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Abstract. We improve the attack of Durak and Vaudenay (CRYPTO’17)
on NIST Format-Preserving Encryption standard FF3, reducing the run-
ning time fromO(N5) toO(N17/6) for domain ZN×ZN . Concretely, DV’s
attack needs about 250 operations to recover encrypted 6-digit PINs,
whereas ours only spends about 230 operations. In realizing this goal,
we provide a pedagogical example of how to use distinguishing attacks
to speed up slide attacks. In addition, we improve the running time of
DV’s known-plaintext attack on 4-round Feistel of domain ZN×ZN from
O(N3) time to just O(N5/3) time. We also generalize our attacks to a
general domain ZM ×ZN , allowing one to recover encrypted SSNs using
about 250 operations. Finally, we provide some proof-of-concept imple-
mentations to empirically validate our results.
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1 Introduction

Format-Preserving Encryption (FPE) [6, 12] is a form of deterministic symmet-
ric encryption mechanism that preserves the format of plaintexts. For example,
encrypting a 16-digit credit-card number under FPE would result in a 16-digit
number, and encrypting a valid SSN would produce a ciphertext of nine decimal
digits. FPE is widely used in practice by several companies, such as HPE Volt-
age, Verifone, Protegrity, Ingenico, to encrypt credit-card numbers and protect
legacy databases. Recent research [4, 15, 20] however show that existing FPE
standards FF1 and FF3 (NIST SP 800-38G, ANSI ASC X9.124) are somewhat
vulnerable in small domains. The most damaging attack, due to Durak and Vau-
denay (DV) [15], can recover the entire codebook of FF3 using O(N5) expected
time, for domain ZN × ZN .

Still, the attacks above are feasible only if the domain size is small; their cost
becomes prohibitive for moderate and large domains. For example, for domain
Z6
10 (namely encrypting 6-digit PINs), DV’s attack would use about 250 opera-

tions. In this paper, we improve DV’s attack to break FF3 on large domains. Our
attack can reduce the cost of breaking FF3 on domain ZN × ZN to O(N17/6)
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N Our queries DV’s queries Our rate DV’s rate Our time DV’s time

128 16,384 17,388 39% 56.85% 220 235

256 52,012 55,176 50% 55.9% 223 240

512 165,140 175,164 33% 77.4% 226 245

Table 1. Our attack versus DV’s. The first column indicates the values of N
in the domain ZN × ZN . The second column and third column show the number of
queries in our attack and that of DV respectively; in both attacks, the queries are made
over two tweaks. The fourth and fifth columns show our recovery rate and that of DV
respectively, and the fifth and sixth columns show our time and DV’s time respectively.

expected time, meaning that it will need about 230 operations to break FF3 of
the domain Z6

10 above. Achieving this efficiency involves an elegant paradigm of
combining distinguishing attacks with slide attacks [10, 11], and improved crypt-
analyses of 4-round Feistel. We give rigorous analyses to justify the advantage
of our attack, and provide proof-of-concept implementations in Section 5 that
empirically confirm our analyses.

We note that our attack essentially performs the same queries as DV’s, and thus
the two attacks have the same scenario and asymptotic data/space complexity
Θ(N11/6) for domain ZN × ZN . However, DV use more aggressive choices of
the parameters, and thus our attack is concretely better in both data and space
complexity, albeit at the cost of lower recovery rate. A concrete comparison
of the two attacks are given in Table 1. Still, one can improve the recovery
rate by relaunching our attack with different tweaks. For example, for domain
Z128 × Z128, if one relaunches our attack another time, the recovery rate would
become 1− (1− 0.39)2 ≈ 62%. See Section 3.3 for further details.

Existing cryptanalysis. Let us begin by reviewing prior attacks on the stan-
dards FF1 and FF3. Bellare, Hoang, and Tessaro (BHT) [4] give the first attack
on these schemes, showing that one can fully recover a target message using
O(N6 log(N)) pairs of plaintext/ciphertext, on domain ZN × ZN . Their attack
however requires that a designated, partially known message must have the same
right half as the target, but it is unclear how one could mount such a correlation
in practice. Hoang, Tessaro, and Trieu (HTT) [20] subsequently improve BHT’s
attack, requiring no correlation between the known messages and the target.
Even better, they can reuse the known plaintext/ciphertext pairs to attack mul-
tiple targets, thus reduce the amortized cost to O(N5 log2(N)) pairs per target.
Both attacks above apply to a generic Feistel-based FPE, meaning that they
break both FF1 and FF3, and the only way to thwart them is to increase the
round count of the underlying Feistel networks.

In a different direction, Durak and Vaudenay (DV) [15] give a dedicated attack
on FF3, exploiting a bug in its design of round functions. They show that on
domain ZN × ZN , one can recover the entire codebook of FF3 using O(N11/6)
pairs of chosen plaintext/ciphertext, within O(N5) expected running time. We
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stress that DV’s attack does not apply to FF1, and it can be fixed without
hurting performance by restricting the tweak space, as DV already suggested.

In response to DV’s attack, NIST has temporarily suspended the use of FF3,
whereas a draft update of the ANSI ASC X9.124 standard additionally recom-
mends using double encryption on small domains to cope with the other attacks.

A bird’s-eye view on DV’s attack. We now briefly sketch a blueprint of
DV’s attack. Recall that in the balanced setting, the encryption scheme of FF3
is simply a tweakable blockcipher F.E : F.Keys×F.Twk×(ZN×ZN )→ (ZN×ZN )
that is based on an 8-round balanced Feistel network. Due to a bug in the round
functions of FF3, one can find two tweaks T and T ∗ such that F.E(K,T, ·) is the
cascade g(f(·)) of two 4-round Feistel networks f and g, whereas F.E(K,T ∗, ·) =
f(g(·)). Then, by mounting a slide attack using O(N11/6) encryption queries,
we obtain O(N2) instances, each of O(N5/3) pairs of plaintext/ciphertext for f
and also O(N5/3) pairs for g. However, often just one of those instances provides
the correct ciphertexts under f or g; in the remaining instances, the ciphertexts
are random strings, independent of the plaintexts. DV resolve this by developing
a codebook-recovery attack on 4-round Feistel networks using O(N3) expected
running time. They then try this attack on every instance, using totally O(N5)
expected time.

Contribution: Eliminating false instances. To improve the running time
of DV’s attack, we observe that it is an overkill to use an expensive codebook-
recovery attack on false instances. A better solution is to find a cheap test to
tell whether an instance is true or false, and then use the codebook-recovery
attack on the true instances. A natural choice for such a test is a distinguishing
attack on 4-round Feistel. However, the requirement here is a lot more stringent.
To eliminate most of the random instances, our distinguishing attack should
output 1 with probability about 1/N if it is given a false instance. To ensure
that we will not incorrectly eliminate all true instances, the distinguishing attack
should output 1 with high probability, say 1/2, if it is given a true instance.

Our starting point is Patarin’s distinguishing attack on 4-round Feistel [25],3

which uses O(
√
N) pairs of plaintext/ciphertext. However, using this attack

for our purpose runs into two obstacles. First, Patarin’s asymptotic analysis
is insufficient to pinpoint the hidden constant in the Big-Oh. Next, Patarin’s
attack fails to meet the requirement above, as given a false instance, the attack
outputs 1 with constant probability.

Given the issues above, we instead design a new distinguishing attack, Left-Half
Differential (LHD), such that (1) in the ideal world, it returns 1 with probability
at most 1√

N
, and (2) in the real world, it returns 1 with probability at least 1−

1
8
√
N
− 10
N −

1
N3/4 . The LHD attack uses O(N5/6) pairs of plaintext/ciphertext, and

runs in O(N5/6) time. Our analyses are generalized enough to include Patarin’s
attack as a special case. As a result, we can show that for N ≥ 216, if one uses

3 While Patarin’s attack is given for classic Feistel (meaning that N = 2n, and the
underlying operator is xor), generalizing it to cover FF3 setting is straightforward.
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Type Power Source Data Time

Known-plaintext Distinguishing
[24, 1]

O(
√
N) O(

√
N)

Here

Known-plaintext Full recovery [15] O(N5/3) O(N3)

Known-plaintext Full recovery Here O(N5/3) O(N5/3)

Chosen plaintext & ciphertext Full recovery [9] O(N3/2) O(N3/2)

Table 2. A list of attacks on generic 4-round Feistel of domain ZN×ZN . While
the distinguishing attack was discovered by Patarin [24] and independently by Aiello
and Venkatesan [1], the analyses in those papers are asymptotic. Our paper gives the
first concrete treatment for this attack.

d7 ·
√
Ne pairs of plaintext/ciphertext then Patarin’s attack achieves advantage

at least 1/2.

In our test, we run LHD twice, first on the plaintext/ciphertext pairs of f , and
then on those of g. Thus given a false instance, the chance that we fail to eliminate
it is at most 1

N , whereas given a true instance, the chance that we accept it is

at least
(

1 − 1
8
√
N
− 10

N −
1

N3/4

)2
. Even better, our experiments indicate that

in practice our test is nearly perfect, meaning that empirically, we never miss a
true instance, and eliminate almost all false instances.

We note that while the idea of using distinguishing attacks to eliminate false
instances in slide attacks was already known in the literature [2], to the best of
our knowledge, nobody has ever explored this direction. Our analyses of FF3
thus provide a pedagogical example of this paradigm.

Contribution: A better attack on 4-round Feistel. Thanks to the LHD
tests above, we are now left with O(N) false instances and a few true instances.
If one uses DV’s codebook recovery attack on 4-round Feistel, one would end
up with O(N4) expected time, which is still very expensive. The core part of
DV’s attack needs to find all directed 3-cycles of zero weight in a (random) di-
rected graph G = (V,E). DV’s approach is to enumerate all directed 3-cycles via
some sparse matrix multiplications, and then pick those of zero weight, spending
O(|V |·|E|) time. We instead give an elementary algorithm that uses O(|V |+|E|)
expected time. In addition, DV’s attack relies on a conjecture of Feistel networks.
They however can only empirically verify this conjecture for N ∈ {2, 22, . . . , 29}.
In this work, we resolve this conjecture, solving an open problem posed by DV.

Our algorithm above leads to the best known-plaintext attack to 4-round Feistel
in the literature, using O(N5/3) data and time complexity. A prior work by
Biryukov, Leurent, and Perrin [9] is slightly better, recovering the codebook
within O(N3/2) data and time, but this attack requires chosen plaintexts and
ciphertexts. A comparison of the attacks on 4-round Feistel is listed in Table 2.

Other contributions. We also generalize our FF3 attack to unbalanced set-
tings, for a general domain ZM ×ZN , with M ≥ N ≥ 64, so that we can recover,
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say encrypted SSNs. The asymmetry M ≥ N however requires some care in the
extension of the attack on 4-round Feistel. In particular, due to the symmetry
of 4-round Feistel, given plaintext/ciphertext pairs (M1, C1), . . . , (Mp, Cp), one
can view M1, . . . ,Mp as the “ciphertexts” of C1, . . . , Cp under an inverse 4-round
Feistel, leading to a dual attack. The two attacks yield no difference in the bal-
anced setting M = N , but if M � N , we find that the dual attack provides a
superior recovery rate. We also introduce some tricks that substantially improve
both the data complexity and the recovery rate.

On the other hand, there are often some gaps between the choices of the pa-
rameters according to DV’s analyses, and what their experiments suggest. Even
worse, the performance of their attacks is highly sensitive: in some experiments, if
they triple the number of plaintext/ciphertext pairs, ironically, the recovery rate
drops from 77% to 0%. DV thus have to calibrate concrete choices of the param-
eters via extensive experiments. In contrast, we choose to err on the conservative
side in our analyses, and our estimates are consistent with the experiments. We
also add some fail-safe to avoid the performance degradation when the number
of plaintext/ciphertext pairs increases.

Limitation of our attack on FF3. Our attack exploits the same bug of FF3
as DV’s attack, and thus it can be thwarted without hurting performance by
restricting the tweak space, as DV suggested. In addition, both of our attack
and DV’s requires that the adversary can adaptively make chosen plaintexts on
Θ(N2) queries for domain ZN ×ZN , but it is unclear how to mount this kind of
attack, especially with that many queries, in practice.

Additional related work. There have been two separate lines of building
FPE schemes. On the theoretical side, we have provably secure constructions
that are based on card shuffling, such as Swap-or-Not [18], Mix-and-Cut [26], or
Sometimes-Recurse [22] that are too slow for performance-hungry applications.
On the practical side, in addition to FF1/FF3, there are other industry propos-
als, such as FNR from Cisco [14], or DTP from Protegrity [21], that have no
theoretical justification. Hoang, Tessaro, and Trieu [20] however show that FNR
is somewhat vulnerable in tiny domains, and DTP is completely broken even in
large domains.

In a different direction, Bellare and Hoang [3] study the security of DFF, an
FPE scheme currently proposed to NIST for standardization [28], and show
that for appropriately large domains, DFF provides a way to localize and limit
the damage from key exposure. However, as DFF is based on a 10-round Feistel
network, it is still subject to prior attacks on generic Feistel-based FPE [5, 20]
on tiny domains.

