where P′ are the databases of size at most

i− 1 not contained in (Rpreim ∪Rcoll) and P are the databases in (Rpreim ∪Rcoll), to obtain

‖ΠRCStOY(1−ΠR)Π≤i−1‖∞ ≤ 2e
√

10
( 1
N

+ i− 1
N

)
= 2e

√
10
(
i

N

)
, (36)

where e is Euler’s number. Here we have used 1
N as an upper bound on the probability that

the y-value of the new database entry is 0 (resulting in membership of Rpreim), whereas i−1
N is

an upper bound on the probability that this y-value matches one of the i − 1 y-values already
contained in the database (resulting in membership of Rcoll).

We can hence continue to bound

P[Find : A[CStOY \ (Rpreim ∪Rcoll)]]

≤
q∑
i=1
‖ΠRCStOY(1−ΠR)Π≤i−1‖2∞ ≤

296
N

q∑
i=1

i = 296q(q + 1)
2N ≤ 296q

2

N
, (37)

where in the final inequality we have assumed q ≥ 1 as for q = 0 there is nothing to prove.

In Appendix C we give a direct proof with a better constant at the expense of some lower-
order terms. The above bound is just the classical collision (and preimage) finding bound up
to a constant factor. Intuitively, this is because the coherence needed by the optimal quantum
search algorithms (e.g. the Grover algorithm [Gro96]) is broken by the repeatedmeasurement.

Finally let us provide a clearer explanation for how to use our technique. Whenever we
lazy sample a uniform function in the (classical) game-playing framework we have some bad
events, for example the newest output collides with some previous one. To translate the proof
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to the quantum case we reformulate the bad events to the language of relations and use a punc-
tured compressed oracle. Hybrid jumps are boundedwith the O2H lemma and P[Find] with (a
version of) Lemma 13. Note that only this technique allows us to deal with collisions in quan-
tumly lazy sampled functions. The only other paper that considers this problem is [Zha19] but
there are some things that are a bit unclear in the proof of the important lemma there.

5 Quantum Security of the Sponge Construction

We use our methods to show a detailed proof of quantum indifferentiability of the sponge
construction when used with a random function as the internal function. In Appendix E we
prove that quantum indifferentiability implies collapsingness.

After introducing the sponge construction in the next section, we present two proofs of
indifferentiability of the sponge construction. The first proves classical security and the second
quantum security. We present two proofs to simplify reading the quantum proof, it follows
the same reasoning as the classical one. We also want to highlight how similar these proofs
are, this is what we consider to be one of the main advantages of our quantum game-playing
framework. In our framework all proofs of quantum indifferentiability can follow the same
reasoning and very similar steps as the classical version.

Beforewe proceed let us remind the reader of themain concepts, that are necessary to follow
the proof of quantum indifferentiability. The central object of the proof are punctured oracles,
defined in Def. 9. They play the role of subroutines that lazy-sample functions and output
“True” when a bad event occurs. Readers familiar with the original game-playing framework
[BR06] will recognize the crucial subroutines of the classical games. Additionally, punctured
oracles are objects that allow to condition probabilistic events on some aspects of quantum
queries done by the adversary. This useful feature allows us to sometimes use arguments from
the classical proof in the quantum one.

A punctured oracle is built using the compressed-oracle framework and formally includes a
quantum database register, as described in detail in section 3. Nonetheless these details are not
necessary to follow the contents of this section. The only two things to keep in mind are that
in general the adversary can make quantum queries to the primitives and that the responses of
queries are saved in the adversary’s quantum register |s, v〉, where s is the query and v is any
value in the codomain of the queried function.

The reasonwe use punctured oracles is that they allow to use theOne-way ToHiding (O2H)
lemma. This is an extremely useful tool for bounding the distinguishability advantage of two
quantum games. We cover this lemma in details in section 4. Technically the most demanding
part of using the O2H lemma is bounding the probability of any puncturing measurement
succeeding (we call this event Find). We compute a bound on P

[
Find

]
useful in the quantum

indifferentiability proof for sponges in section 4.3.
The second distinguishability bound that we use is shown in Lemma 12. This is a relatively

simple statement, that is true for games that are almost identical (Def.11).

5.1 Sponge Construction

The sponge construction is used to design variable-input-length and variable-output-length
functions. It works by applying the internal functionϕmultiple times on the state of the function.
In Algorithm 5 we present the definition of the sponge construction, which we denote with
Sponge [Ber+07]. The internal state5 s = (s̄, ŝ) ∈ {0, 1}r × {0, 1}c of Sponge consists of two
parts: the outer part s̄ ∈ {0, 1}r and the inner part ŝ ∈ {0, 1}c. The logarithm of the number
of possible outer parts r is called the rate of the sponge, and c is called capacity. Naturally the

5Our result also holds for arbitrary finite sets A× C, where additionally A is an Abelian group.
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internal function is amapϕ : {0, 1}r×{0, 1}c → {0, 1}r×{0, 1}c. To denote the internal function
with output limited to the first r bits and the last c bits we use the same notation as for states, ϕ̄
and ϕ̂ respectively. By ({0, 1}r)∗we denote the strings consisting of an arbitrary number of r-bit
blocks. By pad : {0, 1}∗ → ({0, 1}r)∗ we denote a padding function: an efficiently computable
injection such that |pad(m)| ≥ r and that the last bit of pad(m) is never 0 (this ensures injectivity
for inputs of different lengths). By |p|r we denote the number of r-bit blocks in p and by bpci
we denote the i-th r-bit block of p. The function constructed in that way behaves as follows,
Spongeϕ : {0, 1}∗×N→ {0, 1}∗, where {0, 1}∗ :=

⋃∞
n=0{0, 1}n. In Fig. 2 we present a scheme of

the sponge construction evaluated on inputm.

0

0

m1

ϕ

m2

ϕ

m3

ϕ

z1

ϕ

z2

Absorbing phase Squeezing phase

Input: m = m1‖m2‖m3 Output: z = z1‖z2

Figure 2: A schematic representation of the sponge construction: Spongeϕ(m1‖m2‖m3) =
z1‖z2.

For a set S ⊆ {0, 1}r+c, by S we denote the outer part of the set: a set of outer parts of
elements of S. Similarly by Ŝ we denote the inner part of the set. We use similar notation for
quantum registers holding a quantum state in H{0,1}r+c : Y is the part of the register holding
the outer parts and Ŷ holds the inner parts.

Algorithm 5: Spongeϕ[pad, r, c]
Input :m ∈ {0, 1}∗, ` ≥ 0.
Output: z ∈ {0, 1}`

1 p := pad(m)
2 s := (0, 0) ∈ {0, 1}r × {0, 1}c.
3 for i = 1 to |p|r do // Absorbing phase
4 s := (s̄⊕ bpci, ŝ)
5 s := ϕ(s)
6 z := s̄ // Squeezing phase
7 while |z| < ` do
8 s := ϕ(s)
9 z := z‖s̄

10 Output z

An important feature of the sponge construction is that one can associate to the internal
function ϕ a graph G = (V, E) [Ber+07]. It is called the sponge graph; The set of nodes V :=
{0, 1}r+c corresponds to all possible states of the sponge. A directed edge connects any two
nodes (s, t) whenever ϕ(s) = t, hence there are 2r+c edges in E . From each node starts exactly
one edge. We group the nodes with the same inner-part value into supernodes, so that we have
2c supernodes and each such supernode consists of 2r nodes. Edges between nodes are also
edges between supernodes.
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Whenever the adversary queries Sponge, she starts at the (0r, 0c) node. This node is called
the root. Next the first r-bit block bpc1 in the padded message p = pad(m) is added to the
outer part of the state and queried to the internal function ϕ(bpc1, 0c) = s2. The node s2 is the
node in the edge ((bpc1, 0c), s2) ∈ E . The same situation repeats for all blocks in p, during the
absorbing phase. When Sponge starts generating output, we no longer modify the state, or just
add 0r to the outer part. Note that knowing just p and G we can get to the last node traversed
by Spongeϕ(m). This leads us to the definition of a sponge path.

Definition 14 (Sponge Path, Definition 3 in [Ber+08]). First, the empty string is a sponge path to
the node (0r, 0c). Then, if p is a sponge path to node s = (s̄, ŝ) and there is an edge (s̄ ⊕ a‖ŝ, t) in the
sponge graph G, p′ = p‖a is a sponge path to node t.

Given the above definition, let us say that if p is a sponge path to s, thenwe define a function

SpPath(s,G) := p. (38)

The output of the above function is the input to the construction Spongeϕ(., ` = r) that yields
the output s̄.

When we talk about the simulator in a proof of indifferentiability, we define the simulator
graph. The graph kept by the simulator differs from the sponge graph discussed above by the
number of edges in it. As the simulator lazy samples the internal function ϕ the set of edges
E grows by at most one edge per one adversary’s query. Other than that, all definitions above
hold for the simulator graph as well. We refer to the simulator graph G as just the (sponge)
graph whenever it is clear from context.

A supernode is called rooted if there is a path (a regular path that is just a set of edges
connected by the end-start nodes) leading to it that starts in the root (the 0-supernode). The
setR is the set of all rooted supernodes inG. By U we denote the set of supernodes with a node
with an outgoing edge.

A simulator graph is called saturated ifR∪U = {0, 1}c. It means that for every inner state in
{0, 1}c there is an edge in G that leads to it from 0c (the root) or leads from it to another node.
Saturation will be important in the proof of indifferentiability as the simulator wants to pick
outputs of ϕ without colliding inner parts (so not in R) and making the path leading from 0c
to the output longer by just one edge (so not in U).

The simulators defined in the proofs in this section are implicitly stateful. They maintain a
classical or quantum state containing a database of the adversary’s queries and the simulator’s
outputs. Using that database, the simulator can always construct a sponge graph containing
all the current knowledge of ϕ.

For the proof of indifferentiabilitywe also need anupper boundon the probability of finding
a collision in the inner part of outputs of a uniformly random function f : {0, 1}r+c → {0, 1}r+c.
Considering how Sponge is definedwewant a bound on finding collisions and zero-preimages.
We define the bound as a function of the number of queries q to f :

fcoll(q) := q(q + 1)
2c+1 , (39)

the bound can be derived in the standard way. The probability that any classical algorithm
finds a collision or a preimage of zero in [N ] after q queries is:

P
[
coll ∪ preim← A

]
≤

q∑
i=1

i

N
= q(q + 1)

2N , (40)

where we use the union bound and note that after i queries the adversary can either find the
preimeage of zero or hit any of the previous outputs, producing a collision. For a more detailed
derivation we refer to Appendix A.4 in [KL14].
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As the sponge construction is used to design variable-input and variable-output functions
we define the random oracle

H : {0, 1}∗ × N→ {0, 1}∗ (41)

accordingly. A random oracle grants access to a function sampled from distributionR on func-
tions {0, 1}∗ × N→ {0, 1}∗, that is defined as follows: To sample a function h← Rwe

• choose g uniformly at random from {g : {0, 1}∗ → {0, 1}∞}, where by {0, 1}∞ we denote
the set of infinitely long bitstrings,

• for each (x, `) ∈ {0, 1}∗ × N set h(x, `) := bg(x)c`, that is, output the first ` bits of the
output of g.

In the following section, we omit the second input and we mean that we ask for a single letter
H(x) = y ∈ {0, 1}r.

5.2 Classical Indifferentiability of Sponges with Random Functions

In the game-playing proofs and Algorithms 6 and 7 described in this section we use the follow-
ing convention: every version of the algorithm executes the part of the code that is not boxed
and among the boxed statements only the part that is inside the box in the color corresponding
to the color of the name in the definition.

First we present a slightly modified proof of indifferentiability from [Ber+08]. We modify
the proof to better fit the framework of game-playing proofs. It is not our goal to obtain the
tightest bounds nor the simplest (classical) proof. Instead, our classical game-playing proof
paves the way to the quantum security proof which is presented in the next section.

Theorem 15 (Sponge with functions, classical indifferentiability). Spongeϕ[pad, r, c] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (41), for classical adversaries for
any q < 2c and ε = 8 q(q+1)

2c+1 .

