
Sharing of Encrypted files in Blockchain Made Simpler

S. Sharmila Deva Selvi1, Arinjita Paul1, Siva Dirisala2, Saswata Basu2 and C. Pandu Rangan1

1 Department of Computer Science and Engineering, IIT Madras, India.
sharmioshin@gmail.com, {arinjita,prangan}@cse.iitm.ac.in

2 0chain LLC, San Jose, USA.
{siva,saswata}@0chain.net

Abstract. Recently, blockchain technology has attracted much attention of the research
community in several domains requiring transparency of data accountability, due to the
removal of intermediate trust assumptions from third parties. One such application is en-
abling file sharing in blockchain enabled distributed cloud storage. Proxy re-encryption is
a cryptographic primitive that allows such file sharing by re-encrypting ciphertexts towards
legitimate users via semi-trusted proxies, without them learning any information about the
underlying message. To facilitate secure data sharing in the distributed cloud, it is essential
to construct efficient proxy re-encryption protocols. In this paper, we introduce the notion
of proxy self re-encryption (SE-PRE) that is highly efficient, as compared to the existing
PRE schemes in the literature. We show that our self encryption scheme is provably CCA
secure based on the DLP assumption and our proxy re-encryption scheme with self encryp-
tion is CCA secure under the hardness of the Computational Diffie Hellman (CDH) and
Discrete Logarithm (DLP) assumption. Our novel encryption scheme, called self encryp-
tion, has no exponentiation or costly pairing operation. Even the re-encryption in SE-PRE
does not have such operations and this facilitates the service provider with efficiency gain.

1 Introduction

The recent explosion of data volumes and demand for computing resources have prompted
individuals and organisations to outsource their storage and computation needs to online data
centers, such as cloud storage. While data security is enforced by standard public-key encryption
mechanisms in the cloud, secure data sharing is enabled by efficient cryptographic primitives
such as proxy re-encryption (PRE). PRE enables re-encryption of ciphertexts from one public
key into another via a semi-trusted third party termed proxy, who does not learn any information
about the underlying plaintext. A user can delegate access to his files by constructing a special
key, termed as re-encryption key, using which the proxy performs the ciphertext transformation
towards a legitimate delegatee. PRE systems can be classified into unidirectional and bidirec-
tional schemes based on the direction of delegation. They can also be classified into single-hop
and multi-hop schemes based on the number of re-encryptions permitted. In this work, we focus
on unidirectional and single-hop PRE schemes.

The current model of cloud storage is operated through centralised authorities, which
makes such a system susceptible to single point failures and permanent loss of data. Recently,
blockchain technology, initially designed as a financial ledger, has attracted the attention of
researchers in a wide range of applications requiring accountable computing and auditability.
Blockchain enabled distributed peer-to-peer cloud storage solutions are steadily replacing its
centralised counterpart. A blockchain provides multiple parties to agree upon transactions and
contracts in an immutable and auditable way. Decentralised applications such as dApp providers
make use of this capability to provide services that are transacted in a publicly verifiable man-
ner. When the service provided by the dApp is not directly from the dApp owner itself but from
other third parties, it brings up additional challenges. How would the end user using the dApp
trust that the unknown third party service provides used by the dApp are trust worthy? This
issue is specifically addressed, for example, by the dApp called 0box [1] provided by 0Chain

[2]. Such a storage dApp allows any user to upload and share their files to their friends and
families similar to many other popular storage services. However, most existing services trust
the service provider and upload the content without any encryption. But 0box strives to provide
zero-knowledge storage such that the third party storage providers will not know the uploaded
content. This is achieved using an efficient CCA-secure proxy re-encryption scheme, outlined
in this paper. When a user shares the encrypted content with a trusted party, he provides the re-
encryption keys using the public key of the trusted party so that only that party is able to decrypt
the content. By facilitating the associated transactions on the blockchain, this scheme provides
end-to-end transparency and security for end users to procure storage services at highly compet-
itive prices without worrying about the reputation of the storage providers. We first propose a
novel self-encryption (SE) scheme, which is much more efficient than the standard CPA secure
El-Gamal encryption scheme. This work is further extended to design a CCA-secure proxy re-
encryption scheme (SE-PRE) that adds re-encryption functionality to self-encryption. Prior to
our work, the most efficient PRE construction was reported in [13] by Selvi et al. We show that
our PRE design is much more efficient than the scheme in [13].

Proxy Re-encryption (PRE) : Proxy re-encryption is a term coined by Blaze, Bleumer, and
Strauss [7] and formalized by Ateniese, Fu, Green, and Hohenberger [3][4]. PRE has been stud-
ied extensively for almost two decades [7][3][4][13][12]. A good survey of the PRE schemes
and security models of PRE can be found in [11] [8].

2 Preliminaries

In this section we give the definitions of various assumptions adopted for proving the secu-
rity of the proposed schemes, the general and security model of SE and SE-PRE schemes.

2.1 Definition

Definition 1. Discrete Logarithm Problem (DLP) : The discrete logarithm problem in a cyclic
group G of order q is, given (q, P, Y) such that q is a large prime, P, Y ∈ G, find a ∈ Z∗q such
that Y = aP .

Definition 2. Computation Diffie Hellman Problem (CDH) : The Computation Diffie Hellman
Problem in a cyclic group G of order q is, given (q, P, aP, bP) such that q is a large prime,
P, aP, bP ∈ G, find Q such that Q = abP , where a ∈ Z∗q .

2.2 Generic Model of Self-Encryption (SE) :

The self encryption (SE) is a novel primitive that allows an user to store their files securely
with minimal computation overhead. This primitive is different from the traditional public key
encryption approach as encryption can be done only by the owner of the file who possess the
private key related to the public key which is used for encrypting the file. It has the following
algorithms :

1. Setup(κ): This algorithm is run by the trusted entity. On input of a security parameter κ,
the Setup algorithm will output the system parameters Params.

2. KeyGen(Ui, Params): This algorithm is run by the user Ui. This is used to generate a
public and private key pair (PKi, SKi) for the user Ui.

3. Self-Encrypt(m, tw, SKi, PKi, Params): The encryption algorithm is run only by the
user Ui. This algorithm requires the knowledge of the private key SKi corresponding to the
public key PKi of user Ui. This takes as input the message m, the tag tw, the private key

2

SKi and public key PKi of user Ui. It will output a ciphertext C which is the encryption of
message m under the public key PKi and tag tw. This approach differs from the traditional
public key encryption where the encrypt algorithm can be run by any user.