Very recently, Durak and Vaudenay [16] give some theoretical codebook-recovery
attacks on generic balanced r-round Feistel, for r ≥ 5. They conclude that on
domain ZN ×ZN , FF1 cannot provide 128-bit security for N ≤ 11, and FF3 for
N ≤ 17.
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2 Preliminaries

Notation. If y is a string then let |y| denote its length and let y[i] denote its
i-th bit for 1 ≤ i ≤ |y|. We write y[i : j] to denote the substring of y, from the ith
bit to the j-th bit, inclusive. If X is a finite set, we let x←$X denote picking an
element of X uniformly at random and assigning it to x. We use the code based
game playing framework of [7]. In particular, by Pr[G] we denote the probability
that the execution of game G returns true.

FPE. An FPE scheme F is a pair of deterministic algorithms (F.E,F.D), where
F.E : F.Keys×F.Twk×F.Dom→ F.Dom is the encryption algorithm, F.D : F.Keys×
F.Twk×F.Dom→ F.Dom the decryption algorithm, F.Keys the key space, F.Twk
the tweak space, and F.Dom the domain. For every key K ∈ F.Keys and tweak
T ∈ T, the map F.E(K,T, ·) is a permutation over F.Dom, and F.D(K,T, ·) re-
verses F.E(K,T, ·).

Feistel-based FPEs. Most existing FPE schemes, including FF3, are based
on Feistel networks. Following BHT [5], we specify Feistel-based FPE in a gen-
eral, parameterized way. This allows us to refer to both schemes of ideal round
functions for the analysis, and schemes of some concrete round functions for
realizing the standards.

We associate to parameters r,M,N,�,PL an FPE scheme F = Feistel[r,
M,N,�,PL]. Here r ≥ 2 is an integer, the number of rounds, and � is an
operation for which (ZM ,�) and (ZN ,�) are Abelian groups. We let � denote
the inverse operator of �, meaning that (X � Y )� Y = X for every X and Y .
Integers M,N ≥ 1 define the domain of F as F.Dom = ZM ×ZN . The parameter
PL = (T ,K, F1, . . . , Fr) specifies the set T of tweaks and a set K of keys, meaning
F.Twk = T and F.Keys = K, and the round functions F1, . . . , Fr such that
Fi : K×T ×ZN → ZM if i is odd, and Fi : K×T ×ZM → ZN if i is even. The
code of F.E and F.D is shown in Fig. 1.

Classic Feistel schemes correspond to the boolean case, where M = 2m and
N = 2n are powers of two, and � is the bitwise xor operator ⊕. The scheme is
balanced if M = N and unbalanced otherwise. For X = (L,R) ∈ ZM × ZN , we
call L and R the left segment and right segment of X, respectively. We write
LH(X) and RH(X) to refer to the left and right segments of X respectively.
For simplicity, we assume that 0 is the zero element of the groups (ZM ,�) and
(ZN ,�).

Feistel-based Blockciphers. If the tweak space T is a singleton set then
FPE degenerates into a blockcipher (of a general domain). For such a blockcipher
F, we write F.E(K,M) and F.D(K,C) instead of F.E(K,T,M) and F.D(K,T,C)
respectively.

In our analysis of Feistel-based blockciphers, the round functions are modeled
as truly random. We write Feistel[r,M,N,�] to denote Feistel[r,M,N,�,PL],
for the ideal choice of PL = (T ,K, F1, . . . , Fr) in which (i) T = {ε} where ε is
the empty string, and (ii) K is the set RF(r,M,N) of all tuples of functions
(G1, . . . , Gr) such that Gi : ZN → ZM if i is odd, and Gi : ZM → ZN if i is
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F.E(K,T,X)

(L,R)← X
For i = 1 to r do

If (i mod 2 = 1) then L← L� Fi(K,T,R)
Else R← R� Fi(K,T, L)

Return (L,R)

F.D(K,T, Y )

(L,R)← Y
For i = r to 1 do

If i mod 2 = 1 then L← L� Fi(K,T,R)
Else R← R� Fi(K,T, L)

Return (L,R)

 
 

 

L0 R0

R2

F1

R1L1

L2

ZM ZN

F2

R4

F3

R3L3

L4

F4

K, T

K, T

K, T

K, T

Fig. 1. Left: The code for the encryption and decryption algorithms of F =
Feistel[r,M,N,�,PL] where PL = (T ,K, F1, . . . , Fr). Right: An illustration of en-
cryption with r = 4 rounds.

even, and (iii) for 1 ≤ i ≤ r, the function Fi(K, ·) is defined as Gi(·), where
(G1, . . . , Gr)← K.

3 Breaking FF3

In this section, we describe a chosen-plaintext codebook-recovery attack on FF3
that we call Slide-then-Differential (SD) attack.4 This is based on Triangle-
Finding (TF) attack, a known-plaintext codebook-recovery attack on 4-round
Feistel that we will present in the next section. The running time of TF is
O(M5/3), and it actually recovers the round functions of the Feistel network,
using

p = max
{
b21/3M2/3Nc,

⌈
M(ln(M) + 5)

⌉}
(1)

known plaintext/ciphertext pairs. We note that TF is used in a modular way;
one does not need to know its technical details to understand SD.

The FF3 scheme. FF3 is a Feistel-based FPE scheme F = Feistel[8,M,N,
�,PL] of 8 rounds, where M and N are integers such that M ≥ N ≥ 2 and
MN ≥ 100.5 The parameter PL specifies tweak space F.Twk = {0, 1}2τ , and

4 While the notion of chosen-plaintext codebook-recovery attacks on blockciphers is
folklore, one has to exercise some care in carrying this notion to FPE, because FPE
domains can be tiny. In Appendix A, we give a formal definition of chosen-plaintext
codebook-recovery attacks on FPE.

5 In NIST specification, the � operation is the modular addition in ZN and ZM , but
here we will consider a generic group operator. Moreover, FF3 uses near-balanced
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two keyed hash functions H1 : F.Keys× {0, 1}τ × ZN → ZM , and H2 : F.Keys×
{0, 1}τ × ZM → ZN . For each i ≤ 8, if i is odd then the round function Fi
is constructed via Fi(K,T,X) = H1(K,T [1 : τ ]⊕[i− 1]τ , X), otherwise if i is
even then Fi(K,T,X) = H2(K,T [τ + 1 : 2τ ]⊕[i− 1]τ , X), where [j]τ is a τ -bit
encoding of the integer j and ⊕ is the bitwise xor operator.

In analysis, the hash functions H1 and H2 are modeled as truly random.
Formally, let K be the set RF(τ,M,N) of all pairs of functions (G1, G2) such
that G1 : {0, 1}2τ × ZN → ZM , and G2 : {0, 1}2τ × ZM → ZN . Then for
each j ≤ 2, define Hj(K, ·, ·) = Gj(·, ·), where (G1, G2) ← K, and we write
FF3[M,N, τ,�] to denote this ideal version of FF3.

In our attack to FF3, we will consider M ≥ N ≥ 64 and MN ≥ 2p, where p is
specified as in Equation (1). While there are indeed applications of smaller values
of M and N , they are already susceptible to prior attacks [15, 4, 20] whose run-
ning time is practical in those tiny domains. In addition, to simplify our asymp-
totic analysis, we will assume that N = Ω(

√
M), which applies to the setting of

the FF3 scheme, since FF3 uses near-balanced Feistel. Thus p ∈ O(M2/3N).

3.1 DV’s Blueprint for Breaking FF3

Let F = FF3[M,N, τ,�]. Let K and T be a key and tweak for F, respectively. Re-
call that F.E(K,T, ·) is an 8-round Feistel network. View F.E(K,T, ·) as the cas-
cade of two 4-round Feistel networks f and g, meaning F.E(K,T,X) = g(f(X))
for every X ∈ ZM×ZN . DV [15] observe that F.E(K,T ′, ·) is the cascade of g and
f—note that the ordering of f and g is now reversed—where T ′ = T⊕([4]τ ‖ [4]τ ).
See Fig. 2 for an illustration.

A sketch of DV’s attack. From the observation above, one can launch a
chosen-plaintext codebook-recovery attack on F as follows; this can also be
viewed as a slide attack [10, 11]. Let p be as specified in Equation (1) and let

s =
⌊√

MN/2p
⌋
≥ 1.6 Sample s elements uniformly and independently from

ZM × ZN , and let S be the set of these elements. Repeat this process, and let
S∗ be the resulting set. Recall that the adversary is given an encryption oracle
Enc in this attack. Now, for each U0 ∈ S, we iterate Ui ← Enc(T,Ui−1), for
i = 1, . . . , 2p, forming a U-chain U0 → U1 → · · · → U2p. For each V0 ∈ S∗, let
Vi ← Enc(T ′, Vi−1) for i = 1, . . . , 2p, forming a V-chain V0 → V1 → · · · → V2p.

Consider a U-chain and a V-chain such that each chain has at least p distinct
elements.7 If there is some index i < p such that V0 = f(Ui) then the pair
(Ui, V0) is called a slid pair, and Vk = f(Ui+k) and Ui+k+1 = g(Vk) for every

Feistel, and thus the values of M and N are very close: if one wants to encrypt m
characters in radix d, then M = ddm/2e and N = dbm/2c.

6 DV actually use different concrete choices of p and s to aggressively improve the
recovery rate.

7 To test if, say a U-chain (U0, . . . , U2p) contains at least p distinct elements, we only
need to check if U0 6∈ {U1, . . . , Up−1}, since |{U0, . . . , U2p}| < p if and only if U0 is
within a cycle of length k < p in the functional graph of the permutation f(g(·)).
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Fig. 2. Left: Encryption F.E(K,T, ·) as a cascade of 4-round Feistel networks f
and g. Right: Slided encryption F.E(K,T ′, ·) as a cascade of g and f , with T ′ =
T⊕([4]τ ‖ [4]τ ). Here T1 and T2 are the left half and right half of the tweak T , respec-
tively. For simplicity, in the picture, instead of writing, say T1⊕[0]τ , we simply write
T1⊕0.

U1 U2 U3

f g f g f g
U4

U0

f g

V0

f g f g f g
V2 V3

g
V1

f
V4

Fig. 3. Illustration of the slide attack. Here (U1, V0) is a slid pair.

0 ≤ k < p. Likewise, if there is some index j < p such that U0 = g(Vj) then the
pair (Vj , U0) is also called a slid pair, and Uk = g(Vj+k) and Vj+k+1 = f(Uk) for
every 0 ≤ k < p. See Fig. 3 for an illustration.

Suppose that somehow we manage to find a slid pair. Then we get p in-
put/output pairs for f , and can run TF to recover the codebook of f . Likewise,
we can also recover the codebook of g. By composing the codebook of f and g,
we finally recover the codebook of F on tweak T . We can also compose g and f
to recover the codebook of F on tweak T ′.
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Procedure SDEnc()

Pick arbitrary T ∈ {0, 1}2τ ; T ′ ← T⊕([4]τ ‖ [4]τ )

UCh← MakeChainEnc(T ); VCh← MakeChainEnc(T ′)

For U ∈ UCh,V ∈ VCh do

C←$ Slide(U ,V ); If C 6= ⊥ then return (T,C)

C′←$ Slide(V ,U); If C′ 6= ⊥ then return (T ′,C′)

Procedure MakeChainEnc(T )

p← max
{
b21/3M2/3Nc,

⌈
M(ln(M) + 5)

⌉}
s← b

√
MN/2pc; S,UCh← ∅

For i = 1 to s do U ←$ ZM × ZN ; S ← S ∪ {U}
For U0 ∈ S do

For i = 1 to 2p do Ui ← Enc(T,Ui−1)

If U0 6∈ {U1, . . . , Up−1} then UCh← UCh ∪ {(U0, . . . , U2p)}
Return UCh

Fig. 4. The blueprint of DV’s attack, which is also the main procedure of
the SD attack. Procedure Slide(U ,V ) takes as input two chains U = (U0, . . . , U2p)
and V = (V0, . . . , V2p), tries to find a slid pair (Ui, V0), and then uses TF to recover
the codebook. Numbers M,N, τ are global parameters.

The code of the blueprint of DV’s attack is given in Fig. 4, which is also the
main procedure of our SD attack. The two attacks however differ in how they
implement procedure Slide for finding a slid pair, among 2s2p ≈MN candidates.
DV simply try every possible candidate, by running (a slow version of) the TF
algorithm to recover the codebook of f and g. As we will show below, there are
often very few slid pairs, and thus DV’s attack essentially has to run TF for
about Θ(MN) times, which is very expensive. The key idea in our Slide-then-
Differential, which we will elaborate in Section 3.2, is to use some differential
analysis to quickly eliminate false candidates.

The number of slid pairs. Clearly, the attack above only works if there exists
at least one slid pair. Let P be the random variable for the number of slid pairs.
DV use a heuristic8 to estimate that Pr[P ≥ 1] ≈ 1−e−2s2p/MN ≈ 1−1/e, under
the model that the cascade of f and g is an ideal permutation. We instead give a
rigorous lower bound of Pr[P ≥ 1] for a generic value p in Lemma 1 in the same
model; the proof is in Appendix C.1. For s = 1 (equivalently, M < 1024), we
can compute the exact probability Pr[P ≥ 1], but we stress that this result only
holds in the model above. The experiments in Section 5 show that empirically,
the event P ≥ 1 happens with higher probability.

8 While DV only consider balanced Feistel networks, their heuristic can be easily
generalized to the general case. For completeness, in the proof of Lemma 1, we also
describe this heuristic argument.
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Lemma 1. Let M ≥ N ≥ 8 and let F = FF3[M,N, τ,�]. Let p ≥ 1 be an
integer such that p ≤ MN/2 and let s = b

√
MN/2pc. Let f and g be as above,

and let π be the cascade of f and g. Let P be the random variable for the number

of slid pairs. Let δ = 2p
MN −

(2.5p2−1.5p)
(MN)2 . We will model π as an ideal random

permutation on ZM × ZN .

