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Abstract. In recent years, a number of attacks have been developed
that can reconstruct encrypted one-dimensional databases that support
range queries under the persistent passive adversary model. These at-
tacks allow an (honest but curious) adversary (such as the cloud provider)
to find the order of the elements in the database and, in some cases, to
even reconstruct the database itself.

In this paper we present two mitigation techniques to make it harder
for the adversary to reconstruct the database. The first technique makes
it impossible for an adversary to reconstruct the values stored in the
database with an error smaller than k, for k chosen by the client. By
fine-tuning k, the user can increase the adversary’s error at will.

The second technique is targeted towards adversaries who have managed
to learn the distribution of the queries issued. Such adversaries may be
able to reconstruct most of the database after seeing a very small (i.e.
poly-logarithmic) number of queries. To neutralize such adversaries, our
technique turns the database to a circular buffer. All known techniques
that exploit knowledge of distribution fail, and no technique can deter-
mine which record is first (or last) based on access pattern leakage.

Keywords: Searchable Encryption · Encrypted Databases · Leakage-
Abuse Attacks · Mitigation

1 Introduction

Currently, many organizations outsource their data, and sometimes their entire
information technology infrastructure to the cloud. This is a reasonable choice
as the cloud is a reliable, inexpensive, and generally safe place to store an or-
ganization’s data. However, although storing data on the cloud usually provides
protection from outside attackers, it may expose the data to the prying eyes
of curious insiders within the provider. Thus, an additional security measure is
to store encrypted data on the cloud and to support queries on the data using
searchable encryption. This additional encryption step ensures that the data can
not be seen in plaintext by a curious cloud provider.
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1.1 Reconstruction Attacks on Encrypted Databases

Although, at a first glance, searchable encryption appears to guarantee the con-
fidentiality of the data, unfortunately, this is not the case. Recent papers have
demonstrated several attacks against encrypted databases that allow for range
queries on the data. These attacks leak various amounts of information about
the data, in some cases even achieving full database reconstruction.

For example, consider an encrypted one-dimensional database whose values
are from a set of N consecutive integers. Kellaris, Kollios, Nissim, and O’Neill
[24] have demonstrated that they can achieve full database reconstruction af-
ter observing the (encrypted) answers to O(N4 logN) range queries. More re-
cently, Grubbs, Lacharité, Minaud, and Paterson [20] have improved in this result
and have shown how to achieve full database reconstruction from O(N2 logN)
queries. To make matters worse, they have also shown that approximate database
reconstruction (i.e., reconstruction of most database elements with an asymp-
totically small error) can be done from a poly-logarithmic number of queries.
Although approximate database reconstruction recovers only a portion of the
database, this portion could be large enough for the attacker and may reveal
sensitive data stored in the database.

The literature presents plenty of attacks on other various types of leakage
as well. For example, Kornaropoulos, Papamanthou and Tamassia [25] have de-
veloped an approximate reconstruction attack utilizing leakage from k-nearest
neighbor queries. Grubbs, Lacharité, Minaud, and Paterson [19] utilize volume
leakage from responses to range queries to achieve full database reconstruction.
Grubbs, Ristenpart, and Shmatikov [21] present a snapshot attack that can break
the claimed security guarantees of encrypted databases.

All this previous research suggests that even if the database is stored en-
crypted, database reconstruction may be possible in reasonable time. Having
realized that current searchable encryption approaches provide little protection
against powerful attackers such as honest but curious cloud providers, in this
paper we take a slightly different approach and explore whether it is possible to
make the task of the attacker a bit more difficult by introducing some form of
noise or some kind of error by changing the queries issued by the clients. For
example, when a client issues query [a, b], our methods issue query [a′, b′] (where
a 6= a′ and/or b 6= b′) or our methods issue multiple queries. The choice of a′

and b′ is done in such as way so as to obfuscate the real query that the clients
want to issue and thus confuse the attacker. So far, all attacks either assume
that the client issues queries uniformly at random [20, 24] or that the adversary
has access to all possible query responses [19, 28].

1.2 Contributions

After defining our encrypted database model (Section 2) and reviewing related
work (Section 3), we present two obfuscation techniques to mitigate reconstruc-
tion attacks on encrypted databases from the observation of the answers to
one-dimensional range queries. These techniques, which we call blocked queries
and wrap-around queries, are summarized below.
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– Blocked Queries or BQ (Section 4).
Our first technique modifies the queries issued by the client. The client selects
an integer parameter k. When the client wants to issue a query [a, b], BQ
rounds a down to the nearest smaller multiple of k, and rounds b up to the
nearest larger multiple of k minus 1. That is, the client issues modified query:

[k · ba/kc , k · d(b + 1)/ke − 1] .

In this way, the adversary can only approximately reconstruct the database.
Indeed, we will show that for each record ri which corresponds to value vi,
the adversary can estimate vi only up to an error of k.
The client can pick k as they desire. Note that k introduces a trade-off
between communication complexity and security: the higher the value of k,
the higher the error in the adversary’s approximation, but also the larger
the range being queried, which can increase the communication complexity.