4. Self-Decrypt(C, SKi, PKi, Params): The decryption algorithm is run by the user Ui.
On input of the ciphertext C, the private key SKi and the public key PKi of user Ui, this
will output the message m if C is a valid self encryption of m under PKi, SKi and tw.
Otherwise, it returns ⊥.

2.3 Generic Model of Proxy Re-Encryption with Self-Encryption(SE-PRE):

The SE-PRE is a proxy re-encryption primitive that uses a self encryption scheme as the
base algorithm and provides a mechanism to delegate the self-encrypted ciphertext. The SE-PRE
scheme consists of the following algorithms:

1. Setup(κ):The setup algorithm takes as input a security parameter κ. This will output the
system parameters Params. This algorithm is run by a trusted party.

2. KeyGen(Ui, Params): The key generation algorithm generates a public and private key
pair (PKi, SKi) of user Ui. This algorithm is run by a user Ui.

3. ReKeyGen(SKi, PKi, PKj , cw, Params): The re-encryption key generation algorithm
takes as input a private key SKi of delegator Ui, public key PKi of delegator Ui, public
key PKj of delegatee Uj and condition cw under which proxy can re-encrypt. It outputs a
re-encryption key RKi→j . This is executed by the user Ui.

4. Self-Encrypt(m, tw, SKi, PKi, Params): The self encryption algorithm takes as input
the message m, the tag tw, the private key SKi of user Ui and public key PKi of the user
Ui. It outputs a ciphertext C which is the encryption of message m under the public key
PKi, private key SKi and tag tw. This algorithm is executed by the user Ui.

5. Re-Encrypt(C, PKi, PKj , cw, RKi→ j , Params): The re-encryption algorithm takes as
input a self-encrypted ciphertext C, the delegator’s public key PKi, the delegatee’s public
key PKj , the condition cw and a re-encryption key RKi→j corresponding to cw. It outputs
a ciphertext D which is the encryption of same m under public key PKj of user Uj . This is
run by a proxy who is provided with the re-encryption key RKi→j .

6. Self-Decrypt(C, SKi, PKi, Params): The self decryption algorithm is run by the user Ui.
This will take as input the ciphertext C, the private key SKi of user Ui and public key PKi

of user Ui. It will output the messagem if C is a valid encryption ofm under PKi and SKi

of user Ui and tag tw. If C is not valid, this algorithm returns ⊥.
7. Re-Decrypt(D, SKj , Params): The re-decryption algorithm takes as input a re-encrypted

ciphertextD and a private key SKj of user Uj . It outputs a messagem ∈M, ifD is a valid
re-encrypted ciphertext of message m or the error symbol ⊥ if D is invalid. This algorithm
is run by the user Uj

2.4 Security Model

In this section we present the security model for the self-encryption scheme and the proxy re-
encryption scheme. The security model gives details about the restrictions and oracle accesses
given to the adversary. It is modelled as a game between a challenger C and an adversary A.

2.5 Security Model for Self-Encryption

The security of Self-Encryption (SE) scheme against chosen ciphertext attacks(IND-SE-CCA)
is demonstrated as a game between an adversary A and a challenger C. The game is as follows:

3

– Setup : C takes a security parameter κ and runs the Setup(κ) algorithm to generate the sys-
tem parameters Params . It provides Params to A. C then runs KeyGen(U, Params)
to generate a private and public key pair SK, PK of user U and provides PK to A. SK
is kept by A.

– Phase-1 : A can adaptively issue queries to the following oracles provided by C :
• Self-Encrypt(m, tw) Oracle : C runs the Self-Encrypt(m, tw, SK, PK, Params)

algorithm to generate the ciphertext C and returns it to A.
• Self-Decrypt(C, PK) Oracle : C runs the Self-Decrypt(C, SK, PK, Params) and

returns the output to A.
– Challenge : After getting sufficient training, A submits two messages m0, m1 fromM of

equal length and a tag tw∗ to C. C picks a random bit δ ∈ {0, 1} and outputs the ciphertext
C∗ =Self-Encrypt(mδ, tw

∗, SK, PK).

– Phase-2 : On receiving the challenge C∗, A is allowed to access the various oracles pro-
vided in Phase-1 with the restrictions given below :
1. Self-Decrypt(C∗) query is not allowed.
2. Self-Encrypt(mδ, tw

∗ query is not allowed.
– Guess : After getting sufficient training, A will output its guess δ

′
. A wins the game if δ=δ

′

2.6 Security Model for Proxy Re-Encryption with Self-Encryption

In this section we provide the security model for the SE-PRE scheme. The model involves
the security of original ciphertext as well as transformed ciphertext. The ciphertext that can be
re-encrypted is called the original ciphertext and the output of the re-encryption is called the
transformed ciphertext.

Security of Original Ciphertext The security of Proxy Re-Encryption with Self-Encryption
(SE-PRE) schemes against chosen ciphertext attacks(IND-SE-PRE-CCAO) for the original ci-
phertext is modelled as a game between an adversary A and a challenger C. The security game
is described below :

– Setup : C takes a security parameter κ and runs the Setup(κ) algorithm to generate the
system parameters Params. The Params is then given to A.

– Phase-1 : On receiving the system parameters, a target public key PKT and tag tw∗, A
is allowed to access Keygen, Self-Encrypt, Self-Decrypt, Rekey, Re-Encrypt, Re-Decrypt
algorithms. A simulates the algorithms as oracles and A can adaptively issue queries to
these oracles. The various oracles provided by C are:
• Corrupted KeyGen(Ui) : C runs the KeyGen(Ui, Params) to obtain the public and

private key pair (PKi, SKi). C returns both SKi and PKi to A.
• Uncorrupted KeyGen(Ui) : C runs the KeyGen(Ui, Params) to obtain the public and

private key pair (PKi, SKi) and returns PKi to A. SKi is not provided to A.
• ReKeyGen(Ui, Uj): C runs the ReKeyGen(SKi, PKi, PKj , cw, Params) to obtain

the re-encryption key RKi→j and returns it to A.
• Self-Encrypt(m, tw, PKi) : C runs the Self −Encrypt(m, tw, SKi, PKi, Params)

to obtain the ciphertext C and returns it to A.
• Re-Encrypt(C,PKi,PKj , cw) : C runs the Re-Encrypt(C, PKi, cw, RKi→ j , Params)

to obtain the ciphertext D and returns it to A. Here, RKi→j is the re-encryption key
from PKi to PKj under the condition cw

• Self-Decrypt(C, PKi) : C runs the Self-Decrypt(C, SKi, PKi, Params) and returns
the output to A.

