
Yet Another Side Channel Cryptanalysis on SM3
Hash Algorithm

Christophe Clavier, Leo Reynaud and Antoine Wurcker

eshard, France, surname.name@eshard.com

Abstract. SM3, the Chinese standard hash algorithm inspired from SHA2, can be
attacker by similar means than SHA2 up to an adaptation to its differences. But this
kind of attack is based on targeting point of interest of different kinds, some are end
of computation results, that are stored when others are in intermediate computational
data. The leakage effectiveness of the later could be subject to implementation choices,
device type or device type of leakage. In this paper, we propose a new approach that
targets only the first kind of intermediate data that are more susceptible to appear.
As an example, we targeted the HMAC construction using SM3, where our method
allows to recover the first half of the secret information. reducing the security of the
HMAC protocol.
Keywords: SM3 · Side-channel · Hash functions · HMAC · Chosen input

1 Introduction
Side-channels research field concerns the malicious usage of an involuntary leaked infor-
mation during the execution of an algorithm, with the objective to retrieve a secret such
as a cryptographic key. This was first introduced in [Koc96], where the processing time
of operations, that was secret-dependent, was revealing the secret information. Once
the side-channels potential discovered, numerous channels where used to extract secret
information, such as: power consumption [KJJ98], electromagnetic emissions [GMO01],
acoustic emissions [GST14] (extension of preliminary work of 2004), light emission [FH08].
The subject is wide, as in 2014 was shown a new leak source can be used: the ground of a
laptop could leak sensitive information along cables (USB, Ethernet, . . . ) in [GPT14].

The paper is organized as follows. The remaining of Section 1 describe HMAC and SM3
designs and clas. The Section 2 shows how an attack against SHA2-256 can be adapted to
SM3. Our contribution is given in Section 3 showing a new way to attack SM3. Finally
we conclude in Section 4.

1.1 HMAC
The HMAC stands for keyed-Hash Message Authentication Code and is a NIST standard
that can be found in [NIS08]. It is using one eligible hash function (H) to combine an
input text (T) and a key (K) into a HMAC that is used to authenticate the text T by a
receiver that shares the key K with the sender.The process is as follow:

1. (Ki,Ko) pair is derived from the key K

2. The text T is concatenated after Ki.

3. The resulting data is hashed.

4. The output of this first hash is then concatenated after Ko.

mailto:surname.name@eshard.com


2 Yet Another Side Channel Cryptanalysis on SM3 Hash Algorithm

Figure 1: HMAC algorithm structure

5. The resulting data is hashed, giving the HMAC value.

The Figure 1 shows the HMAC of a Hash function that is taking 512-bit message blocks
as input. We denote by Hi (respectively Ho) the output of first compression function f of
the first (respectively second) hash call. These values are constant (often pre-computed)
and their knowledge is sufficent to forge valid HMAC. We consider these values as target
of our attack.

1.2 SM3

The SM3 is the Chinese hash standard based on same structure than SHA2-256. The
Figure 2 shows the main parts of the SM3 algorithm. A data to be hashed of a bit length
between 0 and 264 − 1 is taken as input. The data is then padded in such a way that it
can be split in N blocks of 512 bits (same process than SHA2-256). Each block will be
treated the same way: a function f() takes the current block and the current Initialisation
Vector (IV ) to produce the IV used by next block. The first IV (IV0) is a constant. The
Last IV (IVN ) is the 256-bit hash given as output of the algorithm.

The function f(), that differs from the one of SHA2-256, is composed of several parts:

• Function T () convert 512-bit block of padded data into 64 32-bit words pairs, all
known to an attacker who knows the input data.

• Each resulting pair (Wi,W ∗i ) is used during round Ri that melts it into the 8 32-bit
values given as input.

• The resulting 8 32-bit values are given as input of next round.

• Once the 64th round output is computed, a final transformation consists in applying
addition (pairwise 32-bit modular addition) with the input used for first round.

In the loop process IVi = f(IVi−1,Blocki): We initialize the 8 32-bit local variables



Christophe Clavier, Leo Reynaud and Antoine Wurcker 3

Figure 2: SM3 algorithm structure

named a to h:

a0 = IVi−1,0

b0 = IVi−1,1

c0 = IVi−1,2

d0 = IVi−1,3

e0 = IVi−1,4

f0 = IVi−1,5

g0 = IVi−1,6

h0 = IVi−1,7

For round r ∈ [0, 63]:

SS1r = ((ar ≪ 12) + er + (Tr ≪ r)) ≪ 7 (1)
SS2r = SS1r ⊕ (ar ≪ 12) (2)
TT1r = FFr(ar, br, cr) + dr + SS2r +W ∗r (3)
TT2r = GGr(er, fr, gr) + hr + SS1r +Wr (4)
dr+1 = cr (5)
cr+1 = br ≪ 9 (6)
br+1 = ar (7)
ar+1 = TT1r (8)
hr+1 = gr (9)
gr+1 = fr ≪ 19 (10)
fr+1 = er (11)
er+1 = P0(TT2r) (12)

• Additions are done modulo 232.