(a) If s = 1 then Pr[P ≥ 1] = δ ≈ 3
8 .

(b) If s ≥ 2 then Pr[P ≥ 1] ≥ s2δ
2 ≈

1
2 .

Above, we show that it is quite likely that there are one or more slid pairs. How-
ever, often there will be very few of them. Lemma 2 below bounds the expected
number of slid pairs for a generic value of p; the proof is in Appendix C.2. Com-
bining this with Markov’s inequality, one can show that with probability at least
0.8, there are at most 5 slid pairs.

Lemma 2. Let M ≥ N ≥ 64 and let F = FF3[M,N, τ,�]. Let p ≥ 1 be an
integer such that p ≤ MN/2 and let s = b

√
MN/2pc. Let f and g be as above,

and let π be the cascade of f and g. Let P be the random variable for the number
of slid pairs. If we model π as an ideal random permutation on ZM × ZN then

E[P ] ≤ 2s2p
MN ≤ 1.

3.2 Distinguishing Slid-pair Candidates

As shown above, we often have very few slid pairs, among 2s2p ≈ MN candi-
dates, and using TF to find the actual slid pairs is an overkill. Note that each
candidate gives us p plaintext/ciphertext pairs for f . If a candidate is indeed a
slid pair, then the ciphertexts for f are indeed the images of the corresponding
plaintexts under f , otherwise we can view them as produced from an ideal per-
mutation on ZM ×ZN . The analogous claim also holds for g. A natural solution
is to find a quick distinguishing attack for 4-round Feistel, so that we can tell
the true candidates from the false ones.

Our distinguishing attack on 4-round Feistel. Below, we will give a dis-
tinguishing attack Left-Half Differential (LHD) of 4-round Feistel such that (1)

in the ideal world, it returns 1 with probability at most N5/6

M4/3 , and (2) in the

real world, it returns 1 with probability at least 1 −
√
N

8M −
9.7
M −

0.88N3/4

M3/2 . For
each slid-pair candidate, we run LHD on the plaintext/ciphertext pairs of f , and
also on those of g. We will accept the candidate if LHD returns 1 in both cases.
Then, for each false candidate, the chance that we incorrectly accept it is at
most N5/3/M8/3. Since we have at most MN false candidates, on average we
will have at most

MN · N
5/3

M8/3
=
N8/3

M5/3
≤ N

false candidates that survived our test. In addition, for each true candidate, the
chance that we incorrectly reject it is at most

1−
(

1−
√
N

8M
− 9.7

M
− 0.88N3/4

M3/2

)2
≤ 0.37
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for M,N ≥ 64. We note that our bounds are very conservative, since we obtain
them via Chebyshev’s inequality, which is loose. In fact, our empirical results,
presented in Section 5, significantly outperform the theoretical estimates. In
particular, on average just one (possibly false) candidate survives our test, and
we never incorrectly reject a true candidate.

Proceeding into details, the LHD algorithm is based on the following Lemma 3,
which is a generalization of a result by Patarin for balanced, boolean Feistel [24].
A more general version of Lemma 3 appears in [5] for a Feistel network of an even
number of rounds, but this result only provides a (very tight) approximation of
the bound, instead of an exact one.

Lemma 3. Let M,N ≥ 8 be integers and F = Feistel[4,M,N,�]. Let X and
X ′ be two distinct messages in ZM ×ZN such that RH(X) = RH(X ′). Let C and
C ′ be the ciphertexts of X and X ′ under F with a uniformly random key. Then

Pr[LH(C)� LH(C ′) = LH(X)� LH(X ′)] =
M +N − 1

MN
.

The proof of Lemma 3 is in Appendix C.3. It is based on the following technical
result that is also needed in several other places; the proof is in Appendix C.4.

Lemma 4. Let M,N ≥ 8 be integers and F = Feistel[4,M,N,�]. Let X and
X ′ be two distinct messages in ZM ×ZN such that RH(X) = RH(X ′). Let C and
C ′ be the ciphertexts of X and X ′ under F with a uniformly random key. Let Xt

and X ′t be the round-t intermediate outputs of X and X ′ respectively.

(a) The random variables RH(X2) and RH(X ′2) are uniformly and independently
distributed over ZN .

(b) If RH(X2) = RH(X ′2) then LH(C)�LH(C ′) = LH(X)�LH(X ′) with certainty.
(c) Fix distinct R,R′ ∈ ZN . If RH(X2) = R and RH(X ′2) = R′ then LH(C) �

LH(C ′) = LH(X)� LH(X ′) with probability 1/M .

Lemma 3 above shows that if we encrypt two messages X and X ′ of the same
right segment under a 4-round Feistel network, then there will be some bias in the
distribution of the ciphertexts C and C ′: (1) the chance that LH(C)� LH(C ′) =
LH(X) � LH(X ′) is M+N−1

MN , (2) had we instead sampled C and C ′ uniformly

without replacement from ZM×ZN , this probability would have been just N
MN−1 .

Our distinguishing attack LHD will amplify this bias, by using several messages
of the same right segments.

Random variables X1, . . . , Xm ∈ ZM × ZN are t-wise right-matching if they
satisfy the following constraints:

– If we partition X1, . . . , Xm into groups P1, . . . , Pd according to their right
segments then d ≤ t.

– Within each partition Pi, the left segments of the messages in Pi are uni-
formly distributed over ZM , subject to the constraint that those left segments
are distinct.
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Procedure LHD(X1, . . . , Xm, C1, . . . , Cm)

Partition X1, . . . , Xm by the right segments into groups P1, . . . , Pd

count← 0; ∆← 1
5
· M+N−1

MN
+ 4

5
· N
MN−1

; size ←
∑d
`=1

|P`|(|P`|−1)
2

For `← 1 to d do

For Xi, Xj ∈ P` with i < j do

If LH(Ci)� LH(Cj) = LH(Xi)� LH(Xj) then count← count + 1

If count ≥ ∆ · size then return 1 else return 0

Fig. 5. Distinguishing attack LHD on four-round Feistel.

Our attack LHD takes as input m messages (X1, . . . , Xm) that are t-wise right-
matching and their ciphertexts (C1, . . . , Cm), where m =

⌈
p
N · d32N1/6e

⌉
and

t = dmMp e. The code of LHD is given in Fig. 5. Informally, LHD will compute

count, the number of pairs Xi and Xj , with i < j, such that RH(Xi) = RH(Xj)
and LH(Ci) � LH(Cj) = LH(Xi) � LH(Xj). If the ciphertexts are produced by
a 4-round Feistel network then from Lemma 3, the expected value of count
is M+N−1

MN · size, where size is the number of pairs Xi, Xj such that i < j
and RH(Xi) = RH(Xj). If the ciphertexts are produced by a truly random
permutation on ZM × ZN then the expected value of count is N

MN−1 · size.
The algorithm LHD will return 1 if count is greater than the weighted average(

1
5 ·

M+N−1
MN + 4

5 ·
N

MN−1

)
size, otherwise it will return 0.

Implementing LHD. The code in Fig. 5 describes just the conceptual view of
LHD for ease of understanding. Implementing it efficiently requires some care.
First, messages X1, . . . , Xm will be grouped according to their right segments,
by a one-time preprocessing that we will describe in Section 3.3. Thus the par-
titioning takes only linear time. Let P1, . . . , Pd be the resulting partitions, and
let |m`| = |P`|, for every ` ≤ d. In the for loops, if we naively follow the code,
then the running time would be

d∑
`=1

Ω(m2
`) = Ω(m2/d) = Ω(M1/3N7/6),

which is expensive. Instead, we will execute as in Fig. 6. That is,

– For each fixed ` ≤ d, we want to find count`, the number of pairs (i, j) such
that i < j and Xi, Xj ∈ P` and LH(Ci) � LH(Xi) = LH(Cj) � LH(Xj). We
then can compute count via count1 + · · ·+ countd.

– Thus for each ` ≤ d, we create an empty hash table H` of key-value pairs
and initialize count` ← 0. We process P` so that eventually, for each entry
in H`, its key is a number Z ∈ ZM and its value indicates how many Xk ∈ P`
that LH(Ck)� LH(Xk) = Z.

– Finally, we iterate through all keys of H`. For each key Z, we find its value v

and update count` ← count` + v(v−1)
2 .

The total running time of this implementation is O(m) = O(M2/3N1/6).
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Procedure LHD(X1, . . . , Xm, C1, . . . , Cm)

// X1, . . . , Xm are already grouped according to their right segments

Partition X1, . . . , Xm by the right segments into groups P1, . . . , Pd

count← 0; ∆← 1
5
· M+N−1

MN
+ 4

5
· N
MN−1

; size ←
∑d
`=1

|P`|(|P`|−1)
2

For `← 1 to d do

count` ← 0; Initialize a hash table H`

For Xk ∈ P` do

Z ← LH(Ck)� LH(Xk); v ← H`[Z]

If v = ⊥ then H`[Z]← 1 else H`[Z]← v + 1

For each key Z in H` do v ← H`[Z]; count` ← count` + v(v−1)
2

count← count1 + · · ·+ countd

If count ≥ ∆ · size then return 1 else return 0

Fig. 6. Implementation of LHD.

Analysis of LHD. Lemma 5 below bounds the probability that LHD outputs 1
in the ideal world, for generic m and t, and also for a generic weighted average
∆ = λ · M+N−1

MN + (1 − λ) N
MN−1 ; see Appendix C.5 for the proof. If we pick

m =
⌈
p
N · d32N1/6e

⌉
, t = dmMp e, and λ = 1

5 as suggested then this probability

is about N5/6

M4/3 .

Lemma 5. Let M ≥ N ≥ 8 be integers, and let 0 < λ < 1 be a real number. Let
m > t ≥ 1 be integers. Let X1, . . . , Xm be t-wise right-matching messages, and let
C1, . . . , Cm be their ciphertexts, respectively, under an ideal random permutation
on ZM×ZN . Let V be the random variable of the number of pairs Xi and Xj, with
i < j, such that RH(Xi) = RH(Xj) and LH(Ci) � LH(Cj) = LH(Xi) � LH(Xj).
Let size be the number of pairs Xi, Xj such that i < j and RH(Xi) = RH(Xj),
and ∆ = λ · M+N−1

MN + (1− λ) N
MN−1 . Then

Pr [V ≥ ∆ · size] ≤ N2

λ2(M − 2)2

( 1

MN − 2
+

2MN − 2

N(m2/t−m)

)
.

Lemma 6 below bounds the probability that LHD fails to output 1 in the real
world, again for generic m and t, and for a generic weighted average ∆ =
λ · M+N−1

MN + (1 − λ) N
MN−1 ; see Appendix C.6 for the proof. If we use m =⌈

p
N · d32N1/6e

⌉
, t = dmMp e, and λ = 1

5 as suggested then this probability is

about
√
N

8M + 9.7
M + 0.88N3/4

M3/2 .

Lemma 6. Let M ≥ N ≥ 8 be integers and let 0 < λ < 1 be a real number. Let
m > t ≥ 1 be integers. Let X1, . . . , Xm be t-wise right-matching messages and let
C1, . . . , Cm be their ciphertexts, respectively, under F = Feistel[4,M,N,�] with
a uniformly random key. Let V be the random variable of the number of pairs
Xi and Xj, with i < j, such that RH(Xi) = RH(Xj) and LH(Ci) � LH(Cj) =
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LH(Xi)�LH(Xj). Let ∆ = λ ·M+N−1
MN +(1−λ) N

MN−1 , and let size be the number
of pairs Xi, Xj such that i < j and RH(Xi) = RH(Xj). Then

Pr [V ≤ ∆ · size] ≤ 2(M +N − 1)MN

(1− λ)2(m2/t−m)(M − 2)2
+

6.2(M − 1)(N − 1)

(1− λ)2N(M − 2)2

+
4MN

(1− λ)2(M − 2)2
√

(m2/t−m)
.

Using LHD. The LHD attack requires m chosen plaintexts, but recall that for
each slid-pair candidate, we only have p known plaintext/ciphertext pairs for f ,
and also p known pairs for g.9 To find m messages that are dmMp e-wise right-
matching, the naive approach is to partition p given messages according to their
right segments, and let P1, . . . , PM be the (possibly empty) partitions, with
|P1| ≥ · · · ≥ |PM |. We then output m messages from the first (and also biggest)

s =
⌈
mM
p

⌉
partitions. Since there are at most M partitions, our chosen parti-

tions contain at least
⌈
s · pM

⌉
≥ m messages. Moreover, as the given p messages

are sampled uniformly without replacement from ZM × ZN , within each parti-
tion Pi, the left segments of the messages in Pi are sampled uniformly without
replacement from ZM .

The naive approach above is however very expensive. Totally, for Θ(MN)
slid-pair candidates, it uses Ω(MNp) = Ω(M5/3N2) time just to find their right-
matching messages. In the next section we’ll describe a one-time preprocessing
of O(MN) time such that later for each slid-pair candidate, we need only O(m)
time to find their right-matching messages to run LHD tests. Only for candidates
that survive the LHD tests that we extract their p plaintext/ciphertext pairs from
the corresponding chains to run TF.