Proof. The proof proceeds in six games that we show to be indistinguishable. We start with the
real world: the public interface corresponding to the internal function ϕ is a random transfor-
mation and the private interface is Spongeϕ. Then in a series of games we gradually change
the environment of the adversary to finally reach the ideal world, where the public interface is
simulated by the simulator and the private interface is a random oracle H. The simulators used
in different games of the proof are defined in Alg. 6, the index of the simulator corresponds to
the game in which the simulator is used. Explanations of the simulators follow.
Game 1 We start with the real worldwhere the distinguisher A has access to a random function
ϕ : {0, 1}r+c → {0, 1}r+c and Spongeϕ using this random function. The formal definition of the
first game is the event

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (42)

Game 2 In the second game we introduce the simulator S2—defined in Alg. 6—that lazy-
samples the random function ϕ. In Alg. 6 we define all simulators of this proof at once, but note
that the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 1, 2,
and 5), because in the end, the output state t is picked uniformly from {0, 1}r+c anyway. The
definition of the second game is

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (43)

Because the simulator S2 perfectly models a random function and we use the same function for
the private interface we have

|P[Game 2]− P[Game 1]| = 0. (44)
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Algorithm 6: Classical S2, S3 , S4 , I6 , functions
State : current sponge graph G
Input : s ∈ {0, 1}r+c
Output: ϕ(s)

1 if s has no outgoing edge then // new query
2 if ŝ ∈ R ∧R ∪ U 6= {0, 1}c then // ŝ-rooted, no saturation

3 t̂
$← {0, 1}c, if t̂ ∈ R ∪ U , set Bad = 1 , t̂ $← {0, 1}c \ (R∪ U)

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then
6 t̄

$← {0, 1}r

7 t̄ := H(x)

8 else
9 t̄

$← {0, 1}r

10 t := t̄‖t̂
11 else
12 t

$← {0, 1}r+c

13 Add an edge (s, t) to E .
14 Set t to the vertex at the end of the edge starting at s
15 Output t

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (45)

We made a single change in S3 compared to S2, we introduce the “bad” event Bad that marks
the difference between algorithms. We use this event as the bad event in Lemma 1. With such
a change of the simulators we can use Lemma 1 to bound the difference of probabilities:

|P[Game 3]− P[Game 2]| ≤ P[Bad = 1]. (46)

It is quite easy to bound P[Bad = 1] as it is the probability of finding a collision or preimage of
the root in the set {0, 1}c having made q random samples. Therefore we have that

P[Bad = 1] ≤ fcoll(q), (47)

where fcoll is defined in Eq. (39). The bound is not necessarily tight as not all queries are made
to rooted nodes.

Game 4 In this step we introduce the random oracle H but only to generate the outer part of
the output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4 ]
)
. (48)

We observe that if Bad = 0 the outputs are identically distributed.

Claim 16. Given that Bad = 0 the mentioned games are the same:

|P[Game 4 | Bad = 0]− P[Game 3 | Bad = 0]| = 0. (49)
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Proof. Note that the inner part is distributed in the same way in both games if Bad = 0, so we
only need to take care of the outer part of the output. The problem might lie in the outer part,
as we modify the output from a random sample to H(x). If Bad = 0 then t̂ is not rooted and
has no outgoing edge, also the whole graph G does not contain two paths leading to the same
supernode. Hence, xwas not queried before and is uniformly random. This reasoning is made
more formal in Lemma 1 and Lemma 2 of [Ber+07].

The two games are identical-until-bad, this implies that the probability of setting Bad to one
in both games is the same P[Bad = 1 : Game 3] = P[Bad = 1 : Game 4]. Together with the
above claim we can derive the advantage:

|P[Game 4]− P[Game 3]| Claim 16=
∣∣∣∣∣P[Game 4 | Bad = 0]

· (P[Bad = 1 : Game 3]− P[Bad = 1 : Game 4]])︸ ︷︷ ︸
=0

+ P[Game 3 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1] + P[Game 4 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1]
∣∣∣∣∣ (50)

≤ 2P[Bad = 1]. (51)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same as before and the game is

Game 5 :=
(
b = 1 : b← A[H,SH

4 ]
)
. (52)

Conditioned on Bad = 0, the outputs of the simulator in Games 4 and 5 act in the same way
and are consistent with H.

Note that the inner states are generated by the same pseudocode and the outer states are dis-
tributed in the same way. Moreover conditioned on Bad = 0 the probabilities of A outputting 1
are the same. To calculate the adversary’s advantage in distinguishing between the two games
we can follow the proof of Lemma 12, with H \ R1 replaced by Game 5, G \ R2 replaced by
Game 4, and event Find replaced by Bad = 1. As the derivation of Lemma 12 uses no quan-
tummechanical arguments and the assumption holds—the games are identical conditioned on
Bad = 0—the bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad = 1] ≤ 4fcoll(q). (53)

Game 6 In the last game we use I6 (we call it I for ideal, that is the world we reach in the last
step of the proof), a simulator that does not check for bad events and samples from the “good”
subset of {0, 1}c. The game is

Game 6 :=
(
b = 1 : b← A[H, IH6 ]

)
(54)

and the advantage is

|P[Game 6]− P[Game 5]| ≤ P[Bad = 1] ≤ fcoll(q). (55)

following Lemma 1. as the only difference is in code but not outputs. We included this last
game in the proof because I6 is clearly a simulator that might fail only if G is saturated but
this does not happen if q < 2c. Collecting and adding all the differences yields the claimed
ε = 8fcoll(q).
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5.3 Quantum Indifferentiability of Sponges with Random Functions

In this subsection we prove quantum indifferentiability of the sponge construction with a uni-
formly random internal function.

In the quantum indifferentiability simulator we want to sample the outer part of inputs of ϕ
and the inner part separately, similarly to the classical one. To do that correctly in the quantum
case though we need to maintain two databases: one responsible for the outer part and the
other for the inner part. We denote them by D and D̂ respectively.

At line 7 of the classical simulator we replace the lazy sampled outer state by the output of
the random oracle. In the quantum case we want to do the same. Unlike in the classical case
we cannot, however, save the input-output pairs of the random oracle H that were sampled to
generate the sponge graph, as they contain information about the adversary’s query input. An
attempt to store this data would effectively measure the adversary’s state and render our sim-
ulation distinguishable from the real world. To get around this issue we reprepare the sponge
graph at the beginning of each run of the simulator. To prepare the sponge graph we query H
on all necessary inputs to ϕ̂, i.e. on the inputs that are consistent with a path from the root to a
rooted node. This is done gradually by iterating over the length of the paths. We begin with the
length-0 paths, i.e. with all inputs in the database D̂ where the inner part is the all zero string.
If the outer part of such an input (which is not changed by the application of SpPath) is equal
to a padding of an input, that input is queried to determine the outer part of the output of ϕ,
creating an edge in the sponge graph. We can continue with length-1 paths. For each entry of
the database D̂, checkwhether the input register is equal to a node in the current partial sponge
graph. If so, the entry corresponds to a rooted node. Using the entry and the edge connecting
its input to the root, a possible padded input to Sponge is created using SpPath. If it is a valid
padding, H is queried to determine the outer part of the output of ϕ, etc.

In the proof we will make use of the result from Lemma 13. Let us denote the bound on
inner collisions by

fQcoll(q) := 7q(q + 1)
2c , (56)

which is valid for q ∈ O
(
2c/3

)
.

Themain statement of this section is stated below. Noting the distinguishing bound that we
prove, we would like to highlight that our result is most probably tight. Roughly, a quantum
algorithm for finding inner-collisions in a sponge construction (such a collision would allow
to distinguish a sponge from a random oracle) with a random internal function uses O(|C|1/3)
queries. The distinguishing complexity coming from our bounds, stated without limiting the
range of q for them to apply in Lemma 13, is the matching Ω(|C|1/3).

Theorem 17 (Sponge with functions, quantum indifferentiability). Spongeϕ[pad, r, c] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (41), for quantum adversaries
for any q ∈ O

(
2c/3

)
and ε = 56 q(q+1)

2c +
√

7 q(q+1)2

2c .

Proof. Even though we allow for quantum accessible oracles, the proof we present is very sim-
ilar to the classical case. The proof follows the same structure, the biggest difference is in the
simulators that use the compressed oracle to lazy-sample appropriate answers.

We denote by UG the unitary that acting on |0〉 constructsG including edges consistent with
queries held by the quantum compressed database from register D. Similarly we define UR∪U
to temporarily create a description of the set of supernodes that are rooted or have an outgoing
edge.

In Alg. 7 we describe the simulators we use in this proof. In the quantum simulators we
also make use of the graph representation of sponges. Note however that in a single query
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we only care about the graph before the query. Due to that fact we can apply the compressed
oracle defined in Alg. 1 and additionally analyzed in Lemma 13. Eq. (149) provides a bound of
the probability of Find (as defined in Section 4) in the case of compressed oracles and relations
relevant for the sponge construction.

It is important to note that the ”IF” statements are in fact quantum controlled operations.
In line 4 we apply a punctured compressed oracle controlled on the input and the database; To
correctly perform this operation we postpone the measurement to after uncomputing ofG and
R∪ U in line 14. This procedure is also discussed in the end of Section 4.

Algorithm 7: Quantum S2 , S3 , S4 , functions
State : Quantum compressed database register D
Input : |s, v〉 ∈ H⊗2

{0,1}r+c

Output: |s, v ⊕ ϕ(s)〉
1 Locate input s in D and D̂ // Using the correct Samp
2 Apply UR∪U ◦ UG to register D̂ and two fresh registers
3 if ŝ ∈ R ∧ R ∪ U 6= {0, 1}c then // ŝ-rooted, no saturation

4 Apply CStOXŶ D̂(s)
{0,1}c , (CStO{0,1}c \ (R∪ U))XŶ D̂(s) , result: t̂ // The red oracle

is punctured!
5 Construct a path to s: p := SpPath(s,G)
6 if ∃x : p = pad(x) then

7 Apply CStOXY D(s)
{0,1}r , result: t̄

8 Write x in a fresh register XH , apply HXXHY D(s) , uncompute x from XH ,
result: t̄

9 else
10 Apply CStOXY D(s)

{0,1}r , result: t̄

11 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
12 else
13 Apply CStOXYD(s)D̂(s)

{0,1}r+c , result: t

14 Uncompute G andR∪ U
15 Output |s, v ⊕ t〉

An illustration of the simulators in the quantum case is depicted in Fig. 3.

Game 1 We startwith the realworldwhere the distinguisherA has quantumaccess to a random
functionϕ : {0, 1}r×{0, 1}c → {0, 1}r×{0, 1}c and the Spongeϕ construction using this random
function. The definition of the first game is

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (57)

Game 2 In the second game we introduce the simulator S2, defined in Alg. 7. This algorithm
is essentially a compressed random oracle, the only difference are the if statements, note that
the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 3, and 6),
because in the end, the output state t is picked uniformly from {0, 1}r+c anyway. The game is
defined as:

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (58)

28



ϕ̂ :

ϕ̄ :

CStO
XŶ D̂(s)
{0,1}c

CStO
XY D(s)
{0,1}r

(CStO{0,1}c \ (R∪ U))XŶ D̂(s)

HXXHY D(s)

S2

S3

S4

Game 3

Game 4

Figure 3: Schematics of the simulators defined in Alg. 7, horizontal arrows signify the change
introduced in the labeled game.

Because the simulator S2 perfectly models a quantum random function and we use the same
function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (59)

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (60)

With such a change of the simulators we can use Thm. 10 to bound the difference of proba-
bilities. S3 measures the relation of being an element of R ∪ U . This relation is equivalent to
Rpreim ∪Rcoll. The distinguishing advantage is

|P[Game 3]− P[Game 2]| ≤
√

(q + 1)P[Find : A[SpongeS3 ,S3]]. (61)

Using Lemma 13 we have that

P[Find : A[SpongeS3 ,S3]] ≤ fQcoll(q). (62)

Game 4 In this step we introduce the random oracle H but only to generate the outer part of
the output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4 ]
)
. (63)

Thanks to the classical argument we have that S4 and S3 are identical until bad, as in Def. 11.
Then we can use Lemma 12 to bound the advantage of the adversary

|P[Game 4]− P[Game 3]| ≤ 4P[Find : A[SpongeS3 ,S3]] ≤ 4fQcoll(q). (64)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. In this game the simulator is still S4, the definition is as follows:

Game 5 :=
(
b = 1 : b← A[H, SH

4 ]
)

(65)
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and the advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find : A[SpongeS4 ,SH
4 ]] ≤ 4fQcoll(q). (66)

Conditioned on ¬Find, the outputs of the private interface are the same, then the games are
identical-until-bad and we can use Lemma 12 to bound the advantage of the adversary.

