
Secure Trick-Taking Game Protocols

How to Play Online Spades with Cheaters

Xavier Bultel1 and Pascal Lafourcade2

1 Univ Rennes, CNRS, IRISA
2 University Clermont Auvergne, LIMOS, France

Abstract. Trick-Taking Games (TTGs) are card games in which each
player plays one of his cards in turn according to a given rule. The player
with the highest card then wins the trick, i.e., he gets all the cards that
have been played during the round. For instance, Spades is a famous
TTG proposed by online casinos, where each player must play a card
that follows the leading suit when it is possible. Otherwise, he can play
any of his cards. In such a game, a dishonest user can play a wrong
card even if he has cards of the leading suit. Since his other cards are
hidden, there is no way to detect the cheat. Hence, the other players
realize the problem later, i.e., when the cheater plays a card that he is
not supposed to have. In this case, the game is biased and is canceled.
Our goal is to design protocols that prevent such a cheat for TTGs. We
give a security model for secure Spades protocols, and we design a scheme
called SecureSpades. This scheme is secure under the Decisional Diffie-
Hellman assumption in the random oracle model. Our model and our
scheme can be extended to several other TTGs, such as Belotte, Whist,
Bridge, etc.

1 Introduction

The first card games originate around the 9th century, during the Tang dynasty.
Today, they are played all around the world, and a multitude of different games
exist. For instance, Poker is probably the most famous gambling card game.
Thanks to the Internet, many web sites implement online card game applications,
where players meet other players. Cards games websites require some security
guarantees, such as secure access for payment, robust software, trusted servers,
and cheating detection protocols. These guarantees are crucial for the reputation
of the web site in the card game community.

Spades is a famous online gambling card game. It is a trick-taking game: at
each round, players take turns playing, then the player that plays the highest
card wins the trick, i.e., all cards that have been played this round. Moreover,
if it is possible, then players must play a card that follows the suit of the first
card played in the round, otherwise they can play any other card. However, if
a player cheats by playing a card of another suit while he has some cards of
the leading suit, there is no way to detect it immediately. The other players will
detect the cheat later, if the cheater plays a card of the leading suit. As a result,

the game is biased, because players revealed some of their cards, hence players
cannot replay the game, which must be canceled. Cheaters often get a penalty,
but Spades is a team game, hence the cheater’s partner is also punished, even if
he is not an accomplice. It is even more unfair if the partners do not know each
other and/or do not trust each other, which is the case in online games, where
teams are chosen by the server.

To avoid this problem, online Spades web sites use a trusted server that man-
ages the game. This server deals the cards, and prevents players from cheating,
which means it knows all the cards of each player. However, having a trusted
server is a strong security hypothesis, because if some players corrupt the server,
then the security properties do not longer hold.

Our motivation is to design a cryptographic scheme, called SecureSpades, that
allows the players to check that the other players do not cheat, whithout revealing
any information about the cards of each player, and without any trusted server.

Contributions: In this paper, we focus on Trick-Taking Games (TTGs), which
are card games where each player plays one of his cards in turn, and where the
player with the highest card wins the trick. For the sake of clarity, we focus our
work on Spades, because it is the most played online TTG for real money, and
its rules are simple. However, our protocol can be extended to other TTGs, such
as Whist or Bridge.

We propose a scheme for Spades that has the following security properties:

– The game server is not trusted.
– The players are convinced that nobody cheats. It means that:

1. Theft-resistance: a player cannot play a card that is not in his hand, nor
can a player play cards from the hand of his partner .

2. Cheating-resistance: a player cannot play a card that does not follow the
rules of the game (in Spades, if a player has a card of the leading suit,
he must play it).

– Unpredictability : the cards are dealt at random.
– Hand-privacy : the players do not know the hidden cards of the other players.
– Game-privacy : at each round, the protocol does not leak any information

except for the played cards.

We propose a formal definition of a Spades scheme, then we give a formal
definition of the security properties described above. We also design SecureS-
pades, a protocol based on the Decisional Diffie-Hellman (DDH) assumption,
and zero-knowledge proofs. Finally, we prove the security of SecureSpades in the
random oracle model.

Our protocol not only ensures all the security properties of the real card
games, it also provides additional security features. In real card games, it is
not possible to detect cheating exactly when the wrong card is played. In fact,
our protocol also allows players to detect cheats that are undetectable with real
cards, hence it can be used to create new TTGs, for instance a Spades variant
where the game is stopped after 5 rounds. In this variant, if the players do not
have to reveal the cards they did not play, then there is no way to prevent

2

them from cheating. However, with our approach, such a game can be securely
implemented.

Related Work: In 1982, Goldwasser and Micali introduced the Mental Poker
problem [9]: it asks whether it is possible to play a fair game of poker without
physical cards and without a trusted dealer, i.e., by phone or over the Internet.
Since then, several works have focused on this primitive, such as [1,13,15]. In [12],
the author brings together references to scientific papers related to this problem.

Most of mental poker protocols are based on the following paradigm. The
players encrypt the cards together and shuffle them, then ciphertexts are assigned
to each player, and each player receives information from the other players in
order to decrypt their own cards. At the end of the game, the players reveal
their encryption keys, which reveals the hand of all the players. In trick-taking
games, each time a player plays a card, he must prove that the card is in his
hand and that he has no high-priority card that he should play instead of this
card. To achieve this property, we model the deck in a different way: each card is
associated to a commitment of the secret key of a player. The player plays a card
by proving that the committed secret key matches one of its public keys. This
allows the player to prove that he cannot play high-priority cards by proving
that none of his public keys match possible high-priority cards.

David et al. [7] introduced protocols for secure multi-party computation with
penalties and secure cash distribution, which can be used for online poker. Ben-
tov et al. [2] give a poker protocol in a stronger security model, which is more
efficient than [7]. More recently, David et al. [8] proposed Royale, a univer-
sally composable protocol for securely playing any card games with financial
rewards/penalties enforcement.

All of these works focus on mental card game protocols with secure payment
distributions, but they cannot prevent players from cheating by playing illegal
cards. Indeed, these protocols allow the users to play cards digitally with the
same security level as if they play with real cards. Our goal is not only to imple-
ment a secure trick-taking game, but also to increase its security, in comparison
with its physical version.

Finally, an other line of research is to detect collusion frauds in online card
games, as done for instance in [14]. Players may exchange information about
their cards using some side channels. The goal of [14] is to detect such a collusion
attack via the users’ behavior. This work is complementary to ours, because these
collusion detection processes can also be used with our protocol.

Outline: In Section 2, we describe the rules of Spades. In Section 3, we give
an informal overview of our scheme. In Section 4, we present the cryptographic
tools used in the paper. In Section 5, we model Spades schemes. In Section 6,
we define the security properties. In Section 7, we describe SecureSpades before
concluding in the last section.

Acknowledgement: We thank Wouter Lueks for his helpful comments and sug-
gestions. We also thank the tarot players of Le Checkpoint Café.

3

2 Spades Rules

Spades was created in the United States in the 1930s. Since the mid-1990s it has
become very popular thanks to its accessibility in online card gaming rooms on
the Internet. This game uses a standard deck of 52 cards and allows between
two and five players. The most famous version requires four players, which are
splitted in two teams of two. As indicated by the name of the game, spades are
always trump. We give the rules of Spades for the four players version:
1. All 52 cards are distributed one by one to each player, meaning each player

has 13 cards at the beginning of the game.
2. There are 13 successive rounds. In the first round, the first player is chosen

at random, and subsequently the player that won the previous round begins.
Players then each play a card in turn.

3. At each round, the player who plays the highest card wins the trick (i.e., he
takes the four cards played this round, but he cannot replay these cards).
The rank of the cards is the following, form highest to lowest: Ace, King,
Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. Trumps are higher than cards of the
suit of the first card of the round, which are higher than all other cards.

4. Each player has to follow the suit of the first card of the round. If a player
has no card that follows the suit, then he can play any other cards.

5. The game is finished once all players have played all of their cards.
Before playing the cards, each player bids the number of tricks he expects to

perform. The sum of all the propositions for all players should be different from
the number of cards per player. At the end of the game, each player calculates
his score according to his bid and the number of tricks he has won.

3 An overview of our protocol

We now give an informal overview of our Spades protocol. The idea is that the
players must prove that each card they play follows the rule of the game. More
precisely, the player first proves that he has the played card. If this card does
not follow the suit, then he proves that none of his other cards are of the leading
suit.
1. Dealing cards: We need to model the cards in such a way that these

proofs are feasible. Each player i generates 13 pairs of public/private keys
(pki,j , ski,j) (for 1 ≤ j ≤ 13). To deal the cards, the players run a protocol
that privately assigns each key to each card with the following steps: (i)
each player generates commitments on his 13 secret keys, (ii) the players
group all the 13 ·4 = 52 commitments together, (iii) each player shuffles and
randomizes the commitments in turn , (iv) the players jointly associate each
commitment to each card of the deck at random. The hand of a player is the
set of the 13 cards that match the commitments of his secret keys. Figure 1
illustrates our dealing cards protocol, where c(sk) denotes the commitment
of a secret key sk, and c′(sk) denotes the randomization of c(sk). In this ex-
ample, the 1st card of player 1 is A♣, his 2nd card is 2♥, and his 13th card

4

Shuffle
commitments:

Deal cards:

c(sk1,1) c(sk1,2) . . . c(sk1,13) c(sk2,1) . . . c(sk4,13)

c′(sk4,13) c′(sk1,13) . . . c′(sk2,1) c′(sk1,1) . . . c′(sk1,2)

2♠ 3♠ . . . A♠ 2♥ . . . A♣

Fig. 1. Dealing cards in our Spades protocol.

is A♠. Note that the commitments and the public keys must be unlinkable
for anyone who does not know the corresponding secret keys.