Eliminating false negatives. Since our distinguishing test of slid-pair can-
didates above might occasionally produce false negatives, we still have to use
TF to eliminate the survived false candidates. The TF algorithm, after recover-
ing the round functions (G1, G2, G3, G4), will compute the outputs of the first
3M ≤ p plaintexts under a 4-round Feistel network with the round functions
(G1, G2, G3, G4), and compare them with the corresponding ciphertexts. By a
simple counting argument, one can show that it is extremely likely that TF will
reject all these false candidates. Specifically, for a false candidate, view its 3M
associated ciphertexts as the outputs of the 3M plaintexts under an ideal permu-
tation on ZM ×ZN . On the one hand, there are at most M2NN2M ≤M2MN2N

choices of four round functions for a 4-round Feistel network on ZM×ZN . On the
other hand, if we sample 3M ciphertexts uniformly without replacement from
ZM × ZN , there are

MN · · · (MN − 3M + 1) ≥ (MN − 3M)3M ≥M3M (N − 3)3N

9 Recall that in our attack, we require M ≥ N ≥ 64. This ensures that m ≤ p, so that
we can select m right-matching messages from p known messages.
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equally likely outputs. Since we have to deal with at most MN false candidates,
the chance that the TF algorithm fails to eliminate all false candidates is at most

MN ·M2MN2N

M3M (N − 3)M+2N
=

N2N+1

M3M−1(N − 3)3N
≤ 1

M3M−1 .

Relation to prior Feistel attacks. Our LHD attack generalizes Patarin’s
distinguishing attack on 4-round balanced, boolean Feistel [24]; Patarin’s result
was later rediscovered by Aiello and Venkatesan [1]. To attack Feistel networks on
2n-bit strings, those papers suggest using messages X1, . . . , Xm of the same right
half, with m = Θ(2n/2). However, both papers only compute the expected value
of the number of pairs (i, j) such that 1 ≤ i < j ≤ m and LH(Ci)⊕LH(Cj) =
LH(Xi)⊕LH(Xj) in both the real and ideal worlds. Consequently, they cannot
analyze the advantage of their attack, and can only suggest an asymptotic value
of m. Our Lemma 5 and Lemma 6 allow one to fill this gap. By using N = M =
2n, t = 1, m = c · 2n/2, and λ = 1

2 , the attack in [24, 1] achieves advantage
around 1− 24

c2 −
29
2n −

16
c·2n/2 . Thus to achieve advantage 1/2, for n ≥ 16, we can

use c = 7.

The attack in [24, 1] however cannot be used in place of LHD. Recall that we
want a distinguishing attack that outputs 1 with probability around 1/

√
N or

smaller in the ideal world, so that it can be used to eliminate most false slid-pair
candidates. Using m = Θ(

√
N) messages as suggested in [24, 1] does not meet

this requirement, as the attack will output 1 with constant probability in the
ideal world, according to Lemma 5.

3.3 Slide-then-Differential Attack

In this Section, we describe how to combine DV’s slide attack with the LHD
attack above, resulting in our Slide-then-Differential attack.

Speeding up with preprocessing. Recall that we haveΘ(MN) slid-pair can-
didates, and for each such candidate we have to process Θ(p) pairs of plain-
text/ciphertext. At the first glance it seems that we are doomed with Ω(pMN) =
Ω(M5/3N2) time. However, we will perform a one-time preprocessing using
O(MN) time. After this preprocessing, for every slid-pair candidate, we can
extract m right-matching messages for f in O(m) = O(M2/3N1/6) time, and
even better, those messages are already grouped according to their right seg-
ments. The same running time would be needed to extract messages for g. We
then can run LHD to eliminate most false slid-pair candidates.

Proceeding into details, suppose that we have a U-chain U0 → U1 → · · · → U2p

and a V-chain V0 → V1 → · · · → V2p, and we want to check if (Ui, V0) is a slid
pair, for every k ≤ {0, 1, . . . , p − 1}. For each slid-pair candidate (Ui, V0), the
known plaintext/ciphertext pairs for f are (Ui+k, Vk) for k ≤ 2p − i, and the
known plaintext/ciphertext pairs for g are (Vk, Ui+k+1), for k ≤ 2p− k − 1.

– In order to preprocess these p slid-pair candidates for f , note that they all use
plaintexts Up+1, . . . , U2p. So we will partition these plaintexts by their right
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Procedure Slide(U ,V )

(U0, . . . , U2p)← U ; (V0, . . . , V2p)← V ; (Z1, . . . , ZMN )← ZM × ZN
L← Process((Up+1, p+ 1), . . . , (U2p, 2p))

L′ ← Process((V0, 0), . . . , (Vp−1, p− 1))

For i = 0 to p− 1 do // Check if (Ui, V0) is a slid pair

If (Dist(L,V ,−i) ∧ Dist(L′,U , i+ 1)) then

X ← (Up, . . . , U2p−1); Y ← (Vp−i, . . . , V2p−1−i)

X∗ ← (V0, . . . , Vp−1); Y ∗ ← (Ui+1, . . . , Ui+p)

f ←$ Recover(X,Y ); g←$ Recover(X∗,Y ∗)

If f 6= ⊥ and g 6= ⊥ then

For i = 1 to MN do Ci ← g(f(Zi))

Return (C1, . . . , CMN ) // Codebook is (Z1, C1), . . . , (ZMN , CMN )

Procedure Process((X1, r1), . . . , (Xp, rp)) // Preprocessing

L← ∅; m← d p
N
· d32N1/6ee

Partition (X1, r1), . . . , (Xp, rp) by the right segments

Let P1, . . . , PM be the resulting partitions, with |P1| ≥ · · · ≥ |PM |
For i = 1 to M , (X, r) ∈ Pi do: If |L| < m then L← L ∪ {(X, r)}
Return L

Procedure Dist(L,V , k) // Running LHD with preprocessed list L

i← 1, (V0, . . . , V2p)← V ; m← |L|
For (Z, r) ∈ L do Xi ← Z; Ci ← Vr+k; i← i+ 1

Return LHD(X1, . . . , Xm, C1, . . . , Cm)

Procedure Recover(X,Y )

(X0, . . . , Xp−1)←X; (Y0, . . . , Yp−1)← Y

(F1, F2, F3, F4)←$ TF(X0, . . . , Xp−1, Y0, . . . , Yp−1)

Let f be the 4-found Feistel of round functions (F1, F2, F3, F4)

// Function f will be ⊥ if TF does not fully recover (F1, F2, F3, F4)

Return f

Fig. 7. The implementation of procedure Slide in the SD attack. The numbers
M and N are global parameters. We assume that there is a global total ordering on
the domain ZM × ZN , so that we can write (Z1, . . . , ZMN )← ZM × ZN .

segments into (possibly empty) groups P1, . . . , PM , with |P1| ≥ · · · ≥ |PM |.
We then store m messages Uj from the first d32N1/6e partitions, together
with their indices j, in a list L. Later, for a slid-pair candidate (Ui, V0), we
iterate through pairs (Uj , j) in L, and for each such pair, the corresponding
ciphertext of Uj for f is Vj−i, which takes O(1) time to find if we store
(U0, . . . , U2p) and (V0, . . . , V2p) in arrays.

– Preprocessing for g is similar, but note that the p candidates all use plaintexts
V0, V1, . . . , Vp−1.
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For a pair of U chain and V chain, partitioning takes O(p + M) time, and by
using a max-heap, we can find the d32N1/6e biggest partitions in O(M) time,
and extracting m messages from those partitions takes O(m) time. Summing up,
for a pair of U chain and V chain, the running time of the preprocessing is O(p).
Hence, totally, for s2 pairs of U chains and V chains, the overall running time of
the preprocessing is O(s2p) = O(MN).

Putting things together. By combining the LHD attack and the prepro-
cessing, one can implement procedure Slide as in Fig. 7. Thus the SD attack uses
O(sp) = O(M5/6N) queries and space, and its running time is O(MN) for the
preprocessing, O(MN · m) = O(M5/3N7/6) for running LHD, and expectedly,
O(M5/3N) for running TF. Hence the total running time of SD is O(M5/3N7/6).

Improving the recovery rate. To improve the recovery rate of SD, one
can run the attack several times with different tweak pairs (T1, T1⊕Mask), . . . ,
(Tr, Tr⊕Mask), where Mask = [4]τ ‖ [4]τ . If (Ti⊕Tj)[1 : τ ], (Ti⊕Tj)[τ + 1: 2τ ] 6∈
{[0]τ , . . . , [7]τ} for every i 6= j then those r instances of SD will call AES on dif-
ferent τ -bit prefixes. If we model AES as a good PRF then the results of those
SD instances are independent. Hence if the recovery rate of SD is ε then running
it for r times will have recovery rate 1− (1− ε)r.

4 Attacking 4-round Feistel-based Blockciphers

In this section, we generalize and improve DV’s known-plaintext codebook-
recovery attack on Feistel-based, 4-round blockciphers where the Feistel network
might be unbalanced. In particular, on a four-round balanced Feistel of domain
size N2, DV’s attack runs in O(N3) expected time, but our attack, which we
name Triangle-Finding (TF), runs in only O(N5/3) expected time. Both our
attack and DV’s rely on a conjecture of Feistel networks that DV empirically
verified for balanced Feistel of domain {0, 1}2n, for n ∈ {1, . . . , 9}. We prove that
this conjecture indeed holds, making both attacks unconditional.

Let

p = max
{
b21/3M2/3Nc,

⌈
M(ln(M) + 5)

⌉}
.

In our attack, we suppose that we are given p pairs (X1, C1), . . . , (Xp, Cp) of
plaintext/ciphertext under a four-round Feistel network F = Feistel[4,M,N,�]
with a uniformly random key, where M ≥ N ≥ 64 and the plaintexts are cho-
sen uniformly without replacement from ZM × ZN . To simplify our asymptotic
analysis, we assume that N = Ω(

√
M), which applies to the setting of the FF3

scheme, since FF3 uses near-balanced Feistel. Thus p ∈ O(M2/3N).

In our attack, we need a graph representation of the first p plaintext/ciphertext
pairs, and a few algorithms, which we will elaborate in Section 4.1. We then
describe our TF attack in Section 4.2.
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Fig. 8. Top: Seven pairs of plaintext/ciphertext (X1, C1), . . . , (X7, C7) on ZM × ZN ,
with M = N = 100. Bottom: Differential graph G constructed from those seven pairs.

4.1 Differential Graph and Its Triangles

Differential graph. Let G = (V,E) be the following directed graph. First,
for each i 6= j, we create a node vi,j with label Label(vi,j) = RH(Ci) � RH(Cj)
if RH(Xi) = RH(Xj) and LH(Ci)� LH(Xi) = LH(Cj)� LH(Xj). Next, for every
two nodes vi,j and vk,` such that i, j, k, ` are distinct, we create a directed edge
(vi,j , vk,`) if LH(Cj) = LH(Ck) and the following non-degeneracy conditions hold:

(1) LH(Ci) 6= LH(C`),
(2) RH(Xi) 6= RH(Xk),
(3) RH(Xj)� RH(Xk) 6= RH(Cj)� RH(Ck), and
(4) LH(Xi)� LH(Xj) 6= LH(Xk)� LH(X`).

See Fig. 8 for an illustration of the graph G. We call G the differential graph of
the plaintext/ciphertexts pairs (X1, C1), . . . , (Xp, Cp).

Collision. For each plaintext Xi, let Xt
i denote the round-t intermediate output

of Xi under F. We say that Xi and Xj collide at round t, if either (i) t is odd
and LH(Xt

i ) = LH(Xt
j), or (ii) t is even and RH(Xt

i ) = RH(Xt
j). Lemma 7 below,

by Hoang and Rogaway [19], shows that for two distinct, non-adaptive queries,
collision at the first round is unlikely.

Lemma 7. [19] Let M,N, r ≥ 1 be integers. Let F = Feistel[r,M,N,�]. For
any distinct, non-adaptive messages X and X ′, the chance that they collide at
round 1 is at most 1/M . Moreover, if X and X ′ have the same right segment
then they will certainly not collide at round 1.

Lemma 8 below characterizes collisions in the differential graph. The proof is in
Appendix C.7.
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Lemma 8. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM×ZN . Let G = (V,E) be the differential graph of those pairs, and let (vi,j , vk,`)
be an edge of G. Partition the four corresponding messages into two groups:
{Xi, Xj}, {Xk, X`} Then

(a) There is no intra-group collision at round 1.
(b) Xk and Xj do no collide at round 1.
(c) There is at most one inter-group collision at round 1.
(d) There is no inter-group collision at round 2.

Good versus bad nodes. For a node vi,j in the differential graph G, we say
that it is good if RH(X2

i ) = RH(X2
j ); otherwise we say that it is bad. Lemma 9

below characterizes an important property of good nodes; it is a direct general-
ization of a result in DV’s work.

Lemma 9. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V,E) be the differential graph of those pairs, and let
(G1, G2, G3, G4) be the functions specified by the secret key of F. Then for any
good node vi,j ∈ V , we have Label(vi,j) = G4(LH(Ci))�G4(LH(Cj)).