– Wrap-around Queries or WQ (Section 5).
Our second approach focuses on the scenario where the adversary knows
the distribution of the queries. Indeed, a large body of previous work on
attacks (including [20] and [24]) assumes that clients issue queries uniformly
at random (or that the query distribution is known). Using this assumption,
previous work managed to achieve (almost) full database reconstruction in
poly-logarithmic time with only a very small amount of error of O(1/ logN).
Therefore, protecting the privacy of the data in settings when the adversary
knows the distribution of the queries is of paramount importance.
To obfuscate the database results, when the query distribution is known, we
use a four-pronged approach:
• We introduce the notion of wrap-around queries. In normal queries [a, b]

we always assume that a ≤ b. In contrary, in wrap-around queries [a, b]
we assume that a > b.
In such cases the result of a wrap around query [a, b] is the union of the
results of normal queries [a,N ] and [1, b]. That is, a wrap-around query,
as the name goes, wraps around the end of the value range (i.e. N) and
continues from the beginning (i.e. 1).
One may imagine that wrap-around queries treat the data not as a vector
(from 1 to N) but as a cyclic buffer. The size of the buffer is still N , but
the start of the cyclic buffer is not known. Actually, in a cyclic buffer,
much like in a circle, there is no start (or end for that matter).

• Approximately each time a client issues query [a, b], WQ issues a second
query: [a′, b′].1 The purpose of this second query is to confuse the adver-
sary who will not be able to say whether the original query were [a, b]
or [a′, b′]. Note, that query [a′, b′] has to be a bit more sophisticated. In-
deed, queries [a′, b′] are taken from a suitable distribution so that when
one combines all queries [a, b] and [a′, b′], the probability of each value
vi ∈ [1, N ] being queried is the same for all i. In this way, no value vi

1 Depending on the distribution, WQ may need to issue several queries. For the pur-
poses of discussion, at this point we assume that just one extra query [a′, b′] is issued.
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is more popular than the other values, removing asymmetries previously
exploited by adversaries.2

• Range queries [a, b] are issued as singleton queries [a, a], [a+1, a+1], [a+
2, a+ 2], ... [b, b]. In this way the attacker will not be able to distinguish
normal queries (which would have been issued as a single query) from
wrapped-around ones (which would otherwise have been issued as two
queries: [a,N ] and [1, b]).

• We always issue range queries in pairs. We deconstruct all range queries
into singleton queries as above, and shuffle the singleton queries of each
range query. We then issue all the singleton queries to the server. 3

Approach BQ aims to introduce an error in the reconstruction of any database.
This makes exact reconstruction impossible for any adversary exploiting access
pattern leakage. We note that method WQ aims to render unusable a large num-
ber of current attacks on encrypted databases, that assume that they know the
query distribution. Indeed, using WQ, we break the main assumption that at-
tacks have made so far: The assumption that when queries are issued uniformly
at random, some database values appear more frequently than others.

Kellaris et al. [24] and Grubbs et al. [20] present attacks that inherently
depend on the client issuing queries following some distribution. These attacks
no longer work when WQ is deployed.

2 Model

We consider a client that stores information on a database hosted by a server.
The client issues one-dimensional range queries to the server using tokens, and
the server returns responses to such queries. Specifically, we consider a database
consisting a collection of n records, where each record (r, x) comprises a unique
identifier, r, from some set R, and an integer value, x, from some interval of N
consecutive integers (e.g., X = [0, . . . , N − 1] or X = [1, . . . , N ]). For a record
(r, x) of the database, we use the notation x = val(r) to indicate the value x
associated with identifier r.

We now introduce “normal” queries, which the user can issue, and “wrap-
around” queries, which they cannot.

Definition 1. (Normal Query) A range query [a, b] such that a ≤ b, is called
a normal query. It returns the set of all matching identifiers, M = {r ∈ R :
val(r) ∈ [a, b]}.

Definition 2. (Wrap-around Query) A range query [a, b], where a > b, is
called a wrap-around query. It returns the set of all matching identifiers, M =
{r ∈ R : val(r) ≥ a or val(r) ≤ b}.
2 Actually, the same should be true for all combinations of values vi and vj as we will

later show.
3 If we issued queries one by one, the last query issued would always be a normal

query.
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The adversarial model we consider is a persistent passive adversary, able to
observe all communication between the client and the server. The adversary aims
to recover information about val(r) for the different r ∈ R. In this paper, we
consider adversaries that are only exploiting access pattern leakage. Any other
leakage that could potentially be exploited is out of the scope of the paper.
More specifically, every time the user issues a query, the adversary can detect
how many records are included in the response and their ciphertexts.

Definition 3. (Access Pattern Leakage) If whenever the server responds to
a query, the adversary observes the set of all matching identifiers, we say that
the scheme allows for access pattern leakage.

Definition 4. (Communication Complexity) We consider the communica-
tion complexity of a scheme as the number of queries issued by the client and
the number of records returned by the server.