4

• Re-Decrypt(D, PKj): C runs the Re-Decrypt(D, SKj , PKj , Params) and returns
the output to A.
For the ReKey, Encrypt, Re-Encrypt, Decrypt, Re-Decrypt oracle queries it is required
that public keys PKi and PKj are generated beforehand.

– Challenge : On getting sufficient training, A will output two equal-length plaintexts m0,
m1 ∈ M. Here, the constraint is: PKT is generated using Uncorrupted Keygen and
Rekey(PKT , PKj , cw), is not queried in Phase-1 for cw = tw

∗ C flips a random coin
δ ∈ {0, 1}, and sets the challenge ciphertext C∗ = Self-Encrypt(mδ , tw∗, SKT , PKT ,
Params). C then provide C∗ as challenge to A.

– Phase-2 : A can adaptively query as in Phase− 1 with the following restrictions:

1. A cannot issue Corrupted KeyGen(UT) query.
2. A cannot issue Self-Decrypt(C∗, PKT , tw∗) query.
3. A cannot issue Re-Encrypt(C∗, PKT , PKj) query on C∗ from PKT to PKj if PKj

is Corrupted.
4. A cannot issue ReKey(PKT , PKj , cw) query if cw=tw∗.
5. A cannot issue Re-Decrypt query on D∗, PKj if D∗ is the output of Re-Encrypt(C∗,
PKT , PKj , cw) and cw = tw

∗.

– Guess : Finally, A outputs a guess δ
′ ∈ {0, 1} and wins the game if δ

′
= δ.

Security of Transformed Ciphertext The security of transformed of Proxy Re-Encryption
with Self-Encryption(SE-PRE) scheme against chosen ciphertext attacks(IND-SE-PRE-CCAT)
is modelled as a game between an adversary A and a challenger C. This is achieved by:

– Setup :C takes a security parameter κ and runs the Setup(κ) algorithm and gives the re-
sulting system parameters Params, a target public key PKT and tag tw∗ to A.
Phase-1 :This phase is similar to the Phase-1 of IND-SE-PRE-CCAO. We do not provide
Re-Encrypt oracle as we are providing all the re-encryption keys for the adversary

– Challenge : Once A decides Phase− 1 is over, it outputs two equal-length plaintexts m0,
m1 ∈M. C flips a random coin δ ∈ {0, 1}, and sets the challenge ciphertext as follows:

• Compute C∗ = Self-Encrypt(mδ , tw∗, SKi, PKi, Params), (PKi, SKi be the pub-
lic, private key pair of user Ui and Ui can be honest or corrupt.

• Sets D∗ = Re-Encrypt(C∗, RKi→T) which is then sent to A.

– Phase-2 : A adaptively issues queries as in Phase− 1, and C answers them as before with
the following restrictions:

1. A cannot issue Corrupted KeyGen(UT) query.
2. A cannot issue Re-Decrypt(D∗, PKT) query

– Guess : Finally, A outputs a guess δ
′ ∈ {0, 1} and wins the game if δ

′
= δ.

3 The Self-Encrypt(SE) Scheme :

Self-Encrypt scheme is a special kind of encryption primitive that allows a user to store file
securely in cloud or any distributed storage. In this approach the owner of the file uses his/her
private key to encrypt the file. This significantly reduces the computation involved in storing the
file. We provide the self encryption scheme and the prove its CCA security in the random oracle
model.

5

3.1 The Scheme

The SE scheme consist of the following algorithms:

– Setup(κ):
• Let G be an additive cyclic group of prime order q. Let P be a generator of group G.
• Let ∆ = 〈Sym.Encrypt, Sym.Decrypt〉 be any symmetric key encryption scheme. We

may assume that ∆ is a symmetric key encryption algorithm that uses messages of
block size k.

• Choose the hash functions,

H1 : {0, 1}lt × Zq∗ → Zq∗

H2 : Zq∗ → {0, 1}lk

H3 : {0, 1}lm ×G→ {0, 1}l3

• Here lt is the size of the tag, lm is the size of the message and lk is the size of the
symmetric key used by the symmetric key encryption scheme ∆. Also, l3 is dependent
on the security parameter κ.

• Output Params = 〈q, G, P, H1(), H2(), H3(), ∆〉
– KeyGen(U , Params): The KeyGen algorithm generates the public and private key of the

user U by performing the following steps:

• Choose a random integer x R← Zq∗
• Output PK = 〈X = xP 〉 and SK = 〈x〉.

– Self-Encrypt(m, tw, SK, PK, Params): On input of message m, tag tw, private key
SK = x of user U , public key PK = xP of user U and the public parameters Params
this algorithm will generate the self encryption as follows:
• Choose random t ∈ Zq∗
• Set ht = H1(tw, x).
• Set C1 = t+ ht.
• Compute Key = H2(t)
• C2 = {Ĉi}(for i=1 to l) and Ĉi=Sym.Encrypt (Mi,Key) for all i = 1 to l, l is the

number of blocks. Assume that m = M1M2 ...Ml where |Mi|=k and k is the block
size of ∆.

• C3 = H3(m, t)
• Output the ciphertext C = 〈C1, C2, C3, tw〉.

– Self-Decrypt(C, SKi, Params): Self decryption algorithm is used to decrypt the files that
are previously encrypted by the user U using his/her private key. This algorithm does the
following:
• ht = H1(tw, SKi).
• t = C1 − ht
• Key = H2(t)
• Compute Mi=Sym.Decrypt(Ĉi,Key) for all i=1 to l and construct m = M1 M2 ...
Ml.

• If C3
?
= H3(m, t) then, output m. Else, Output ⊥.

Correctness of t:

RHS = C1 − ht
= (t+ ht)− ht
= t;

= LHS

6

3.2 Security Proof:

Theorem 1. If there exists a (γ, ε) adversary A with an advantage ε that can break the IND-
SE-CCA security of the SE scheme, then C can solve the discrete log problem with advantage ε′

where,

ε
′ ≥ ε

Proof. In this section we formally prove the security of SE scheme in the random oracle model.
The IND-SE-CCA security of the SE scheme is reduced to the discrete logarithm problem(DLP).
The challenger A is given with the instance of DLP (i.e given (q, P, Y) such that q is a large
prime, P, Y ∈ G, find a such that Y = aP .) If there exist an adversary A that can break the
IND − SE −CCA security of the SE scheme, then C can make use of A to solve the discrete
logarithm problem, which is assumed to be hard. Thus the existence of such adversary is not
possible.