• ≪ n are rotation of n bits to the left of a 32-bit word.



4 Yet Another Side Channel Cryptanalysis on SM3 Hash Algorithm

• Tr are constant values depending on the round number.

• P0(), FF () and GG() are transformation functions giving 32-bit word as output.
We finish the f() function by the 32-bit xor with initial state:

IVi,0 = IVi−1,0 ⊕ a64

IVi,1 = IVi−1,1 ⊕ b64

IVi,2 = IVi−1,2 ⊕ c64

IVi,3 = IVi−1,3 ⊕ d64

IVi,4 = IVi−1,4 ⊕ e64

IVi,5 = IVi−1,5 ⊕ f64

IVi,6 = IVi−1,6 ⊕ g64

IVi,7 = IVi−1,7 ⊕ h64

In the following we will denote δ1,r (respectively δ2,r) a part of the TT1r (respectively
TT2r) computation:

δ1,r = FFr(ar, br, cr) + dr + SS2r

δ2,r = GGr(er, fr, gr) + hr + SS1r

One can remark that SM3 cannot be attacked because this is a hash function that
processes raw data and then there is no secret to retrieve. But, its usage in protocols, such
as HMAC, may introduce a secret information that will be processed and can be targetted
by a side-channel attack.

2 Attack Adapted from State-of-the-Art
We can adapt SHA2-256 classical side-channel attack path to SM3, inspired by the one of
SHA2-256:

The attack consists in 10 steps, 8 statistical attacks and two of simple computation.
1. Recover δ1,0 constant by targeting the computation of TT10 = δ1,0 +W ∗0 thanks to

the knowledge of varying W ∗0
2. Recover δ2,0 constant by targeting the computation of TT20 = δ2,0 +W0 thanks to

the knowledge of varying W0

3. Recover a0 constant by targeting the computation of TT10⊕ a0 during TT11 thanks
to the knowledge of varying TT10

4. Recover rotl9(b0) constant by targeting the computation of TT10 ⊕ a0 ⊕ (b0 ≪ 9)
during TT11 computation thanks to the knowledge of varying TT10

5. Recover e0 constant by targeting the computation of P0(TT20) ⊕ e0 during TT21
computation thanks to the knowledge of varying TT20

6. Recover rotl19(f0) constant by targeting the computation of P0(TT20)⊕ e0⊕ (f0 ≪
19) during TT21 computation thanks to the knowledge of varying TT20

7. Recover c0 constant by targeting the computation of TT11 = c0 + . . . thanks to the
knowledge of varying TT10 and W ∗1

8. Recover g0 constant by targeting the computation of TT21 = g0 + . . . thanks to the
knowledge of varying TT20 and W1

9. Recover d0 constant by simply computing equation d0 = δ1,0− (a0⊕ b0⊕ c0)−SS20

10. Recover h0 constant by simply computing equation h0 = δ2,0− (e0⊕ f0⊕ g0)−SS10



Christophe Clavier, Leo Reynaud and Antoine Wurcker 5

3 Our Contribution

We considered that several step (steps 3 to 8) of the attack path are targeting intermediate
computation results that leakage is very sensitive to choices in implementations and chosen
device. Contrarily to step 1 and 2 that target computational result (δ1,0 and δ2,0) that
must be stored for the next round and seems then more resilient as point of interest. We
then designed an chosen text attack process that rely only on deltas leakages.

3.1 Attack Set 1

We let all byte of message vary and recover δ1,0 and δ2,0 as described in previous attack.

3.2 Attack Set 2

This time we let all bytes of message vary except the ones of W0 and W4 (32-bit words)
that are fixed to any value. This choice will fix W0 and W ∗0 values and then all outputs of
first loop are fixed too (TT10,TT20, a1, b1, c1, d1, e1, f1, g1, h1). Even if some remains
unknown, the attacker knows that they are fixed and then induce the delta values of second
round (δ1,1 and δ2,1) to be constant too. As they are constant, they can be attacked by
statistical attacks using conserved variability of W1 and W ∗1 .

3.3 Attack Set 3

The same process than previously is applied to attack third round: W0 and W4 are kept
fixed to have constancy in first round, and now W1 and W5 are fixed too to keep constancy
in second round. This induce that δ1,2 and δ2,2 are now constants and then can be targeted
using conserved variability of W2 and W ∗2 .