2. Play a card: To play a card, the player proves that this card matches the
commitment of one of his secret keys. If the player does not follow the suit,
then he proves that none of his other cards are of the leading suit. To do so,
he proves that each commitment that matches a card of a non-leading suit
commits one of his (not yet used) keys.

4 Cryptographic Tools

We present the cryptographic tools used throughout this paper.

Definition 1 (DDH [4]). Let G be a prime order group. The DDH assumption
states that given (g, ga, gb, gz) ∈ G4, it is hard to decide whether z = a · b or not.

A n-party random generator is a protocol that allows n users to generate a
random number, even if n− 1 users are dishonest.

Definition 2 (Multi-party random generator [3]). A n-party S-random
generator RGP1,...,Pn is a protocol where n parties (P1, . . . , Pn) interact, and re-
turn s ∈ S. Such a protocol is said to be secure when for any polynomial time
distinguisher D, any polynomial time adversary A, there exists a negligible func-
tion ε such that: |Pr[1 ← D(s) : s

$← S] − Pr[1 ← D(s) : s ← RGC,A(k)]| ≤ ε(k)

where s
$← RGC,A denotes the output of C at the end of the protocol RG where C

plays the role of a honest user, and A plays the role of the n− 1 other users.

Inspired by [3], we propose the following multi-party random generator pro-
tocol based on the random oracle model (ROM).

Definition 3. Let S be a set and n be an integer, and let H : {0, 1}∗ → {0, 1}k
and H ′ : {0, 1}∗ → S be two hash functions simulated by random oracles. The
protocol RandGenSP1,...,Pn(k) is a n-party S-random generator defined as follows.

Each player Pi (where 1 ≤ i ≤ n) chooses ri
$← {0, 1}k at random, com-

putes H(ri), and broadcasts it, then each player reveals ri. Each player returns
H ′(r0|| . . . ||rn).

5

Lemma 1. For any set S and any integer n, RandGenSP1,...,Pn(k) is secure in
the random oracle model.

The proof of this lemma is given in Appendix. The idea is that dishonest parties
cannot guess the ri of the honest parties before revealing their commitments,
hence they cannot predict H(r0|| . . . ||rn).

A (non-interactive) Zero-Knowledge Proof of Knowledge (ZKP) [10] for a bi-
nary relation R allows a prover knowing a witness w to convince a verifier that a
statement s verifies (s, w) ∈ R without leaking any information. Throughout this
paper, we use the Camenisch and Stadler notation [6], i.e., ZK{(w) : (w, s) ∈ R}
denotes the proof of knowledge of w for the statement s and the relation R. Such
a proof is said to be extractable when given an algorithm that generates valid
proofs with some probability, there exists an algorithm that returns the corre-
sponding witness in a similar running time with at least the same probability.
Such a proof is said to be zero-knowledge when there exists a polynomial time
simulator that follows the same probability distribution as an honest prover.

5 Formal Definitions

We formalize Spades schemes and the corresponding security requirements. We
model a 52 cards deck by a tuple D = (id1, . . . , id52) such that ∀ i ∈ J1, 52K,
idi = (idi.suit, idi.val) ∈ {♥,♠,♦,♣}×{1, . . . , 10, J,Q,K} is called a card, where
∀ (i, j) ∈ J1, 52K2 such that i 6= j, idi 6= idj . The set of all possible decks is
denoted by Decks.

We first define Spades schemes, which are tuples that contain all the algo-
rithms that are used by the players. KeyGen allows each player to generate its
public/secret key. GKeyGen allows the players to generate a public game key.
DeckGen is a protocol that generates a random deck. GetHand determines the
hand of a given player from his secret key and the game key. Play allows a player
to play a card, and to prove that it is a legal play. Verif allows the other players
to check this proof. Finally, GetSuit returns the leading suit of the current round
(in Spades, the suit of the first card played during this round).

Definition 4. A Spade scheme is a tuple of eight algorithms W = (Init, KeyGen,
GKeyGen,DeckGen,GetHand,Play,Verif,GetSuit) defined as follows:
Init(k): It returns a setup setup.
KeyGen(setup): It returns a key pair (pk, sk).
GKeyGen: It is a 4-party protocol, where for all j ∈ J1, 4K the jth party is denoted

Pj and takes as input (skj , {pki}1≤i≤4). This protocol returns a game public
key PK, or the bottom symbol ⊥.

DeckGen: It is a 4-party Decks-random generator.
GetHand(sk, pk,PK, D): It returns a set of 13 different cards H called a hand

(where D ∈ Decks).
Play(n, id, sk, pk, st,PK, D): It takes as input a player index n ∈ J1, 4K, a card id,

a pair of secret/public key, a global state st that stores the relevent informa-
tion about the previous plays, the game public key PK and the deck D, and
returns a proof Π, and the updated global state st′.

6

Verif(n, id, Π, pk, st, st′,PK, D): It takes as input a player index n ∈ J1, 4K, a
card identity id, a proof Π generated by the algorithm Verif, the global state
st and the updated global state st′, the game public key PK and the deck D,
and returns a bit b. If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ {♥,♠,♦,♣} from the current global state of
the game st, where suit is the leading suit for the current turn.

We then define the Spades protocol, which allows four players to play Spades
using the algorithms of the Spades scheme. It is divided in four phases:

Initialisation phase: One player generates and broadcasts the public setup.

Keys generation phase: After they have generated their public/private keys,
the players run GKeyGen to generate the game key together.

Shuffle phase: The players choose a deck using DeckGen, then they compute
their own hand using GetHand.

Game phase: Finally, they play in turn using the algorithms Play and Verif to
prove the validity of the cards they play. If some verification fails, the player
has to cancel only the last card he has played, and to simply play another
card.

Definition 5. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand,Play,Verif,
GetSuit) be a Spades scheme and k ∈ N be a security parameter. Let Player1,
Player2, Player3, Player4 be four polynomial time algorithms. The Spades proto-
col instantiated by W and the setup setup between Player1,Player2, Player3 and
Player4 is the following protocol:

Initialisation phase: Player1 runs setup← Init(k) and broadcasts setup.

Keys generation phase: The players set st =⊥. Each player Playeri runs
(pki, ski) ← KeyGen(setup) and broadcasts pki, then the players generate
PK by running the protocol GKeyGen together.

Shuffle phase: The players generate a deck D ∈ Decks by running DeckGen
together. For all i ∈ J1, 4K, Playeri runs Hi ← GetHand(ski, pki, PK, D).

Game phase: This phase is composed of 52 (sequential) steps (corresponding
to the 52 cards played in a game). The players initialize the current player
index p = 1. At each turn, Playerp designates the player who plays. Each
step proceeds as follows:

– Playerp chooses id ∈ Hp, then runs (Π, st′) ← Play(p, id, skp, pkp, st,
PK, D).

– For all i ∈ J1, 4K \ {p}, Playerp sends (id, Π, st′) to Playeri.

– Each Playeri then checks that Verif(p, id, Π, pkp, st, st
′,PK, D) = 1, oth-

erwise, Playeri sends error to Playerp, who repeats this step and plays a
valid card.

– If Verif(p, id, Π, pkp, st, st
′,PK, D) = 1, all players update the state st :=

st′, and update the index p that points the next player according to the
rule of the game.

7

6 Security Properties

We first define Spades strategies. In a card game, each player chooses what card
he wants to play depending on his hand and the previously played cards of the
other players. In order to formalize the security of our protocol, we need to model
honest players who choose the cards they play themselves. A Spades strategy is
an algorithm that decides which card to play using all known information by a
given player. We define security experiments where the choices of each honest
player is simulated by a Spades strategy. The idea is that a Spades scheme
is secure if for any polynomial time adversary, the probability of winning the
experiment is negligible, whatever the Spades strategies used by the experiment.

Definition 6. A Spades strategy is a polynomial time algorithm Strat that takes
as input a tuple of cards played (which represents all cards played at some point
in a Spades game) and a set of cards hand (which represents all cards of a player
at the same point), a first player index p∗, a player index p, and that returns a
card id ∈ Hand which is valid according to the rules of Spades (i.e., that follows
the suit of the first card of the current round).