The challenger C sets the public key PK = Y (PK=aP) and the corresponding private key
SK = x = a(which is not known to C). C then provides PK to A. A has access to vari-
ous algorithms of SE and the hash functions as oracles. C simulates the hash functions and the
Self-Encrypt, Self-Decrypt algorithms as described below:

– Phase-1 :A is given to access all the oracles as defined in the security model IND-SE-CCA.
Here it should be noted that C which does not have the knowledge of private key SK = a
provides the functionalities Self-Encrypt, Self-Decrypt algorithm.
• The hash functions involved in the SE scheme are simulated as random oracles. To

provide consistent output, C maintains the lists LH1 , LH2 and LH3 corresponding to
the hash function H1, H2 and H3 involved in the SE scheme.
∗ H1 Oracle: When a query with input (tw, x) is made, the tuple 〈tw, x, ht〉 is re-

trieved from LH1
and ht is returned, if (tw, x) is already there in LH1

list. Other-
wise, C does the following:
· If xP = Y , then abort. This is because C obtains the solution to DLP i.e x = a.
· Pick ht ∈ G.
· If ht is already present in LH1

list, go to previous step.
· Store 〈tw, x, ht〉 in LH1

list and output ht.
∗ H2 Oracle: When a query with t is made, C the tuple 〈t, Key〉 from LH2 list is

retrieved and will return Key, if (t) is already present in LH2 list. Otherwise, C
does the following:
· Pick Key ∈ {0, 1}lk .
· If Key is already present in LH2

list, go to previous step.
· Store 〈t, Key〉 in LH2 list and return Key.

∗ H3 Oracle: When a query with input (m,T) is made, C retrieves the tuple 〈m, T, α〉
from LH3

list and returns α, if (m,T) is already present in LH3
list. Otherwise, C

does the following:
· Pick α ∈ {0, 1}l3 .
· If α is already present in LH3 list, go to previous step.
· Store 〈m, T, α〉 in LH3 list and return α.

• Self-Encrypt Oracle : When a Self-Encrypt query is made with (m, tw) as input, C
does the following:
∗ Choose random t ∈ Zq∗
∗ Set ht = H1(tw, x).
∗ Set C1 = t+ ht.
∗ Compute Key = H2(t)
∗ C2 = {Ĉi}(for i=1 to l) and Ĉi=Sym.Encrypt (Mi,Key) for all i = 1 to l, l is the

number of blocks. Assume that m = M1 M2 ... Ml where |Mi|=k and k is the
block size of ∆.

7

∗ C3 = H3(m, t)
∗ Output the ciphertext C = 〈C1, C2, C3, tw〉.
∗ Output the self-encrypted ciphertext C to A.

• Self-Decrypt Oracle: When a Self-Decrypt query is made with C = 〈C1, C2, C3, tw〉
as input, C performs the following:

∗ If C is in LEncrypt list, pick m corresponding to C from the tuple 〈C, m〉 in
LEncrypt list and output m.

∗ If (tw,−) is present in LH1
list then, retrieve ht corresponding to (tw, −) from

LH1 list. Else, it returns ⊥
∗ T = C1 − ht
∗ Key = H2(t)
∗ ComputeMi = Sym.Decrypt(Ĉi,Key) for all i=1 to l and constructm =M1M2 ...Ml.
∗ If C3

?
= H3(m, t) then, output m. Else, it output ⊥.

– Challenge Phase : After the first phase of training is over, A provides m0, m1 ∈M, tw∗

such that (m0, tw
∗) or (m1, tw

∗) was not queried to Self-Encrypt oracle during Phase-1
and provides to C. C now generates the challenge ciphertext C∗ = Self-Encrypt(mδ, tw

∗)
and δ ∈R {0, 1}

– Phase-2 : A can interact with all the oracles as in Phase-1 but with the following restric-
tions:

• A cannot make the query Self-Decrypt(C∗)
• A cannot make the query Self-Encrypt(mδ, tw

∗), δ ∈ {0, 1}

– Guess: Once Phase-2 is over, A output its guess δ
′
. A wins the game if δ = δ

′
.

4 The Proxy Re-Encryption with Self Encryption Scheme(SE-PRE) :

In this section we present a proxy re-encryption scheme which uses the self encryption
proposed in Section 3. The SE scheme is modified such a way that it allows verifiability of
ciphertext by proxy during re-encryption without knowing the message. It helps in achieving
CCA security of SE-PRE. This also helps in avoiding the DDOS attack being launched on
Proxy’s service. The proxy is equipped with a method to identify invalid ciphertext so that it
will serve its functionality only to valid input. Also.the SE-PRE algorithm can be deployed in a
simple and efficient manner than using the traditional PRE schemes available till date.

4.1 The Scheme:

In this section we present the proxy re-encryption scheme SE-PRE that uses private encryp-
tion algorithm. The SE-PRE proposed here uses a novel approach, consisting of the following
algorithms.

– Setup(κ):

• Let G be an additive cyclic group of prime order q. Let P be a generator of group G.
• Let ∆ = 〈Sym.Encrypt, Sym.Decrypt〉 be any symmetric key encryption scheme. We

may assume that ∆ is a symmetric encryption algorithm working on block of size k.

8

• Choose the hash functions,

H0 : {0, 1}lt → {0, 1}l0

H1 : {0, 1}lt × Zq∗ ×G→ Zq∗

H2 : Zq∗ → {0, 1}lk

H3 : {0, 1}lm × Zq∗ → {0, 1}l3

H4 : Zq∗ × {0, 1}(lc+l3+l5) ×G→ Zq∗

H5 : {0, 1}lt × Zq∗ ×G→ {0, 1}l5

H6 : {0, 1}lw ×G×G×G→ Zq∗

H7 : Zq∗ ×G→ Zq∗

H8 : G×G→ {0, 1}(lw+lp)

H9 : {0, 1}lu × Zq∗ → Zq∗

Hc : {0, 1}∗ → {0, 1}lc

• Here lt is size of the tag, lm is size of the message, lc is the size of the ciphertext, lp is
κ and lk is size of the symmetric key used in the encryption scheme ∆. Also, lω , lu, l0,
l3 and l5 are dependent on the security parameter κ.