3 Related Work

We have been able to search on encrypted data since the 1980s with private
multiparty computation [37], and oblivious random access memory (ORAM ) [15].
However, the first paper to consider searching on encrypted data explicitly is by
Song, Wagner and Perrig [35] in 2000. Since then, a number of papers have been
published on the topic presenting techniques with various leakage profiles, often
followed by attacks.

There exist a number of cryptographic techniques that allow searching on
encrypted data. These techniques fall broadly in the following categories: ho-
momorphic encryption [12, 13, 36], oblivious random access memory [15, 17],
private multiparty-computation [16, 37], searchable encryption [5–9, 14, 23], and
property-preserving encryption [1–3, 31].

Generally, the techniques based on oblivious random access memory and
homomorphic encryption give stronger security guarantees, but are fairly slow.
Techniques based on property-preserving encryption are fairly efficient, but can
have some limitations with regards to security [2]. Searchable encryption lies
between the two, being faster than oblivious random access memory and homo-
morphic encryption based techniques, and allowing for stronger security guar-
antees than property-preserving encryption based techniques. Using searchable
encryption or property preserving encryption, the client can perform a variety of
queries on their data: from index-based search queries [8, 9, 23] to more complex
ones [10, 11, 32, 33].

In this paper, we focus on access pattern leakage, which is leaked by most
systems based on searchable encryption or property preserving encryption [24].
There are a number of attacks that exploit the above leakage. This work started
with a seminal paper by Kellaris et al. [24]. They showed that a passive persis-
tent adversary can fully reconstruct a database by observing encrypted range
queries and their responses, given a client who performs queries uniformly at
random. A few attack papers followed building on this work [20, 28, 29]. There
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are also other attacks that focus on slightly different types of leakage. For exam-
ple, Kornaropoulos et al. [25] utilize leakage from k-nearest neighborhood queries
and Grubbs et al. [19] utilize volume leakage. Grubbs et al. [21] also present a
snapshot attack.

While most of the above attack papers assume that the client issues queries
uniformly at random, in recent work, Kornaropoulos et al. [26, 27] develop
distribution-agnostic reconstruction attacks for range and k-nearest neighbor
(k-NN) queries. Other attacks in the area assume a more active adversary or
that the encryption scheme reveals more properties [4, 22, 34, 38]. There has
been some work on mitigating these attacks [10], but it does not prevent asym-
metries caused by the client’s query distribution. One could use techniques based
on ORAM [15, 17] or fully homomorphic encryption [12, 13] to prevent (most
of) the above attacks. However, these techniques are quite expensive and not
very practical.

4 Blocked Queries

In this section, we present our BQ technique (Figure 1 and Algorithm 1). which
aims to introduce an error to any adversary’s reconstruction of the database.
Without loss of generality, we assume that the range of possible database values,
N , is a multiple of a positive integer k, which is a parameter of the scheme. When
the client issues query [a, b], the BQ system issues the superset query

[k · ba/kc , k · d(b + 1)/ke − 1] .

This way, no two queries can overlap in fewer than k positions, even if a = b in
one of them.

Algorithm 1 BQ(a, b, k)

1: Return
[
k · ba/kc , k ·

⌈
b+1
k

⌉
− 1

]

User

Client Side

[a, b]
BQ

[
k
⌊
a
k

⌋
, k

⌈
b+1
k

⌉
− 1

]
Server

DO
{r0, r1, r2.. , r′0, r

′
1..}{r0, r1, r2..}

Fig. 1. The BQ technique: When the client wishes to issue a query BQ extends the
query to ask for noise values. Once the server responds, the De-Obfuscation module
(DO) removes any extra identifiers.
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4.1 Analysis

Lemma 1. Let Ra be the set of records with value in the interval [a · k, (a + 1) · k),
for some integer a, 0 ≤ a < N/k. If one element of Ra is in a query response,
all elements of Ra will also be in the query response.

Proof. The proof is by contradiction. Let r1 and r2 be two records whose values
v1 and v2 are both in [a ·k, (a+ 1) ·k). Suppose there exists some adversary that
can deduce that v1 < v2. The only leakage we consider here is access pattern
leakage. In order for the adversary to distinguish between r1 and r2, they must
observe some query response, say [c, d], which breaks the symmetry. That means
that [c, d] returns only one of the two values r1 or r2. In order for that to happen
an endpoint of the query must fall between v1 and v2.

However, c has to be a multiple of k, and d has to be a multiple of k minus
1. Note that |v1 − v2| ≤ k − 1. Additionally, there is only one multiple of k in
[a · k, (a + 1) · k). Thus, c is either equal to a · k or c is outside [a · k, (a + 1) · k)
and d is either equal to (a+ 1) · k or d is outside [a · k, (a+ 1) · k) . We conclude
that neither c nor d can fall between v1 and v2, and thus, no query can return
exactly one of v1 and v2. ut

Definition 5. (Database Dk) Let D be a database containing a set of records,
(r, x), that the user wishes to store. We construct database Dk by transforming
record (r, x) into

(
r,
⌊
x
k

⌋)
. See an example in Figure 2.

ba c d

0 11

D

a b, c d
0 3

D3

Fig. 2. Example of modified database, D3, for a database D = {a, b, c, d} with values
from range [0, 11]

Lemma 2. No adversary A can distinguish between the real database D, and
Dk using access pattern leakage.

