
Continuing to reflect on TLS 1.3 with external PSK

Liliya Akhmetzyanova∗, Evgeny Alekseev†,
Ekaterina Smyshlyaeva‡, Alexandr Sokolov§

Crypto Pro LLC

Abstract

The TLS protocol is the main cryptographic protocol of the Internet. The work on its cur-
rent version, TLS 1.3, was completed in 2018. This version differs from the previous ones and
has been developed taking into account all modern principles of constructing cryptographic
protocols. At the same time, even when there are security proofs in some fairly strong security
model, it is important to study the possibility of extending this model and then clarifying
the security limits of the protocol.

In this paper, we consider in detail the restriction on the usage of post-handshake authen-
tication in connections established on external PSK. We clarify that the certain vulnerability
appears only in the case of psk_ke mode if more than a single pair of entities can possess a
single PSK. We provide several practical scenarios where this condition can be easily achieved.
Also we propose appropriate mitigation.

1 Introduction
The current version of the TLS protocol, the main cryptographic protocol of the Internet, is

described in the document [9], which was completed in 2018 . This protocol was created taking
into account all known vulnerabilities of previous versions and the protocol design principles
that allow to obtain proven security bounds. This came out, for example, in the structure of the
key schedule: «The key derivation functions have been redesigned. The new design allows easier
analysis by cryptographers due to their improved key separation properties» [9]. As a result, several
reductions and, consequently, lower security bounds were obtained for the TLS 1.3 protocol (see,
for example, [2, 5, 8]) in various security models.

As noted in [4], in addition to constructing reductions and thus obtaining lower security bounds,
it is important to consider the adequacy and completeness of the used security model. Examples
of attacks against «provably» secure cryptosystems, which were possible due to the irrelevance of
the used security model, can be found, for example, in [1, 3]. For the TLS 1.3 protocol, the issue
on analyzing the model relevance is extremely difficult, since this protocol provides a number of
∗lah@cryptopro.ru
†alekseev@cryptopro.ru
‡ess@cryptopro.ru
§sokolov@cryptopro.ru

1

non-trivial operation modes (for example, authentication with a pre-shared secret or sending data
to the unauthenticated party), which can affect each other in a rather complicated way.

Despite the fact that the TLS 1.3 protocol was designed with all modern cryptographic prin-
ciples taken into account, a new attack has been already proposed. The paper [6] describes a
reflection attack called «Selfie» on TLS 1.3 based on a pre-shared key (PSK) distributed exter-
nally. The idea behind this attack is as follows: an adversary opens two parallel connections where
the same entity runs both a client and a server, and reflects messages from one connection back
to the sender in another connection. As a result, the entity opens a session with itself. This attack
is applied if the entities sharing external PSK can be both a client (an initiator) and a server (a
responder) simultaneously and the parties do not explicitly check the identity of the partners. The
paper also provides the several attack scenarios which illustrate the posed threats.

One mitigation of the Selfie attack proposed in [6] is to use external PSKs together with certifi-
cates. Therefore, a built-in post-handshake authentication can be potentially used for protection.
Indeed, the entity that has made a session with itself can detect this by receiving its own certificate
in the server side connection.

However, the situation with permission of using post-handshake authentication with external
PSKs in [9] is quite unclear. On the one hand, [9] allows to use post-handshake authentication, if
the client indicated the corresponding extension (see Section 4.3.2 [9] for details):

Servers which are authenticating with a PSK MUST NOT send the
Certificate Request message in the main handshake, though they
MAY send it in post-handshake authentication provided that the
client has sent the post_handshake_auth extension.

On the other hand, in [9] (see Appendix E, p.144) one can find the following statement:

Implementations MUST NOT combine external PSKs with
certificate-based authentication of either the client or the
server unless negotiated by some extension.

The latter statement is explained in [9] in the following way: «It is unsafe to use certificate-
based client authentication when the client might potentially share the same PSK/key-id pair with
two different endpoints», — and refers to [8] for more details. However, in [8] the only mentioning
about this threat is the statement (see the footnote on p.13): «We exclude the case where the
attacker has the same PSK key shared with both C and S in which case a transcript replication
attack is unavoidable.»

To clarify the situation described above we investigate the post-handshake authentication
with external PSKs more precisely. We provide the explicit description of an impersonation attack
caused by the vulnerability mentioned in [8]. This attack is applied if more than a single pair
of entities can possess a single PSK. Although this condition is quite strong and seems to be
impractical, we show that it can be easily achieved on practice, providing two dummy systems
where external PSKs are used (see Section 4 for details) .