We define an experiment where a challenger simulates the Spades protocol to
an adversary. We use this experiment to define Spades’ security properties. The
adversary first chooses the index of the player he wants to corrupt. The challenger
generates the public/secret keys of the three other users, then the adversary sends
his public key together with the index of an accomplice. The accomplice allows
the experiment to capture the attacks where a dishonest player and his game
partner collude. The adversary has access to the private key of all players. The
adversary and the challenger then run the game key and the deck generation
protocol, such that the adversary plays the role of the corrupted player and the
accomplice. The challenger generates the hand of each player. Note that the
challenger cannot use the hand generation algorithm for the corrupted player,
because he does not know his secret key; however, the challenger can deduce
this hand because it contains the 13 cards that are not in the hand of the three
other users. Finally, the challenger and the adversary run the game phase, such
that the adversary plays the role of the corrupted user and his accomplice.

Definition 7. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand, Play, Verif,
GetSuit) be a Spades scheme, S = (Strat1,Strat2,Strat3,Strat4) be a tuple of
strategies, and k ∈ N be a security parameter. Let A and C be two polynomial
time algorithms. The Spades experiment ExpSpadesW,S,A(k) instantiated by W and S
between the adversary A and the challenger C is defined as follows:
Keys generation phase: C runs setup ← Init(k), sets st =⊥, and sends the

pair (setup, st) to A, who returns a corrupted user index ic ∈ J1, 4K. For all
i ∈ J1, 4K\ {ic}, C runs (pki, ski)← KeyGen(setup) and sends (pki, ski) to A,
who returns the public key pkic and an accomplice index ia.

Game key generation phase: C and A generate PK by running the algorithm
GKeyGen together, such that A plays the role of the players Pic and Pia , and
C plays the role of the other players. If PK =⊥, then C aborts and returns 0.

8

Shuffle phase: C and A generate D by running the algorithm DeckGen together,
such that A plays the role of the players Pic and Pia , and C plays the role
of the two other players. C sets p = 1 and parses D as (id1, . . . , id52).
For all i ∈ J1, 4K\ {ic}, C runs Hi ← GetHand(ski, pki,PK, D), and sets
Hic = {idi}1≤i≤52 \(∪4i=1;i 6=icHi).

Game phase: C initializes the current player index p = 1 and the corrupted
play index γ = 0, and played =⊥. For i ∈ J1, 52K:
If p 6= ic and p 6= ia: C runs id ← Stratp(played, Hp, p∗, p), then C runs

(Π, st′) ← Play(p, id, skp, pkp, st,PK, D). C sends (id, Π, st′) to A and
updates st := st′.

If p = ia: C receives (id, Π, st′) from A. If Verif(ia, id, Π, pkia , st, st
′,PK, D)

= 0, then C aborts and the experiment returns 0. Else, C updates st := st′.
If p = ic: C increments γ := γ + 1, then receives (id, Π, st′) from A and

sets (idic,γ , Πic,γ) = (id, Π). C sets stγ = st and st′γ = st′. C sets
suitic,γ = GetSuit(st). If Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK, D) = 0,

then C aborts and the experiment returns 0. Else, C updates st := st′.
C then updates the index p that points to the next player according to the rule
of Spades, parses played as (pl1, . . . , pln) (where n = |played|) and updates
played := (pl1, . . . , pln, id).

Final phase: The experiment returns 1.

The first security property of a Spades scheme is the theft-resistance, which
ensures that no adversary is able to play a card that is not in his hand, even if
the card is in the hand of his accomplice. On the other words, two partners are
not able to exchange their cards.

Definition 8. A Spades scheme W is said to be theft-resistant if for any tuple of
strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time adversary
A who plays the Spade experiment instantiated by W and S, the probability that
there exists γ ∈ J1, 13K such that:

– Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK, D) = 1, i.e., the γth play of the adver-

sary is accepted for the card idic,γ ; and
– ∀ id ∈ Hic , idic,γ 6= id, i.e., the card idic,γ is not in the adversary hand;

is negligible.

We then define the cheating-resistance property, which ensures that no ad-
versary is able to play a card if he should play another valid one.

Definition 9. A Spades scheme W is said to be cheating-resistant if for any
tuple of strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time
adversary A who plays the Spade experiment instantiated by W and S, the prob-
ability that there exists γ ∈ J1, 13K such that:

– Verif(icidic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK, D) = 1, i.e., the γth play of the adver-

sary is accepted for the card idic,γ ; and
– idic,γ .suit 6= suitic,γ and suitic,γ 6=⊥ i.e., the suit of the card idic,γ is not the

leading suit; and

9

– ∃ īd ∈ Hic such that: ∀ l ≤ γ, idic,l 6= īd and īd.suit = suitic,γ . i.e., the
adversary has a card of the leading suit in his hand that was not already
played before the γth play;

is negligible.

We define the unpredictability, which ensures that no adversary can influence
the card dealing, i.e., A cannot predict which card will be in which hand.

Definition 10. A Spades scheme W is said to be unpredictable if for any tuple
of strategies S = (Strat1,Strat2,Strat3,Strat4), any polynomial time adversary A
who plays the Spades experiment instantiated by W and S, for all i ∈ J1, 52K the
probability that idi ∈ Hic is negligibly close to 1/4.

We introduce a new experiment that is called the hand Spades experiment,
where the challenger simulates the key generation phase of the Spades protocol
(but not the game phase). In this experiment the adversary does not know the
private keys of the other players and has no accomplice. This experiment will
be used to model the attacks where an adversary tries to guess the cards of the
other players, including his partner.

Definition 11. Let W = (Init,KeyGen,GKeyGen,DeckGen,GetHand,Play,Verif,
GetSuit) be a Spades scheme and k ∈ N be a security parameter. Let A and C
be two polynomial time algorithms. The hand Spades experiment ExpHSpadesW,A (k)
instantiated by W between the adversary A and the challenger C is defined by:
Key generation phase: C runs setup ← Init(k). It sets st =⊥. It sends the

pair (setup, st) to A, who returns ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs
(pki, ski)← KeyGen(setup) and sends pki to A, who returns pkic .

Game key generation phase: C and A generate PK by running the algorithm
GKeyGen together, such that A plays the role of Pic , and C plays the role of
the three other players. If PK =⊥, then C aborts and returns 0.

Shuffle phase: A sends a deck D ∈ Decks to C. C parses D as (id1, . . . , id52).
For all i ∈ J1, 4K\ {ic}, C runs Hi ← GetHand(ski, pki,PK, D), and sets
Hic = {idi}1≤i≤52 \(∪4i=1;i 6=icHi).

Challenge phase: C picks (θ0, θ1) in (J1, 4K\ {ic})2 such that θ0 6= θ1. C picks

b
$← {0, 1} and īd

$← Hθb , and sends (īd, θ0, θ1) to A, who returns b∗.
Final phase: If b = b∗, then C returns 1, else it returns 0.

We then define the hand-privacy. This property ensures that an adversary
has no information about the hand of the other players before the game phase
is run.

Definition 12. A Spades scheme W is said to be hand-private if for any tuple of
strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial time adversary
A who plays the hand-Spades experiment instantiated by W and S, the probability
that the experiment returns 1 is negligibly closed to 1/2.

The last property is the game-privacy. The idea is that, at each step of
the game phase, the players learn nothing else than the cards that have been

10

previously played. We show that, after the game key is generated, each player
is able to simulate all the protocol interactions knowing the players’ strategies.
More formally, there exists a simulator that takes as input values known by the
player such that the player cannot distinguish whether he plays the real game
experiment or he interacts with the simulator.

Definition 13. For any k ∈ N, any Spades scheme W , any quadruplet of strate-
gies S, any adversary D and any K = (setup, pkic , {(pki, ski)}1≤i≤4;i 6=ic ,PK),

ExpSpadesW,S,K,D(k) denotes the same experiment as ExpSpadesW,S,D(k) except:
1. The challenger and the adversary use the setup and the keys in K instead of

generating fresh setup and keys during the experiment.
2. The challenger does not send ski for all 1 ≤ i ≤ 4 such that i 6= ic to A, and
A has no accomplice.

A Spades scheme W is said to be game-private if there exists a polynomial time
simulator Sim such that for any tuple of strategies S and any polynomial time 5-
party algorithm D = (D1,D2,D3,D4,D5), |Preal(D, k)− Psim(D, k)| is negligible,
where

Preal(k) =

Pr


1← D5(vw) :

setup← Init(k); ic ← D1(setup);
∀i ∈ J1, 4K,
If i 6= ic, (pki, ski)← KeyGen(setup);
Else pkic ← D2(setup, {pki}1≤j≤i , vw);

PK← GKeyGenP1,P2,P3,P4
where Pic = D3;

K := (setup, pkic , {(pki, ski)}1≤i≤4;i 6=ic
,PK);

If PK =⊥, vwr :=⊥;

Else b← ExpSpadesW,S,K,D4(vw)
(k);


Psim(k) =

Pr


1← D5(vw) :

setup← Init(k); ic ← D1(setup);
∀i ∈ J1, 4K,
If i 6= ic, (pki, ski)← KeyGen(setup);
Else pkic ← D2(setup, {pki}1≤j≤i , vw);

PK← GKeyGenP1,P2,P3,P4
where Pic = D3;

If PK =⊥, vwr :=⊥;

Else b← SimSpades
W,S,D4(vw)

(k, setup, ic, {pki}1≤i≤4 ,PK, vw);


and where vw denotes the view of D, i.e., all the values sent and received by each
algorithm of D during his interaction with the experiment.