Proof. Let A be an adversary that can distinguish between the real database D,
and Dk using access pattern leakage. That means that there exists some query
response that can be observed when a user queries D that cannot be observed
when they query Dk, or there exists some query response that can be observed
when a user queries Dk that cannot be observed when they query D.

Let [a, b] be a query whose results can be observed when a user queries D
that cannot be observed when they query Dk. If we issue query [ak ,

b+1
k − 1] to

Dk, we get the same result. Let [a, b] be a query whose results can be observed
when a user queries Dk that cannot be observed when they query D. However,
query [a · k, (b+ 1) · k− 1] to D results in the same response. Thus, adversary A
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has no way of breaking the symmetry between database D and Dk using access
pattern leakage. ut

Theorem 1. Consider a user that issues range queries on an encrypted database
D with integer values from interval [0, . . . , N − 1] and adopts the blocked queries
mitigation scheme (Algorithm 1). Let k be an integer parameter such that N is
multiple of k. Using access pattern leakage, no adversary can identify a range of
size smaller than k where any database value belongs in.

Proof. Suppose there exists some adversary, A, that can identify a range of
values smaller than k, where some val(r) belongs. Let v1 = val(r). Suppose
v1 ∈ [a ·k, a ·(k+1)]. Suppose that A determines that v1 ∈ [a ·k, b). Now suppose
that there is some record, whose value v2 is in [b, a · (k + 1)]. Adversary A could
break the symmetry between v1 and v2, because A has different information for
the two values. Thus, A could break the symmetry between databases D and
Dk. This leads to a contradiction by Lemma 2. ut

4.2 Communication Overhead

An important point to address is how much the BQ technique increases the
communication complexity. When the user wishes to issue query [a, b], we issue
instead query [k · ba/kc , k · d(b + 1)/ke − 1]. The user asked us to query b − a
values in the database, and at most, we will query b − a + 2k values in the
database.

Let s̄ be the average query size that the client issues. Using our scheme, the
client can introduce an error of k to the adversary’s reconstruction, while the
fraction of the size of the noise to normal traffic is bounded by 2k

s̄ . The overhead
of this scheme depends a lot on the choice of k, and the query distribution that
the user picks. For example, if the user picks queries uniformly at random, the
average query size is

2

N(N + 1)

N∑
i=1

i(N − i + 1) =
2

N(N + 1)

(N + 2)N(N + 1)

6
=

N + 2

3
.

Thus, the fraction of noisy records to normal ones is 6k
N+2 . If N

k is a constant,
then the multiplicative communication overhead of this scheme is also a constant,
while the adversary’s reconstruction error is proportional to N .

The trivial mitigation strategy would be to ask for the whole database back
on every query. This is equivalent to setting k = N . Our scheme allows the
user to reduce the communication overhead by making a trade-off on security.
Generally, as long as k << N/6, the scheme is more efficient over the trivial
scheme.

5 Wrap-Around Queries

An assumption commonly made in the literature on attacks on encrypted databases
is that the adversary knows the query distribution. In particular, for 1D range
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queries, the distribution is often assumed to be “uniform at random,” i.e., all
queries [a, b], a ≤ b, have the same probability of being issued. To defend against
these adversaries, in this section, we present our second mitigation scheme, wrap-
around queries, schematically illustrated in Figure 3.

Client

User

[a, b]
Buffer

{r0, r1, r2..}

WQ

Noise

P
a
ir

S
p
lit

S
h
u
ffl

e

D
e-O

b
fu

sca
tio

n

S
e
rv

e
r

Fig. 3. The wrap-around queries module receives queries from the client and adds
them to a buffer. It periodically constructs a pair of queries that contains both noise
(i.e., fictitious queries) and real queries. Each query in the pair is further split into
singleton queries (i.e., queries spanning a single value). Then, the singleton queries
from each range query are shuffled. The shuffled queries are sent to the server. The de-
obfuscation component receives the answers to the queries in the pair from the server,
filters out the answers to noise, and reassembles the remaining singleton answers into
answers to the original queries, which it forwards to the client.

This scheme turns the linear range of possible database values into a cyclic
range with no discernible beginning and end in the eyes of the adversary. As the
user issues queries according to a fixed probability distribution, we add fictitious
queries that correspond to a “complementary” distribution. Thus, we convert the
original query stream into one uniformly distributed over the cyclic range, hence
removing any asymmetries on the number of times database values are present in
query answers. As a result, we prevent the adversary from distinguishing among
any two cyclic shifts of the database using the access pattern leakage.

5.1 Key Ideas

The wrap-around queries technique depends on three key ideas:
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1. Our technique issues additional queries to introduce noise. Approximately,
every time the client issues a query, we issue one or more additional fictitious
queries. The fictitious queries may be normal queries (i.e., [a′, b′] where a′ ≤
b′) or wrap-around queries (i.e., [a′, b′] where a′ > b′).

2. Our technique issues queries in pairs. To determine if a slot in the pair
contains a noise or a normal query, we flip a coin.