As long as Find does not occur and the graph is not saturated the adversary cannot distin-
guish the simulator from a random function except for the distinguishing advantage that we
calculated. Saturation certainly does not occur for q < 2c as the database in every branch of
the superposition increases by at most one in every query. Collecting the differences between
games yields the claimed ε = 8fQcoll(q) +

√
(q + 1)fQcoll(q).

6 Conclusions

We develop a tool that allows for easier translation of classical security proofs to the quantum
setting. Our technique shows that given the right proof structure it is relatively easy to prove
stronger security notions valid in the quantum world.

It remains open to what degree classical security implies quantum security. An important
open problem is specifying features of classical cryptographic constructions that allows con-
structions to retain their security properties in the quantum world. More concretely, tackling
the problem of indifferentiability of other constructions will provide more evidence and possi-
bly lead towards a general answer.

Another open problem is to find a way to quantum lazy sample random permutations. An
almost completely new approach has to be devised to tackle this problem as our correctness
theorem only applies to local distributions.
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A Full Proof of Theorem 7

Proof Proof of Theorem 7.
We will show that

|ΨFO〉AF = DecDD |ΨCFO〉AD, (67)

where |ΨFO〉AF is the state resulting from the interaction of A with FO and |ΨCFO〉AD is the state
resulting from the interaction of A with CFOD. The state |ΨFO〉AF is generated by applying∏q
i=1 Ui ◦ FO to the |ψ0〉A|0M 〉F , where the |ψ0〉A is the initial state of the adversary. In the

case of the compressed oracle the state |ΨCFO〉AD is generated by applying
∏q
i=1 Ui ◦CFO to the

|Ψ0〉A|(⊥, 0)q〉D, where (⊥, 0)q denotes q pairs (⊥, 0).
We can focus on the state equality from Eq. (67) because if they are indeed equal, then any

adversary’s measurement on |ΨFO〉AF will yield the output b = 1 with the same probability as
on DecDD |ΨCFO〉AD.

Let us call a database state

|Д(~x,~и)〉 := |x, η〉XY |x1, и1〉D1 · · · |xs, иs〉Ds · · · |⊥, 0〉Dq , (68)
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where ~x := (x1, x2, . . . , xs) and ~и := (и1, и2, . . . ,иs) well-formed, if no xi in ~x is ⊥ and no иi in
~и is zero.

To prove Eq. (67) we show that

FO ◦ DecD|Д(~x,~и)〉 = DecD ◦ CFOD|Д(~x,~и)〉. (69)

This is sufficient for the proof of the theorem as |ΨFO〉 is generated by a series of the adversary’s
unitaries intertwined with oracle calls. If we show that FO = DecD ◦CFOD ◦Dec†D, when acting
on well-formed databases, then everything that happens on the oracle’s register side can be
compressed. Note that as we start from the empty oracle state and only apply the oracle to the
oracle register, the database will always be well-formed.

We study the action of DecD on the state in Eq. (68). To write the output state we need to
name thematrix elements of the sampling unitary: (SampD(X ))f~и = af~и(X ), the column index
consists of a vector of sizeM with exactly s non-zero entries: ~и = (0, . . . , 0, и1, 0 . . . , 0, и2, 0, . . .).
The decompressed state is

|Υ(~x,~и)〉F :=DecD|Д(~x,~и)〉 =
∑
φ∈F

1√
NM

∑
f∈F

ωφ·fN af~и(X ) |φ0〉F (0) · · · |φM−1〉F (M−1), (70)

where φ ·f =
∑
x∈X φxf(x) mod N and by f(x) we denote row number x of the function truth

table f .
Using the fact that SampD is defined for a product distribution, as in Def. 6, we have that

SampD(X ) = SampD(X\{x})◦SampD(x) andwe can focus our attention on somefixed x: isolate
register F (x) with amplitudes depending only on x. Let us compute this state after application
of FO, note that FO only subtracts η from F(x):

FO|x, η〉XY |Υ(~x,~и)〉F = |x, η〉XY
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x})

· |φ0〉F (0) · · ·

 ∑
ζ,z∈[N ]

1√
N
ωζ·zN azиx(x) |ζ − η〉F (x)

 · · · |φM−1〉F (M−1),

(71)

where ~и′ ∈ YM−1 denotes the vector of иi without the row with index x. Note that иx = 0 if x
was not in ~x before decompression and иx 6= 0 otherwise.

The harder part of the proof is showing that the right hand side of Eq. (69) actually equals
the left hand side that we just analyzed. Let us inspect |Д(~x,~и)〉 after application of the com-
pressed oracle

CFOD|x, η〉XY |Д(~x,~и)〉D = |x, η〉XY

·

 ∑
и̃x 6=0

α(x, η,иx, и̃x) |Д′ADD/UPD〉D + α(x, η,иx, 0) |Д′REM/NOT〉D

 , (72)

where и̃x is the new value of ДY (x) and иx is the old content of the database. By Д′ADD/UPD we
denote the database Д(~x,~и) with entry и̃x 6= 0, it corresponds to x being added or updated. By
Д′REM/NOT we denote the database where и̃x = 0, meaning x was removed from Д or nothing
happened. The function α(·) denotes the corresponding amplitudes.

Before we proceed with decompression of the above state let us calculate the amplitudes
α. Again using the definition of SampD we describe the action of the compressed oracle on a
single x step by step. Below we denote by Rem removing и = 0 from Д and by Sub subtraction
of η from database register DY . We start with a database containing (x, иx), which we can
always assume due to line 3 in Alg. 1. In the case that x was not already in Д we have иx = 0,
otherwise it is the value defined in previous queries. The simplification we make is to describe
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CFOD acting on a single-entry database. We do not lose generality by that as the only thing that
changes for q larger than one is maintaining proper sorting and padding, which can be easily
done (see Appendix D.3 for details). The calculation of CFOD on a basis state follows:

|x, η〉XY |x, иx〉D
SampD7→ |x, η〉XY

∑
z∈[N ]

azиx(x) |x, z〉D (73)

QFTD
Y

N7→ |x, η〉XY
∑
z∈[N ]

azиx(x)
∑
ζ∈[N ]

1√
N
ωζ·zN |x, ζ〉D (74)

Sub7→|x, η〉XY
∑

z,ζ∈[N ]
azиx(x) 1√

N
ωζ·zN |x, ζ − η〉D (75)

QFT†D
Y

N7→ |x, η〉XY
∑

z,ζ∈[N ]
azиx(x) 1√

N
ωζ·zN

∑
z′∈[N ]

1√
N
ω̄
z′·(ζ−η)
N |x, z′〉D (76)

=|x, η〉XY
∑
z∈[N ]

azиx(x)
∑

z′,ζ∈[N ]

1
N
ωζ·zN ω̄

z′·(ζ−η)
N︸ ︷︷ ︸

=ω̄−z·ηN δ(z′,z)

|x, z′〉D (77)

Samp†D
D

(x)
7→ |x, η〉XY

∑
z∈[N ]

azиx(x) ωz·ηN
∑

и̃x∈[N ]
āzи̃x(x) |x, и̃x〉D (78)

=|x, η〉XY
∑

и̃x∈[N ]

∑
z∈[N ]

azиx(x) ωz·ηN āzи̃x(x)

︸ ︷︷ ︸
:=α(x,η,иx,и̃x)

|x, и̃x〉D (79)

RemD

7→ |x, η〉XY

 ∑
и∈[N ]\{0}

α(x, η,иx, и̃x) |x, и̃x〉D + α(x, η,иx, 0) |⊥, 0〉D

 . (80)

In the above equations we have defined α as

α(x, η,иx, и̃x) :=
∑
z∈[N ]

azиx(x) āzи̃x(x) ωz·ηN . (81)

After decompressing the state from Eq. (72), the resulting database state will be∑
и̃x 6=0 α(x, η,иx, и̃x) |Υ(Д′ADD/UPD)〉 + α(x, η,иx, 0) |Υ(Д′REM/NOT)〉D, where we overload no-

tation of |Υ(~x,~и)〉 to denote that (~x,~и) consists of values in the respective databases. We can
write down this state in more detail using Eq. (71):

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D

=
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x}) |φ0〉F (0) · · ·

·

 ∑
и̃x 6=0

α(x, η,иx, и̃x)
∑

ζ,z∈[N ]

1√
N
ωζ·zN azи̃x(x)|ζ〉F (x)

+α(x, η,иx, 0)
∑

ζ,z∈[N ]

1√
N
ωζ·zN az0(x)|ζ〉F (x)

 · · · |φM−1〉F (M−1). (82)
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In the above equation we notice that

∑
и̃x 6=0

α(x, η,иx, и̃x)
∑

ζ,z∈[N ]

1√
N
ωζ·zN azи̃x(x)|ζ〉F (x)

+ α(x, η,иx, 0)
∑

ζ,z∈[N ]

1√
N
ωζ·zN az0(x)|ζ〉F (x)

=
∑

ζ,z∈[N ]

1√
N
ωζ·zN

∑
и̃x∈[N ]

α(x, η,иx, и̃x) azи̃x(x) |ζ〉F (x) (83)

which comes from the fact that SampD is a unitary and
∑
j∈[N ] aij ākj = δik and therefore we

have ∑
и̃x∈[N ]

α(x, η,иx, и̃x) azи̃x(x)

=
∑
z′∈[N ]

∑
и̃x∈[N ]

āz′и̃x(x) azи̃x(x)

︸ ︷︷ ︸
=δz′,z

az′иx(x) ωz
′·η
N = azиx(x) ωz·ηN . (84)

Together with changing the variable ζ 7→ ζ − η and observing Eq. (71) we derive the claimed
identity:

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D
= FO |x, η〉XY |Υ(~x,~и)〉 = FO ◦ DecD |x, η〉XY |Д(~x,~и)〉D. (85)

B Full Proof of Theorem 10

Proof Proof of Theorem 10. The proof works almost the same as the proof of Theorem 1 of
[AHU19]. Let us state the analog of Lemma 5 from [AHU19].

For the following lemma let us first define two algorithms. Let AH(z) be a unitary quantum
algorithm with oracle access to H with query depth d. Let Q denote the quantum register of A
andD the database of the compressed oracleH. We also need a “query log” registerL consisting
of d qubits.

Let BH,R(z) be a unitary quantum algorithm acting on registers Q and L and having oracle
access to H. First we define the following unitary

VR,i|D〉D|l1, l2, . . . , ld〉L :=
{
|D〉D|l1, l2, . . . , ld〉L if R(|D〉D) = 0
|D〉D|l1, . . . , li ⊕ 1, . . . , ld〉L if R(|D〉D) = 1

, (86)

where R(|D〉D) denotes the outcome of the projective binary measurement on D. The uni-
tary exists for all relations. One can just coherently compute R(D) into an auxiliary register,
apply CNOT from that register to Li and then uncompute R(D). If the relation is efficiently
computable, then so is the unitary. We define BH,R(z) as:

• Initialize the register Lwith |0d〉.

• Perform all operations that AH(z) does.

• For all i, after the i-th query of A apply the unitary VR to registers D,L.
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Let |ΨA〉 denote the final state of AH(z), and |ΨB〉 the final state of BH,R(z). Let P̃find be the
probability that a measurement of L in the computational basis in the state |ΨB〉 returns l 6= 0d,
i.e. P̃find :=

∥∥∥1Q,D ⊗ (1L − |0d〉L〈0d|)|ΨB〉
∥∥∥2
.

To deal with relation R1 we consider algorithms with all measurements postponed to the
end of their operation; Instead of performing the actual measurement we save the outcome into
a fresh quantum register—with VR as in Alg. 4, note that prior to the measurement this fresh
register can hold a superposition. Moreover we postpone the measurement of the auxiliary
register until the very end of the run of the quantum algorithm. The coherent evaluation of R1
happens in both algorithms. In addition, the proof below does not make use of the particular
form of the unitaries that are applied between the measurements ofR2, so the evaluation ofR1
can be absorbed into the compressed oracle unitary.

Lemma 18 (Compressed oracle O2H for pure states). Fix a joint distribution for H, R, z. Consider
the definitions of algorithms A and B and their quantum states, then∥∥∥|ΨA〉 ⊗ |0d〉L − |ΨB〉

∥∥∥2
≤ (d+ 1)P̃find. (87)

Proof. This lemma can be proved in the sameway as Lemma 5 of [AHU19]. Here we omit some
details and highlight the most important observation of the proof.