3.4 Attack Set 4

Again the same process than previously is applied to attack fourth round: W0, W1, W4
and W5 are kept fixed to have constancy in first and second rounds, and now W2 and W6
are fixed too to keep constancy in third round. This induce that δ1,3 and δ2,3 are now
constants and then can be targeted using conserved variability of W3 and W ∗3 .

One can remark we could not get further and recover next round deltas (δ1,4 and δ2,4)
by this methodology as it would require to have W4 both fixed (to keep constancy of first
round) and variable (to be able to attack delta values) that is impossible. But the acquired
information is enough to gain the secret value involved.

Indeed knowing pairs (δ1,i, δ2,i),∀i ∈ [0, 3] of SM3 hash lead to knowledge of Initial
Vector (IV) used. First of all, the knowledge of such delta values {δj,i}j∈[1,2],i∈[0,3] induce
the knowledge of corresponding TT1 and TT2 values. We take the equation of the fourth
set when {TTji}j∈[1,2],i∈[0,2] (of three first rounds only) are fixed constants and known.
In the following equations we indicate in red the values that are unknown and in black the
value that are known by the attacker:



6 Yet Another Side Channel Cryptanalysis on SM3 Hash Algorithm

δ1,0 =(a0 ⊕ b0 ⊕ c0) + d0 + (((a0 ≪ 12) + e0 + Cte0)⊕ (a0 ≪ 12))
δ2,0 =(e0 ⊕ f0 ⊕ g0) + h0 + ((a0 ≪ 12) + e0 + Cte0)
δ1,1 =(TT10 ⊕ a0 ⊕ (b0 ≪ 9)) + c0 + (((TT10 ≪ 12) + P0(TT20) + Cte1)⊕ (TT10 ≪ 12))
δ2,1 =(P0(TT20)⊕ e0 ⊕ (f0 ≪ 19)) + g0 + ((TT10 ≪ 12) + P0(TT20) + Cte1)
δ1,2 =(TT11 ⊕ TT10 ⊕ (a0 ≪ 9)) + (b0 ≪ 9) + (((TT11 ≪ 12) + P0(TT21) + Cte2)⊕ (TT11 ≪ 12))
δ2,2 =(P0(TT21)⊕ P0(TT20)⊕ (e0 ≪ 19)) + (f0 ≪ 19) + ((TT11 ≪ 12) + P0(TT21) + Cte2)
δ1,3 =(TT12 ⊕ TT11 ⊕ (TT10 ≪ 9)) + (a0 ≪ 9) + (((TT12 ≪ 12) + P0(TT22) + Cte3)⊕ (TT12 ≪ 12))
δ2,3 =(P0(TT22)⊕ P0(TT21)⊕ (P0(TT20) ≪ 19)) + (e0 ≪ 19) + ((TT12 ≪ 12) + P0(TT22) + Cte3)

As we can see, the number of unknown values in equations decrease. The two last
equations allows to recover the values of a0 and e0. Then, these values can be used in the
two previous equations to recover b0 and f0 and so on to the full recovery of all sought
values {a0, . . . , h0}.

The main limitation of this methodology is that the attacker do not have control (only
knowledge) over the second hash input and then cannot pursue the secret recovery by the
same methodology.

4 Conclusion
SM3 scheme is sensitive to this attack due to its design particularities as this attack do
not seems to be applicable "as is" on SHA2-256.

Even if this attack is limited to the first half of the secret of a HMAC, it still reduces its
security. Furthermore, any scheme using only one hash would be subject to total recovery
of the secret by this attack.

As a further work, we are currently working on adaptations of this attack to enable
the recovery of the second part of the secret of HMAC protocol. Considering others hash
functions would also be of interest.

References
[FH08] Julie Ferrigno and Martin Hlavác. When AES blinks: introducing optical side

channel. IET Information Security, 2(3):94–98, 2008.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES ’01,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer-
Verlag, 2001.

[GPT14] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get Your Hands Off My
Laptop: Physical Side-Channel Key-Extraction Attacks on PCs. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems
– CHES ’14, volume 8731 of Lecture Notes in Computer Science, pages 242–260.
Springer, 2014.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,



Christophe Clavier, Leo Reynaud and Antoine Wurcker 7

volume 8616 of Lecture Notes in Computer Science, pages 444–461. Springer,
2014.

[KJJ98] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Introduction to Differential
Power Analysis and Related Attacks. Technical report, Cryptography Re-
search Inc., 1998. http://www.cryptography.com/resources/whitepapers/
DPATechInfo.pdf.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology –
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer-Verlag, 1996.

[NIS08] NIST. Fips pub 198-1, the keyed-hash message authentication code (hmac).
Technical report, 2008.

http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf
http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf

	Introduction
	HMAC
	SM3

	Attack Adapted from State-of-the-Art
	Our Contribution
	Attack Set 1
	Attack Set 2
	Attack Set 3
	Attack Set 4

	Conclusion