3. Whenever a query [a, b] is to be issued, we issue a series of singleton queries
[a, a], [a + 1, a + 1] . . . [b, b], instead.

This technique essentially changes the ordered vector of values [1, N ] into
a circular buffer of N values that has no start and no end. This change (from
a vector to a circular buffer) renders a persistent passive adversary unable to
determine which identifier corresponds to the minimum (or maximum) value. In
addition, the fictitious queries follow such a distribution so that all individual
values val(ri) have the same frequency of appearance.

5.2 Example

We illustrate how the wrap-around queries scheme works with an example. Sup-
pose we have a database of size 5 and the user issues queries that are uniformly
distributed. Let Sn be the set of normal queries that the client can issue (i.e.
[a, b] where a ≤ b) and let Sw be the set of wrap-around queries that the client
cannot issue (i.e. [a, b] where a > b). The set Sn contains 15 queries and the set
Sw contains 10 queries. All these queries are shown in Table 1.

(a) Normal

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5]
[1, 2] [2, 3] [3, 4] [4, 5] -
[1, 3] [2, 4] [3, 5] - -
[1, 4] [2, 5] - - -
[1, 5] - - - -

(b) Wrap-around

- - - - -
- - - - [5, 1]
- - - [4, 1] [5, 2]
- - [3, 1] [4, 2] [5, 3]
- [2, 1] [3, 2] [4, 3] [5, 4]

Table 1. All possible cyclic queries on five elements: (a) normal queries; (b) wrap-
around queries

We use a buffer, B, to store the queries that the user wishes to issue. Let’s
acquire a biased coin that returns heads with probability 15

25 and tails with
probability 10

25 . We flip the biased coin twice. On heads, we pick a range query
from buffer B (if the buffer is empty we choose a normal query from Sn uniformly
at random) and on tails we pick a fictitious query, which is a wrap-around query
selected uniformly at random from Sw. Thus, after each coin flip, we add a query
to the pair. Once the pair is formed, we deconstruct all queries into a series of
singleton queries, shuffle the singletons, and issue them to the server. Once the
server responds, we identify the responses corresponding to real queries and send
them to the user.

In Table 2, we show how many times each single value (from 1 to 5) is ex-
pected to be included in a query in the pair. The probability of value 1 appearing
in a query in the pair is 15/25·5/15+10/25·10/10 = 3/5. The probability of value
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3 appearing in a query in a given slot in the pair is 15/25 · 9/15 + 10/25 · 6/10 =
3/5: exactly the same as the probability of value 1. The same happens for all
values: the probability of a value i to appear in a query in a given slot is 3/5:
the same probability for all values i.4 Thus, all values have the same probability
of being included in a query in a slot.

Value Appearances Normal Queries

1 5 [1,1], [1,2], [1,3], [1,4], [1,5]

2 8 [1,2], [1,3], [1,4], [1,5], [2,2], [2,3], [2,4], [2,5]

3 9 [1,3], [1,4] [1,5], [2,3], [2,4], [2,5], [3,3], [3,4], [3,5]

4 8 [1,4], [1,5], [2,4], [2,5], [3,4], [3,5], [4,4], [4,5]

5 5 [1,5], [2,5], [3,5], [4,5], [5,5]

Value Appearances Wrap-around Queries

1 10 [5, 1], [4, 1], [3, 1], [2, 1], [5, 2], [4, 2], [3, 2], [5, 3], [4, 3], [5, 4]

2 7 [5, 2], [4, 2], [3, 2], [5, 3], [4, 3], [5, 4], [2, 1]

3 6 [2, 1], [3, 1], [3, 2], [4, 3], [5, 3], [5, 4]

4 7 [2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [4, 3], [5, 4]

5 10 [2, 1], [3, 1], [4, 1], [5, 1], [3, 2], [4, 2], [5, 2], [4, 3], [5, 3], [5, 4]

Table 2. All values in the database appear with the same frequency in the query
results. In this table we show in how many queries each value appears. That is, value
“1” appears in 5 normal queries and 10 wrap-around queries (a total of 15). Similarly,
value “2” appears 8 times in normal queries and 7 times in wrap-around queries (a total
of 15). Each values appears 15 times in the normal and wrap-around queries combined.

5.3 Algorithm

In this section, we present Algorithm 2, WQ, which performs a generic version of
our wrap-around mitigation scheme. The algorithm takes the following inputs:

– buffer : a buffer that contains the queries that the client wishes to issue;
– coin: a random coin with given fixed probabilities for heads and tails;
– Sn: set of normal queries;
– Sw: set of wrap-around queries;
– N : size of the database.

Note that inputs coin, Sn, and Sw depend on the probability distribution of the
user’s queries.

Algorithm WQ operates as follows. As long as there are still queries in buffer,
WQ generates a new pair of queries. For each slot in the pair, we flip coin,
and depending on the result, either a normal or a wrap-around query takes
up the slot. If coin instructs that a normal query takes up the slot, we pop
one from buffer. If buffer is empty, we just pick a normal query uniformly at
random. If coin instructs that a wrap-around query takes up the slot, we pick

4 The reader might wonder that since there are five values (1 to 5), then each value
should have probability 1/5 (not 3/5) to appear in the query results. We should note
however that these queries are range queries that return more than one value.
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one uniformly at random. Each query is then split into singleton queries, and a
random permutation of the singletons is added to the pair slot.