First define Bcount that works in the same way as B but instead of storing L, the log of
queries with D in relation, it keeps count—in register C—of how many times a query resulted
in R(|D〉D) = 1. The state that results from running Bcount is |ΨBcount〉 =

∑d
i=0|Ψi

Bcount
)|i〉C and

similarly |ΨB〉 =
∑
l∈{0,1}d |Ψl

B)|l〉L, where |Ψ) denotes a sub-normalized state. We can observe
that |ΨA〉 =

∑d
i=0|Ψi

Bcount
). As P̃find is the probability of measuring at least one bit in the register

L of B, or counting at least one fulfilling of R in C, we have that |Ψ0d
B ) = |Ψ0

Bcount
). From the

definition we also have P̃find = 1−
∥∥∥|Ψ0

Bcount
)
∥∥∥2
. Using the above identities we can calculate the

bound

∥∥∥|ΨB〉 − |ΨA〉 ⊗ |0d〉L
∥∥∥2

=
∥∥∥∥∥
d∑
i=1
|Ψi

Bcount)
∥∥∥∥∥

2

+ P̃find
4
≤
(

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥)2

+ P̃find

J-I
≤ d

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥2

︸ ︷︷ ︸
=P̃find

+ P̃find = (d+ 1)P̃find, (88)

where 4 denotes the triangle inequality and J-I denotes the Jensen’s inequality. It is apparent
that introducing Bcount gave us a more coarse-grained look at the initial algorithm B, resulting
in a tighter bound.

The rest of the proof of the theorem follows the same reasoning as the proof of Lemma 6
in [AHU19] with the modifications shown in the above lemma. Using bounds on fidelity
(Lemma 3 and Lemma 4 of [AHU19]) and monotonicity and joint concavity of fidelity (from
Thm. 9.6 and Eq. 9.95 of [NC11]) one can generalize the results to the case of arbitrary mixed
states.

C Second Proof of Lemma 13

Proof Proof of Lemma 13. In Lemma 13we prove a bound on the probability of finding a database
fulfilling the relation of collision or a preimage of 0. This event of finding is denoted by Find.
This relation is crucial in the proof of quantum indifferentiability of the sponge construction.
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The first observation of the proof is that the probability of Find is the sum of probabilities
that after the i’th query we find a database that fulfills the relation given that we did not find
such database in any previous query. Hence, the proof focuses on calculating this probability
for any i and then performing the sum.

It is in general challenging to calculate such probability, and especially challenging to write
out the joint state of the adversary and the oracle after i queries to the punctured oracle. Our
solution to this challenge is to define an auxiliary state, called the good state |ΨGood

i 〉. This is
an auxiliary state of the adversary and the oracle register that is easier to handle from the true
state |Φi〉 resulting from the interaction of A with the punctured oracle.

In a hybrid argument we introduce a sum over differences between the actual state and the
good state. This is the focal point of our proof, if we find this difference, then we can work with
the good state and calculate the bound on Find much easier. Technically the most difficult part
of our proof is bounding the norm of the difference of the actual and the good states, it is the
topic of section C.2 and Lemma 19.

The second important technical part is calculating the normof finding a database that fulfills
the relation in the good state after a query. Thankfully, after the analysis of the first problem
we mentioned it is a relatively easy task.

Punctured oracles are defined in Definition 9. We start the proof by specifying some oper-
ations involved in that definition.

Introduction We define a “lazy” approach to calculating the number of non-empty entries in
D. In this unitary we focus on using the ordered structure of DX . We use the phase oracle
instead of the standard oracle; in detailed calculations that we do later on in the proof, CPhO is
easier to deal with than CStO.

Let us define Queries, a unitary that outputs the size of a database. It acts on an auxiliary
register S and is controlled onD. This unitary acts exactly like Alg. 1 in lines 1 and 13: it counts
the number of non-padding (x 6=⊥) entries.

The full description of the measurement involves using an auxiliary register J—note Def. 4
measuring a relation—with a bit stating whether the database fulfills the relation. Then the
actual measurement is a computational basis measurement of register J . The measurement
that we apply after CPhOY , in line 4 of Alg. 4 is

JR := 1⊗ |1〉J〈1|, (89)
JR := 1⊗ |0〉J〈0|. (90)

In the following we focus on the punctured oracle just prior to measurement JR. A unitary
that omits the last step of Alg. 4 in CPhOY \Rpreim ∪Rcoll acts on registers ADJ , we define it as

CPhOY \ VR := Queries† ◦ VR ◦ Queries ◦ CPhOY , (91)

where the unitary VR checks whether the queried values in registersD fulfill the relationR—in
our case it is the collision and preimage relations from Eqs. (21), (30)—and saves the single bit
answer to register J .

We proceed by rephrasing the definition of P[Find : A[CPhOY \Rpreim∪Rcoll]], after that we
treat the part specific to our relation. We follow Eq. (24) to analyze the probability of Find:

P[Find : A[CPhOY \Rpreim ∪Rcoll]] = 1−

∥∥∥∥∥∥
 1∏
i=q

JRUiCPhOY \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

(92)

= 1−

∥∥∥∥∥∥
 1∏
i=q−1

JRUjCPhOY \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2
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+

∥∥∥∥∥∥JRUqCPhOY \ VR

 1∏
i=q−1

JRUjCPhOY \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

= · · · = (93)

=
q∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥
JRUiCPhOY \ VR

 1∏
j=i−1

JRUjCPhOY \ VR

 |Ψ0〉|0〉J︸ ︷︷ ︸
:=Ui−1|Φi−1〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

(94)

=
q∑
i=1
‖JRUiCPhOY \ VRUi−1|Φi−1〉‖2 , (95)

where |Ψ0〉 is the initial state of the adversary. Note that in the definition

|Φi−1〉 := U†i−1

 1∏
j=i−1

JRUjCPhOY \ VR

 |Ψ0〉|0〉J (96)

we use [Ui−1, JR] = 06. Here, the second and third equations follow from the fact that ‖|v〉‖2 =
‖P|v〉‖2 + ‖(1− P)|v〉‖2 for all |v〉 and projectors P.

In what follows we analyze ‖JRUiCPhOY \ VRUi−1|Φi−1〉‖2. Our approach
is to propose a state |ΨGood

i−1 〉, close to the original |Φi−1〉, for which bounding∥∥∥JRUiCPhOY \ VRUi−1|ΨGood
i−1 〉|0〉J

∥∥∥2
is easy. The intuition behind |ΨGood

i−1 〉 is to have a su-
perposition over databases that do not contain y = 0 and are collision free for the queried
values.

The good state To define the good state we specify the set of bad databases D ∈ R. For the
relation Rpreim ∪Rcoll we have

B(s) := [N ]s \ {(y1, . . . , ys) ∈ [N ]s : all yi are distinct and 6= 0} , (97)
B(1 | D) := {y}y∈DY ∪ {0}. (98)

The second set defined above is the subset of the codomain of the sampled function corre-
sponding to the new value creating a collision or being a preimage of 0. To better understand
B(1 | D) let us assumeD 6∈ R and x is some input 6∈ DX . Then B(1 | D) is the set of y such that
D ∪ {(x, y)} ∈ R. We also define a coefficient b(s) defined as

b(s) := |B(1 | D)| , where D 6∈ B(s− 1), (99)

where we use the fact that |B(1 | D)| depends only on the size ofD and not the actual contents
of it. We define B(1 | D) in a way specific to Rcoll ∪ Rpreim but the definition can be easily
extended to other relations. As examples consider Rpreim, then b(s) = 1, there is just one value
y = 0 that causes a fresh query to be in relation; For Rcoll we have b(s) = s − 1, the new y can
be any of the previously queried values to make D fulfill the relation. Finally for our relation
Rpreim∪Rcoll we have b(s) = s, databaseD consists of s−1 distinct values that are distinct from
0, matching any of them or 0 causes DY ∪ {y} to be in B(s). Throughout the rest of this proof
we do not evaluate b(s), which makes it is easier to reuse the proof for other relations.

In what follows we write ~x to denote all the previous inputs asked by the adversary and
(x, η) is the last query. The state |ΨGood

i,R 〉AD corresponds to the adversary’s state just after the
i-th query and before the application of Ui. The size of the database s depends on whether
the new query xwas added to, updated, or removed from the database, it equals |~x ∪ {x}|, |~x|,
or |~x \ {x}| respectively. After i queries s can range from 0 to i and the joint state of A and the

6The commutator of two operators (matrices) is defined as [A, B] := AB− BA.
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oracle can be a superposition over different database sizes. We denote the outputs given to A by
~y := (y1, . . . , ys). When we use set operations on vectors we mean a set consisting of entries of
~x, there are no repetitions in the vector as this is an invariant of the oracle. ByD(⊥) we denote
the part of the database containing empty entries. Adversary’s work register is denoted by AW
and its contents by ψ(x, η, ~x, ~η, w), where w can be any value of finite size. We define the good
state as:

|ΨGood
i,R 〉AD :=

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s)

1√
(N − b(1))(N − b(2)) · · · (N − b(s))

ω~η·~yN |(x1, y1), . . . , (xs, ys)〉D(~x)

∑
ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (100)

In case we have added x to D, the database above contains (x, yj). In the rest of the proof we
omit the subscript R, however note that |ΨGood

i 〉 does indeed depend on R.
Another way to define the good state is to consider the joint state of the adversary and the

non-punctured oracle just after the i-th query. The good state is then this state after a projection
of registerDwith JR. Normalization of the projected state comes frommultiplying each branch
corresponding to a given size of the database by an appropriate

√
Ns

(N−b(1))···(N−b(s)) factor. The
reasonwhy the good state is normalized is that for a fixed set of queries we can think of definin-
ing it as A interacting with the normalized database register using PhO instead of CPhO. This
intuition works for every branch of the superposition separately. Now combining all branches
together also gives a normalized state, because they origin from a valid interaction of a unitary
adversary with CPhO (as mentioned in the beginning of this section).
Final Bound To calculate the probability of measuring R, Eq. (95) implies

P[Find] ≤
q∑
i=1
‖JRUiCPhOY \ VRUi−1|Φi−1〉‖2 . (101)

We use the good state to bound the elements of the sum in the following way:

‖JRUiCPhOY \ VRUi−1|Φi−1〉‖

≤
∥∥∥|Φi−1〉 − |ΨGood

i−1 〉
∥∥∥+

∥∥∥JRUiCPhOY \ VRUi−1|ΨGood
i−1 〉

∥∥∥ . (102)

Next we bound the two norms in Eq. (102). First we bound the distance of the good state
from the state resulting from the interaction with the non-punctured oracle |Φi〉ADJ . We sim-
plify this task with the following derivation:∥∥∥|ΨGood

i 〉AD|0〉J − |Φi〉ADJ
∥∥∥

=
∥∥∥|ΨGood

i 〉AD|0〉J − JRCPhOY \ VRUi−1|Φi−1〉ADJ
∥∥∥ (103)

≤
∥∥∥|ΨGood

i 〉AD|0〉J − JRCPhOY \ VRUi−1|ΨGood
i−1 〉AD|0〉J

∥∥∥
+
∥∥∥JRCPhOY \ VRUi−1|ΨGood

i−1 〉AD|0〉J − JRCPhOY \ VRUi−1|Φi−1〉ADJ
∥∥∥ (104)

≤ εstep(i) +
∥∥∥|ΨGood

i−1 〉AD|0〉J − |Φi−1〉ADJ
∥∥∥ ≤ i∑

j=1
εstep(j), (105)

where we use the triangle inequality and recursively get rid of all queries made by A. The
definition of a single step is

εstep(j) :=
∥∥∥|ΨGood

j 〉AD|0〉J − JRCPhOY \ VRUj−1|ΨGood
j−1 〉AD|0〉J

∥∥∥
2
. (106)
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To calculate the bound on εstep(j) we first calculate how a query affects the good state. The
full calculations are presented in section C.1. Using these findings we prove Lemma 19 in sec-
tion C.2 that states a bound on the norm of the difference of the good and original states.

We define the second part in Eq. (102) as

εFind(i) :=
∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 〉
∥∥∥ . (107)

Using the techniques developed to bound εstep(j), we bound εFind(i) in section C.3 and state
the bounds in Lemma 21.