Proof. Recall that Label(vi,j) = RH(Ci)� RH(Cj). Next, since

RH(Ci) = G4(LH(X3
i ))� RH(X3

i )

and since LH(X3
i ) = LH(Ci) and RH(X3

i ) = RH(X2
i ),

RH(Ci) = G4(LH(Ci))� RH(X2
i ) . (2)

Likewise,
RH(Cj) = G4(LH(Cj))� RH(X2

j ) . (3)

Subtracting Equation (2) and Equation (3) side by side, and note that RH(X2
i ) =

RH(X2
j ) since vi,j is good, we obtain

Label(vi,j) = G4(LH(Ci))�G4(LH(Cj))

as claimed. ut

The following Lemma 10 computes the average number of good and bad nodes,
and estimates the average number of edges in the differential graph; see Ap-
pendix C.8 for the proof.

Lemma 10. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V,E) be the differential graph of those pairs, and let Z be
the random variable for the number of good nodes in G. Then
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(a) E[|V |] = p(p−1)(M−1)(M+N−1)
MN(MN−1) .

(b) E[Z] = p(p−1)(M−1)
(MN−1)N .

(c) E[|E|] ≤ p!
(p−4)! ·

(M+N)2

M3N4 .

Since p = O(M2/3N) and M ≥ N , from Lemma 10, on average, the differential
graph G contains about O(M4/3) nodes, and the majority of them are good. In
addition, there are on average O(M5/3) edges in G.

A fast construction of differential graphs. The naive approach to con-
struct G would take Θ(p2) = Θ

(
M10/3

)
time just to construct the node set V .

We now show how to build G in O
(
M5/3

)
expected time; the code is given in

Fig. 9.

– First, partition the pairs (Xi, Ci) based on (LH(Ci)�LH(Xi),RH(Xi)). Using
appropriate data structure, this takes O(p) time.

– For each partition P , enumerate all distinct pairs (Xi, Ci), (Xj , Cj) ∈ P .
Each such pair forms a node in V , and its label can be computed accordingly.
This takes O(|V |) time.

– Finally, partition V into M groups Pd with d ∈ ZM , such that each node
vi,j goes to group PLH(Cj). Also, partition V into M groups Sd with d ∈ ZM ,
such that each node vk,` goes to group SLH(Ck). By enumerating elements
in Pd × Sd (with some pruning) for every d ∈ ZM via appropriate data
structure, we can create the edge set E using

O
(
|V |+M +

∑
i,j,k,`

Di,j,k,`

)
time, where Di,j,k,` is the indicator random variable for the event that (i)
vi,j ∈ V , (ii) vk,` ∈ V , and (iii) LH(Cj) = LH(Ck). The summation is taken
over all distinct i, j, k ∈ {1, . . . , p} and ` ∈ {1, . . . , p}\{k}. By pretend-
ing that (i), (ii), (iii) are independent, we can heuristically estimate that
Pr[Di,j,k,` = 1] / 4

MN4 .

Hence the total expected time is

O
(
p+M + E[|V |] +

4p4

MN4

)
= O

(
M5/3

)
.

Triangles. Recall that from Lemma 10, on average, the majority of nodes in
the differential graph are good. We now describe a method to realize good nodes
with high probability. A triangle of the graph G is a directed cycle of length 3.
For a triangle T = (u1, u2, u3, u1), its weight weight(T ) is defined as the sum of
the labels, meaning that

weight(T ) = Label(u1)� Label(u2)� Label(u3) .

DV observed that in the balanced setting, for a triangle T , if all of its three nodes
are good then its weight is 0. Lemma 11 below shows that their observation also
holds in the unbalanced setting.
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Procedure BuildGraph(X1, C1, . . . , Xp, Cp)

V,E ← ∅; Initialize a hash table H

For i = 1 to p do Z ← (LH(Ci)� LH(Xi),RH(Xi)); P ← H[Z]; P ← P ∪ {i}
For each key Z in H do

For i, j ∈ H[Z], with i 6= j, do

vi,j ← (i, j); Label(vi,j)← RH(Ci)� RH(Cj); V ← V ∪ {vi,j}
For d ∈ ZM do Pd, Sd ← ∅
For v ∈ V do (i, j)← v; PLH(Cj) ← PLH(Cj) ∪ {v}; PLH(Ci) ← PLH(Ci) ∪ {v}
For d ∈ ZM do

Initialize a hash table Hd

For v = (k, `) ∈ Sd do L← Hd[k]; L← L ∪ {v}
For every u = (i, j) ∈ Pd and every key k ∈ Hd such that k 6∈ {i, j} do

For every v = (k, `) ∈ Hd[k] such that ` 6∈ {i, j} do

// Check non-degeneracy requirements

If LH(Ci) 6= LH(C`) and RH(Xi) 6= RH(Xk)

and RH(Xj)� RH(Xk) 6= RH(Cj)� RH(Ck)

and LH(Xi)� LH(Xj) 6= LH(Xk)� LH(X`) then E ← E ∪ {(u, v)}
Return G = (V,E)

Fig. 9. Code for building the differential graph G = (V,E) of X1, C1, . . . , Xp, Cp.

Lemma 11. Let M,N ≥ 10 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V,E) be the differential graph of those pairs. For a triangle
T in G, if all the three nodes of T are good then weight(T ) = 0.

Proof. Consider a triangle (vi,j , vk,`, vr,s) such that all the three nodes are good.
Let (G1, G2, G3, G4) be the functions specified by the secret key of F. From
Lemma 9,

Label(vi,j) = G4(LH(Ci))�G4(LH(Cj)) ,

Label(vk,`) = G4(LH(Ck))�G4(LH(C`)) ,

Label(vr,s) = G4(LH(Cr))�G4(LH(Cs)) .

Since (vi,j , vk,`, vr,s) is a directed cycle in G, LH(Ck) = LH(Cj) and LH(Cr) =
LH(C`) and LH(Cs) = LH(Ci). Thus the sum of the three labels is indeed 0. ut

Above, we show that a triangle whose nodes are all good will have weight 0. The
following Lemma 12 shows that the converse holds with very high probability;
see Appendix C.9 for the proof. This proves a conjecture in DV’s work [15] that
they empirically verified for the balanced, boolean case M = N = 2n, with
n ∈ {2, 3, . . . , 9}. We also give a rigorous lower bound for the expected number
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of triangles whose all nodes are good, whereas DV could only give a heuristic
estimation of this number.

Lemma 12. Let M,N ≥ 19 be integers and let F = Feistel[4,M,N,�]. Let
(X1, C1), . . . , (Xp, Cp) be plaintext/ciphertext pairs under F with a uniformly
random key, where the plaintexts are chosen uniformly without replacement from
ZM × ZN . Let G = (V,E) be the differential graph of those pairs.

(a) For a triangle T in G of zero weight, the probability that all nodes in T are

good is at least 1
1+ε , where ε = N

M−9

(
4
M + 33N

(N−2)M2 + 39
M2

)
.

(b) The expected number of triangles in G whose all nodes are good is at least
p!

3(p−6)! ·
1

M3N6

(
1− 7

N −
14
M

)
.

Discussion. While the core idea of differential graphs is from DV’s work, there
are important differences between our definition and DV’s:

– Because of the symmetry of Feistel, one can view Rev(X1), . . . ,Rev(Xp) as
the “ciphertexts” of Rev(C1), , . . . ,Rev(Cp) under a four-round Feistel F =
Feistel[4, N,M,�] where Rev(X) = (R,L) for any X = (L,R) ∈ ZM × ZN .
In this sense, DV’s notion is the dual of ours. While the two definitions yield
no difference in the balanced setting, if M � N , DV’s notion would give a
much poorer bound10 in a dual version of Lemma 12, leading to an inferior
recovery rate of the TF attack.

– Our notion also adds some non-degeneracy requirements, allowing us to
prove DV’s conjecture on differential graph in Lemma 12 further below.

Enumerating zero-weight triangles. From Lemma 12, a simple way to
realize good nodes is to enumerate all triangles of zero weight. We now show
how to do that in O(M5/3) expected time; the code is given in Fig. 10.

– First, for each node v ∈ V , partition its set of incoming edges such that
each edge (u, v) goes to group Pv,d, with d = Label(u) � Label(v), and also
partition the set of outgoing edges into groups such that each edge (v, w)
goes to group Sv,s, where s = 0� Label(w).

– Next for each (v, d), enumerate all pairs (u,w) ∈ Pv,d ×Sv,d such that there
is a directed edge (w, u) ∈ E. Each triple (v, u, w) is a triangle of zero weight.

Using appropriate data structure, the first step takes O(|V |+ |E|) time, whereas
the cost of the second step is in the order of∑

v∈V

∑
d∈ZN

|Pv,d| · (1 + |Sv,d|) ≤
(∑
v∈V

∑
d∈ZN

|Pv,d|
)

+
(∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)

10 In fact, the dual version of Lemma 12 would yield the bound 1
1+ε∗ , where ε∗ =

M
N−9

(
4
N

+ 33M
(M−2)N2 + 39

N2

)
. Concretely, for M = 100 and N = 10, the bound in our

Lemma 12 is 0.9947, whereas its dual is much poorer, just 0.0089.
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Procedure GetTriangles(G, X1, C1, . . . , Xp, Cp)

(V,E)← G; L← ∅; Initialize hash tables H0, H1, H2

For every edge (u, v) ∈ E do

d← Label(u)� Label(v); P ← H1[v, d]; P ← P ∪ {e}
s← 0� Label(v); S ← H2[u, s]; S ← S ∪ {e}; H0[e]← 1

For every key (v, d) of H1, every u ∈ H1[v, d], w ∈ H2[v, d] do

If H0[(w, u)] = 1 then T ← (u, v, w); L← L ∪ {T }
Return L

Fig. 10. Code to enumerate triangles of zero weight from the differential
graph G = (V,E) of X1, C1, . . . , Xp, Cp.

=
(∑
v∈V

indeg(v)
)

+
(∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)

= |E|+
(∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
)
,

where indeg(v) is the incoming degree of node v. Since E[|V |] ∈ O(M4/3) and
E[|E|] ∈ O(M5/3), what remains is to show that

E
[∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]
∈ O(M5/3) . (4)

For each tuple L = (i, j, k, `, r, s, d) ∈ ({1, . . . , p})6 × ZN such that i, j, k, `, r, s
are distinct, let BL denote the Bernoulli random variable such that BL = 1
if and only if (vi,j , vk,`) and (vr,s, vi,j) are edges of G, and vk,` ∈ Svi,j ,d and
vr,s ∈ Pvi,j ,d. Then

E
[∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]

= E
[∑
L
BL

]
=
∑
L

E[BL] =
∑
L

Pr[BL = 1] .

Note that for each L = (i, j, k, `, r, s, d), the event BL = 1 happens only if
the following events happen: (1) vi,j ∈ V , (2) vj,k ∈ V , (3) vr,s ∈ V , (4)
LH(Cj) = LH(Ck), (5) LH(Cs) = LH(Ci), (6) Label(vi,j) � Label(vr,s) = d, and
(7) Label(vk,`) = 0� d. By pretending that these seven events are independent,
from Lemma 3, we can heuristically estimate

Pr[BL = 1] /
(M +N − 1

MN
· 1

N

)3( 1

M

)2( 1

N

)2
≤ (M +N)3

M5N8
≤ 8

M2N8
.

Hence ∑
L

E[BL] /
p! ·N

(p− 6)!
· 8

M2N8
∈ O(M2/N) .

Moreover, due to our assumption that N = Ω(
√
M), it follows that M2/N ∈

O(M1.5). We then conclude that

E
[∑
v∈V

∑
d∈ZN

|Pv,d| · |Sv,d|
]
∈ O(M1.5)
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and thus justify Equation (4).

Remarks. DV also considered the problem of finding zero-weight triangles for
the balanced case M = N . They first enumerated all triangles via sparse matrix
multiplications, and then computed the sum of labels for each triangle. In this
balanced setting, DV’s algorithm takes O(N3) time, whereas our algorithm takes
O(N5/3) time.

4.2 The TF Attack

We begin with a simple but useful observation of DV on four-round Feistel.

An observation. Let (F1, F2, F3, F4) be the round functions of F. For any ∆ ∈
ZN , let Shift(F, ∆) denote a 4-round Feistel network F = Feistel[4,M,N,�] of
round functions (F 1, F 2, F 3, F 4) such that F 1 = F1, F 2(K,x) = F2(K,x)�∆,
F 3(K, y) = F3(K, y�∆), and F 4(K,x) = F4(K,x)�∆, for any x ∈ ZM , y ∈ ZN ,
and any key K. Note that for any choice of ∆, scheme F = Shift(F, ∆) ensures
that F.E(K,X) = F.E(K,X) for any key K and any X ∈ ZM × ZN . Therefore,
in a codebook recovery attack against F.E(K, ·), without loss of generality, one
can pick a designated point x∗ ∈ ZM and assume that F4(K,x∗) = 0.

The attack. Let (G1, G2, G3, G4) be the functions specified by the secret key
of F. We will recover even the tables of those functions, instead of just the
codebook.

Our attack TF is based on a known-plaintext codebook-recovery attack RY
on three-round Feistel that we describe in Appendix B. If we run RY on ` ≥
max{dN(ln(N)+ln(2)+λ)e, dM(ln(M)+δ)e} known plaintext/ciphertext pairs,
for any λ, δ > 0, the RY attack will take O(`) time, and recovers all the round

functions of the three-round Feistel with probability around e−e
−λ − e−δ. If we

just have ` ≥ dN(ln(N)+ln(2)+λ)e then RY will recover the top round function

with probability at least e−e
−λ

. We note that RY is used in a modular way; one
does not need to know the technical details of RY to understand the TF attack.