Once the pair is full, we query the server. We discard any answers to wrap-
around or fake queries, and return the rest to the client.

Algorithm 2 WQ(buffer , coin, Sn, Sw, N)

1: while |buffer | > 0 do
2: pair = []
3: for two rounds do
4: Flip coin
5: if coin = 1 then
6: [a, b] = buffer .pop()
7: // If buffer is empty, pick query [a, b] uniformly at random from Sn

8: else
9: Pick query [a, b] uniformly at random from Sw

10:
11: singletons = []
12: for i ∈ range(a, b) do
13: Add query [i, i] to singletons
14: Add a random permutation of singletons to pair
15:
16: Issue all queries from pair to server
17:
18: if pair contained a user query then
19: Return the relevant server’s responses to the user.

5.4 Uniform Query Distribution

For the case of a user that issues uniformly distributed range queries, Algorithm 2
is specialized by selecting a biased coin, c, with probability

Pr(c = 1) =
N(N + 1)

2N2
= 1− Pr(c = 0),

which yields Algorithm 3, WQU.

Algorithm 3 WQU (buffer , N)

1: Let c be a biased coin with Pr(c = 1) = N(N+1)

2N2 = 1− Pr(c = 0)
2: Let Sn be the set of queries [i, j] such that 1 ≤ i ≤ j ≤ N
3: Let Sw be the set of queries [i, j] such that 1 ≤ j < i ≤ N
4: Execute WQ(buffer , c, Sn, Sw, N) (Algorithm 2)

We now analyze the security properties of Algorithm 3.

Lemma 3. When using Algorithm 3, a slot of the pair contains each query with
the same probability.

Proof. Table 3 shows all possible queries.
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Table 3. All possible queries: Note that the blue queries are normal, and the red ones
are wrap-around.

[1, 1] [1, 2] . . . [1, N − 1] [1, N ]
[2, 1] [2, 2] . . . [2, N − 1] [2, N ]
[3, 1] [3, 2] . . . [3, N − 1] [3, N ]
. . . . . . . . . . . . . . .
[N − 1, 1] [N − 1, 2] . . . [N − 1, N − 1] [N − 1, N ]
[N, 1] [N, 2] . . . [N,N − 1] [N,N ]

Let q1 be a normal query. Note that there are N(N+1)
2 normal queries. In a given

pair slot, query q1 is issued with probability

N(N + 1)

2N2
· 1

N(N+1)
2

=
1

N2
.

Now, let q2 be a wrap-around query. Note that there are N2 − N(N+1)
2 wrap-

around queries. In a given pair slot, query q2 is issued with probability

N2 − N(N+1)
2

N2
·
( 1

N2 − N(N+1)
2

)
=

N(N − 1)

2N2
·
( 2

N(N − 1)

)
=

1

N2

Thus, all queries are issued with the same probability 1
N2 . ut

Lemma 4. When using Algorithm 3, each value in the database has the same
probability of being in a given pair slot.

Proof. Lemma 3 shows that all queries are issued with the same probability.
Let’s look at all the queries that query some value, say v. There are N queries

that start at v and contain v.

1 v N

. . .

[v, v], [v, v + 1], [v, v + 2] . . . [v, v − 3], [v, v − 2], [v, v − 1]

There are N − 1 queries that start at v − 1 and contain v:

[v − 1, v], [v − 1, v + 1], [v − 1, v + 2] . . . [v − 1, v − 3], [v − 1, v − 2]

1 v N

. . .

There are N − 2 queries that start at v − 2 and contain v:

[v − 2, v], [v − 2, v + 1], [v − 2, v + 2] . . . [v − 2, v − 3]
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1 v N

. . .

Thus, there are N +N −1 +N −2+. . . +1 = N(N+1)
2 queries that query value v.

So, for any v there are N(N+1)
2 queries that query it. Since all queries are issued

with the same probability (Lemma 3), all values v have the same probability of
being queried in given a slot pair. ut

Lemma 5. When using Algorithm 3, every contiguous set of points of size s
has the same probability of being queried in a given pair slot.

Proof. Let’s look at some set of records S, and at the queries that return all
elements of the set. Suppose that the smallest value of an element in S is vmin

and the largest is vmax. There are N − s queries that return all elements of S
and start at vmin.

1 vmin vmax N

. . .

[vmin, vmax], [vmin, vmax + 1], [vmin, vmax + 2] . . .

[vmin, vmin − 3], [vmin, vmin − 2], [vmin, vmin − 1].

Similarly to Lemma 4, there are (N−s)(N−s+1)
2 queries that return all points from

S. Thus, for any set of size s there are (N−s)(N−s+1)
2 queries that return all its

elements. ut

Definition 6. (Database Dshifts) Let D be a database with integer values from
an interval of size N and let s be an integer. We define database Dshiftsas the
set of records (r, x+ s(mod N)), for all records (r, x) ∈ D. That is, we cyclically
shift the values of all records by s.