The final bound is

P
[
Find : A[CPhOY \R]

]
≤

q∑
i=1

i−1∑
j=1

εstep(j) + εFind(i)

2

, (108)

with Lemma 19 and Lemma 21 we get the final bound:

P
[
Find : A[CPhOY \R]

]
≤

q∑
i=1

(
i−1∑
j=1

max
s≤j−1

(
3b(s)
N

+ b(s)√
N(N − b(s))

+ b(s+ 1)
N

)

+ max
s≤i−1

√b(s+ 1)
N

+ b(s)3/2

N
√
N − b(s)

+
√
b(s)(N − b(s))

N

)2

(109)

≤
q∑
i=1

(
i−1∑
j=1

max
s≤j−1

(
5 b(s+ 1)√

N(N − b(q))

)
+ max
s≤i−1

2

√
b(s+ 1)
N

+ b(s)3/2

N
√
N − b(q)

)2

(110)

≤
q∑
i=1

(
i−1∑
j=1

5 b(j)√
N(N − b(q))

+ 2

√
b(i)
N

+ b(i)3/2

N
√
N − b(q)

)2

(111)

In the above bound we use the facts that b(s) is a monotonously growing function of s. For our
relationRcoll∪Rpreim we know that b(s) = s. To get a simple boundwe note that for real-valued
functions

∑i
j=1 f(j) ≤

∫ i
1 djf(j). Moreover b(s) ≤ b(q), which we use in the denominator.

Simplifying the above bound and performing the sums we get the claimed result.

C.1 The Good State After a Query

To prove the main technical lemmas of this section we need to analyze how a single query to
the oracle affects the good state.

To prove Lemma 19we analyze how far apart the state |ΨGood
i−1 〉 is after a query from |ΨGood

i 〉.
To achieve this goalwe inspect in detail the stateCPhOY \VRUi−1|ΨGood

i−1 〉AD|0〉J . We distinguish
differentmodes of operation: ADDwhen the queried x is added toD, UPDwhen xwas already
inD and is not removed from the database, REM when we remove x fromD, and NOT where
register AY is in state |0〉 . These modes correspond to different branches of superposition in
CPhOY \ VRUi−1|ΨGood

i−1 〉AD|0〉J . We write

Ui−1|ΨGood
i−1 〉AD|0〉J = |ξi−1(ADD)〉+ |ξi−1(UPD)〉+ |ξi−1(REM)〉+ |ξi−1(NOT)〉 (112)

and analyze the action of CPhOY \ VR on the above states separately.
For |ξi−1(NOT)〉 there is no change to the state. Adding a new entry to a database results in

setting the register corresponding to x to
∑
ys+1∈[N ]

1√
N
ω
ηys+1
N |x, ys+1〉, just like expected from
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a phase oracle for the uniform distribution. After applying Queries† ◦ VR ◦ Queries the state is:

ADD : CPhOY \ VR|ξi−1(ADD)〉|0〉J =
∑

x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s)

1√
(N − b(1)) · · · (N − b(s))

ω~η·~yN |(x1, y1), . . . , (xs, ys)〉D(~x)
√
N − b(s+ 1)

N

∑
ys+1 6∈B(1|D(~x))

1√
N − b(s+ 1)

ω
ηys+1
N |x, ys+1〉︸ ︷︷ ︸

|ΨGood
i (ADD,s)〉

|0〉J

+

√
b(s+ 1)
N

∑
ys+1∈B(1|D(~x))

1√
b(s+ 1)

ω
ηys+1
N |x, ys+1〉|1〉J


∑

ys+2,...,yq∈[N ]

1√
N q−s−1

|(⊥, ys+2), . . . , (⊥, yq)〉D(⊥), (113)

where the appropriate position of register J is after D. By |ΨGood
i (ADD; s)〉 we mean a state

equal to the above state but with just the underlined part in the parentheses. We add s as the
argument to specify the size of the database.

For |ξi−1(UPD)〉 and |ξi−1(REM)〉, we treat the updated x as the last one inD, this does not
have to be true but it simplifies notation. Note that we want the corresponding ys to depend on
previous queries but not the other way around, this assumption is without loss of generality as
there is no fixed order for

∑
~y. The empty register is moved to the back ofD, we do not write it

out for simplicity but still consider it done.

UPD/REM : CPhOY (|ξi−1(UPD)〉+ |ξi−1(REM)〉)
=

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1))(N − b(2)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x}) ∑
ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

ω
(ηs+η)ys
N |x, ys〉D(x)

− 1√
N(N − b(s))

∑
ys 6∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|x, y′s〉D(x)

+ 1√
N(N − b(s))

∑
ys 6∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|⊥, y′s〉D(x)


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (114)

Whether we are in the branch UPD or REM depends on whether η = −ηs or not.
When the database is updated we have the following state after the query:

UPD : CPhOY \ VR|ξi−1(UPD)〉|0〉J =
∑

x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x})
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
∑

ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

ω
(ηs+η)ys
N |x, ys〉D(x)︸ ︷︷ ︸

|ΨGood
j (UPD;s)〉

|0〉J

− 1√
N(N − b(s))

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|⊥, y′s〉D(x)︸ ︷︷ ︸

|ΨBad
i,1 (UPD;s)〉

|0〉J

+ 1
N

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s 6∈B(1|D(~x\{x}))

1√
N − b(s)

|x, y′s〉D(x)︸ ︷︷ ︸
|ΨBad
i,2 (UPD;s)〉

|0〉J

+
√

b(s)
N2(N − b(s))

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈B(1|D(~x\{x}))

1√
b(s)
|x, y′s〉D(x)|1〉J


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (115)

In the above state we have simplified the sum
∑
ys 6∈B(1|D(~x\{x})) = −

∑
ys∈B(1|D(~x\{x})). Register

J is supposed to be placed afterD, for the sake of presentation though, we put it in the middle.
By |ΨGood

i (UPD; s)〉, |ΨBad
i,1 (UPD; s)〉, and |ΨBad

i,2 (UPD; s)〉wemean the whole state with just the
underlined states in the parentheses equals the given state. We add s as the argument to specify
the size of the database.

After removing an element from the database we have:

REM : CPhOY \ VR|ξi−1(REM)〉|0〉J =
∑

x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x})
√
N − b(s)

N

∑
ys∈[N ]

1√
N
|⊥, ys〉D(x)︸ ︷︷ ︸

|ΨGood
i (REM,s)〉

|0〉J

+ b(s)
N

∑
ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

|x, ys〉D(x)︸ ︷︷ ︸
|ΨBad
i (REM;s)〉

|0〉J

−
√
b(s)(N − b(s))

N

∑
ys∈B(1|D(~x\{x}))

1√
b(s)
|x, ys〉D(x)|1〉J


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (116)

C.2 Bound on εstep

We want to show that after any query, |Φi〉ADJ is close to |ΨGood
i 〉AD|0〉J . One way of looking

at the lemma below is from the perspective of an adversary searching for inputs that provide
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outputs of a random function that are in R. Normally this task does not involve a punctured
oracle but a regular one. We show here the error introduced by puncturing the oracle; The two
states that we consider come from projecting with JR either the state after interacting with a
non-punctured oracle or the state after interacting with a punctured oracle (given ¬Find). This
intuition, however, is not crucial for our proof, as we focus solely on punctured oracles.

Lemma 19. For states defined in the preceding sections we have

∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ i∑
j=1

εstep(j)

≤
i∑

j=1
max
s≤j−1

(
3b(s)
N

+ b(s)√
N(N − b(s))

+ b(s+ 1)
N

)
. (117)

Proof. We are going to prove the statement by recursion over the number of queries made by
the adversary. The exact derivation is shown in Equation (105). We are going to prove the
statement by recursion over the number of queries made by the adversary.

In the following we calculate εstep(j) defined in Equation (106). For i = 0 the statement is
true, as |ΨGood

0 〉|0〉J = |Φ0〉 = |Ψ0〉|0〉J .
FromEqs. (113), (115), and (116)we knowhow queryingworks for |ΨGood

j−1 〉, nowwe distin-
guish two types of errors compared to |ΨGood

j 〉|0〉J : an additive error of adding a small-weight
state to the original one and a multiplicative error where one branch of the superposition is
multiplied by some factor.

The additive error includes all states of small-weight states multiplied by |0〉J with the su-
perscript Bad. In the branches of the superposition where we add a new entry to the database
we see that we recover |ΨGood

j 〉|0〉J after multiplying a branch of CPhOY \ VRUj−1|ΨGood
j−1 〉|0〉J

by
√

N−b(s+1)
N (Eq. (113)) or by

√
N−b(s)
N (Eq. (116)).

Our approach to the rest of the proof consists of first dealing with the additive and later
with the multiplicative error. To this end let us define |ψ×j 〉ADJ as the state JRCPhOY \
VRUj−1|ΨGood

j−1 〉|0〉J with all branches classified as the additive error excluded. By “classified
as the additive error” we mean states with superscript Bad and highlighted in red in Equa-
tions (113, 115, 116). The new state is defined as

|ψ×j 〉ADJ :=
(∑

s

|ΨGood
j (NOT; s)〉 +

√
N − b(s+ 1)

N
|ΨGood

j (ADD; s)〉

+ |ΨGood
j (UPD; s)〉 +

√
N − b(s)

N
|ΨGood

j (REM; s)〉

 |0〉J , (118)

where the states above correspond to branches of superposition where we do nothing (NOT,
for η = 0), add an entry, update the database, and remove an entry from D. Bounding the
difference of the states is done as follows∥∥∥|ΨGood

j 〉|0〉J − JRCPhOY \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥
≤
∥∥∥|ΨGood

j 〉|0〉J − |ψ×j 〉ADJ
∥∥∥+

∥∥∥|ψ×j 〉ADJ − JRCPhOY \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥ . (119)

The second term above is just the norm of all states amplifying the additive error—we call them
the bad states.

We bound the additive error ‖|ψ×j 〉ADJ − JRCPhOY \ VRUj−1|ΨGood
j−1 〉|0〉J‖ by first splitting

the three cases underlined above:∥∥∥|ΨBad
j 〉

∥∥∥ ≤ ∥∥∥|ΨBad
j,1 (UPD)〉

∥∥∥+
∥∥∥|ΨBad

j,2 (UPD)〉
∥∥∥+

∥∥∥|ΨBad
j (REM)〉

∥∥∥ , (120)
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where |ΨBad
j 〉 is the sum of all three bad states, the bound follows from the triangle inequality.

Calculating all of the three norms above is done by first focusing on a particular interface
that is queried and by focusing on particular sizes of databases:

∥∥∥|ΨBad
j 〉

∥∥∥ =

√√√√ j∑
s=0
|β(s)|2

∥∥∥|ΨBad
j (s)〉

∥∥∥2
, (121)

where β(s) is the amplitude of the good state projected to states with the specified parameter:
For a projector Ps to adversaries that query databases of size s we have β(s) := Ps|ΨGood

j 〉 and
|ΨBad

j (s)〉 := Ps|ΨBad
j 〉.

Additive errors Dealing with additive errors, we begin with the UPD branch. In the bad states
in the UPD case, Eq. (115), we need to take special care of

∑
ys∈B(1|D(~x\{x})) ω

(ηs+η)ys
N ; This is

a a complex number that depends on ηs, so it enters the norm in a non-trivial way. The first
step is a change of variables: Instead of summing over elements of of the bad state we sum over
ys ∈ [b(s)] and change ys in the expression to B(1 | D(~x \ {x}))(ys), by which we denote the
ys-th element of B(1 | D(~x \ {x})). Note that there is a natural order in the bad set, as Y = [N ].

Given the change of variables we can use the triangle inequality to focus on the norm of a
state with a single phase factor ω(ηs+η)B(1|D(~x\{x}))(ys)

N , instead of the whole sum:∥∥∥|ΨBad
j (UPD; s)〉

∥∥∥ ≤ ∑
ys∈[b(s)]

∥∥∥|ΨBad
j (UPD; s,B(1 | D(~x \ {x}))(ys))〉

∥∥∥ , (122)

where we omit the index of the UPD errors because the techniques here work in almost the
same way for both states. The input D(~x \ {x}) should not be treated as an actual argument
of the state, we still consider the superposition over different inputs, we just mean that in the
state |ΨBad

j (UPD; s)〉we change the variable ys. In what follows we denote the state on the right
hand side of the above equation by |ΨBad

j (UPD; s,B′(ys))〉.
Now we focus on the state with a fixed B′(ys), we bound the norm of this state.

Claim 20. For all ys ∈ [b(s)]∥∥∥|ΨBad
j,1 (UPD; s,B(1 | D(~x \ {x}))(ys))〉

∥∥∥ ≤ 1√
N(N − b(s))

and (123)∥∥∥|ΨBad
j,2 (UPD; s,B(1 | D(~x \ {x}))(ys))〉

∥∥∥ ≤ 1
N
. (124)

Proof. Our idea for the proof is to first show that the normof a good state in theUPDbranchwith
amodified sum over ys is not greater than 1. Then to prove that the norm of |ΨBad

j (UPD; s,B(1 |
D(~x\{x}))(ys))〉multiplied by the corresponding right hand side of Eq. (123) equals the norm
of the good state we mentioned earlier.