While TF somewhat resembles DV’s attack on 4-round Feistel, there are impor-
tant changes to improve efficiency and recovery rate, which we will elaborate
further below. The code of TF is given in Fig. 11; below we will describe the
attack.

In the TF attack, we will first construct the differential graph G = (V,E) of
the plaintext/ciphertext pairs (X1, C1), . . . , (Xp, Cp), and then enumerate all
triangles of G of zero weight. Let S be the set of the nodes of those triangles;
each node S is very likely to be good, due to Lemma 12. For each vi,j ∈ S, from
Lemma 9, if vi,j is indeed good then Label(vi,j) = G4(LH(Ci))�G4(LH(Cj)).

Our first step is to recover several (but possibly not all) entries of G4. In order
to do that, construct the following undirected graph G∗ = (V ∗, E∗) of |V ∗| = M
nodes. Nodes in V ∗ are distinctly labeled by elements of ZM . For each node
vi,j ∈ S, we create an edge between nodes LH(Ci) and LH(Cj) of V ∗, indicating
that we know the difference between G4(LH(Ci)) and G4(LH(Cj)). Once the
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Procedure TF(X1, C1, . . . , Xp, Cp)

G ← BuildGraph(X1, C1, . . . , Xp, Cp) // Build the differential graph

L← GetTriangles(G, X1, C1, . . . , Xp, Cp) // Enumerate zero-weight triangles

V ∗, E∗, S ← ∅; Initialize a hash table H

For every T ∈ L do (u, v, w)← T ; S ← S ∪ {u, v, w}
For i ∈ ZM do V ∗ ← V ∗ ∪ {i}
For every v ∈ S do

(i, j)← v; e← {LH(Ci), LH(Cj)}; E∗ ← E∗ ∪ {e}
H[e]← (LH(Ci), Label(v))

G∗ ← (V ∗, E∗); Let C be the biggest connected component of G∗

For i← 1 to µ do

(G1, G2, G3, G4)← Restore(X1, C1, . . . , Xp, Cp, C)
For j ← 1 to 3M do // Checking consistency of (G1, G2, G3, G4)

(L,R)← Xj

For k ← 1 to 4 do

If (k mod 2 = 1) then L← L�Gk(R) else R← R �Gk(L)

C∗j ← (L,R)

If (C1, . . . , C3M ) = (C∗1 , . . . , C
∗
3M ) then return (G1, G2, G3, G4)

Fig. 11. The TF attack (parameterized by a small number µ) on 4-round Feis-
tel, which is based on another attack RY on 3-round Feistel and a procedure
Restore in Fig. 12.

graph G∗ is constructed, we pick an arbitrary node x∗ ∈ V ∗ that belongs to the
biggest connected component of G∗, and set G4(x∗)← 0. We then recover G4(u)
for every node u ∈ V ∗ reachable from x∗ using breadth-first search (BFS), but

stop when
⌊

3M√
N

⌋
entries of G4 are recovered. Let I ⊆ {1, 2, . . . , p} be the set of

indices i such that G4(LH(Ci)) is recovered at this point.

Our next step is to recover the entire table of G1 using RY. For each i ∈ I,
recover the round-3 intermediate output Yi of Xi via LH(Yi) = LH(Ci) and
RH(Yi) = G4(LH(Ci)) � RH(Ci). Then run RY on the pairs {(Xi, Yi) | i ∈ I}
to recover G1, and then recover the round-1 intermediate outputs Z1, . . . , Zp of
X1, . . . , Xp. In addition, observe that Rev(Ci) is the ciphertext of Rev(Zi) under
a 3-round Feistel F = Feistel[3, N,M,�] of round functions G2, G3, G3 (note
that the roles of M and N are now reversed), where for Z = (A,B) ∈ ZM ×ZN ,
we write Rev(Z) to denote the pair (B,A) ∈ ZN × ZM . We then run RY on
Rev(Z1), . . . ,Rev(Zp),Rev(C1), . . . ,Rev(Cp) to recover G2, G3, G4.

To amplify the recovery rate, instead of using just one random node x∗, we try µ
independent choices of x∗; in our implementation, we pick µ = 10.11 As analyzed

11 We note that here µ = 10 means that the attack will iterate up to 10 times, each
time with an independent choice of the initial node x∗, until it succeeds in recovering
the entire codebook. The expected number of the iterations is often smaller than 10.
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Procedure Restore(X1, C1, . . . , Xp, Cp, C)
Pick a node x∗ uniformly at random from C
Initialize tables G1, G2, G3, G4; G4(x∗)← 0; count← 0

Run a breadth-first search on C from x∗ and let T be the corresponding BFS tree

Let (v0, . . . , vt) be the visiting order of the nodes in the BFS above

For (k = 1 to t) and count ≤ b3M/
√
Nc do

count← count + 1; Let u be the parent of vk in T

e← {u, vk}; (w,R)← H[e]

If u = w then G4(vk)← G4(u)�R else G4(vk)← G4(u)�R

I ← {i | G4(LH(Ci)) 6= ⊥} // Consider the entire set {1, . . . , p} to find I
// Recover the round-3 intermediate outputs for Xi with i ∈ I
For i ∈ I do Yi ←

(
LH(Ci),RH(Ci)�G4(LH(Ci))

)
Run RY on (Xi, Yi) for i ∈ I to recover G1 // Here RY attacks domain ZM × ZN
For i = 1 to p do // Recover round-1 intermediate outputs for every Xi

(L0, R0)← Xi; L1 ← L0 �G1(R0); R1 ← R0; Zi ← (L1, R1)

For i = 1 to p do Z′i ← Rev(Zi); C
′
i ← Rev(Ci)

Run RY on (Z′i, C
′
i) to recover (G2, G3, G4) // Now RY attacks domain ZN × ZM

Return (G1, G2, G3, G4)

Fig. 12. Procedure Restore in the TF attack. Here for Z = (A,B) ∈ ZM × ZN , we
write Rev(Z) to denote the pair (B,A) ∈ ZN × ZM .

(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

|E∗| 217± 6 203± 6 270± 6 321± 6 802± 11 965± 11 156± 5 1576± 16

Table 3. Empirical estimation of |E∗| over 100 trials. The first row indicates the
values of M and N . The second row shows the 95% confidence interval of |E∗|.

in Section 3.3, we can decide which node yields a correct output by evaluating
3M plaintexts on a Feistel network with the recovered round functions, and
comparing them with the corresponding ciphertexts.

Analysis. We now analyze the advantage of the TF attack; the key ideas in our
analysis are largely from DV’s work. We however tighten some of their arguments
to improve the bounds.

� We begin by estimating E[|E∗|]. A direct generalization of DV’s analysis would

yield E[|E∗|] ≈ p6

M3N6 , which is rather loose. Consider the empirical estimation
of |E∗| in Table 3. For M = N = 100, the 95% confidence interval of |E∗| is
156± 5, but the approximation above suggests that E[|E∗|] ≈ 400.

For example, with M = 1000 and N = 100, empirically the attack would succeed at
the first iteration, and thus it only performs a single iteration.
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We now provide a tighter analysis. Let W be the number of triangles in G whose
all three nodes are good. From part (a) of Lemma 12, when we enumerate zero-
weight triangles in G, most of them will have three good nodes. Thus those
triangles will contribute approximately 3W distinct good nodes. Note that if
T = (vi,j , vk,`, vr,s) is a triangle then T ∗ = (vj,i, vs,r, v`,k) is also a triangle, and
weight(T ∗) = 0 � weight(T ). (See Fig. 9 for an illustration.) Hence if T is a
zero-weight triangle then so is T ∗, but these two triangles will produce the same

three edges for E∗. Taking into account this duplication, E[|E∗|] ≈ 3E[W ]
2 . From

part (b) of Lemma 12,

E[W ] '
p6

3M3N6

(
1− 7

N
− 14

M

)
≥ 2p6

9M3N6

for M ≥ N ≥ 64. Hence

E[|E∗|] ' p6

3M3N6
'

4M

3
. (5)

This lower bound is consistent with Table 3. For example, for M = N = 100,
we estimate that E[|E∗|] ' 133, and recall that empirically, the 95% confidence
interval of |E∗| is 156± 5.

� Next, following DV, we model the graph G∗ as a random graph according
to the Erdős-Rényi model, in which each of the

(
M
2

)
possible edges will have

probability ρ to appear in E∗, independent of other edges. To determine the
parameter ρ, note that according to the model above, the expected number of
edges in E∗ is (

M

2

)
ρ =

M(M − 1)ρ

2
. (6)

From Equation (5) and Equation (6), we have Mρ = 2E[|E∗|
M−1 '

8M
3 . From the

theory of random graph (see, for example, Chapter 2 of Durrett’s book [17]), the
graph G∗ will almost surely contain a giant component of size about (1 − c)M
or bigger, where c ≈ 0.0878 is the unique solution of the equation e

8
3 (t−1) = t

in the interval (0, 1). In DV’s attack, one recovers G4(u) for every node u in
the giant component, but since S may contain a few bad nodes, some entries
of G4 that we recover might be incorrect. Instead, we only recover G4(u) for

nodes u in a connected subgraph of the giant component of size
⌊

3M√
N

⌋
. Those

nodes are produced by about
⌊
M√
N

⌋
triangles of zero-weight, and thus from

Lemma 12, the chance that the nodes of these triangles are good is at least

1−
√
N

(M−9) ·
(

4 + 33N
(N−2)M + 39

M

)
. On the other hand, expectedly, we obtain about

3p√
N
≥ 3 · 21/3M2/3

√
N ≥ N(ln(N) + ln(2) + 2.7)

pairs of plaintext/ciphertext for RY, where the second inequality is due to the
fact that M ≥ N ≥ 64. Thus we can run RY to recover G1 with probability at
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Fig. 13. The performance of TF with respect to µ, on balanced domains
ZN ×ZN , over 100 trials. The x-axis indicates the values of µ, and the y-axis shows
how many trials, out of 100 ones, that TF can recover the entire codebook.

least e−e
−2.7

> 0.935. We then can run RY with

p ≥M(ln(M) + 5) ≥ max{N(ln(N) + 5),M(ln(M) + ln(2) + 4.3)}

inputs, and thus can recover (G2, G3, G4) with probability at least e−e
−4.3−e−5 >

0.975. Summing up, if we just try one node x∗ then our recovery rate is at least

0.91−
√
N

(M−9) ·
(

4 + 33N
(N−2)M + 39

M

)
. Using µ independent choices of x∗ can only

improve the success probability. In fact, as illustrated in Fig. 13, empirically, the
improvement when we increase µ from 1 to 10 is substantial.

� As mentioned in Section 4.1, constructing the differential graph G takes
O(M5/3) expected time, and so does enumerating zero-weight triangles. The

graph G∗ has M nodes, and expectedly, around p6

3M3N6 ∈ O(M) edges. Thus
identifying the connected components of G∗ and doing BFS on its largest com-
ponent takes O(|V ∗|+ E[|E∗|]) = O(M) expected time. Running RY takes O(p)
time. Hence the total running time is O(M5/3).

Comparison with DV’s attack. While our attack is inspired by DV’s attack,
there are important changes:

– First, as mentioned earlier, compared to DV’s notion of differential graphs,
we actually use a dual definition, for better recovery rate. Our notion also
adds some non-degeneracy requirements, allowing us to find a proof for
Lemma 12 and resolve DV’s conjecture.

– Next, our attack has a much faster way to enumerate triangles of zero weight,
reducing the running time from O(N3) to O(N5/3) in the balanced setting.

– Recall that some zero-weight triangles may contain bad nodes, creating some
noise in the attack. DV mentioned that their attack hardly succeeded for
2N5/3 or more plaintext/ciphertext pairs, and posed an open question to
eliminate the noise. To resolve this issue, we introduce the trick of exploring
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(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Real 100 100 100 100 100 100 100 100

Ideal 0 0 0 0 0 0 1 0

Table 4. Empirical performance of the LHD attack over 100 trials. The first
row indicates the values of M and N . The second row shows how many times, over 100
trials, that LHD correctly outputs 1 in the real world. The last row shows how many
times, again over 100 trials, that LHD incorrectly outputs 1 in the ideal world.

the giant component from µ random places, and from each place, we stop
after visiting d3M/

√
Ne nodes.

– DV only run RY once to recover (G1, G2, G3), and then derive the round-3 in-
termediate Wi values of Xi, and use (Wi, Ci) pairs to recover G4. This works
well for DV, as they consider just the balanced setting M = N . However, in
unbalanced settings, for the first run of RY, we only have 3p/

√
N �M ln(M)

inputs. Thus the chance that one can recover (G1, G2, G3) by using one RY
call is poor. We therefore only use the first RY call to get G1, and run RY
another time to recover (G2, G3, G4).

5 Experiments

In this section, we empirically evaluate the LHD, SD, and TF attacks.

Benchmarking environment. We implemented our attack in C++ , and ran
experiments using 72 threads in a server of dual Intel(R) Xeon(R) CPU E5-2699
v3 2.30GHz CPU and 256 GB RAM. We evaluate our attacks in both balanced
and unbalanced settings, and for both binary and decimal domains. Specifically,
we consider every (M,N) ∈ {(27, 26), (27, 27), (28, 27), (28, 28), (29, 28), (29, 29),
(102, 102), (103, 102)}. For each choice of (M,N), we let

p = max
{
b21/3M2/3Nc,

⌈
M(ln(M) + 5)

⌉}
as specified in Equation (1).