The following theorem summarizes the security property of wrap-around
queries method for a uniform query distribution.

Theorem 2. Consider a user that issues uniformly distributed range queries
on an encrypted database D with integer values from an interval of size N and
adopts the wrap-around mitigation scheme (Algorithm 3). For any integer s, a
passive persistent adversary who observes the noisy query stream produced by the
algorithm and the corresponding query results cannot distinguish with probability
greater than 1/2 between database D and database Dshiftsusing access pattern
leakage and knowledge of the user’s query distribution.

Proof. Suppose there exists some adversary that can distinguish between D and
Dshiftswith probability greater than 1/2. The adversary has two weapons: (i) the
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fact that a user that issues uniformly distributed range queries, and (ii) access
pattern leakage. As long as there are queries that the user wants to send out,
Algorithm 3 will create pairs of queries to send to the server.

Algorithm 3 issues range queries as a random permutation of singleton queries.
Note that the random permutation is necessary, as otherwise we leak the order
of the records and the distances between them on a single query. We have to
send the queries in pairs. If we sent only one query at a time, the adversary
would know that the last query we sent was a normal query.

1. Let us first examine the access pattern leakage: Algorithm 3 will eventually
issue all queries [a, b] for a, b ∈ [1, N ] regardless of whether the database
stored is D or Dshifts . Now, because Algorithm 3 issues both normal and
wrap-around queries, we can map a query from D to a query from Dshiftswith
the same response. Query [a, b] on database D produces the same response as
query [a+s(mod N), b+s(mod N)] on database Dshifts . Thus, the adversary
cannot get any information out of the access pattern leakage as the two
databases produce the same sets of responses.

2. Now, let us examine what the adversary can accomplish using the knowledge
that the user issues uniformly distributed range queries. The adversary might
try to use this knowledge since due to the uniformity of queries, the frequency
with which values of the database appear in query answers varies. To be
exact, elements in the middle of the database have a higher chance of being
queried than elements in the ends. However, Algorithm 3, ensures that any
set of contiguous points of a certain size is equally likely to be in a pair slot
(Lemma 5). Thus, there are no asymmetries that the adversary could exploit
to deduce which database is which.

Thus, neither uniformity nor access pattern leakage can help the adversary break
the symmetry between the two databases, and the best they can do is guess,
which succeeds with probability 1/2. ut

Corollary 1. Consider a user that issues uniformly distributed range queries
on an encrypted database D with integer values from an interval of size N and
adopts the wrap-around mitigation scheme (Algorithm 3). The adversary is un-
able to infer which record has the minimum (or maximum) value with probability
greater than 1/n, where n is the size of the database.

Notably, after all their observations the adversary gains no knowledge on
which record is the first one.

5.5 Truncated Uniform Distribution

The wrap-around queries mitigation technique can be extended to work with any
fixed query distribution. Indeed, from any fixed distribution, we can construct a
complementary distribution such that an adversary who observes the resulting
noisy query stream sees the equivalent of a uniform distribution over the queries
for a cyclic buffer (Table 3).
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In this section, we consider a client who issues queries of up to size t uniformly
at random, i.e., a truncated uniform distribution. This is in line with related work
[26, 27] that also considers a client who focuses on queries of small size.

In this case, we can instruct our mitigation scheme to also only send queries
of size up to t. That is, the only queries allowed (for both the client and the
algorithm) are of the form [a, b], where: if the query is normal (a ≤ b): b− a has
to be smaller or equal to t, else if the query is a wrap-around query: b + N − a
has to be smaller or equal to t.

The new algorithm, Algorithm 4, WQT, has to use a new biased coin, and
modified Sn and Sw sets. The new biased coin will return 1 with probability
2N−t+1

2N . We set Sn to the set of normal queries [a, b], where b − a ≤ t, and Sw

to the set of wrap-around queries [a, b], where b + N − a ≤ t.

Algorithm 4 WQT (buffer , N, t)

1: Let c be a biased coin with Pr(c = 1) = 2N−t+1
2N

= 1− Pr(c = 0)
2: Let Sn be the set of queries [i, j] such that 1 ≤ i ≤ j ≤ N and j − i ≤ t
3: Let Sw be the set of queries [i, j] such that 1 ≤ j < i ≤ N and j + N − i ≤ t
4: Execute WQ(buffer , c, Sn, Sw, N) (Algorithm 2)

We now analyze the security properties of Algorithm 4.

Lemma 6. When using Algorithm 4, a slot of the pair contains each query with
the same probability.

Proof. There are
∑t−1

i=0 N − i = 1
2 t(2N − t + 1) normal queries, and

∑t−1
i=0 i =

1
2 t(t− 1)wrap-around queries. In a given pair slot, a normal query and a wrap-
around query are issued with probability

2N − t + 1

2N
· 2

t(2N − t + 1)
=

1

Nt
and

(
1− 2N − t + 1

2N

)
· 2

t(t− 1)
=

1

tN
,

respectively. Thus, all queries are issued with the same probability. ut

Lemma 7. When using Algorithm 4, every contiguous set of points of size s
has the same probability of being queried in a given pair slot.