We start by defining two states:∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x})

∑
ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥)

⊗


∑
ys∈B(1|D(~x\{x}))

1√
b(s)

ω
(ηs+η)ys
N |x, ys〉D(x) =: |ΨGood

j (UPD; s)〉∑
ys∈[N ]

1√
N
ω

(ηs+η)ys
N |x, ys〉D(x) =: |Ψ̃Good

j (UPD; s)〉
. (125)
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The first one, |ΨGood
j (UPD; s)〉 is the one that we use in the last step of the proof, as described in

the previous paragraph. The second one will be used to show that the norm of |ΨGood
j (UPD; s)〉

is bounded by 1.
One more introductory statement that we need to prove is that

∥∥∥|Ψ̃Good
j (UPD; s)〉

∥∥∥ ≤ 1. To
this end let us remind ourselves that the good state is a state interacting with the not-punctured
oracle for j queries, projected to databases that are not in R, and normalized. Let us consider a
projection that just omits register D(x) when bringing D to be not in R. Using this latter pro-
jection on a state interacting with the not-punctured oracle results in the state |Ψ̃Good

j (UPD; s)〉.
Hence

∥∥∥|Ψ̃Good
j (UPD; s)〉

∥∥∥ ≤ 1, just like
∥∥∥|ΨGood

j (UPD; s)〉
∥∥∥ ≤ 1. The inequality comes from

excluding a single branch of the superposition in |Ψ̃Good
j (s)〉.

The fact that the state with
∑
ys∈[N ] is sub-normalized is important because now

we can bound the norm of |ΨGood
j (UPD; s)〉. Having in mind that

∑
ys∈B(1|D(~x\{x})) =∑

ys∈[N ]−
∑
ys 6∈B(1|D(~x\{x})) we see that

b(s)
∥∥∥|ΨGood

j (UPD; s)〉
∥∥∥2

= N
∥∥∥|Ψ̃Good

j (UPD; s)〉
∥∥∥2
− (N − b(s))

∥∥∥|ΨGood
j (UPD; s)〉

∥∥∥2
≤ b(s), (126)

hence
∥∥∥|ΨGood

j (UPD; s)〉
∥∥∥2
≤ 1.

Now that we know that |ΨGood
j (UPD; s)〉 is sub-normalized we show that∥∥∥|ΨGood

j (UPD; s,B′(ys))〉
∥∥∥ ≤ 1√

b(s)
. (127)

To prove this bound, consider measuring register Da(x) of |ΨGood
j (UPD; s)〉 in the compu-

tational basis. The probability of getting any outcome ys is necessarily 1
b(s) , as the outputs

of the oracle are uniformly random. The post-measurement state, for an outcome ys, is√
b(s) · |ΨGood

j (UPD; s,B′(ys))〉. Naturally, norm of this post-measurement state is at most 1.
Now we can use the state |ΨGood

j (UPD; s,B′(ys))〉 to analyze the norm of
|ΨBad

j (UPD; s,B′(ys))〉. First let us inspect the norm squared of the bad state:∥∥∥|ΨBad
j (UPD; s,B′(ys))〉

∥∥∥2
=

∑
x,η,~x,~η′,~η,w′,w

∑
η′s,ηs

ᾱ′x,η,~x,~η′,η′s,w′α
′
x,η,~x,~η,ηs,w

〈ψ(x, η, ~x, ~η′, η′s, w′)|ψ(x, η, ~x, ~η, ηs, w)〉∑
~y 6∈B(s−1)

1
(N − b(1)) · · · (N − b(s)) ω̄

~η′·~y
N ω~η·~yN

1
N2(N − b(s)) ω̄

(η′s+η)B′(ys)
N ω

(ηs+η)B′(ys)
N

∑
y′s∈[ν]︸ ︷︷ ︸

=ν

, (128)

where ν = N for |ΨBad
j,1 (UPD; s,B′(ys))〉 and ν = N − b(s) for |ΨBad

j,2 (UPD; s,B′(ys))〉 (in the
second case the sum goes over y′s 6∈ B(1 | D(~x \ {x})) instead of [ν]). It is easy to notice, that
the only difference between Eq. (128) and norm squared of |ΨGood

j (UPD; s,B′(ys))〉 lies in the
factor ν

N2(N−b(s)) . This factor in the modified good state equals 1
b(s) . This observation implies

that ∥∥∥|ΨBad
j (UPD; s,B′(ys))〉

∥∥∥ =
√

b(s) · ν
N2(N − b(s))

∥∥∥|ΨGood
j (UPD; s,B′(ys))〉

∥∥∥ . (129)

46



Together with the bound on the norm in the left hand side this proves the claimed bounds.

Claim 20, together with the bound from Eq. (122) gives us:
∥∥∥|ΨBad

j,1 (UPD; s)〉
∥∥∥ ≤ b(s)√

N(N − b(s))
, (130)

∥∥∥|ΨBad
j,2 (UPD; s)〉

∥∥∥ ≤ b(s)
N

. (131)

The bounds from Eq. (130) in Eq. (121) give us the bound on the additive error in the
UPD branch. The additive error for the REM branch ( |ΨBad

j (REM)〉 in Eq. (116) ) is much
easier to calculate: As register D(x) is normalized and all the rest of the state is the same as
|ΨGood

j (REM)〉, the only error comes from the factor b(s)
N . To calculate the norm of the state we

can follow the analysis of Eq. (128). Finally we get:

∥∥∥|ΨBad
j,1 (UPD)〉

∥∥∥ ≤ max
s

(
b(s)√

N(N − b(s))

)
, (132)

∥∥∥|ΨBad
j,2 (UPD)〉

∥∥∥ ≤ max
s

(
b(s)
N

)
, (133)∥∥∥|ΨBad

j (REM)〉
∥∥∥ ≤ max

s

(
b(s)
N

)
, (134)

where s ≤ j − 1.

Multiplicative errors The multiplicative error is a factor that multiplies a part of the state
|ψ×j 〉ADJ . Similarly as before we need to take care of the fact that the joint state of the adversary
and the oracle is a sum over databases of different sizes and queries to different interfaces:

|ψ×j 〉 =
∑
s

|ψ×j (s)〉, (135)

where the states |ψ×j (s)〉 are orthogonal. The above is also true for |ΨGood
j 〉 =

∑
s|ΨGood

j (s)〉.
There are two sources ofmultiplicative errors, ADD fromEq. (113) andREM fromEq. (116),

we split the two sources with the triangle inequality. We deal with both in the same way, just
the final bound is different.

Let us write down the two parts, one affected by the error and the second not:

|ΨGood
j 〉AD|0〉J =

∑
s

α(s)|ϕ1(s)〉+ β(s)|ϕ2(s)〉, (136)

|ψ×j 〉ADJ =
∑
s

α(s)|ϕ1(s)〉+
√

1− eβ(s)|ϕ2(s)〉, (137)

where
√

1− e is the multiplicative error, in the case ADD the error is e = b(s+1)
N and e = b(s)

N

in the case REM. We know that
∑
s |α(s)|2 + |β(s)|2 ≤ 1, because we excluded a single branch

of the superposition, for ADD and REM. This inequality implies
∑
s |β(s)|2 ≤ 1. We continue

with the bound ∥∥∥|ψ×j 〉ADJ − |ΨGood
j 〉AD|0〉J

∥∥∥ =
∥∥∥∥∥∑
s

(1−
√

1− e)β(s)|ϕ2(s)〉
∥∥∥∥∥ (138)

=
√∑

s

(1−
√

1− e)2 |β(s)|2 ≤ max
s
{1−

√
1− e} ≤ max

s
{e}, (139)

Maximization is done over s ≤ j − 1.
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Bound on one step From Eqs. (119), (132), and (139) (for the two sources of error) the bound
on the single step is

εstep(j) ≤ max
s≤j−1

(
b(s)√

N(N − b(s))
+ b(s)

N
+ 2b(s)

N
+ b(s+ 1)

N

)
(140)

and the final bound is∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ i∑
j=1

max
s≤j−1

(
b(s)√

N(N − b(s))
+ b(s)

N
+ 2b(s)

N
+ b(s+ 1)

N

)
(141)

The bound from Lemma 19 can be further simplified to

∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ 5
i∑

j=1
max
s≤j−1

(
b(s+ 1)√
N(N − b(q))

)
, (142)

Where in the denominator we use b(s) ≤ b(q), which is true for the relations considered in this
paper.

C.3 Bound on εFind

Our task here is bounding the norm of
∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 〉
∥∥∥. All states (among the

states defined in section C.1) that give non-zero contributions to this norm are the ones that we
give the superscript Find, they contain |1〉J .

Lemma 21. For states defined in preceding sections we have∥∥∥JRUiCPhOY \ VRUi−1|ΨGood
i−1 〉

∥∥∥ = εFind(i)

≤ max
s≤i−1

√b(s+ 1)
N

+ b(s)3/2

Na

√
N − b(s)

+
√
b(s)(N − b(s))

N

 . (143)

Proof. For all states multiplied by |1〉J we start bounding the norm by splitting the norm by the
size of the database, like in Eq. (121). Let us now go through the three important modes of
operation, i.e. adding, updating, or removing from the database.
The ADD case The bound on the norm of the state in R in this case is:∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 (ADD; s)〉
∥∥∥ ≤ max

s

√
b(s+ 1)
N

. (144)

This bound holds , because except for the factor in front of the state and registerD(x) the state
is just a good state (one from just before the query we analyze in Eq. (113)). Moreover register
D(x) is normalized (given the fact that η is explicit in the adversary’s register).
The UPD case In this case we have a bound of∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 (UPD; s)〉
∥∥∥ ≤ max

s

b(s)3/2

N
√
N − b(s)

, (145)

where we follow the same reasoning as in the proof of Lemma 19 and Claim 20.
The REM case Finally we have a bound of∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 (REM; s)〉
∥∥∥ ≤ max

s

√
b(s)(N − b(s))

N
(146)
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and to get it we follow the same reasoning as for the ADD case.
We use these bounds and the triangle inequality to bound the second term in Eq. (102):∥∥∥JRUiCPhOY \ VRUi−1|ΨGood

i−1 〉
∥∥∥

≤ max
s≤i−1

√ b3(s)
N2(N − b(s)) +

√
b(s)(N − b(s))

N
+

√
b(s+ 1)
N

 (147)

≤ max
s≤i−1

√ b3(s)
N2(N − b(s)) + 2

√
b(s+ 1)
N

 . (148)

C.4 Other Relations

For Rcoll we use eq. (140) with b(i) = i− 1 instead of b(i) = i. The bound on the probability of
the event Find is

P[Find : A[CStOY \Rcoll]] ≤
2q2

N
+ 4q7/2

N
√
N − q

+ 5q5

N(N − q) . (149)

For Rpreim in eq. (140) we set a constant b(j) = 1. The bound on the probability of Find is
then

P[Find : A[CStOY \Rpreim]] ≤ 9q
N

+ 30q2

N
√
N − 1

+ 25q3

N(N − 1) . (150)

D Additional Details on Quantum-Accessible Oracles

D.1 Example Non-Uniform Distributions

The most important distribution that can be quantumly lazy sampled is the uniform distribu-
tion. It was first shown in [Zha19] how to do that. We present a lot of details and intuitions on
this matter in the rest of this section.

Let us say we want to efficiently simulate a quantum oracle for a random function h :
{0, 1}m → {0, 1}, such that h(x) = 1 with probability λ. Then the adding function of the
corresponding compressed oracle is ∀x ∈ {0, 1}m:

Sampλ(x) :=
( √

1− λ
√
λ√

λ −
√

1− λ

)
, (151)

independent from any previous queries. This observation comes in useful in tasks like search
in a sparse database.

D.2 Uniform Oracles

For ease of exposition, and to highlight the connection to the formalism in [Zha19], we present a
discussion of compressed oracles with uniform oracles that model functions sampled uniformly
at random from F := {f : {0, 1}m → {0, 1}n} . A complete formal treatment of the uniform
case, including applications, can be found in [Unr21].