Note that if a scheme is both hand-private and private-game, then players
have no information about the other players’ hands except for all the cards they
have already played.

7 Schemes

We first informally show how our protocol, SecureSpades, works, then we give
its formal definition.

11

Keys generation. Each player i generates 13 key pairs (pki,j , ski,j) for 1 ≤
j ≤ 13 such that pki,j = gski,j . The players then generate a game key PK

together, which is made of 52 pairs (hl,PKl) such that hl
ski,j = PKl. The keys

PKl are shuffled, meaning each player does not know which PKl corresponds
to which pki,j , except for his own public keys. To build PK, for all l ∈ J1, 52K
the players set h0,l = g and PK0,l = pki,j such that (i, j) is in J1, 4K× J1, 13K
and is different for each l. Note that it holds that h0,l

ski,j = PK0,l. The first
player then randomizes and shuffles all pairs (h0,l,PK0,l), i.e., he chooses a
random vector r and a random permutation δ and computes h1,l = (h0,δ(i))

ri

and PK1,l = (PK0,δ(i))
ri . The three other players randomize and shuffle the

pairs (hn,l,PKn,l) in order to obtain the pairs (hn+1,l,PKn+1,l) for 1 ≤ n ≤ 3
in turn in the same way, then they set (hl,PKl) = (h4,l,PK4,l) for all l. If the
shuffles are correctly built, then it holds that for each l there exists a different
pair (i, j) such that hl

ski,j = PKl. After each shuffle, the player proves that
each (hi,l,PKi,l) is a correct randomization of one (hi−1,l′ ,PKi−1,l′) where
1 ≤ l′ ≤ 52. Each player then checks that each of his secret keys match one
PKl, otherwise he aborts the protocol. Since each player shuffles the keys
using a secret permutation, they do not know which PKl matches which
pki,j , except for their own public keys.

Hand generation. Players generate a random deck D = (id1, . . . , id52) using
the RandGenDeck protocol, then for all 1 ≤ l ≤ 52, the key PKl corresponds to
the card idl. The hand of the player i is the set of all cards idl such that there
exists 1 ≤ j ≤ 13 such that hl

ski,j = PKl. Since the player does not know
the keys ski′,j for i′ 6= i, he does not know the cards of the other players.

Play a card. To play the card idl, the player i proves that the card idl matches
one of his key pki,j by showing that hl

ski,j = PKl. Note that since the player
does not reveal ski,j , he can use the same set of public keys for different
games. To prove that he cannot play any card of the leading suit, the player
i sets L such that l ∈ L if and only if idl is not of the leading suit, then the
player i proves in a zero-knowledge way that for all pki,j that correspond to
cards that are not already played, there exists an (unrevealed) l ∈ L such
that loghl(PKl) = logg(pki,j). This implies that the player has no card of the
leading suit, hence he is not cheating.

Definition 14. SecureSpades is a Spades scheme defined as follows:

Init(k): It generates a group G of prime order q, a generator g ∈ G and returns
(G, p, g).

KeyGen(setup): For all i ∈ J1, 13K, it picks ski
$← Z∗q and computes pki = gski . It

returns pk = (pk1, . . . , pk13) and sk = (sk1, . . . , sk13).
GKeyGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted

Pi, and takes as input (ski, {pkj}1≤j≤4). This protocol returns a game public
key PK, or the bottom symbol ⊥. If there exist (i1, j1) and (i2, j2) such that
(i1, j1) 6= (i2, j2) and pki1,j1 = pki2,j2 , then the players abort and return ⊥.
– For all i ∈ J1, 4K, each player parses pki as (pki,1, . . . , pki,13). For all
j ∈ J1, 13K, each player sets h0,(i−1)·13+j = g and PK0,(i−1)·13+j = pki,j.

12

– Each player Pi (for i ∈ J1, 4K) does the following step in turn: Pi picks

r = (r1, . . . , r52)
$← (Z∗q)52, and a permutation δ on the set J1, 52K.

Pi computes hi,l = hrli−1,δ(l) and PKi,l = (PKi−1,δ(l))
rl for all l ∈ J1, 52K,

then runs Πi = ZK
{

(r, δ) :
∧52
l=1

(
hi,l = hrli−1,δ(l) ∧ PKi,l = PKrli−1,δ(l)

)}
.

This proof ensures that each (hi,l,PKi,l) is the randomization of one pair
(hi−1,l′ ,PKi−1,l′) for l′ ∈ J1, 52K. Pi broadcasts {(hi,l,PKi,l)}1≤l≤52 and
Πi, then each player verifies the proof Πi. If the verification fails, then
the player aborts and returns ⊥.

– If there exists j such that for all l, h
ski,j
4,l 6= PK4,l, then Pi aborts the pro-

tocol and returns ⊥. For each i ∈ J1, 4K, Pi sets PK′i = ((h4,1,PK4,1), . . . ,
(h4,52,PK4,52)) and broadcasts it. If there exists i1 and i2 such that
PK′i1 6= PK′i2 , then Pi aborts and returns ⊥, else Pi returns PK = PK′i.

DeckGen: It is the 4-party Deck-random generator RandGenDeck protocol.
GetHand(sk, pk,PK, D): It parses sk as (sk1, . . . , sk13), PK as ((h1,PK1), . . . ,

(h52,PK52)) and D as (id1, . . . , id52). It returns the set H such that idi ∈ H
iff there exists j ∈ J1, 13K such that PKi = h

skj
i .

Play(n, id, sk, pk, st,PK, D): It parses D as (id1, . . . , id52), sk as (sk1, . . . , sk13), pk
as (pk1, . . . , pk13)), PK as ((h1,PK1), . . . , (h52,PK52)), and st as (α, suit, U1,
U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4. Let v ∈ J1, 52K
be the integer such that id = idv (i.e., v is the index of the played card id)
and t ∈ J1, 13K be the integer such that logg(pkt) = loghv (PKv) (i.e., t is
the index of the public key that corresponds to the played card id). It sets
U ′n = Un ∪ {t}. Note that at each step of the game, the set Un contains the
indexes of all the public keys of the user n that have already been used to
play a card. For all i ∈ J1, 4K\ {n}, it sets U ′i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states
which suit is the leading suit of the round, given by the first card played in
the round. This algorithm sets st′ = (α′, suit′, U ′1, U

′
2, U

′
3, U

′
4). It generates

Π0 = ZK{(skt) : pkt = gskt ∧ PKv = hsktv }, which proves that the played card
idv matches one of the secret keys of the player. Let L ∈ J1, 52K be a set such
that for all l ∈ L, suit′ 6= idl.suit, i.e., L is the set of the indexes of the cards
that are not of the leading suit this round. For all j ∈ J1, 13K
– If suit′ = id.suit, it sets Πj =⊥ (if the card id is of the leading suit, then

the player can play it in any case, so no additional proof is required).
– If j ∈ Un, it sets Πj =⊥ (We omit the keys that have already been used

in the previous rounds).

– If j 6∈ Un it generates Πj = ZK
{

(skj) :
∨
l∈L(pkj = gskj ∧ PKl = h

skj
l)
}

.

This proof ensures that the card that corresponds to each public key pkj
is not of the leading suit, which proves that the player n cannot play a
card of the leading suit.

Finally, it returns the proof Π = (t,Π0, . . . ,Π13), and the updated value st′.

13

Verif(n, id, Π, pk, st, st′,PK, D): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,
suit′, U ′1, U

′
2, U

′
3, U

′
4), pk as (pk1, . . . , pk13), the key PK as ((h1,PK1), . . . ,

(h52,PK52)), D as (id1, . . . , id52) and Π as (t, Π0, . . . ,Π13). If st =⊥, it sets
four empty sets U1, U2, U3 and U4. Let v be the integer such that idv = id
(i.e., v is the index of the played card id). Let L ∈ J1, 52K be a set such that
for all l ∈ L, suit′ 6= idl.suit, i.e., L is the set of the indexes of the cards that
are not of the leading suit. This algorithm first verifies that the state st is
correctly updated in st′ according to the Play algorithm:
– If there exists i ∈ J1, 4K\ {n} such that U ′i 6= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} 6= U ′n, then it returns 0.
– If α = 4 or st =⊥, and α′ 6= 1 or suit′ 6= id.suit, then it returns 0.
– If α 6= 4 and suit 6=⊥, and α′ 6= α+ 1 or suit′ 6= suit, then it returns 0.

This algorithm then verifies the zero-knowledge proofs in order to check that
the player does not cheat by playing a card he has not, or by playing a card
that is not of the leading suit even though he could play a card of the leading
suit.
– If Π0 is not valid then it returns 0.
– If suit′ 6= id.suit and there exists an integer j ∈ J1, nK such that j 6∈ Un

and Πj is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

Instantiation. We show how to instantiate the two zero-knowledge proofs of
knowledge used in our protocol. The first one is a zero-knowledge OR-proof of the
equality of two discrete logarithms denoted ZK {(w) :

∨n
i=1 ai

w = ci ∧ biw = di}.
An efficient instantiation of such ZKPs in the random oracle model is given
in [5]. Our protocol also uses a proof of correctness of a randomization of a set
of shuffled commitments. This proof is denoted ZK{((r1, . . . , rn), δ) :

∧n
i=1 ci =

ariδ(i) ∧ di = briδ(i)}, and can be instantiated using the previous one, since it

consists in proving the equality of two discrete logarithms for the statement
{(ai, bi, cj , dj)}1≤j≤n for each j in J1, 52K.