• Output Params = 〈q, P , G, P, Hi()(for i=0 to 9), Hc(), ∆〉
– KeyGen(Ui, Params): TheKeyGen algorithm generates the public and private key of the

user Ui by performing the following:
• Choose a random integer xi

R← Zq∗
• Output PKi = 〈Xi = xiP 〉 and SK = 〈xi〉.

– RekeyGen(SKi, PKi, PKj , cw, Params) : This algorithm generates the re-encryption
key required to translate a ciphertext of user Ui into a ciphertext of user Uj . This is run by
the user Ui. The ciphertext to be re-encrypted is encrypted under the public key PKi of
user Ui and with the condition cw, which are specified by user Ui. This algorithm works as
follows:
• Choose ω R←∈ {0, 1}lω
• Compute hc = H1(cw, xi, Xi) ∈ Zq∗
• Compute r = H6(ω, xiXj , Xi, Xj) ∈ Zq∗
• Compute s = H7(r, Xj) ∈ Zq∗
• Compute γ = rXj

• Compute the re-encryption key RKi→j = 〈R1, R2, R3, R4, R5, R6〉 where,

R1 = s− hc ∈ Zq∗
R2 = rP ∈ G
R3 = (ω||Xi)⊕H8(γ,Xj) ∈ {0, 1}lω+lg

R4 = H6(ω, γ, Xi, Xj) ∈ Zq∗
R5 = H5(tw, xi, Xi) ∈ {0, 1}l5

R6 = H0(tw)

• Output the re-encryption key RKi→j = 〈R1, R2, R3, R4, R5, R6〉
– Self-Encrypt(m, tw, SKi, PKi, Params): On input of message m, tag tw, private key
SKi, public key PKi of user Ui and the public parameters Params
• Choose random ω ∈ Zq∗
• Set ht = H1(tw, xi, Xi) ∈ Zq∗
• Compute C1 = t+ ht.

9

• Compute Key = H2(t)
• Compute C2 = {Ĉi}(for i=1 to l) and Ĉi=Sym.Encrypt (Mi,Key) for all i = 1 to l, l is

the number of blocks. Assume that m = M1M2 ...Ml where |Mi|=k and k is the block
size of ∆.

• Set C3 = H3(m, t)
• Find α = H5(tw, xi, Xi) ∈ {0, 1}l5
• C4 = H4(C1, C2, C3, α, X)
• Set C5 = H0(tw)
• Output the ciphertext C = 〈C1, Hc(C2), C3, C4, C5)〉.

– Re-Encrypt(C, PKi, PKj , cw, RKi→ j , Params) : This algorithm is run by the proxy
which is given with the re-encryption key RKi→ j by user Ui. This generates the re-
encryption of a ciphertext encrypted under public key PKi of user Ui under the condition
cw into a ciphertext encrypted under public key PKj of user Uj . This algorithm does not
perform any complex computation and this greatly reduces the computational overhead on
the entity that performs the role of a proxy. This algorithm does the following computations
:
• If C4 6= H4(C1, Hc(C2), C3, R5, tw, X) OR C5 6= R6, then it returns ⊥
• Set D2 = C2, D3 = C3, D4 = R2, D5 = R3

• Choose u ∈ {0, 1}lu
• Compute β = H9(u, R4) ∈ Zq∗
• Compute D1 = β(C1 +R1) ∈ Zq∗
• Set D6 = u
• Output the re-encrypted ciphertext D = 〈D1, D2, D3, D4, D5, D6〉

– Self-Decrypt(C, SKi,Params): Self-Decrypt algorithm is used to decrypt the self-encrypted
ciphertext C of a user that is stored by him in the cloud. This algorithm performs the fol-
lowing:
• Find α = H5(tw, xi, Xi) ∈ {0, 1}l5
• If C4 6= H4(C1, C2, C3, α, tw, X), then it returns ⊥
• ht = H1(tw, SKi).
• t = C1 − ht
• Key = H2(t)
• ComputeMi=Sym.Decrypt(Ĉi,Key) for all i=1 to l and constructm = M1M2 ...Ml.
• If C3

?
= H3(m, t) then, output m. Else, Output ⊥.

Correctness of t:

RHS = C1 − ht
= (t+ ht)− ht
= t

= LHS

– Re-Decrypt(D, SKj , Params): The Re-Decrypt algorithm is used to decrypt the re-
encrypted ciphertext D. This algorithm does the following:
• Compute γ = xjD4

• Compute ω||Xi = D5 ⊕ H8(γ, Xj)
• Compute r = H6(ω, xjXi, Xi, Xj) ∈ Zq∗
• Compute s = H7(r, Xj) ∈ Zq∗
• ρ = H6(ω, γ, Xi, Xj) ∈ Zq∗
• Compute β = H9(D6, ρ) ∈ Zq∗
• Compute t = β−1(D1)− s
• Find Key = H2(t)
• ComputeMi=Sym.Decrypt(Ĉi,Key) for all i=1 to l and constructm = M1M2 ...Ml.
• If (C3

?
= H3(m, t)) then, output m. Else, it returns ⊥.

10

Correctness of T :

RHS = β−1D1 − s
= β−1[β(C1 +R1)]− s
= [(t+ ht) + (s− hc)]− s; Here ht = hc

= (t+ s)− s
= t

= LHS

4.2 Security Proof:

In this section, we formally prove the security of SE-PRE scheme. We prove the original
ciphertext and the transformed ciphertext security in the random oracle model.

Security of the Original Ciphertext

Theorem 2. If a (γ, ε) adversary A with an advantage ε breaks the IND-SE-PRE-CCAO se-
curity of the SE-PRE scheme in time γ, then C can solve the discrete log problem or CDH with
advantage ε′ where,

ε
′ ≥ 1

qt
ε

Here, qt is the number of queries to H6 oracle.