2

In the first system the main reason for this vulnerability is the absence of control on how the
external PSK was generated. Indeed, if there is no specific mechanism of distributing PSKs, an
«honest» client cannot detect whether a server provides a pre-shared key generated uniformly
and independently or obtained from another entity. In the second system being the group chats
prototype, the entities legally possess a single external PSK which aims to provide authentication
of a group membership. The practicality of distributing an external PSK to a group of entities is
also mentioned in [7].

The described attack is applied only to the psk_ke mode and is not applied to the psk_dhe_ke
mode. Therefore, the restriction on the usage of external PSKs with post-handshake authentication
stated in [9] seems to be fair for one mode only. Consequently, we claim that the post-handshake
authentication allows to securely protect from the Selfie attack for the psk_dhe_ke mode only
(without leading to new vulnerabilities).

The paper is organized as follows. In Section 2 we remind the PSK based key exchange modes
of TLS 1.3 and the post-handshake authentication mechanism. In Section 3 we describe an im-
personation attack. Section 4 discusses the implications of the attack on practice and in Section 5
the mitigations are discussed.

2 TLS 1.3 protocol
TLS 1.3 allows to establish a secure connection between client and server using PSK which is

known to the parties before the current connection and is obtained as follows:

1. Distributed between the parties out of the protocol TLS 1.3: external PSK.

2. Obtained in the previous connection via the NewSessionTicket mechanism: resumption PSK.

Further we describe psk_ke and psk_dhe_ke modes where external PSKs are used and post-
handshake authentication.

2.1 Modes based on PSK

Notation. For simplicity, client and server handshake and application traffic secrets are denoted
by CHTS , SHTS and CATS , SATS correspondingly. The negotiated hash is denoted by
Hash . The concatenation of all messages sent during the main handshake is denoted by HM .

psk_ke and psk_dhe_ke modes. In order to establish a connection based on PSK the client
initiates the communication by sending ClientHello message where it indicates:

• a list of supported cipher suites (block cipher, AEAD and Hash algorithms);

• pre_shared_key extension which contains the data corresponding to each PSK and formed
as described below;

• psk_key_exchange_modes extension which contains the value psk_ke and/or psk_dhe_ke .

3

In the case of the psk_dhe_ke mode, the ClientHello message must also contain the following
extensions:

• supported_groups extension which contains a list of DH/ECDH groups supported by a
client;

• key_share extension containing the DH/ECDH ephemeral keys corresponding to each
group indicated in supported_groups extension.

The pre_shared_key extension contains a list of identities and a list of binders which cor-
respond to each PSK proposed by a client. Every identity contains a unique identifier and
obfuscated_ticket_age , which is equal to zero in case of external PSKs.

Server sends the ServerHello message in response, where it indicates a specific ciphersuite, a
specific PSK from the list and (in the case of the psk_dhe_ke mode) an ephemeral key cor-
responding to a group from the client’s list in supported_groups extension. Then it sends
EncryptedExtensions and Finished messages, which are encrypted under the key material de-
rived from SHTS . The client verifies the data received in server Finished message and sends
its own Finished message, which is encrypted under the key material derived from CHTS and
is verified by the server.

2.2 Post-Handshake Authentication

If client desires to authenticate explicitly after the main handshake, it can optionally indi-
cate the post_handshake_auth extension in ClientHello message. In that case, server sends
CertificateRequest message encrypted under the key material derived from SATS . Client sends
in response Certificate , CertificateV erify and Finished messages encrypted under the key
material derived from CATS . Server receives these messages from the client, verifies the data in
client CertificateV erify and Finished messages and then considers the client to be authenti-
cated.

Figure 1 represents psk_ke and psk_dhe_ke modes, based on external PSKs and described
in 2.1, and post-handshake authentication.

4

Client C Server S

ClientHello

pre_shared_key = ePSK_id,

psk_key_exchange_modes = psk_[dhe_]ke,

post_handshake_auth = OK

[supported_groups = <g,q>, key_share = g^x]

Certificate, CertificateVerify, Finished

psk_[dhe_]ke

Finished

CATS, SATS,
HM

ServerHello, EncryptedExtensions, Finished

CertificateRequest

CATS, SATS,
HM

post-handshake authentication

ePSK ePSK
ePSK_id ePSK_id

Figure 1: Modes based on external PSK with post-handshake authentication

3 Impersonation attack
Consider an adversary E and two honest parties C and S that always run as a client and

as a server correspondingly. Let the adversary be a legitimate server for the client C and be
a legitimate client for the server S . Also let C be a legitimate client for S and use the same
certificate for authentication to S and E .