Security. We prove the security of our scheme in Theorem 1, then we give the
intuition of the proof. The full proof is given in Appendix.

Theorem 1. If the two proofs of knowledge are sound, extractable and zero-
knowledge, then SecureSpades is theft-resistant, cheating-resistant, hand-private,
unpredictable, and game-private under the DDH assumption in the ROM.

Theft-resistant. To play a card, the player i must prove that the discrete
logarithm of one of his public keys pki,j is equal to the discrete logarithm
of the key PKl that corresponds to the card. If the card is not in his hand,
then none of the the discrete logarithms of the public keys pki,j is equal to
the discrete logarithm of the key PKl. Hence, to play a card that is not in
his hand, the player should forge a proof of a false statement, which is not
possible, since the proof system is sound.

14

Cheating-resistant. To play a card that is not of the leading suit, the player
i must prove that the discrete logarithm of each public key pki,j is equal to
the discrete logarithm of one key PKl that corresponds to a card that is not
of the leading suit. Hence, assuming that the player has some cards of the
leading suit, in order to play another card, he should forge a proof of a false
statement. This is not possible, since the proof system is sound.

Unpredictable. Since the deck D is chosen at random thanks to the protocol
RandGen, players have no way of guessing which card matches which public
key during the keys generation phase.

Hand-private. Each player shuffles the keys PKl using a secret permutation
when he runs the GKeyRound algorithm. Moreover, the zero-knowledge proofs
ensure that for each PKl there exists a key pki,j such that loghl(PKl) =
logg(pki,j). Guessing the hand of a player i is equivalent to guessing pairs
(j, l) such that the key PKl has the same discrete logarithm in basis hl as the
key pki,j , which is equivalent to guessing whether PKl is the Diffie-Hellman
of hl and pki,j .

Game-private. During the game, the players use nothing other than zero-
knowledge proofs, which leak nothing about the secret values of the players.

Other TTGs. Our Spades security model and scheme can be generalized to
several trick-taking games. It works for any number of cards, of players, and
for any team configuration. Moreover, it can be generalized to any game where
players must play some kinds of cards according to a priority order, as long as
the players can establish the set of all the cards that should be played (when
it is possible) instead of the played one. This includes (but is not restricted to)
all variants of Spades, Whist, Bridge, Belotte, Napoleon or Boston. Moreover,
physical cards limit trick-taking games to games where players reveal all their
cards, because if they do not, cheating could not be detected, even later. Our
protocol allows the creation of new fair TTGs where players do not play all the
cards of their hand.

8 Conclusion

In this paper, we have designed a secure protocol for trick-taking games. We
used Spades, a famous online gambling card game, to illustrate our approach.
Until now, such games required a trusted sever that ensures that players are
not cheating. Our protocol allows the players to manage the game and detect
cheating by themselves, without leaking any information about the hidden cards.
Hence, a player cannot play a card that he does not have or that does not
follow the rule of the game. Our construction is based on the discrete logarithm
assumption and zero knowledge proofs. We proposed a security model and prove
the security of our protocol.

In the future, we would like to implement a prototype, in order to evaluate
the practical efficiency of our solution. Moreover, we would like to add secure
payment distributions mechanism to our protocol. Another perspective is to try
to generalize this approach to other games.

15

References

1. A. Barnett and N. P. Smart. Mental poker revisited. In Cryptography and Cod-
ing, 9th IMA International Conference, Cirencester, UK, December 16-18, 2003,
Proceedings, volume 2898, pages 370–383. Springer, 2003.

2. I. Bentov, R. Kumaresan, and A. Miller. Instantaneous decentralized poker. In
T. Takagi and T. Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 410–440, Cham, 2017. Springer International Publishing.

3. M. Blum. Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News, 15(1):23–27, Jan. 1983.

4. D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number
Theory Symposium (ANTS), LNCS. Springer, 1998. Invited paper.

5. X. Bultel and P. Lafourcade. Unlinkable and strongly accountable sanitizable
signatures from verifiable ring signatures. In CANS 2017. LNCS. Springer, 2017.

6. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Advances in Cryptology — CRYPTO ’97, pages 410–424, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

7. B. David, R. Dowsley, and M. Larangeira. Kaleidoscope: An efficient poker pro-
tocol with payment distribution and penalty enforcement. In 21st International
Conference, FC 2018, 2018.

8. B. David, R. Dowsley, and M. Larangeira. ROYALE: A framework for universally
composable card games with financial rewards and penalties enforcement. IACR
Cryptology ePrint Archive, 2018:157, 2018.

9. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, New York,
NY, USA, 1982. ACM.

10. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, Vol. 18(1), 1989.

11. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/

2004/332.

12. H. Stamer. Bibliography on mental poker. https://www.nongnu.org/libtmcg/

MentalPoker.pdf.

13. T.-j. Wei. Secure and practical constant round mental poker. In Information
Sciences, volume 273, pages 352–386, 07 2014.

14. J. Yan. Collusion detection in online bridge. In M. Fox and D. Poole, editors, Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

15. W. Zhao, V. Varadharajan, and Y. Mu. A secure mental poker protocol over the
internet. In C. Johnson, P. Montague, and C. Steketee, editors, ACSW frontiers
2003, Conferences in research and practice in information technology, pages 105–
109, Australia, 2003. Australian Computer Society.

A Cryptographic Background

In this section, we give more details about the definitions of the DDH assumption
and the zero-knowledge proofs.

16

Definition 15 (DDH [4]). Let G be a multiplicative group of prime order q and

g ∈ G be a generator. Given an instance (gx, gy, hb) for unknown (x, y)
$← (Z∗q)2

and b
$← {0, 1} such that h0

$← G and h1 = gx·y, the Decisional Diffie-Hellman
(DDH) problem is to guess b. The DDH assumption states that there exists no
polynomial time algorithm that solves the DDH problem with a non-negligible
advantage.

A Zero-Knowledge Proof of knowledge (ZKP) [10] allows a prover knowing
a witness w to convince a verifier that a statement s is in a given language
without leaking any information. We recall the definition of a non-interactive
zero-knowledge proof.

Definition 16 (NIZKP). Let R be a binary relation and let L be a language
such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A non-interactive ZKP (NIZKP) for the
language L is a couple of algorithms (ZK,Ver) such that:

ZK{w : (s, w) ∈ R}. This algorithm outputs a proof π.
Ver(s, π). This algorithm outputs a bit b.

A NIZKP proof has the following properties:

Soundness. There is no polynomial time adversary A such that A(L) outputs
(s, π) such that Ver(s, π) = 1 and s 6∈ L with non-negligible probability.

Extractability. For all s ∈ L, there exists an algorithm E (called an extrac-
tor) such that for any algorithm A, the extractor EA(s) returns w such that
(s, w) ∈ R with a similar running time than A, and with at least the same
probability as the probability that A returns π such that Ver(s, π) = 1.

Zero-knowledge. A proof π leaks no information, i.e., there exists a polynomial
time algorithm Sim (called the simulator) such that ZK{w : (s, w) ∈ R} and
Sim(s) follow the same probability distribution.

B Proofs

B.1 Proof of Lemma 1

Proof. We recall Lemma 1: for any set S and any integer n, RandGenSP1,...,Pn(k) is
secure in the random oracle model. To prove this lemma, we use the game-based
methodology [11]. We use the following sequence of games.

Game G0: It is the real security game of the n-parties S-random generator
protocols.

Game G1: It is defined as G0 except that if A asks a query that contains the
commitment of C (denoted sC) to the random oracle before than C reveals

it, then C picks s
$← S, returns it, and aborts. The probability that C aborts

is the probability that A guesses sC in q tries, where q is the number of calls
to the random oracle, hence:

|Pr[1← D(s) : s
$← G0(k)]− Pr[1← D(s) : s

$← G1(k)]| ≤ q/(2k − q)

17

Game G2: It is defined as G1 except that if A asks x and x′ to the random
oracle such that H(x) = H(x′), then C picks s

$← S, returns it, and aborts.
The probability that C aborts is lower than the probability that A guesses
x′ such that H(x) = H(x′) given x in q tries, where q is the number of calls
to the random oracle, hence:

|Pr[1← D(s) : s
$← G1(k)]− Pr[1← D(s) : s

$← G2(k)]| ≤ q/2k

Finally, A does not know any information about sC before it chooses his
commitments, and A cannot open wrongly one of its commitments by finding
a collusion, hence it cannot guesses r0|| . . . ||rn before the commitment of C
is open, and it cannot change its own commitments. Since the value that C
output is randomly generated by the random oracle, then the outputs of C
is indistinguishable from a truly random generator. We deduce that:

Pr[1← D(s) : s
$← G2(k)] = Pr[1← D(s) : s

$← RandGenC,A(k)]

From previous results, we deduce:

|Pr[1← D(s) : s
$← S]−Pr[1← D(s) : s

$← RandGenC,A(k)]| ≤ q/(2k− q) + q/2k

which concludes the proof. ut

B.2 Proof of Theorem 1

The proof of Theorem 1 follows from the theorems of this section.