Evaluating LHD. For each domain ZM ×ZN , we sample p messages uniformly
without replacement from ZM × ZN , and then extract m = d pN · d32N1/6ee t-
wise right-matching plaintexts, with t = dmMp e. In the real world, we encrypt
the plaintexts using the 4-round version of FF3 with the all-zero tweak to pro-
duce m ciphertexts. In contrast, the ciphertexts are chosen uniformly without
replacement from ZM × ZN in the ideal world. The results of our experiments,
given in Table 4, show that LHD is nearly perfect, which is much better than our
theoretical estimation in Section 3.2. This is not surprising, since our analysis is
very conservative.
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(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Real 100 100 100 100 100 100 100 100

Ideal 1 11 0 5 0 0 8 0

Table 5. Empirical performance of the LHD attack with aggressive param-
eters over 100 trials. The first row indicates the values of M and N . The second
row shows how many times, over 100 trials, that LHD correctly outputs 1 in the real
world. The last row shows how many times, again over 100 trials, that LHD incorrectly
outputs 1 in the ideal world.

(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Recover, µ = 1 70 45 75 66 84 73 39 100

Recover, µ = 2 77 57 88 79 93 93 48 100

Recover, µ = 3 81 64 91 89 95 97 51 100

Recover, µ = 4 84 66 94 92 99 98 54 100

Recover, µ = 5 85 69 95 94 100 100 56 100

Recover, µ = 6 86 71 96 95 100 100 57 100

Recover, µ = 7 87 73 97 96 100 100 58 100

Recover, µ = 8 87 74 97 97 100 100 59 100

Recover, µ = 9 88 74 98 97 100 100 59 100

Recover, µ = 10 88 75 98 97 100 100 60 100

Table 6. Empirical performance of the TF attack over 100 trials. The first row
indicates the values of M and N . Each subsequent row shows how many trials, over
100 ones, that TF correctly recovers the entire codebook, for the given choice of µ.

We also experiment with more aggressive choices of m to improve performance
of LHD. Even if we pick m = d pN · d4N

1/6ee (meaning an 8x-speedup for LHD),
the empirical performance, given in Table 5, is still good.

Evaluating TF. For each domain ZM × ZN , we sample p messages uniformly
without replacement from ZM × ZN , and generate p ciphertexts using 4-round
FF3 with the all-zero tweak. We consider all choices of µ from 1 to 10. The
results of our experiments, given in Table 6, are consistent with the theory. For
example, with M = N = 128 and µ = 1, the attack is supposed to recover the
entire codebook with probability around

0.91−
√
N

M − 9
·
(

4 +
33N

(N − 2)M
+

39

M

)
≈ 47.6%

and in the experiments, 45 out of 100 trials yield the correct codebook. Increasing
µ will improve the performance substantially. For example, with µ = 10, the
recovery rate goes up to 75%.
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(M,N) (27, 26) (27, 27) (28, 27) (28, 28) (29, 28) (29, 29) (102, 102) (103, 102)

Have
61 65 53 53 38 33 75 27

slid pairs

Survive
61 65 53 53 38 33 75 27

LHD tests

Recover 50 39 51 50 38 33 22 27

Table 7. Empirical performance of the SD attack over 100 trials. The first
row indicates the values of M and N . The second row shows how many trials, over
100 ones, have at least one slid pair, the third row shows how many of them survive
the LHD tests, and the last row shows how many of them can successfully recover the
entire codebook.

(M,N) (27, 26) (27, 27) (28, 27) (102, 102)

No. of
74 72 53 89

candidates

Table 8. The total number of survived (possibly false) candidates after using
LHD tests in SD, over 100 trials. The first row indicates the values of M and N .
The second row shows the total number of survived (possibly false) candidates after
using LHD tests in SD, over 100 trials.

Evaluating SD. To save time in evaluating SD, we use the FF3 key to find true
candidates and run the LHD tests and the TF attack on them. Table 7 reports
the empirical performance of SD over 100 trials, in which we use µ = 10 for the
underlying TF attack. The recovery rate is reasonable, ranging from 22% to 51%,
and we never miss any true candidate using LHD tests. In addition, we also run
the full SD attack on (M,N) ∈ {(27, 26), (27, 27), (28, 27), (102, 102)} to evaluate
the performance of LHD test on false slid-pair candidates. As shown in Table 8,
our test is a nearly perfect filtering, leaving on average a single (possibly false)
slid-pair candidate in each trial.
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A Attack Notion

In this section, we formalize a notion of chosen-plaintext codebook-recovery at-
tacks on FPEs, which captures both our Slide-then-Differential attack, and DV’s
attack. While the concept of chosen-plaintext codebook-recovery attacks for
blockciphers is folklore, for FPE, measuring the advantage of those attacks is
somewhat tricky, since (1) the domain might be tiny, and (2) the number of
ciphertexts can be more than the domain size. Note that our definition is an at-
tack notion, and thus an FPE scheme meeting this notion might still be insecure
for real-world usage.

Chosen-plaintext codebook-recovery attacks. Let F be an FPE scheme.
Fix a total ordering on F.Dom so that we can write F.Dom = (M1, . . . ,M`). For
an adversary A, define

Advcpa-cr
F (A) = Pr[CPA-RealF(A)]− Pr[CPA-IdealF(A)]

where games CPA-RealF(A) and CPA-IdealF(A) are defined in Fig. 14. In each
game, the adversary is given access to an encryption oracle Enc, and has to
output a target tweak T ∗ and a list of ciphertexts (C1, . . . , C`) for messages
(M1, . . . ,M`). The real game returns 1 if every Ci is indeed the ciphertext of Mi

and T ∗ under F. In the ideal game, we instead re-sample (C1, . . . , C`) at random,
but they are still consistent with the Enc queries that the adversary made. The
ideal game returns 1 if every such random Ci is also the ciphertext of Mi and
T ∗ under F.
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Games CPA-RealF(A), CPA-IdealF(A)

K←$ F.Keys; (M1, . . . ,M`)← F.Dom; (T ∗, C1, . . . , C`)←$AEnc

Π←$ Perm(F.Twk,F.Dom | Map)

For i = 1 to ` do C∗i ← F.E(K,T ∗,Mi); Ci ← Π(T ∗,Mi)

Return (C1, . . . , C`) = (C∗1 , . . . , C
∗
` )

Procedure Enc(T,M)

C ← F.E(K,T,M); Map[T,M ]← C; Return C

Fig. 14. Games defining the cpa-cr notion. Game CPA-IdealF(A) contains the
boxed statement, but game CPA-RealF(A) does not. Here Perm(T ,M | Map) is the set
of T -indexed families Π of permutations onM that are consistent with Map, meaning
that Π(T,M) = Map(T,M) for every (T,M) ∈ T ×M such that Map[T,M ] 6= ⊥.

Discussion. Attacks on FPEs or blockciphers, such as DV’s attack, often only
report their empirical results on Pr[CPA-RealF(A)]. However, Pr[CPA-RealF(A)]
alone is not enough to indicate the actual attack quality, since an adversary
may obtain the entire codebook of T ∗ via the encryption oracle, and sim-
ply output that. To measure the advantage of A, we offset the probability
above by Pr[CPA-IdealF(A)], the chance that a uniformly random guess of the
codebook of T ∗, given the plaintext/ciphertext pairs from the encryption or-
acle, is correct. Blockcipher attacks in cryptanalytic literature often deal with
a huge domain size N , say N = 2128 and make q � N queries. In that case,
Pr[CPA-IdealF(A)] ≤ 1

(N−q)! , which is extremely small, and it therefore suffices

to report Pr[CPA-RealF(A)] alone.

B Attacking 3-round Feistel-based Blockciphers

In this section, we will generalize DV’s known-plaintext attack on 3-round bal-
anced Feistel to the unbalanced case, and name it Round-wise Yoyo (RY). We
also extract the concrete advantage of the attack from DV’s analysis, and tighten
some of their arguments to improve the bound in the unbalanced setting. We
stress that all key ideas in the attack and analysis are from the work of DV.

In this section, let F = Feistel[3,M,N,�], with round functions F1, F2, F3. We
begin with a simple but useful observation of DV.

An observation. For any ∆ ∈ ZM , let Shift(F, ∆) denote a 3-round Feistel
network F = Feistel[3,M,N,�] of round functions F 1, F 2, and F 3 such that
F 1(K,x) = F1(K,x)�∆, F 2(K, y) = F2(K, y�∆), and F 3(K,x) = F3(K,x)�
∆, for any x ∈ ZN , y ∈ ZM , and any key K. Note that for any choice of ∆,
scheme F = Shift(F, ∆) ensures that F.E(K,X) = F.E(K,X) for any key K and
any X ∈ ZM × ZN . Therefore, in a codebook recovery attack against F.E(K, ·),
without loss of generality, one can pick a designated point y∗ ∈ ZN and assume
that F1(K, y∗) = 0.
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Procedure RY(X,C)

Pick y∗ ∈ ZN arbitrarily; G1(y∗)← 0; size ← 1; loop ← true

S0 ← {(X[i], C[i]) | RH(X[i]) = y∗}; S1 ← ∅
While loop do // Recover G1 and G3

For each (X,C) ∈ S0 do Forward(X,C)

S1 ← {(X[i],C[i]) | G3(RH(C[i])) 6= ⊥}
For each (X,C) ∈ S1 do Backward(X,C)

S0 ← {(X[i],C[i]) | G1(RH(X[i])) 6= ⊥}
If |S0|+ |S1| ≤ size then loop ← false // Terminate at fixed point

Else size ← |S0|+ |S1|
For each (X,C) ∈ S0 do // Recover G2

Z ← G1(RH(X))� LH(X); G2(Z)← RH(C)� RH(X)

Return (G1, G2, G3)

Procedure Forward(X,C)

// Recover intermediate values of X

X1 ← (LH(X)�G1(RH(X)),RH(X)); X2 ← (LH(X1),RH(C))

G3(RH(C))← LH(C)� LH(X2)

Procedure Backward(X,C)

// Recover intermediate values of X

X2 ← (LH(C)�G3(RH(C)),RH(C)); X1 ← (LH(X2),RH(X))

G1(RH(X))← LH(X1)� LH(X)

Fig. 15. The RY attack.

The RY attack. Suppose that we are given a vector X of plaintexts and its
corresponding vector C of ciphertexts, where the plaintexts are chosen uniformly
without replacement from ZM × ZN , with |X| = q. For t ∈ {1, 2, 3}, let Gt(·)
denote Ft(K, ·) where K is the secret key. Pick an arbitrary designated point
y∗ ∈ ZN . As mentioned above, without loss of generality, we can assume that
G1(y∗) = 0. The RY attack will recover the tables of functionsG1, G2, G3, instead
of just the codebook.

To recover the functions G1, G2, G3, initially the corresponding tables are unde-
fined everywhere, and we set G1(y∗)← 0. The attack will enter a loop, trying to
update more and more entries of G1 and G3 until we reach a fixed point. In each
iteration of the loop, we will first use the current table of G1 to recover some
entries of G3, and then use the newly updated table G3 to recover more entries
of G1. Thus this loop is essentially a yoyo game [8, 9]. When the loop terminates,
we then use the tables of G1 and G3 and the pairs (X,C) to recover G2. The
code of RY is given in Fig. 15.

Implementing RY. To implement the code in Fig. 15 efficiently, instead of
maintaining a set S0 that keeps track of all plaintext/ciphertext pairs (X[i],C[i])
such that G1(RH(X[i])) is defined, we only need to keep track of fresh pairs,
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Procedure RY(X,C)

For i = 1 to |X| do

a← RH(X[i]); L0[a].list← L0[a].list ∪ {(X[i],C[i])}
a← RH(C[i]); L1[a].list← L1[a].list ∪ {(X[i],C[i])}

Pick y∗ ∈ ZN arbitrarily; G1(y∗)← 0; loop ← true; S0 ← L0[y∗].list

While loop do // Recover G1 and G3

S1 ← Process(S0, L1, 0); S0 ← Process(S1, L0, 1)

If |S0|+ |S1| = 0 then loop ← false // Terminate at fixed point

S0 ← {(X[i],C[i]) | G1(RH(X[i])) 6= ⊥}
For each (X,C) ∈ S0 do // Recover G2

Z ← G1(RH(X))� LH(X); G2(Z)← RH(C)� RH(X)

Return (G1, G2, G3)

Procedure Process(S,L, sign)

S∗ ← ∅
For each (X,C) ∈ S do

If sign = 0 then a← Forward(X,C) else a← Backward(X,C)

If ¬(L[a].updated) then L[a].updated ← true; S∗ ← S∗ ∪ L[a].list

Return S∗

Procedure Forward(X,C)

// Recover intermediate values of X

X1 ← (LH(X)�G1(RH(X)),RH(X)); X2 ← (LH(X1),RH(C))

G3(RH(C))← LH(C)� LH(X2)

Return RH(C) // Return the updated entry

Procedure Backward(X,C)

// Recover intermediate values of X

X2 ← (LH(C)�G3(RH(C)),RH(C)); X1 ← (LH(X2),RH(X))

G1(RH(X))← LH(X1)� LH(X)

Return RH(X) // Return the updated entry

Fig. 16. Implementing RY. Sets are implicitly initialized to ∅, and booleans to false.

meaning that G1(RH(X[i])) is just defined in the last yoyo iteration. Maintaining
S1 for G3 is similar. For fast data access, we store two copies of (X,C) in arrays
L0 and L1. Each entry L0[a], with a ∈ ZN , stores all pairs (X[i],C[i]) such that
RH(X[i]) = a. Likewise, each entry L1[a] stores all pairs (X[i],C[i]) such that
RH(C[i]) = a. The code of the implementation is given in Fig. 16.