Proof. For any set of size s ≤ t, the proof follows as in Lemma 5 supported by

Lemma 6, there are (N−s)(N−s+1)
2 queries that return all its elements. For any

set of size s > t there are 0 queries that return all its elements.

Theorem 3. Consider a user that issues uniformly distributed range queries of
size smaller than t, on an encrypted database D with integer values from an
interval of size N and adopts the wrap-around mitigation scheme (Algorithm 4).
For any integer s, a passive persistent adversary who observes the noisy query
stream produced by the algorithm and the corresponding query results cannot
distinguish with probability greater than 1/2 between database D and database
Dshiftsusing access pattern leakage and knowledge of the user’s query distribution.

The proof follows as in Theorem 2 supported by Lemma 7.
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5.6 Communication Overhead

In order to analyze the communication overhead introduced by the wrap-around
queries mitigation method, we consider a client who performs queries up to size t
uniformly at random and employs Algorithm 4, WQT. Note that for the special
case t = N , we have a uniform query distribution.

The communication overhead depends heavily on the underlying database.
The protocol is most efficient on dense databases. Here, we have overhead from
singleton queries and from wrap-around queries as before. In the setting of a
dense database, there is at least one record for every value queried. Thus, the
multiplicative overhead introduced is at most 2×.

Let us now consider the overhead introduced from wrap-around queries.The

average size of a normal query is
∑t

i=1 i(N−i+1)∑t
i=1 N−i+1

= (t+1)(3N−2t+2)
3(2N−t+1) , and the average

size of a wrap-around query is
2
∑t−1

i=0 i(i+1)

t(t−1) = 2(t+1)
3 .

Thus, the issued queries’ average size is:

2N − t + 1

2N

(t + 1)(3N − 2t + 2)

3(2N − t + 1)
+

t− 1

2N

2(t + 1)

3
=

t + 1

2
.

Now, the multiplicative overhead of the query, denoted with m, is the ratio
between the new average query size and the average size of normal queries:

m =
t+1

2
(t+1)(3N−2t+2)

3(2N−t+1)

=
3

2
· 2N − t + 1

3N − 2t + 2
.

Note that depending on the choice of t. we have 1 ≤ m < 1.5, hence the
smaller t, the smaller the overhead. Thus, the communication overhead varies
between 1× and 3×, depending on t and how many records are on each value.
The more records per value, the smaller the proportional overhead.

5.7 Defending Against Current Attacks

The WQ technique makes the adversary’s job more difficult in two ways:

1. It removes asymmetries due to the client’s query distribution: Exploiting
these asymmetries has been a focus of Kellaris et al. [24] in their seminal
paper on attacks. Grubbs et al. [20] present a very elegant algorithm as well
that exploits this uniformity assumption. As we remove the asymmetries,
these attacks can no longer reconstruct the database.

2. More importantly, it turns the database into a cyclic buffer in the eyes of
any adversary: No adversary exploiting access pattern leakage can tell which
element is the first (or last) in the database. So, even if an adversary can
reconstruct the shape of the database, they won’t be able to recover the
actual record values, unless they have access to auxiliary information.
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5.8 Observations

Encryption schemes that allow for range queries can be costly. It’s interesting
to note that when running Algorithm 2, the server is never queried for a range
that is larger than 1. Thus, a lot of the formerly required machinery is no longer
necessary, the server can just store an encrypted dictionary.

Regarding storage complexity, Algorithm 2 issues singleton queries from two
range queries. This can require a lot of storage. To reduce this complexity, we
can run Algorithm 2 in a streaming fashion. Specifically, instead of constructing
and storing pair, we can use techniques for block ciphers with arbitrary block
size to perform the pseudorandom permutation in sub-linear (in N) space, see
for example [18, 30].

6 Conclusion

In recent years, a number of attacks have been developed to fully or approx-
imately reconstruct encrypted databases from the information leakage of en-
crypted range queries and their responses. In an effort to mitigate the attacks,
this paper presents two approaches to help better protect the confidentiality of
user data. Our first approach, blocked queries, introduces an error to the recon-
struction of the database by any adversary. Our second approach, wrap-around
queries, is aimed specifically at a broad class of attacks that assume the user
queries the database uniformly at random. This approach removes exploitable
asymmetries in query answers caused by uniformity, thus reducing the capability
of such attacks.

Acknowledgments

We are grateful to Arkady Yerukhimovich for valuable comments and sugges-
tions.

References

[1] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption
for numeric data. In: Proc. ACM Int. Conf. on Management of Data, SIG-
MOD (2004)

[2] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently search-
able encryption. In: Advances in Cryptology, CRYPTO (2007)

[3] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving sym-
metric encryption. In: Advances in Cryptology, EUROCRYPT (2009)

[4] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks
against searchable encryption. In: Proc.ACM Conf. on Computer and Com-
munications Security, CCS (2015)



Mitigation Techniques for Attacks on 1-Dimensional Databases

[5] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.:
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