Theorem 2. If SecureSpades is instantiated by two proofs of knowledge that are
sound and zero-knowledge, then SecureSpades is theft-resistant.

Proof. We claim that:
Pr[A wins] ≤ εsound(k)

We prove this claim by observing that if the adversary breaks the theft-resistance
of SecureSpades, then, at the end of the Spades experiment, ∃ γ ∈ J1, 13K such
that:

1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK, D) (1)

∀ id ∈ Hic , idic,γ 6= id (2)

With non-negligible probability. Let v ∈ J1, 52K be the integer such that id = idv.
We parse Πic,γ as (t,Π0, . . . ,Π13). Equation 1 implies:

1 = Ver(
{

(g, hv, pkic,t,PKv)
}
, Π0).

We recall that if the experiment does not abort during the key generation phase,
then all the keys pki,j are different, because if there exist (i1, i2) ∈ J1, 4K2 and
(j1, j2) ∈ J1, 13K2 such that (i1, j1) 6= (i2, j2) and pki1,j1 = pki2,j2 then the algo-
rithm GKeyGen returns ⊥. Hence, Equation 2 implies that ∃i ∈ J1, 4K\ {ic} and

18

j ∈ J1, 13K such that logg(pki,j) = loghv (PKv), which implies that logg(pkic,t) 6=
loghv (PKv). We deduce that if A wins, then during the experiment it gener-
ates a proof Π0 such that 1 = Ver(

{
(g, hv, pkic,t,PKv)

}
, Π0) and logg(pkic,t) 6=

loghv (PKv), which is a proof of a false statement, which concludes the proof. ut

Theorem 3. If SecureSpades is instantiated by two proofs of knowledge that are
sound and zero-knowledge, then SecureSpades is cheating-resistant.

Proof. We claim that:
Pr[A wins] ≤ 2 · εsound(k).

We prove this claim by observing that if the adversary breaks the cheating-
resistance of SecureSpades, then ∃ γ ∈ J1, 13K such that:

1. 1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK, D),

2. idic,γ .suit 6= suitic,γ and suitic,γ 6=⊥
3. ∃ īd ∈ Hic such that:

(a) ∀ l ≤ γ, idic,l 6= īd
(b) īd.suit = suitic,γ

with non-negligible probability. We distinguish two cases:

– The adversary forges a proof of a false statement during the GKeyGen pro-
tocol. In this case, to win the experiment, the adversary A must produce a
valid proof of a false statement, hence Pr[A wins|case 1] ≤ εsound(k).

– The adversary does not forge a proof of a false statement during the GKeyGen
protocol. In this case, for all v ∈ J1, 52K, there exist i ∈ J1, 4K and j ∈ J1, 13K
such that logg(pki,j) = loghv (PKv). In the following, we show that in this
case, Pr[A wins|case 2] ≤ εsound(k). The two cases imply that Pr[A wins] ≤
2 · εsound(k).

Assume that A wins the experiment. We recall that if the experiment does not
abort during the key generation phase, then all the keys pki,j are different. Let
L ⊂ J1, 52K be the set such that for all l ∈ L, suitic,γ 6= idl.suit. We parse Πic,γ

as (t,Π0, . . . ,Π13). Items 1, 2 and 3 imply: ∀j ∈ J1, 13K such that Πj 6=⊥, 1 =
Ver(

{
(g, hl, pkic,j ,PKl)

}
l∈L, Πj). Let v be such that īd = idv. We remark that

v 6∈ L from (3a). Moreover, since idv ∈ Hic , there exists j such that logg(pkic,j) =
loghv (PKv). We deduce that ∀l ∈ L, logg(pkic,j) 6= loghl(PKl), which implies that
Πj is a valid proof of a false statement, hence A breaks the soundness of the
proof. This concludes the proof. ut

Theorem 4. If SecureSpades is instantiated by two proofs of knowledge that are
sound and zero-knowledge and by a secure multi-party random generator, then
SecureSpades is unpredictable.

Proof. We define G0 as the real unpredictability security experiment, and G1 as
the same game as G0 except that the deck D is chosen at random in Deck by
the challenger C. Let εRG(k) be the advantage on the security of RandGen. We
have:

|Pr[1← G0(k)]− Pr[1← G1(k)]| ≤ εRG(k).

19

Let A be an adversary that plays the game G1. Assume that the adversary
does not forge a proof of a false statement during the GKeyGen protocol. In
this case, if b = 1 and PK 6=⊥, then for all v ∈ J1, 52K, there exist i ∈ J1, 4K
and j ∈ J1, 13K such that logg(pki,j) = loghv (PKv). Since D = (id1, . . . , id52) is
chosen at random, for all i ∈ J1, 52K the probability that idi ∈ Hic is 1/4. Hence
to have a non-null advantage, the adversary A must produce a valid proof of a
false statement, hence the advantage of A is lower than εsound(k):

|Pr[1← G1(k)]− 1/4| ≤ εsound(k).

Finally:
|Pr[1← G0(k)]− 1/4| ≤ εRG(k) + εsound(k)

which is negligible. This concludes the proof. ut

Definition 17 (n-DDH). Let G be a multiplicative group of prime order q and
g ∈ G be a generator. Given an instance

{
(gai , gbi , hi,b)

}
1≤i≤n such that for all

i ∈ J1, nK, (ai, bi)
$← (Z∗q)2 and b

$← {0, 1} such that hi,0
$← G and hi,1 = gai·bi ,

the n-Decisional Diffie-Hellman (n-DDH) problem is to guess b. The n-DDH
assumption states that there exists no polynomial time algorithm that solves the
n-DDH problem with a non-negligible advantage.

Lemma 2. For any n ∈ N, n-DDH holds under the DDH assumption.

Proof. We use an hybrid argument. Consider the following problem:

(j, n)-DDH problem : Let G be a multiplicative group of prime order q and
g ∈ G be a generator. Let j ∈ N be such that 0 ≤ j ≤ n. Given an instance{

(gai , gbi , hi,b)
}
1≤i≤n such that for all i ∈ J1, nK, (ai, bi)

$← (Z∗q)2 and b
$← {0, 1}

such that:

– if i ≤ j, hi,0 $← G and hi,1 = gai·bi

– else, hi,1
$← G and hi,0 = gai·bi

the (j, n)-Decisional Diffie-Hellman ((j, n)-DDH) problem is to guess b.

Let Adv(j,n)-DDH(k) (resp. Advn-DDH(k), AdvDDH(k)) be the advantage of the
best algorithm that solves the (j, n)-DDH (resp. n-DDH,DDH) problem. Let
(j, n) be a couple of positive integers such that 0 ≤ j ≤ n−1. For any adversary

that solves the (j, n)-DDH problem with advantage Adv
(j,n)-DDH
A (k), we build the

algorithm B that tries to solve the DDH problem.

algorithm B(g1, g2, h): This algorithm picks b′
$← {0, 1}, then for all i ∈

J1, nK\{j + 1} it picks (ai, bi)
$← (Z∗q)2, sets gi,1 = gai , gi,2 = gbi :

– if i ≤ j, it picks hi,0
$← G and sets hi,1 = gai·bi

– else, hi,1
$← G and hi,0 = gai·bi .

20

It sets gj+1,1 = g1, gj+1,2 = g2, and hj+1,1 = hj+1,0 = h. It runs b∗
$←

A({(gi,1, gi,2, hi,b)}1≤i≤n) and returns b∗.
We then deduce that:

AdvDDH
B (k) =

∣∣∣Adv(j,n)-DDH
A (k)− Adv

(j+1,n)-DDH
A (k)

∣∣∣ .
Hence,

AdvDDH(k) ≥
∣∣∣Adv(j,n)-DDH(k)− Adv(j+1,n)-DDH(k)

∣∣∣
which implies

n · AdvDDH(k) ≥ Advn-DDH(k).

This concludes the proof. ut

Theorem 5. SecureSpades is hand-private under the 52-DDH assumption.

Proof. Assume that there exists an adversary A that breaks the hand-privacy of
SecureSpades with advantage λ(k). We show how to build an adversary B that
solves the 52-DDH problem in (G, q, g) with a non-negligible advantage.

Construction of B
({

(ĥl, p̂kl, P̂Kl)
}
1≤l≤52

)
:

Key generation phase: This algorithm sets st =⊥. It sends ((G, q, g), st) toA.

For all i ∈ J1, 4K\ {ic} and j ∈ J1, 13K, this algorithm sets pki,j = p̂k(i−1)·13+j
and pki = (pki,1, . . . , pki,13), then it sends pki to A. Finally A returns pkic =
(pkic,1, . . . , pkic,13).

Game key generation phase: If there exist (i1, j1) and (i2, j2) such that (i1,
j1) 6= (i2, j2) and pki1,j1 = pki2,j2 , then C aborts the experiment. For all j ∈
J1, 13K, B sets h0,(i−1)·13+j = g and PK0,(i−1)·13+j = pki,j . For all i ∈ J1, 4K.
We distinguish two cases:
Case 1 (ic = 4): For all i ∈ J1, 4K:
– If i = 1, then B picks a vector r1 = (r1,1, . . . , r1,52)

$← (Z∗q)52, and a
permutation δ1 on the set J1, 52K. For all l ∈ J1, 52K:
• If PK0,l = p̂kl, then B sets h̃1,l = ĥl and ˜PK1,l = P̂Kl.