We assume that the connections between C and E and between E and S are established
according to the TLS 1.3 protocol in the psk_ke mode with the usage of externally distributed
PSK which is chosen by the server. Also we assume that after the connection establishment
the server side can additionally request the post-handshake authentication with the usage of
certificates.

The threat considered here is the impersonation of the client C by the adversary E for the
server S .

5

The attack. Further by (A,B) we denote a connection established between parties A and B ,
where A is a client and B is a server. In order to impersonate C , the adversary acts as follows:

1. The server S externally shares with its client E (the adversary) the PSK value. Having
obtained this value, the adversary now shares the same PSK with its own client C .

2. The client C initiates the interaction with E in order to establish the connection in the
psk_ke mode using the previously obtained PSK. Also, the client C allows the server to
implement the post-handshake authentication by sending a post_handshake_auth extension
in the ClientHello message. At the same time, the adversary E initiates the connection
establishment with S in the same psk_ke mode using the same PSK.

3. The connections (C,E) and (E, S) are established simultaneously, where E just echoes
messages from C to S and vice versa. As a result, these connections will be established suc-
cessfully and the key application traffic secrets CATS , SATS and the protocol transcript
will be identical in both connections.

4. Further the server S requests the authentication of E by sending the encrypted
CertificateRequest messages in the connection (E, S) . Receiving this message, the ad-
versary sends the same message to its own client C in the connection (C,E) .

5. In response the client C sends messages Certificate , CertificateV erify and Finished to
E which echoes these messages to S in its connection. Note that the obtained authentication
messages are verified successfully on the server S side, and, consequently, the S view of
peer’s identity is C .

The idea behind the attack is presented in Figure 2.
Consider why the proposed attack works in more details. Consider the data that is signed by

the client C when forming the CertificateV erify message in the connection (C,E) . It depends
on the whole transcript of the main handshake (HM) and the messages CertificateRequest
and Certificate . Since the adversary just echoes the messages from C to S and vice versa, the
signed transcript-hash in both connections will be the same. Therefore, the CertificateV erify
message remains valid for S too.

Remark 3.1. Note that in the case when an external PSK is replaced by a resumption PSK in
one of the connections, the proposed attack does not work due to the usage of the different labels
«ext_binder» and «res_binder» for computing a binder key. If the same labels are used, the
attack will be still applied since the obfuscated_ticket_age = 0 field of the pre_shared_key
extension will be valid for the side waiting resumption PSK with a high probability.

4 Implications
Consider the following scenarios to demonstrate the damage the described attack poses.

6

Client C Adversary E Server S

ePSK, ePSK_id

AppData (authentication required)

ClientHello

pre_shared_key = ePSK_id, obf_ticket_age = 0

psk_key_exch = psk_ke, post_handshake_auth = OK

Certificate, CertificateVerify, Finished

ServerHello, EncryptedExtensions, Finished

psk_ke psk_ke

Finished

CertificateRequest

CATS, SATS,
HM

ServerHello, EncryptedExtensions, Finished

Finished

ClientHello

Certificate, CertificateVerify, Finished

CertificateRequest

Successful auth as C

CATS, SATS,
HM

CATS, SATS,
HM

Sign(d_C, Hash(HM | CR | C))

ePSK, ePSK_id

Figure 2: The adversary E impersonates the client C for the server S .

Internet of Things. Consider the system where low-power devices (for example, IoT-type
devices) act as clients. In order to quickly establish a connection using the TLS 1.3 protocol, secret
values PSK are used, which are hardcoded into the device memory at the system initialization
stage. Here, PSK is aimed to provide authentication of a central server and authentication of client
membership to the system. To perform rare system specific operations, requiring a high security
level, the server can request resource-intensive client authentication with the usage of a certificate
after successfully establishing the connection on PSK.

Note that a device owner can potentially use a signing key and a corresponding certificate
which have been received from some third party (e.g., using CA) and are aimed to be used for
different purposes, e.g. for authentication in other more reliable systems (for example, providing
banking services).

Thus, a malicious server of some IoT system can share (with a device) a PSK secret that has
been distributed in another system between its honest server and some malicious agent being its

7

client. Consequently, using the described attack, the malicious IoT server can impersonate the
device owner, e.g, in a banking system.