Proof. We formally prove the original ciphertext security IND-SE-PRE-CCAO of SE-PRE
scheme in the random oracle model. The IND-SE-PRE-CCAO security of the SE-PRE scheme
is reduced to the discrete logarithm problem(DLP) or the Computational Diffie Hellman Prob-
lem (CDH). The challenger C is given with the instance of CDH (q, P, Y = aP, Y ′ = a2P,Z =
bP) such that q is a large prime, P, Y, Y ′ Z ∈ G. Now, we show that if there exist an adver-
sary A that can break IND-SE-PRE-CCAO security of the SE-PRE scheme then C can make
use of that adversary A to solve the discrete logarithm problem or the CDH problem, which
are assumed to be hard. Hence the existence of such an adversary A is not possible. Now, ad-
versary A is provided the access to various Self-Encrypt, Self-Decrypt, ReKey, Re-Encrypt,
Re-Decrypt algorithms and the hash functions as oracles. C provides PKT = Y and tw∗ to A.
The game is demonstrated below:

– Phase-1 : A interacts with C adhering to the restrictions given in the security model IND-
SE-PRE-CCAO. A submits the target condition tw∗ to C. C answers the queries made to
various Corrupted KeyGen, Uncorrupted Keygen, Self-Encrypt, Self-Decrypt, ReKey,
Re-Encrypt, Re-Decrypt oracles and the hash oracles as given below:
• The hash functions are modelled as random oracles. In order to provide consistent out-

put, C maintains various lists LHc
and LHi

(for i = 0 to 9) corresponding to the hash
function Hc and Hi, (for i = 0 to 9). Oracles H1, H2 and H3 are simulated as given in
the proof of SE scheme. The other hash oracles are simulated as follows:
∗ H0 Oracle: On input of tw, C checks whether a tuple 〈tw, h0〉 corresponding to tw

is there in LH0 list. If it is already present then return h0, else pick h0 ∈ {0, 1}l0 .
Store 〈tw, h0〉 in LH0 list and return h0.

∗ Hc Oracle: On input of C̄, C checks whether a tuple 〈C̄, hc〉 corresponding to C̄ is
already there in LHc

list. If it is present then hc is returned, else pick hc ∈ {0, 1}lc .
Store 〈C̄, hc〉 in LHc

list and return hc.
∗ H1 Oracle: When a query with input (tw, x,X) is made, the tuple 〈tw, x, X ht〉

is retrieved from LH1 and ht is returned, if (tw, x,X) is already there in LH1 list.
Otherwise, C does the following:

11

· If X = Xi in LHonest and x̄iY = X , then abort. This is because C obtains
the solution to DLP i.e x̄−1i x = a.
· Pick ht ∈ G.
· If ht is already present in LH1

list, go to previous step.
· Store 〈tw, x,X, ht〉 in LH1 list and output ht.

∗ H4 Oracle: When H4 oracle is queried with (C1, C2, C3, α, tw) as input, C re-
trieves the tuple 〈C1, C2, C3, C4, tw, h4〉 from LH4

list and returns h4, if an entry
corresponding to (C1, C2, C3, α, tw) is already there in LH4

list. Otherwise, C
does the following:
· Pick h4 ∈ Zq∗.
· If h4 is already present in LH4

list, go to previous step.
· Store 〈C1, C2, C3, α, tw, h4〉 in LH4 list and return h4.

∗ H5 Oracle: When H5 oracle is queried with (tw, x, X) as input, C retrieves the
tuple 〈tw, x, X, h5〉 from LH5

list and returns β, if an entry corresponding to
(tw, x, X) is already there in LH5

list. Otherwise, C does the following:
· Pick h5 ∈ Zq∗.
· If h5 is already present in LH5

list, go to previous step.
· Store 〈tw, x, X, h5〉 in LH5

list and return h5.
∗ H6 Oracle: When H6 oracle is queried with (ω, γ, X, Y) as input, C retrieves the

tuple 〈ω, γ, X, Y, h6〉 from LH6 list and returns h6, if an entry corresponding to
(ω, γ, X) is there in LH6

list. Otherwise, C does the following:
· Pick h6 ∈ Zq∗.
· If h6 is already present in LH6

list, go to previous step.
· Store 〈ω, γ, X, Y , h6〉 in LH6

list and return h6.
∗ H7 Oracle: When H7 oracle is queried with (r, X) as input, C retrieves the tuple
〈r, X, h7〉 from LH7 list and returns h7, if an entry corresponding to (r, X) is
already there in LH7 list. Otherwise, C does the following:
· Pick h7 ∈ Zq∗.
· If h7 is already present in LH7

list, go to previous step.
· Store 〈r, X, h7〉 in LH7

list and return h7.
∗ H8 Oracle: When H8 oracle is queried with (γ, X) as input, C retrieves the tuple
〈γ, X, h8〉 from LH8

list and returns h8, if an entry corresponding to (γ, X) is
already there in LH8 list. Otherwise, C does the following:
· Pick h8 ∈ {0, 1}lw+lp .
· If h8 is already present in LH8

list, go to previous step.
· Store 〈γ, X, h8〉 in LH8

list and return h8.
∗ H9 Oracle: When H9 oracle is queried with (u, r) as input, C retrieves the tuple
〈u, r, h9〉 from LH9

list and returns h9, if an entry corresponding to (u, r) is al-
ready there in LH9 list. Otherwise, C does the following:
· Pick h9 ∈ Zq∗.
· If h9 is already present in LH9 list, go to previous step.
· Store 〈u, r, h9〉 in LH9

list and return h9.
• Corrupted KeyGen Oracle: When a query is made with input Ui, C does the follows:
∗ Picks a random xi ∈ Zq∗.
∗ Computes Xi = xiP
∗ Sets PKi = 〈Xi〉 and SKi = 〈xi〉.
∗ Stores 〈Ui, xi, Xi〉 in LCorrupt list and returns (SKi, PKi). Here C knows the

private key SKi of user Ui.
• Uncorrupted Keygen Oracle :When a query is made with input Ui, the C performs the

following:
∗ Picks a random x̄i ∈ Zq∗.
∗ Computes Xi = x̄iY = x̄iaP = xiP , where xi = x̄ia

12

∗ Sets PKi = 〈Xi〉. By definition SKi = 〈xi = x̄ia〉. This is not known to C; a is
the discrete log corresponding to Y in the DLP which is given as the challenge to
C.