• Else it sets h̃1,l = h
r1,l
0,l and P̃K1,l = PK

r1,l
0,l .

Finally C sets h1,l = h̃1,δ1(l) and PK1,l = ˜PK1,δ1(l), and generates the
proof Π1 by running the simulator of the proof of knowledge of random-
ization of a set of commitments. B sends {(h1,l,PK1,l)}1≤l≤52 and Π1 to
D3

– If i 6= 1 and i 6= 4, then B processes as in the real protocol.
– If i = 4, it receives {(h4,l,PK4,l)}1≤l≤52 and Π4 from D3, then it uses

the knowledge extractor of the proof of knowledge of randomization of a
set of commitments (which is extractable by hypothesis) to extract the
function δ4. If this extraction fails, then it aborts the experiment and
returns a random bit. If the proof Π4 is not valid then B aborts the
experiment and returns a random bit.

21

B computes PK∗ic,l =

(PKic,l)

ic∏
j=2

1
rj,δj+1(...δic

(l)...)

.

If {P̂K(i−1)·13+j}1≤i≤4;1≤j≤13;i6=ic 6⊂ {PK
∗
ic,l}1≤l≤52, then B aborts the exper-

iment and returns a random bit, because the adversary does not correctly
shuffle the commitments of the honest players.
Case 2 (ic 6= 4): For all i ∈ J1, 4K:
– If i 6= ic and i 6= ic + 1, then B processes as in the real protocol.
– If i = ic, it receives {(hi,l,PKi,l)}1≤l≤52 and Πi from D3, then it uses

the knowledge extractor of the proof of knowledge of randomization of
a set of commitments (which is extractable by hypothesis) to extract
the function δ4 and the vector ri. If this extraction fails, it aborts the
experiment and returns a random bit. If the proof Π4 is not valid then
B aborts the experiment and returns a random bit.

– If i = ic + 1, then B picks a vector ri = (ri,1, . . . , ri,52)
$← (Z∗q)52,

and a permutation δi on the set J1, 52K. For all l ∈ J1, 52K, it computes

PK∗i−1,l =

(PKi−1,l)

i−1∏
j=1

1
rj,δj+1(...δi−1(l)...)

 then:

• If there exists l′ ∈ J1, 52K such that PK∗i−1,l = p̂kl′ , then B sets

h̃i,l = ĥl′ and ˜PKi,l = P̂Kl′ .

• Else it sets h̃i,l = h
ri,l
i−1,l and P̃Ki,l = PK

ri,l
i−1,l.

Finally C sets hi,l = h̃i,δi(l) and PKi,l = ˜PKi,δi(l), and generates the proof
Πi by running the simulator of the proof of knowledge of randomization
of a set of commitments. B sends {(hi,l,PKi,l)}1≤l≤52 and Πi to D3

B computes PK∗ic,l =

(PKic,l)

ic∏
j=1

1
rj,δj+1(...δic

(l)...)

.

If {pki,j}1≤i≤4;1≤j≤13;i 6=ic 6⊂ {PK
∗
ic,l}1≤l≤52, then B aborts the experiment

and returns a random bit, because the adversary does not correctly shuffle
the commitments of the honest players.

Finally, in all cases B sets δ = δ4 ◦ δ3 ◦ δ2 ◦ δ1, and for all l ∈ J1, 52K it sets
hl = h4,l, PKl = PK4,l, and PK = ((h1,PK1), . . . , (h52,PK52)).

Shuffle phase: A sends a deck D ∈ Decks to B, which parse D as (id1, . . . , id52).
For all i ∈ J1, 4K\ {ic}, B computes Hi = (idδ((i−1)·13+1), · · · , idδ((i−1)·13+13)).

Challenge phase: B picks (θ0, θ1) in (i ∈ J1, 4K\ {ic})2 such that θ0 6= θ1. B
picks b′

$← {0, 1} and īd ∈ Hθb′ . It sends (īd, θ0, θ1) to A, which returns b′∗.
Final phase: If b′∗ = b′, then B returns 1, else it returns 0.

We distinguish two cases :

– The adversary forges a proof of a false statement during the GKeyGen pro-
tocol. In this case, if the adversary A does not produce a valid proof for the
false statement, PK = ⊥, then the experiment aborts, hence the advantage
of B is lower than εsound(k).

22

– The adversary does not forge a proof of a false statement during the GKeyGen
protocol. In this case, if b = 1 and PK 6=⊥, then for all v ∈ J1, 52K, there
exist i ∈ J1, 4K and j ∈ J1, 13K such that logg(pki,j) = loghv (PKv). In the
following, we show that in this case, the advantage of B is lower than 2 ·
ε52-DDH(k). If b = 1, then the experiment is perfectly simulated, else, there
is no discrete logarithms equality between the keys pki,j and the keys PKv
for i ∈ J1, 4K\ {ic}, j ∈ J1, 13K and v ∈ J1, 52K. In this case the best strategy
for A is to guess b at random. We observe that:

Pr[B wins] =
1

2
· Pr[A wins|b = 0] +

1

2
· Pr[A wins|b = 1]

=
1

2
·
(

1

2
+ Pr[A wins|b = 1]

)
.

Hence: ∣∣∣∣12 − Pr[B wins]

∣∣∣∣ =
1

2
·
∣∣∣∣12 − Pr[A wins|b = 1]

∣∣∣∣ =
λ(k)

2

which is non-negligible.

The two cases imply that the advantage of B is lower than 2·ε52-DDH(k)+εsound(k),
which concludes the proof. ut

Definition 18 (n-ShDDH). Let G be a multiplicative group of prime order q
and g ∈ G be a generator. Given an instance

{
(gai , gbi , hi,b)

}
1≤i≤n such that for

all i ∈ J1, nK, (ai, bi)
$← (Z∗q)2, b

$← {0, 1}, hi = gai·bi , δ a permutation on the
set J1, nK, hi,0 = hδ(i) and hi,1 = hi, the n-Shuffled Decisional Diffie-Hellman
(n-ShDDH) problem is to guess b. The n-ShDDH assumption states that there
exists no polynomial time algorithm that solves the n-ShDDH problem with a
non-negligible advantage.

Proof. For any integer n, assume that there exists an algorithm A that solves
the n-ShDDH assumption with a non-negligible advantage λ(k). We show how to
build an algorithm B that solves the the n-DDH assumption with a non-negligible
advantage.

B({(gi,1, gi,2, hi)}1≤i≤n)): B picks b′
$← {0, 1} and δ a permutation on the set

J1, nK at random.

– If b′ = 1, it runs b′∗ ← A({(gi,1, gi,2, hi)}1≤i≤n).

– If b′ = 0, it runs b′∗ ← A(
{

(gi,1, gi,2, hδ(i))
}
1≤i≤n).

Finally, B if b′ = b′∗ then B returns 1, else it returns 0.
We observe that:

Pr[B wins] =
1

2
· Pr[A wins|b = 0] +

1

2
· Pr[A wins|b = 1]

=
1

2
·
(

1

2
+ Pr[A wins|b = 1]

)
.

23

Hence: ∣∣∣∣12 − Pr[B wins]

∣∣∣∣ =
1

2
·
∣∣∣∣12 − Pr[A wins|b = 1]

∣∣∣∣ =
λ(k)

2

which is non-negligible. This concludes the proof. ut

Theorem 6. If SecureSpades is instantiated by two proofs of knowledge that are
sound, extractable and zero-knowledge, then SecureSpades is private under the
DDH assumption.

Proof. We build the following simulator:

Construction of SimSpades
SecureSpade,S,A(vw)(k, setup, s, {pki}1≤i≤4 ,PK, vw):

Key generation phase: The simulator parses:

– For all i ∈ {1, 2, 3, 4}, pki as (pki,1, . . . , pki,13)
– It deduces skic from vw and parses it as (skic,1, . . . , skic,13) such that for

all j ∈ J1, 13K, gskic,j = pkic,j . The simulator does not abort at this point
even if it cannot find skic correctly.

It sets st =⊥. It sends (setup, st) to A, then for all i ∈ {1, 2, 3, 4}, it sends
pki to A.

Deck key generation phase: The simulator parses PK as ((h1,PK1), . . . , (h52,
PK52)). If PK =⊥ then it aborts the experiment and returns 0, else it sends
PK to A.

Shuffle phase: A sends a deck D ∈ Decks and a first player index p∗ to the
simulator, which sets p = p∗ and parses D as (id1, . . . , id52). It computes
Hic ← GetHand(skic , pkic ,PK, D). For all i ∈ {1, 2, 3, 4} \ {ic}, the simula-
tor picks Hi at random such that |Hi| = 13 and Hi ⊆ {idl}1≤l≤52 \(Hic ∪
(∪i−1j=1,j 6=icHj).