We denote the uniform distribution over F by U. The cardinality of the set of functions is
|F| = 2n2m and the truth table of any f ∈ F can be represented by 2m rows of n bits each.
Uniform oracles are the most studied in the random-oracle model and are also analyzed in
[Zha19].
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The transformation we use in the case of uniformly sampled functions is the Hadamard
transform. The unitary operation to change between types of oracles is defined as

HTn|x〉 := 1√
2n

∑
ξ∈{0,1}n

(−1)ξ·x|ξ〉, (152)

where ξ ·x is the inner product modulo two between the n-bit strings ξ and x viewed as vectors.
In this section the registers X,Y are vectors in the n-qubit Hilbert space (C2)⊗n.

In what follows we first focus on full oracles, i.e. not compressed ones. We analyze in detail
the relations between different pictures of the oracles: the Standard Oracle, the Fourier Oracle,
and the intermediate Phase Oracle. Next we provide an explicit algorithmic description of the
compressed oracle and discuss the behavior of the compressed oracle in different pictures.

For the QROM, usually the Standard Oracle is the oracle used. The initial state of the oracle
is the uniform superposition of truth tables f representing functions f : {0, 1}m → {0, 1}n. The
Standard Oracle acts as follows

StOU|x, y〉XY
1√
|F|

∑
f∈F
|f〉F = 1√

|F|
∑
f∈F
|x, y ⊕ f(x)〉XY ⊗ |f〉F , (153)

where instead of modular addition we use bitwise XOR denoted by ⊕. Note that in the above
formulation StOU is just a controlled XOR operation from the x-th row of the truth table to the
output register Y . We add the subscript U to denote that in the case of uniform distribution
we also fix the input and output sets to bit-strings and the operation the oracle performs is not
addition modulo N like we introduced it in the main body. The register F contains vectors in
(C2)⊗n2m .

The Fourier Oracle that stores the queries of the adversary is defined as

FOU|x, η〉XY |φ〉F := |x, η〉XY |φ⊕ χx,η〉F , (154)

where χx,η := (0n, . . . , 0n, η, 0n, . . . , 0n) is a table with 2m rows, among which only the x-th row
equals η and the rest are filled with zeros. Note that initially the Y register is in the Hadamard
basis, for that reason we use Greek letters to denote its value.

To model the random oracle we initialize the oracle register F in the Hadamard basis in the
all 0 state |φ〉 = |0n2m〉.

If we take the StandardOracle again and transform the adversary’s Y register instead, again
using HT, we recover the commonly used Phase Oracle. More formally, the phase oracle is
defined as

PhOU := (1Xm ⊗ HTYn )⊗ 1Fn2m ◦ StOU ◦ (1Xm ⊗ HTYn )⊗ 1Fn2m , (155)

where 1n is the identity operator acting on n qubits.
Applying the Hadamard transform also to register F will give us the Fourier Oracle

FOU = (1XY )⊗ HTFn2m ◦ PhOU ◦ (1XY )⊗ HTFn2m . (156)

The above relations show that we have a chain of oracles, similar to Eq. (11):

StOU
HTYn←−−→ PhOU

HTFn2m←−−−→ FOU. (157)

In the following paragraphs we present some calculations explicitly showing how to use
the technique and helping understanding why it is correct.
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D.2.1 Full Oracles, Additional Details

In this section we show detailed calculations of identities claimed in Section D.2. First we an-
alyze the Phase Oracle, introduced in Eq. (155). We can check by direct calculation that this
yields the standard Phase Oracle,

PhOU|x, η〉XY |f〉F = (−1)η·f(x)|x, η〉XY |f〉F . (158)

Including the full initial state of the oracle register, we calculate

PhOU|x, η〉XY
1√
|F|

∑
f∈F
|f〉F

= (1Xm ⊗ HTYn )⊗ 1Fn2mStOU|x〉X
1√
2n
∑
y

(−1)η·y|y〉Y
1√
|F|

∑
f∈F
|f〉F (159)

= (1Xm ⊗ HTYn )⊗ 1Fn2m |x〉X
1√
2n
∑
y

∑
f∈F

(−1)η·y|y ⊕ f(x)〉Y
1√
|F|
|f〉F (160)

= 1√
|F|

∑
f∈F
|x〉X

∑
ζ

1
2n
∑
y

(−1)η·y(−1)(y⊕f(x))·ζ

︸ ︷︷ ︸
=δ(η,ζ)(−1)ζ·f(x)

|ζ〉Y |f〉F (161)

= 1√
|F|

∑
f∈F

(−1)η·f(x)|x〉X |η〉Y |f〉F . (162)

Applying the Hadamard transform also to register F will give us the Fourier Oracle. In the
following calculation we denote acting on register F with HT⊗2m

n2m by HTFn2m .

HTFn2m ◦ PhOU ◦ HTFn2m |x, η〉XY |02mn〉F = HTFn2m
1√
|F|

∑
f∈F

(−1)η·f(x)|x, η〉|f〉F

= 1
|F|

∑
φ,f

(−1)φ·f (−1)η·f(x)|x, η〉|φ〉F

=
∑
φ

1
2n(2m−1)

∑
f(x′ 6=x)

(−1)φx′ ·f(x′)

︸ ︷︷ ︸
=δ(φx′ ,0n)

1
2n
∑
f(x)

(−1)φx·f(x)(−1)η·f(x)

︸ ︷︷ ︸
=δ(φx,η)

|x, η〉|φ〉F

= |x, η〉|02mn ⊕ χx,η〉 (163)

where we write f(x) and φx to denote the x-th row of the truth table f and φ respectively.

D.2.2 Compressed Oracles, Additional Details

Let us state the input-output behavior of the compressed oracle CFOU for uniform distributions.
The input-output behavior of CFOU is given by the following equation, xr is the smallest xi ∈
DX such that xr ≥ x:

CFOU|x, η〉XY |x1, η1〉D1 · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq = |x, η〉XY |ψr−1〉

⊗



|xr, ηr〉Dr · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq if η = 0n,
|x, η〉Dr |xr, ηr〉Dr+1 · · · |xq−1, ηq−1〉Dq if η 6= 0n, x 6= xr,

|xr, ηr ⊕ η〉Dr · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq if η 6= 0n, x = xr,

η 6= ηr,

|xr+1, ηr+1〉Dr · · · |xq−1, ηq−1〉Dq−2 |⊥, 0n〉Dq−1 |⊥, 0n〉Dq if η 6= 0n, x = xr,

η = ηr,

(164)
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where |ψr−1〉 := |x1, η1〉D1 · · · |xr−1, ηr−1〉Dr−1 .
In the following let us change the picture of the compressed oracle to see how the Com-

pressed Standard Oracle and Compressed Phase Oracle act on basis states. Let us begin with
the Phase Oracle, given by the Hadamard transform of the oracle database

CPhOU := 1n+m ⊗ HTDYn ◦ CFOU ◦ 1n+m ⊗ HTDYn , (165)

where by HTDYn we denote transforming just the Y registers of the database: HTDYn := (1m⊗
HTn)⊗q. Let us calculate the outcome of applyingCPhO to a state for the first time, for simplicity
we omit all but the first register of D

CPhOU|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D = 1n+m ◦ HTDYn ◦ CFOU|x, η〉XY |⊥, 0n〉D (166)

= 1n+m ◦ HTDYn ((1− δ(η, 0n))|x, η〉XY |x, η〉D + δ(η, 0n)|x, η〉XY |⊥, 0n〉D) (167)

= 1√
2n

∑
z∈{0,1}n

((1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D + δ(η, 0n)|x, 0n〉XY |⊥, z〉D) . (168)

If we defined the Compressed Phase Oracle from scratch we might be tempted to omit the
coherent deletion of η = 0n. The following attack shows that this would brake the correct-
ness of the compressed oracles: The adversary inputs the equal superposition in theX register

1√
2m
∑
x|x, 0n〉XY , after interacting with the regular CPhOU the state after a single query is

1√
2m

∑
x

|x, 0n〉XY
CPhOU7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|⊥, z〉D, (169)

but with a modified oracle that does not take care of this deleting, simply omits the term with
δ(η, 0n), let us call it CPhO′U, the resulting state is

1√
2m

∑
x

|x, 0n〉XY
CPhO′U7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|x, z〉D. (170)

Performing ameasurement of theX register in theHadamard basis distinguishes the two states
with probability 1− 1

2m .
Let us inspect the state after making two queries to the Compressed Phase Oracle

CPhOU|x2, η2〉X2Y2CPhOU|x1, η1〉X1Y1
1
2n

∑
z1,z2∈{0,1}n

|⊥, z1〉D1 |⊥, z2〉D2

= |x2, η2〉|x1, η1〉
1
2n

∑
z1,z2

(−1)η1·z1δ(η2, 0n)(1− δ(η1, 0n))|x1, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ δ(η2, 0n)δ(η1, 0n)|⊥, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ (−1)η2·z1(1− δ(η2, 0n))δ(η1, 0n)|x2, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(−1)η1·z1(−1)η2·z2(1− δ(η2, 0n))(1− δ(x1, x2))(1− δ(η1, 0n))|x1, z1〉F1 |x2, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(1− δ(η2, 0n))δ(x1, x2)δ(η1, η2)(1− δ(η1, 0n))|⊥, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψREM)

+ (1− δ(η2, 0n))δ(x1, x2)(1− δ(η1, η2))(1− δ(η1, 0n))
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·(−1)(η1⊕η2)·z1 |x1, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψUPD)

 , (171)

where by the superscripts we denote the operation performed by CPhOU on the compressed
database. By ADD we denote adding a new pair (x, η), by UPD changing the Y register of an
already stored database entry, REM signifies removal of a database entry, and NOT stands for
doing nothing, that happens if the queried η = 0n.

Let us discuss theCompressed StandardOracle. We know that it is theHadamard transform
of the adversary’s register followed by CPhOU

CStOU = 1m ⊗ HTYn ◦ CPhOU ◦ 1m ⊗ HTYn . (172)

Let us present the action of CStO in the first query of the adversary

CStOU|x, y〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D

= 1m ⊗ HTYn ◦ CPhOU
1√
2n

∑
η∈{0,1}n

(−1)η·y|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D (173)

= 1m ⊗ HTYn
1√
2n

∑
η∈{0,1}n

1√
2n

∑
z∈{0,1}n

(−1)η·y
(

(1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D

+ δ(η, 0n)|x, 0n〉XY |⊥, z〉D

)
(174)

= 1
2n
∑
y′,η

1√
2n
∑
z

(−1)η·y(−1)y′·η
(

(1− δ(η, 0n))(−1)η·z|x, y′〉XY |x, z〉D

+ δ(η, 0n)|x, y′〉XY |⊥, z〉D

)
(175)

=
∑
y′

1√
2n
∑
z

1
2n
∑
η 6=0

(−1)η·y(−1)y′·η(−1)η·z

︸ ︷︷ ︸
=δ(y′,y⊕z)− 1

2n

|x, y′〉XY |x, z〉D

+
∑
y′

1√
2n
∑
z

1
2n |x, y

′〉XY |⊥, z〉D (176)

= 1√
2n
∑
z

|x, y ⊕ z〉XY |x, z〉D − 1
2n
∑
y′

|x, y′〉XY |x, z〉D + 1
2n
∑
y′

|x, y′〉XY |⊥, z〉D

 . (177)

We would like to note that a similar calculation and resulting state is presented in [HI19].

D.3 Detailed Algorithm for Alg. 1: CFOD

In Algorithm 8 we present the fully-detailed version of Algorithm 1. This algorithm runs the
following subroutines:

• Locate, Function 9: This subroutine locates the positions inДwhere the x−entry coincides
with the x−entry of the query. The result is represented as q bits, where qi = 1 ⇐⇒
ДX
i = x. This result is then bitwise XOR’ed into an auxiliary register L.

• Add, Function 10: This subroutine adds queried x to the database and take care of appro-
priate padding. Here our padding is simply (0m, 0n).
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• Upd, Function 11: This subroutine updates the database by subtracting η after a suitable
basis transformation.

• Rem, Function 12: This subroutine removes (x, 0) entries from the database and puts them
to the back in the form of padding.

• Clean, Function 13: This subroutine cleans the auxiliary registers setting them back to
initial values.

• Larger: This subroutine determines whether one value is larger than a second value, it
works on three registers, sayDXXA and flips the bit inA if the value ofDX is larger than
the value in X , so

LargerDXXA|u〉DX |v〉X |a〉A = |u〉DX |v〉X

{
|a⊕ 1〉A if u > v

|a〉A otherwise
. (178)

In [OR07] an efficient implementation of Larger for u, v being bitstrings can be found.