∗ Stores 〈Ui,−, x̄i, Xi〉 in LHonest list and returns PKi.
• ReKeyGen Oracle : On input of (cw, PKi, PKj), C does the following to generate

the re-encryption key:
∗ If (PKi ∈ LCorrupt)
· Compute RKi→j = RekeyGen(cw, SKi, PKi, PKj).
· Store 〈tw, PKi, PKj , RKi→j〉 in LReKey list.
· Output RKi→j

∗ If tw, PKi, PKj has an entry in LReKey list, retrieve and return RKi→j
∗ If PKi ∈ LHonest, then
· Choose ω R←∈ {0, 1}lω
· Choose hc in ∈ Zq∗ and store 〈cw, −, Xi〉 in LH1

list.
· If Xj is corrupt r = H6(ω, x̄ixjaP,, Xi, Xj) ∈ Zq∗
· If tw = tw∗ and PKi = PKT then set rb =H6(ω, x̄ia

2P, Xi,Xj) ∈ Zq∗ (Here
C does not know rb)
· Compute s = H7(−, Xj) ∈ Zq∗
· By definition γ = rXj = rx̄jabP
· Compute the re-encryption key RKi→j = 〈R1, R2, R3, R4, R5, R6〉 where,

R1 = s− hc ∈ Zq∗
R2 = rbP ∈ G
R3 = (ω||Xi)⊕H8(−, Xj) ∈ {0, 1}lω+lg

R4 = H6(ω, −, Xi, Xj) ∈ Zq∗
R5 = h5 ∈ {0, 1}l5 , Store〈tw, −, Xi, h5〉inLH5

list

R6 = H0(tw)

· Output the re-encryption key RKi→j = 〈R1, R2, R3, R4, R5, R6〉
• Self-Encrypt Oracle : On input of (m, tw, PKi), C does the following:
∗ if PKi corrupt, then run Self-Encrypt(m, tw, SKi, PKi)
∗ If PKi is honest, then perform the following
· Choose random t ∈ Zq∗
· Choose ht ∈ Zq∗ and store 〈tw, −, Xi, ht〉 in LH1

list.
· Compute C1 = t+ ht.
· Compute Key = H2(t)
· ComputeC2 = {Ĉi}(for i=1 to l) and Ĉi=Sym.Encrypt (Mi,Key) for all i = 1

to l, l is the number of blocks. Assume that m = M1M2 ...Ml where |Mi|=k
and k is the block size of ∆.
· Set C3 = H3(m, t)
· Choose α ∈ {0, 1}l5 and store 〈tw, xi, Xi, h5 = α〉 in LH5

list.
· C4 = H4(C1, C2, C3, α, X)
· Set C5 = H0(tw)
· Store 〈C, tw, PKi〉 in LEncrypt list.
· Output the ciphertext C = 〈C1, Hc(C2), C3, C4, C5)〉.

• Re-Encrypt Oracle : On input C = 〈C1, C2, C3, C4, C5, PKi, PKj〉 , C does the
following:
∗ Generate the re-encryption key RKi→j = ReKey(PKi, PKj)
∗ Run D = Re-Encrypt(C,RKi→j , PKi, PKj) as per the algorithm.
∗ Store 〈C,D, PKi, PKj , tw〉 in LRe−Encrypt list and output D

13

• Self-Decrypt Oracle: On input C = 〈C1, C2, C3, C4, C5, tw, PKi〉 , C does the fol-
lowing:
∗ If an entry for (C, tw, Xi) is there in LEncrypt list, return the corresponding m.
∗ if PKi corrupt, then run Self-Decrypt(C, SKi)
∗ If PKi is honest, then perform the following:
· Find 〈tw, x, X, h5〉 from LH5 list such that (Xi = xP) OR (X = Xi AND x

= −). Set α = h5. If there is no such entry then query α = H5(tw, −, Xi).
· If C4 6= H4(C1, C2, C3, α, tw, X), then it returns ⊥ Find 〈tw, x, X, h1〉

from LH1
list such that (Xi = xP) OR (X = Xi AND x=-). Set α = h5. If

there is no such entry query α = H5(tw, −, Xi).
· Find 〈tw, x, X, h1〉 from LH1 list such that (Xi = xP) OR (X = Xi AND

x=-), then set ht = h1. If there is no such entry query then ht = H1(tw, −, Xi).
· t = C1 − ht
· Key = H2(t)
· Compute Mi=Sym.Decrypt(Ĉi,Key) for all i=1 to l and construct m = M1

M2 ... Ml.
· If C3

?
= H3(m, t) then, output m. Else, Output ⊥.

• Re-Decrypt Oracle : On input of ciphertext D, C does the following:
∗ if PKj corrupt, then run Re-Decrypt(D,SKj)
∗ If PKi and PKj are honest, then perform the following

1. Pick γ, h8 from 〈γ, X, h8〉 LH8 list for X = Xj and
2. For each γ retrieved from LH8

list: compute ω||Xi = D5 ⊕ h8 and r = H6(ω,
x̄j x̄ia

2P, Xi, Xj). If γ = rXj , then proceed with next step, else continue
checking with other γ retrieved from LH8

list. If no such γ is found, then it
returns ⊥.

3. Compute s = H7(r, Xj) ∈ Zq∗
4. ρ = H6(ω, γ, Xi, Xj) ∈ Zq∗
5. Compute β = H9(D6, ρ) ∈ Zq∗
6. Compute t = β−1(D1)− s
7. Find Key = H2(t)
8. Compute Mi=Sym.Decrypt(Ĉi,Key) for all i=1 to l and construct m = M1

M2 ... Ml.
9. If (C3

?
= H3(m, t)) then, output m. Else, it returns ⊥.

– Challenge Phase : Once the training is over,A provides m0, m1 ∈M such that (m0, tw
∗)

or (m1, tw
∗) was not queried to Self-Encrypt oracle during Phase-1 and provides to C. C

generates the challenge ciphertext C∗ = Self-Encrypt(mδ, tw
∗) and δ ∈R {0, 1}

– Phase-2 : A interacts with the oracles as in Phase-1 with the following restrictions,
• A cannot make the query Self-Decrypt(C∗)
• A cannot make the query Self-Encrypt(mδ, tw

∗), δ ∈ {0, 1}
• A cannot make the query Re-Encrypt(C∗, PKT , PKj), PKj ∈ LCorrupt
• A cannot make the query Re-Decrypt(D,PKj), ifD = Re−Encrypt(C∗, PKT , PKj)

and PKj ∈ LHonest
• A cannot make the query ReKey(tw∗, PKT , PKj) and PKj ∈ LCorrupt

– Guess: After getting sufficient training, A output the guess δ
′
. A wins the game if δ = δ

′
.

C now picks randomly γ from LH6
list and provides as solution to the CDH problem. ut

Security of the Transformed Ciphertext

Theorem 3. If a (t, ε) adversary A with an advantage ε breaks the IND-SE-PRE-CCAT secu-
rity of the SE-PRE scheme, then C can solve the Computational Diffie Hellman(CDH) problem
with advantage ε′ where,

14

ε
′ ≥ 1

qt
ε

Here, qt is the number of queries to H6 oracle.