Banking

system
«Smart Home»

system

PSK_1

PSK_2

PSK_2

PSK_2

Figure 3: The distribution of external PSKs leading to the impersonation attack. Here the malicious
server of IoT system has its own malicious agent being a legitimate client in a banking system.

Group chats. Consider the group chats where the membership to the group is confirmed by the
possession of PSK distributed externally among the group participants. In order to communicate,
entities establish peer-to-peer connections according to the TLS 1.3 protocol in the psk_ke mode.
In these connections PSK values respond for authentication of each other’s membership to the
group. In order to identify and authenticate the exact member the post-handshake authentication
(if needed) is used. Thus, using the described attack, one malicious member of the group can
impersonate any «honest» member (see Figure 4).
Remark 4.1. Note that the current OpenSSL implementation of TLS 1.3 supports the usage of
external PSKs in the psk_ke mode (see the flag SSL_OP_ALLOW_NO_DHE_KEX) with post-handshake
authentication.

5 Mitigations
As posed in [6], the certificates should be used to mitigate the Selfie attack. To protect also

against the impersonation attack, the connections based on external PSK should be established

8

C

Alice

PSK

S C

Eve

PSK

S

Bob

PSK

C, CV, F

CR

C, CV, F

CR

Group chat
Hi, I’m
Alice!

Hi, who is
talking to

me?

Figure 4: The demonstration of the attack for group chats.

only in the psk_dhe_ke mode. Indeed, if the connections are established with additional usage
of key_share extension, then the adversary which just echoes messages cannot reveal the traffic
key material (as long as the used group is secure). If the adversary changes the messages then
the transcript-hash value will be different on the «honest» sides and the signature verification will
fail. Thus, the following restriction can mitigate both attacks: «External PSKs MUST be used
together with certificates in psk_dhe_ke mode only».

Note that the proposed mitigation provides certificate-based authentication of the client only.
If such an authentication of the server is also needed (e.g. in group chats) the tls_cert_with_psk
extension proposed in [7] can be used.

In the future work we are going to investigate an enhanced MSKE model [6] where more than
a pair of parties can possess the same PSK and then analyze the certificate-based authentication
for such a network configuration by obtaining a security proof.

Acknowledgements. We thank Dmitry Belyavsky, Vasily Nikolaev, and Stanislav Smyshlyaev
for useful discussions and comments during this work.

9

References
[1] Albrecht M.R., Paterson K.G., Watson G.J.: Plaintext recovery attacks against SSH. In 2009

IEEE Symposium on Security and Privacy, pp. 16–26 (2009).

[2] Bhargavan K., Delignat-Lavaud A., Fournet C., Kohlweiss M., Pan J., Protzenko J., Ras-
togi A., Swamy N., Zanella-Beguelin S., Zinzindohoue J.K., «Implementing and Proving the
TLS 1.3 Record Layer». Cryptology ePrint Archive, Report 2016/1178, 2016.

[3] Canvel B., Hiltgen A., Vaudenay S., Vuagnoux M.: Password Interception in a SSL/TLS
Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–599 (2003).

[4] Degabriele J.P., Paterson K.G., Watson G.J.: Provable security in the real world. IEEE Se-
curity & Privacy 9(3), pp. 33–41 (2011).

[5] Dowling B.J., «Provable security of Internet protocols». Doctoral Thesis, Queensland Uni-
versity of Technology, https://eprints.qut.edu.au/108960/, 2017.

[6] Drucker N, and Gueron S., «Selfie: reflections on TLS 1.3 with PSK». Cryptology ePrint
Archive, Report 2019/347, 2019.

[7] Housley R., «TLS 1.3 Extension for Certificate-based Authentication with an External Pre-
Shared Key», version 02, September 26, 2018.

[8] Krawczyk H., «A Unilateral-to-Mutual Authentication Compiler for Key Exchange (with
Applications to Client Authentication in TLS 1.3)». Cryptology ePrint Archive, Report
2016/711, 2016.

[9] Rescorla E., «The Transport Layer Security (TLS) Protocol Version 1.3», RFC 8446, DOI
10.17487/RFC8446, August 2018, https://www.rfc-editor.org/info/rfc8446.

10

https://eprints.qut.edu.au/108960/
https://www.rfc-editor.org/info/rfc8446

	Introduction
	TLS 1.3 protocol
	Modes based on PSK
	Post-Handshake Authentication

	Impersonation attack
	Implications
	Mitigations