In the Add and Rem subroutine the unitary P can be found. P permutes the database such that
a recently removed entry in the database is moved to the end of the database. Conversely P−1

permutes the database such that an empty entry is created in the database as to ensure the
correct ordering of the x−entries after adding the query into this newly created empty entry:

P|x1, ..., xq〉 ⊗ |y1, ..., yn〉 := |σn ◦ ... ◦ σ1(x1, ..., xq)〉 ⊗ |y1, ..., yn〉 , (179)

where σi is applied conditioned on yi = 1 and σi(x1, ..., xn) :=
(x1, ..., xi−2, xi−1, xi+1, xi+2, ..., xq, xi).

Algorithm 8: Detailed CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 |a〉A = |0 ∈ {0, 1}〉A // initialize auxiliary register A
2 |l〉L = |0q ∈ {0, 1}q〉L // initialize auxiliary register L
3 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // locate x in the database
4 if l = 0q then // if not located
5 |a〉A 7→ |a⊕ 1〉A // save result to register A

6 if a = 1 then // if not located
7 |Д〉D|l〉L 7→ Add(|x〉X |Д〉D) // add x−entry to the database

8 |ДY 〉DY 7→ Upd(|η〉Y |ДY 〉DY |l〉L) // update register DY

9 |Д〉D|l〉L 7→ Rem(|x〉X |Д〉D|l〉L) // remove a database entry if и = 0
10 |a〉A 7→ Clean(|y〉Y |ДY 〉DY |l〉L) // uncompute register A
11 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // uncompute register L
12 return |x, η〉XY |Д′〉D // Д′ is the modified database
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Function 9: Locate
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д〉D|l′〉L

1 Set |a〉A = |0 ∈ X〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 if иi 6= 0 then // locate entries in the database
4 |a〉A 7→ |a+ (ДX

i − x)〉A // database entry − query
5 if ai 6= 0 then // locate matches in the database
6 |li〉Li 7→ |li ⊕ 1〉Li // save the corresponding positions

7 |a〉A 7→ |a− (ДX
i − x)〉A // uncompute register A

8 return |x〉X |Д〉D|l′〉R // l′ contains the position of x in Д

Function 10: Add
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q ∈ {0, 1}q〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 |ai〉Ai 7→ Larger(|ДX

i 〉DXi |x〉X |ai〉Ai) // check if database entry > query

4 if ДX
i 6=⊥ then // correct for empty entries

5 |ai〉Ai 7→ |ai ⊕ 1〉Ai
6 for j = i+ 1, ..., q do // flip all higher entries
7 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with one position

8 |Д〉D 7→ P−1(|Д〉D ⊗ |a〉A) // permute D to create empty entry
// P is defined in (179)

9 for i = 1, ..., q do
10 if ai = 1 then // look for this empty entry
11 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // add x−entry to the database

12 |li〉Li 7→ |li ⊕ 1〉Li // update location register

13 if x 6= 0 then // Non zero x implies non zero a
14 for i = 1, ..., q do
15 if li = 1 then // if located
16 |ai〉Ai 7→ |ai ⊕ 1〉Ai // uncompute register A

17 return |x〉X |Д′〉D|l′〉L // Д′ is the modified database
// l′ is modified l

Function 11: Upd
Input : |η〉Y |ДY 〉DY |l〉L
Output: |η〉Y |Д′Y 〉DY |l〉L

1 Apply QFTDYN SampD // transform to the Fourier basis
2 for i = 1, ..., q do
3 if li = 1 then // if located
4 |∆Y

i 〉DYi 7→ |∆
Y
i − η〉DYi // Update the Y register of entry

5 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
6 return |η〉Y |Д′Y 〉DY |l〉L // Д′Y is modified Y register of the database
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Function 12: Rem
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q〉A // initialize auxiliary register A
2 Set |b〉B = |0〉B // initialize auxiliary register B
3 for i = 1, ..., q do
4 if li = 1 then
5 if иi = 0 then // if entry is incorrect
6 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // remove the entry

7 |b〉B 7→ |b⊕ 1〉B // save that we have removed an entry

8 if b = 1 then // if we removed an entry
9 for i = 1, ..., q do
10 |ai〉Ai 7→ Larger(|x〉X , |ДX

i 〉DXi , |ai〉Ai) // check if query > database entry

11 if x = 0 then // Correct for x = 0
12 if ДY

i 6= 0 then // correct for empty entries
13 |ai〉Ai 7→ |ai ⊕ 1〉Ai

14 for j = i− 1, ..., 1 do // flip all lower entries
15 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with only the removed

position

16 |li〉Li 7→ |li ⊕ ai〉Li // correct for the removed entry

17 |Д〉D 7→ P (|Д〉D ⊗ |a〉A) // permute D to move the empty entry
18 for i = q, ..., 1 do // uncompute register A
19 for j = q, ..., i+ 1 do // by calculating the first position
20 |aj〉Aj 7→ |aj ⊕ ai〉Aj // such that database entry > query

21 if ДY
i 6= 0 then // as in the Add subroutine

22 |ai〉Ai 7→ |ai ⊕ 1〉Ai
23 |ai〉Ai 7→ Larger(|ДX

i 〉DXi , |x〉X , |ai〉Ai)

24 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A)
25 if A = 0q then // check if we have removed
26 |b〉B 7→ |b⊕ 1〉B // Uncompute register B

27 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A) // uncompute register A
28 return |x〉X |Д′〉D|l′〉L // Д′ is modified database

// l′ is modified l
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Function 13: Clean
Input : |η〉Y |ДY 〉D|l〉L|a〉A
Output: |η〉Y |ДY 〉D|l〉L|a′〉A

1 Set |b〉B = |0 ∈ Y〉B // initialize auxiliary register B

2 Apply QFTDYN SampD // transform to the Fourier basis
3 for i = 1, ..., q do
4 if li = 1 then
5 |b〉B 7→ |b+ (∆Y

i − η)〉B // database entry − query
6 if b = 0 then // locate matches in the database
7 if η 6= 0 then // if we added
8 |a〉A → |a⊕ 1〉A

9 |b〉B 7→ |b− (∆Y
i − η)〉B // uncompute register B

10 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
11 return |η〉Y |ДY 〉D|l〉L|a′〉A // a′ is modified register A

E Collapsingness of Sponges

Collapsingness is a security notion defined in [Unr16b]; It is a purely quantum notion strength-
ening collision resistance. It was developed to capture the required feature of hash functions
used in cryptographic commitment protocols.

In this section we prove that quantum indifferentiability implies collapsingness. We begin
by introducing the notion of collapsing functions.

For quantum algorithms A, B with quantum access to H, consider the following games:

Collapse 1 : (S,M, h)← AH(), m← M(M), b← BH(S,M), (180)
Collapse 2 : (S,M, h)← AH(), b← BH(S,M). (181)

Here S,M are quantum registers. M(M) is a measurement of M in the computational basis.
The intuitive meaning of the above games is that part A of the adversary prepares a quantum
registerM that holds a superposition of inputs to H that all map to h. Then she sendsM along
with the side information S to B. The task of the second part of the adversary is to decide
whether measurement M of the registerM occurred or not.

We call an adversary (A,B) valid if and only if P[H(m) = h] = 1 when we run (S,M, h) ←
AH() in Collapse 1 from Eq.(180) and measureM in the computational basis asm.
Definition 22 (Collapsing [Unr16b]). A function H is collapsing if for any valid quantum-
polynomial-time adversary (A,B)

|P[b = 1 : Collapse 1]− P[b = 1 : Collapse 2]| < ε, (182)

where the collapsing-advantage ε is negligible.
Amore in-depth analysis of this security notion can be found in [Unr16b; Unr16a; Cza+18;

Feh18].
It was shown in [Unr16b] that if H is a random oracle then is it collapsing:

Lemma 23 (Lemma 37 [Unr16b]). Let H : X → Y be a random oracle, then any valid adversary
(AH,BH) making q quantum queries to H has collapsing-advantage ε ∈ O

(√
q3

|Y|

)
.

In the rest of this section we state and prove that any function that is indifferentiable from a
collapsing function is itself collapsing. In the context of sponges, together with thm. 17, we re-
prove the result of [Cza+18] in a modular way that might come useful when indifferentiability
of sponges with permutations is established.
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Theorem 24 (Quantum indifferentiability preserves collapsingness). Let C be a construction
based on an internal function f , and let C be (q, εI(q))-indifferentiable from an ideal function Cideal
with simulator S. Assume further that Cideal allows for a collapsingness advantage at most εcoll(q) for a
q-query adversary. Then C is collapsing with advantage εcoll(qC, qf ) = 2 εI(qC + qf ) + εcoll(qC +αqf ),
where qC and qf are the number of queries to C and f , respectively, and α is the number of queries
simulator S makes (at most) to Cideal for each time it is queried.

Proof. Given a collapsingness distinguisher D̃ against C with advantage ε ≥ εcoll(qC +αqf ) that
makes qC queries to C and qf queries to f , we build an indifferentiability distinguisher D as
follows. Chose b ∈ {0, 1} at random. Running D̃, if b = 0 simulate Collapse 1, if b = 1 simulate
Collapse 2. Output 1 if D̃ outputs b, and 0 else.

In the real world, we have that

P[1← D : Real] = 1
2
(
P[0← D̃C,f : Collapse 1] + P[1← D̃C,f : Collapse 2]

)
= 1

2 + 1
2
(
P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

)
.

In the ideal world, the distinguisher together with the simulator S can be seen as a collapsing-
ness distinguisher for Cideal. Therefore we get

P[1← D : Ideal] = 1
2 + 1

2
(
P[1← D̃Cideal,S : Collapse 2]− P[1← D̃Cideal,S : Collapse 1]

)
and hence ∣∣∣P[1← D : Real]− P[1← D : Ideal]

∣∣∣
= 1

2

∣∣∣P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

− P[1← D̃Cideal,S : Collapse 2] + P[1← D̃Cideal,S : Collapse 1]
∣∣∣

≥ 1
2 (ε− εcoll(qC + αqf )) .
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Symbol Index

|x| Cardinality of a set x / length of a string x/ abso-
lute value

Add Function adding x to the compressed database 55
A,B An adversary, a classical or quantum algorithm 6, 18
A The alphabet set of outer states, generalization of

{0, 1}r, outer part of s ∈ A× C denoted by s̄
Bad A "bad" event in a game. 6, 25
CFOD Compressed Fourier Oracle for distribution D 14
C The set of inner states, generalization of {0, 1}c, in-

ner part of s ∈ A× C denoted by ŝ
Clean Clean up function for auxiliary register 57
Collapse 1 Collapsing game 57
CPhOU Compressed Phase Oracle 52
CStOD,CStOY Compressed Standard Oracle, for distribution D

and for a conditionally uniform distribution over
Y

14

D,∆,Д Prepared database in the standard basis (and
the database register), prepared database in the
Fourier basis, and the unprepared databse

11

DecD Decompression procedure 15
D The distinguisher 6
D A distribution. 11
E The set of edges of a sponge graph 22
Find Event of measurement of the relation R returning

1
17, 18

FO Fourier Oracle, QFTY FN ◦ StO ◦ QFT†Y FN 9
H,G Compressed Oracle 16
HTn The Hadamard transform 50
|ψ〉 A quantum state, a normalized vector in a Hilbert

space
Larger A unitary for comparing two bit-strings 54
Locate Locate the position of x in the database 55
pad Padding function 22
SpPath(s,G) Function constructing an input to Sponge leading

to a given node
23

ϕ The map between states in Sponge. 22
ϕ̄ The map between states with its output limited to

the first r bits
22

ϕ̂ The map between states with its output limited to
the last c bits

22

PhO Phase Oracle, QFTYN ◦ StO ◦ QFT†YN 51
JR Projector on relation R. 17
QFTN The Quantum Fourier Transform 8
Rem Removing и = 0 from the database 56
R The set of rooted supernodes 23
SampD(S) Algorithm preparing a superposition of samples

of outputs of f ← D on inputs from S.
11

S Classical and quantum simulators. 25, 28
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Spongeϕ[pad, r, c] Sponge construction with the internal function ϕ,
capacity c, and rate r

22

StO Standard Oracle 9
U The uniform distribution. 49
Upd Updating η in the database 55
U The set of supernodes with outgoing edges 23
VR The unitary outputting D ∈ R. 17
V The set of vertices of a sponge graph 22
⊕ Bitwise XOR 50
y, η, и Values in the Y register of a database in different

bases
11
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