Game phase: The simulator sets γ = 0 and played =⊥. For all i ∈ J1, 52K:
If p 6= ic: The simulator runs id← Stratp(played, Hp, p∗, p), it parses st as

(α, suit, U1, U2, U3, U4) and Up as (u1, . . . , u13), then it processes as the
algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK, D) except that:
– It picks t at random in the set {t ∈ J1, 13K : ut = 0}
– We recall that there exists a polynomial time simulator Sim that

perfectly simulates the proof algorithm of the proof of knowledge
of discrete logarithms equality because it is zero-knowledge. It com-
putes Π0 using the simulator Sim as follows: Π0 ← Sim({(g, hv,
pkt,PKv)}).

– It computes Πj for all j ∈ J1, 13K using the simulator Sim as follows:
let L ∈ J1, 52K be a set such that for all l ∈ L, suit′ 6= idl.suit. For all
j ∈ J1, 13K
• If suit′ = id.suit, it sets Πj =⊥.
• If uj = 1, it sets Πj =⊥.
• If uj = 0 it generates Πj ← Sim(

{
(g, hl, pkj ,PKl)

}
l∈L).

24

It sends (id, Π, st′) to A and updates st := st′. Finally, it updates the
index p that points the next player according to the rule of Spades. It
then parses played as (pl1, . . . , pln) (where n = |played|) and updates
played := (pl1, . . . , pln, id).

If p = ic: The simulator processes as in ExpSpadesSecureSpade,S,K,A(k). Note that
the simulation may fail if it does not know skic .

Assume that there exists D such that |Preal(D, k)− Psim(D, k)| = λ(k) where
λ is non-negligible. We show how to build an algorithm B that solves the 39-
ShDDH with non negligible advantage.

Construction of B
({

(ĥl′ , p̂kl′ , P̂Kl′)
}
1≤l′≤39

)
:

Key generation phase: This algorithm sets st =⊥. It sends ((G, q, g), st) to
D1 which returns ic. For all i ∈ J1, 4K\ {ic} and j ∈ J1, 13K, this algorithm
sets:
– if i < ic, pki,j = p̂k(i−1)·13+j ,

– if i > ic, pki,j = p̂k(i−2)·13+j .
It sets pki = (pki,1, . . . , pki,13), then it sends pki to D2, which returns pkic =
(pkic,1, . . . , pkic,13).

Game key generation phase: If there exist (i1, j1) and (i2, j2) such that (i1,
j1) 6= (i2, j2) and pki1,j1 = pki2,j2 , then C aborts the experiment. For all j ∈
J1, 13K, B sets h0,(i−1)·13+j = g and PK0,(i−1)·13+j = pki,j . For all i ∈ J1, 4K.
We distinguish two cases:
Case 1 (ic = 4): For all i ∈ J1, 4K:
– If i = 1, then B picks a vector r1 = (r1,1, . . . , r1,52)

$← (Z∗q)52, and a
permutation δ1 on the set J1, 52K. For all l ∈ J1, 52K:
• If there exists l′ ∈ J1, 39K such that PK0,l = p̂kl′ , then B sets h̃1,l = ĥl′

and ˜PK1,l = P̂Kl′ .

• Else it sets h̃1,l = h
r1,l
0,l and P̃K1,l = PK

r1,l
0,l .

Finally C sets h1,l = h̃1,δ1(l) and PK1,l = ˜PK1,δ1(l), and generates the
proof Π1 by running the simulator of the proof of knowledge of random-
ization of a set of commitments. B sends {(h1,l,PK1,l)}1≤l≤52 and Π1 to
D3.

– If i 6= 1 and i 6= 4, then B processes as in the real protocol.
– If i = 4, it receives {(h4,l,PK4,l)}1≤l≤52 and Π4 from D3, then it uses

the knowledge extractor of the proof of knowledge of randomization of a
set of commitments (which is extractable by hypothesis) to extract the
function δ4. If this extraction fails, it aborts the experiment and returns
a random bit. If the proof Π4 is not valid, then B aborts the experiment
and returns a random bit.

B computes PK∗ic,l =

(PKic,l)

ic∏
j=2

1
rj,δj+1(...δic

(l)...)

.

If {P̂Kl′}1≤l′≤39 6⊂ {PK∗ic,l}1≤l≤52, then B aborts the experiment and returns

25

a random bit, because the adversary does not correctly shuffle the commit-
ments of the honest players.
Case 2 (ic 6= 4): For all i ∈ J1, 4K:
– If i 6= ic and i 6= ic + 1, then B processes as in the real protocol.
– If i = ic, it receives {(hi,l,PKi,l)}1≤l≤52 and Πi from D3, then it uses

the knowledge extractor of the proof of knowledge of randomization of
a set of commitments (which is extractable by hypothesis) to extract
the function δ4 and the vector ri. If this extraction fails, it aborts the
experiment and returns a random bit. If the proof Π4 is not valid then
B aborts the experiment and returns a random bit.

– If i = ic + 1, then B picks a vector ri = (ri,1, . . . , ri,52)
$← (Z∗q)52,

and a permutation δi on the set J1, 52K. For all l ∈ J1, 52K, it computes

PK∗i−1,l =

(PKi−1,l)

i−1∏
j=1

1
rj,δj+1(...δi−1(l)...)

 then:

• If there exists l′ ∈ J1, 39K such that PK∗i−1,l = p̂kl′ , then B sets

h̃i,l = ĥl′ and ˜PKi,l = P̂Kl′ .

• Else it sets h̃i,l = h
ri,l
i−1,l and P̃Ki,l = PK

ri,l
i−1,l.

Finally C sets hi,l = h̃i,δi(l) and PKi,l = ˜PKi,δi(l), and generates the proof
Πi by running the simulator of the proof of knowledge of randomization
of a set of commitments. B sends {(hi,l,PKi,l)}1≤l≤52 and Πi to D3.

B computes PK∗ic,l =

(PKic,l)

ic∏
j=1

1
rj,δj+1(...δic

(l)...)

.

If {p̂kl′}1≤l′≤39 6⊂ {PK
∗
ic,l}1≤l≤52, then B aborts the experiment and returns

a random bit, because the adversary does not correctly shuffle the commit-
ments of the honest players.

Finally, in all cases B sets δ = δ4 ◦ δ3 ◦ δ2 ◦ δ1, and for all l ∈ J1, 52K it sets
hl = h4,l, PKl = PK4,l, and PK = ((h1,PK1), . . . , (h52,PK52)).

Shuffle phase: D4 sends y, then B and D4 generate D by running the protocol
DeckGenP1,P2,P3,P4

together, such that D plays the role of Pic . B sets p = p∗
and parses D as (id1, . . . , id52). For all i ∈ {1, 2, 3, 4}, B computes Hi =
(idδ((i−1)·13+1), · · · , idδ((i−1)·13+13)).

Game phase: B sets γ = 0 and played =⊥. For i ∈ J1, 52K:
If p 6= ic: B runs id ← Stratp(played, Hp, p∗, p), then it processes as the

algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK, D) except that:
– We recall that there exists v such that id = idv. It chooses t =
δ−1(v)− (p− 1) · 13. Hence, v = δ((p− 1) · 13 + t).

– For all j ∈ J1, 13K, it computes Πj as in the simulator

SimSpades
SecureSpade,S,A(vw)(k, setup, s, {pki}1≤i≤4 ,PK, vw).

It sends (id, Π, st′) to D4 and updates st := st′. Finally, it updates the
index p that points the next player according to the rule of Spades. It
then parses played as (pl1, . . . , pln) (where n = |played|) and updates
played := (pl1, . . . , pln, id).

26

If p = ic: B processes as in ExpSpadesSecureSpade,S,K,D(k).
Final phase The simulated experiment returns 1.

Finally, B runs b∗ ← D5(vw), where vw denotes all the values send and received
by D during its interaction with the simulated experiment, then B returns b∗.

Analysis: We distinguish two cases :

– The adversary forges a proof of a false statement during the GKeyGen proto-
col. In this case, if D does not produce a valid proof for the false statement,
then PK = ⊥ so the experiment aborts, hence the advantage of B is lower
than εsound(k).

– The adversary does not forge a proof of a false statement during the GKeyGen
protocol. In this case, if b = 1 and PK 6=⊥, then for all v ∈ J1, 52K, there exist
i ∈ J1, 4K and j ∈ J1, 13K such that logg(pki,j) = loghv (PKv). In the following,
we show that in this case, the advantage of B is lower than 2 · ε39-ShDDH(k).
If b = 1, then the experiment is perfectly simulated, else, the simulator
SimSpades

SecureSpade,S,A(vw)(k, setup, {pki}2≤i≤n , PK, vw) is perfectly simulated. We

observe that:

Pr[B wins] =
1

2
(Pr[1← D5(vw)|b = 1] + Pr[0← D5(vw)|b = 0])

=
1

2
(Pr[1← D5(vw)|b = 1]− Pr[1← D5(vw)|b = 0] + 1) .

Finally: ∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ =
1

2
· |Preal(D, k)− Psim(D, k)| = λ(k)

2
.

The two cases imply that the advantage of B is lower than 2 · ε39-ShDDH(k) +
εsound(k), which concludes the proof. ut

27