Proof. In this section we formally prove the security of the transformed ciphertext of SE-PRE
scheme in the random oracle model. The security of the scheme is reduced to the CDH problem.
The challenger A is given the instance of CDH (i.e given (q, P, aP, bP) such that q is a large
prime, P, aP, bP ∈ G, find Y such that Y = abP .) Now, if there exist an adversary who can
break the IND-SE-PRE-CCAT security of SE-PRE then C can make use of A to solve the
CDH problem, which is assumed to be hard. Hence such an A does not exist.

All the oracles are similar to that of IND-SE-PRE-CCAO. The challenge ciphertext issued
will be a transformed ciphertext. A has much more access than IND-SE-PRE-CCAO:

– A is allowed to access the rekey from PKT to any PKj .
– A is allowed to access Self-Decrypt for PKT

Challenge :After getting sufficient training A provides two messages m0, m1 and gives to C. C
generates the ciphertext as,

– Generate C∗ = Self-Encrypt(mδ, tw
∗, PKi); PKi ∈ LHonest

– Generate D∗ = RE-Encrypt(C∗, tw∗, PKi, PKT);
– Provides D∗ to A.

In Phase-2, A is now allowed to access all the oracles except Re-Decrypt(D∗, PKT). The rest
of the proof is similar to IND-SE-PRE-CCAO. ut

5 Experimental Analysis
In this section we provide the implementation results and time taken by various algorithms in
SE and SE-PRE scheme. We compare the efficiency of our CCA secure SE scheme with the
traditional CPA secure El-Gamal scheme (Weaker security than CCA) and report the same in
Table.1. Also, we have compared our SE-PRE scheme with the only non-pairing unidirectional
CCA secure PRE scheme by Selvi et al.[13] available. This is reported in Table 2. It is a known
fact that pairing is very expensive than other group operations and hence we are not taking any
pairing based schemes into consideration. The implementations are done on 2.4 GHz Intel Core
i7 quad-core processor and the results have been reported below. . The programming language
used is Go language [5], and the programming tool is Goland 2018.2. The cryptographic proto-
cols are implemented using the edwards25519-curve [6], which is the current standard deployed
in cryptocurrencies [10] for fast performances. From the performance comparison in Table 1,
we note that our CCA secure self-encryption SE scheme is more efficient than the existing
CPA-secure El-Gamal encryption scheme [9]. Also, from Table 2, it is evident that our self-
proxy re-encryption SE-PRE scheme without bilinear pairing is more efficient than the existing
pairing-free PRE scheme by Selvi et al. [13].

Algorithm CPA-Secure El-Gamal Scheme Our CCA secure SE Scheme
Key Generation 612.947 591.677

Encryption 420.307 65.416

Decryption 300.052 41.65

Table 1: Performance Evaluation of the CPA secure El-Gamal encryption scheme and our Self-Encryption
Scheme. (All timings reported are in microseconds.)

From the above results it is evident that our SE encryption scheme is practical and
suitable for cloud based scenarios where the user themselves store their files. Also, the SE-PRE
scheme provides a very efficient approach to share encrypted files mainly in block-chain.

15

Algorithm CCA-Secure Selvi et al. Scheme Our CCA secure SE-PRE Scheme
Key Generation 714.271 579.702

First Level Encryption 1044.695 87.85

First Level Decryption 1554.78 60.356

Re-Encryption Key Generation 478.368 796.036

Re-Encryption 1087.52 23.216

Re-Decryption 1077.05 745.031

Table 2: Performance Evaluation of the efficient pairing-free unidirectional PRE scheme due to Chow
et al. and our Scheme. (All timings reported are in microseconds.)

6 Conclusion

In this paper, we have given a self encryption scheme SE based on discrete logarithm (DLP)
assumption and then extended it to a Proxy Re-Encryption(SE-PRE) scheme suitable for block
chain and distributed storage. First, we formally prove the CCA security of the SE and then the
security of SE-PRE scheme in the random oracle model. We have also implemented our SE-
PRE scheme using GO language. From the results of our implementation, it is evident that our
SE-PRE scheme is much efficient than the techniques available in literature till date. This makes
it more suitable for distributed applications. It will be interesting to see how one can design a
multi-recipient or broadcast PRE based on the self encryption approach that will provide high
efficiency gain in decentralised platforms.

References

1. 0box application by 0chain :https://0chain.net/zerobox.
2. Ochain website : https://0chain.net.
3. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption

schemes with applications to secure distributed storage. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2005, San Diego, California, USA, 2005.

4. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

5. Daniel J. Bernstein. The go programming language. https://golang.org/.
6. Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptography -

PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, New
York, NY, USA, April 24-26, 2006, Proceedings, pages 207–228, 2006.

7. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptograp
hy. In Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, pages
127–144, 1998.

8. Isaac Agudo David Nuez and Javier Lopez. A parametric family of attack models for proxy re-
encryption. Cryptology ePrint Archive, Report 2016/293, 2016. https://eprint.iacr.org/
2016/293.

9. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Information Theory, 31(4):469–472, 1985.

10. Hartwig Mayer. Ecdsa security in bitcoin and ethereum: a research survey. CoinFaabrik, June, 28,
2016.

11. David Nuñez, Isaac Agudo, and Javier López. Proxy re-encryption: Analysis of constructions and its
application to secure access delegation. J. Network and Computer Applications, 87:193–209, 2017.

12. S. Sharmila Deva Selvi, Arinjita Paul, and C. Pandu Rangan. An efficient non-transferable proxy
re-encryption scheme. In Applications and Techniques in Information Security - 8th International
Conference, ATIS 2017, Auckland, New Zealand, July 6-7, 2017, Proceedings, pages 35–47, 2017.

13. S. Sharmila Deva Selvi, Arinjita Paul, and Chandrasekaran Pandu Rangan. A provably-secure unidi-
rectional proxy re-encryption scheme without pairing in the random oracle model. In CANS, volume
11261 of Lecture Notes in Computer Science, pages 459–469. Springer, 2017.

16

https://eprint.iacr.org/2016/293
https://eprint.iacr.org/2016/293

	Sharing of Encrypted files in Blockchain Made Simpler
	 S. Sharmila Deva Selvi, Arinjita Paul, Siva Dirisala, Saswata Basu and C. Pandu Rangan