In the implementation above, preparing the arrays L0 and L1 takes O(q) time,
and the time to recover G2 given G1 and G3 is also O(q). The yoyo loop basically
keeps adding elements to S0 and S1, and resetting those sets to ∅. Since each
element (X[i],C[i]) appears in S0 at most once, and the same claim holds for
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S1, the running time of the yoyo loop is also O(q). Hence the total running time
is O(q). Below we will give a value of q for RY to achieve a good advantage.

Analysis of RY. Consider the following bipartite graph G = (U, V,E) of |U | =
N left nodes, and |V | = N right nodes. Nodes in U are uniquely labeled with
numbers in ZN , and nodes in V are labeled analogously. The edge set E is
constructed as follows. For each pair (Xi, Ci), connect the left node RH(Xi) ∈ U
with the right node RH(Ci) ∈ V . What RY does is to look for the connected
component in G containing node y∗ ∈ U , and recovers G1(u) and G3(v) for every
u ∈ U and v ∈ V in this connected component. Thus RY can fully recover tables
G1 and G3 if the graph G is connected.

To analyze the advantage of RY, we will heuristically model G as a random
bipartite graph of N left nodes and N right nodes, and q edges (u, v)←$ U × V
sampled independently. It is known that [27] for large enoughN , if q ≥ N ln(N)+
(ln(2) + λ)N , for any λ ∈ R+ then the probability that this random graph is

connected is close to e−e
−λ

.

Next, we determine the sufficient condition for q so that one can fully recover
table G2 once the tables of G1 and G3 are already given. We will recover entries
G2(LH(V1)), . . . , G2(LH(Vq)), where V1, . . . , Vq are round-1 intermediate values
of X1, . . . , Xq respectively. Since X1, . . . , Xq are sampled uniformly without re-
placement from ZM×ZN and since the top round of F is a permutation, V1, . . . , Vq
are also sampled uniformly without replacement from ZM ×ZN . Thus our prob-
lem is actually the well-known Coupon-Collector problem: there are M types of
coupons and a collector wishes to obtain all M types via buying p coupons of
random types.

In the classic setting, for each draw the collector obtains a uniformly random
type. In contrast, in our settings, because Y1, . . . , Yp are distinct, each time the
collector buys a coupon, its type is slightly biased towards new types that the
collector has not yet owned. This means that while the classic bound, stated in
Lemma 13 below, continues to apply to our setting, we might need fewer coupons
than what is suggested in the classic setting.

Lemma 13 (Coupon collector’s problem). [23, Chapter 3.6] Let M ≥ 1
be an integer, and let δ > 0 be a real number. Suppose that there are M types of
coupon and a collector buys τ = dM(ln(M) + δ)e coupons of truly random types.
Then the chance that the collector gets all M types is at least 1− e−δ.

From Lemma 13, if q ≥ dM(ln(M) + δ)e then the chance that we can fully
recover of G2 is at least 1− e−δ.

Summing up, if q ≥ dN(ln(N)+ln(2)+λ)e then heuristically, we can fully recover

the table of G1 with probability at least e−e
−λ

, for any λ > 0. If we instead pick
q ≥ max{dN(ln(N)+ ln(2)+λ)e, dM(ln(M)+ δ)e} then we can even recover the

tables of (G1, G2, G3) with probability around e−e
−λ − e−δ, for any λ, δ > 0.

Experiments. We used the same benchmarking environments in Section 5 to
evaluate RY. However unlike other sections, here we also consider parameters M
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N 100 128 256 512

Rate 92% 84% 85% 88%

Table 9. Empirical performance of the RY attack over 100 trials, for balanced
Feistel. The first row indicates the values of N (which is also M), and the second
row indicates the empirical rate, over 100 trials, that RY correctly recovers the entire
codebook.

(M,N) 27 × 26 26 × 27 28 × 27 27 × 28 29 × 28 28 × 29 103 × 102 102 × 103

Rate 97% 96% 94% 89% 96% 92% 100% 96%

Table 10. Empirical performance of the RY attack over 100 trials, for un-
balanced Feistel. The first row indicates the values of M and N , and the second
row indicates the empirical rate, over 100 trials, that RY correctly recovers the entire
codebook.

and N such that M < N , since those are needed by the TF attack in Section 4. In
particular, we will consider (M,N) ∈ {(27, 26), (27, 26), (27, 27), (28, 27), (27, 28),
(28, 28), (29, 28), (28, 29), (29, 29), (102, 102), (103, 102), (102, 103)}.
For each domain, we use q = max{dN(ln(N) + 3)e, dM(ln(M) + 3)e} plaintexts
sampled uniformly without replacement from ZM×ZN , and generate ciphertexts
via a 3-round Feistel network of FF3 round functions on the all-zero tweak. The
results of our experiments, given in Tables 9 and 10, are consistent with our
thereotical analyses. For example, in balanced domains, empirically there are
84–92 trials out of 100 ones that can successfully recover all round functions,
whereas the theory suggests 85% recovery rate.

For unbalanced domains, our empirical recovery rate is better, from 89%–100%.
This is however not surprising. Consider, for example, M = 27 and N = 26;
the experiments suggest an empirical rate of 97% in this case. Note that here
q = 1006 ≈ (ln(2) + 15)N . Then the chance that we can fully recover (G1, G3)

is around e−e
−15

, and once we are given (G1, G3), we can fully recover G2 with
probability at least 0.95. Hence theoretically, the chance that we can fully recover
(G1, G2, G3) is at least 94.99%, which is validated by the experiments with the
empirical recovery rate as 97%.

C Deferred Proofs

C.1 Proof of Lemma 1

Let S′ = {g(V ) | V ∈ S∗}; note that each element of S′ is uniformly distributed
over ZM × ZN , independent of π. Let I = {(i, j) | 1 ≤ i, j ≤ s}, and let ≺ be a
strict total ordering in I. For any (i, j) ∈ I, let Hiti,j denote the event that the
ith chain of S and jth chain of S′ have at least one slid pair. Then

Pr[P ≥ 1] = Pr

[ ⋃
1≤i,j≤s

Hiti,j

]
.
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Clearly, if s = 1 then Pr[P ≥ 1] = Pr[Hit1,1]. If s ≥ 2 then using Bonferroni’s
inequality,

Pr

[ ⋃
1≤i,j≤s

Hiti,j

]
≥

∑
1≤i,j≤s

Pr[Hiti,j ]−
∑

(i,j),(k,`)∈I
(i,j)≺(k,`)

Pr[Hiti,j ∩Hitk,`] .

Fix (i, j) ∈ I. We will now compute Pr[Hiti,j ]. For each permutation ρ on ZM ×
ZN , let Gρ denote the functional graph of ρ, meaning a directed graph whose
nodes are elements of ZM × ZN , in which a directed edge (u, v) means v =
ρ(u). Recall that Gρ is a collection of disjoint, directed cycles. For two nodes u
and v within the same cycle of Gρ, their distance dρ(u, v) is the length of the
directed path from u to v. Let U and Z be the ith and jth elements of S and
S′ respectively. Note that Hiti,j happens if and only if

(1) U and Z stay in the same cycle of Gπ that has length at least p, and
(2) either 1 ≤ dπ(U,Z) ≤ p or 0 ≤ dπ(Z,U) ≤ p− 1.

For each t ≤ MN , let Ct be the event that U and Z belong to a t-cycle of Gπ.
For any t ≤MN , the chance that U is in a t-cycle of Gπ is(t−1∏

i=1

MN − i
MN − i+ 1

) 1

MN − t+ 1
=

1

MN
.

Since Z is uniformly distributed over ZM × ZN , independent of U ,

Pr[Ct] =
1

MN
· t

MN
=

t

(MN)2
.

Moreover, the probability Pr[Hiti,j ] can be factored out as follows:

Pr[Hiti,j ] = Pr
[MN⋃
t=p

(Hiti,j ∩ Ct)
]

=

MN∑
t=p

Pr[Hiti,j ∩ Ct] ,

where the last equality is due to the fact that the events Cp, . . . , CMN are disjoint.
For p ≤ t ≤ 2p, if U and Z stay within a t-cycle of π then Hiti,j will certainly
happens. In other words, Pr[Hiti,j ∩Ct] = Pr[Ct] = t

(MN)2 for every p ≤ t ≤ 2p.

For 2p < t ≤MN , if U and Z stay within a t-cycle of p, then given the position
of U , there are exactly 2p out of t positions for Z so that Hiti,j happens. Hence
for 2p < t ≤MN ,

Pr[Hiti,j ∩ Ct] =
2p

t
Pr[Ct] =

2p

t
· t

(MN)2
=

2p

(MN)2
.

Summing up,

Pr[Hiti,j ] =

MN∑
t=p

Pr[Hiti,j ∩ Ct] =
2p(MN − 2p)

(MN)2
+

2p∑
t=p

t

(MN)2
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=
2p(MN − 2p)

(MN)2
+

1.5p(p+ 1)

(MN)2
= δ .

This justifies part (a).

To justify part (b), fix (i, j), (k, `) ∈ I such that (i, j) ≺ (k, `). We now compute
Pr[Hiti,j ∩ Hitk,`]. If i 6= k and j 6= `, then Hiti,j and Hitk,` are independent,
and thus

Pr[Hiti,j ∩Hitk,`] = (Pr[Hiti,j ])
2 = δ2 .

Next, suppose that either i = k or j = `. Without loss of generality, assume that
i = k. Since (i, j) ≺ (k, `) and the ordering ≺ is strict, j 6= `. Let U be the i-th
element in S, and let Z and Z ′ be the j-th and `-th element in S′ respectively.
The event Hiti,j is the intersection of two events: (i) The event Cycle that U is
in a t-cycle of Gπ, with t ≥ p, and (ii) The event Dj that Z falls into the same
cycle of Gπ with U , and either 1 ≤ dπ(X,Z) ≤ p or 0 ≤ dπ(Z,X) ≤ p− 1. Note
that

Pr[Cycle] =

MN∑
t=p

1

MN
=
MN − p+ 1

MN
.

Moreover,

Pr[Dj | Cycle] =
Pr[Hiti,j ]

Pr[Cycle]
=

MN

MN − p+ 1
· δ .

Likewise, if we factor Hiti,` as the intersection of Cycle and D` then

Pr[D` | Cycle] =
MN

MN − p+ 1
· δ .

On the other hand, note that Dj and D` are conditionally independent, given
Cycle, and thus

Pr[Hiti,j ∩Hitk,`] = Pr[Cycle] · Pr[Dj | Cycle] · Pr[D` | Cycle]

=
MN

MN − p+ 1
· δ2

≤ δ2 +
pδ2

MN − p
.

Summing up, since there are s2(s2−1)
2 pairs (i, j), (k, `) ∈ I such that (i, j) ≺

(k, `) but only 2s · s(s−1)2 = s2(s− 1) such pairs satisfy i = k or j = `,

Pr[P ≥ 1] ≥ s2δ − s2(s2 − 1)δ2

2
− δ2s2(s− 1)p

MN − p

≥ s2δ − s2(s2 − 1)δ2

2
− δ2(s− 1) ≥ s2δ − s4δ2

2
≥ s2δ

2
,

where the second inequality is due to the fact that s2p ≤ MN
2 ≤ MN − p, and

the last inequality is due to the fact that s2δ ≤ 1.
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Finally, we describe DV’s heuristic estimation of Pr[P ≥ 1]. Note that

Pr[P ≥ 1] = 1− Pr

[ ⋂
1≤i,j≤s

¬Hiti,j

]
≈ 1−

∏
1≤i,j≤s

(1− Pr[Hiti,j ])

≈ 1− (1− 2p/MN)s
2

≈ 1− e−2s
2p/MN .

Hence Pr[P ≥ 1] is around 1 − e−2s
2p/MN ≈ 1 − 1/e. Still, we find that the

estimation Pr[P ≥ 1] ≈ 1 − e−2s
2p/MN can be very loose in some settings.

For example, for M = N = 64, from part (a) Pr[P ≥ 1] = 11
32 + 3

215 ≈ 0.344
which is considerably smaller than 1− 1/e ≈ 0.632. In contrast, the estimation

Pr[P ≥ 1] ≈ 1− e−2s2p/MN provides a much tighter bound 1− 1/
√
e ≈ 0.393.

C.2 Proof of Lemma 2

For each permutation ρ on ZM × ZN , let Gρ denote the functional graph of ρ,
meaning a directed graph whose nodes are elements of ZM × ZN , in which a
directed edge (u, v) means v = ρ(u). Recall that Gρ is a collection of disjoint,
directed cycles. For two nodes u and v within the same cycle of Gρ, their distance
dρ(u, v) is the length of the directed path from u to v. Let S′ = {g(V ) | V ∈ S∗};
note that each element of S′ is uniformly distributed over ZM×ZN , independent
of π. For any 1 ≤ i, j ≤ s, let Qi,j denote the random variable for the number
of slid pairs that the ith chain of S and jth chain of S′ form. Then

P ≤
∑

1≤i,j≤s

Qi,j

and taking expectation of both sides gives us

E[P ] ≤
∑

1≤i,j≤s

E[Qi,j ] .

Fix i, j ≤ s, and let U and Z be the ith and j elements of S and S′ respectively.
It suffices to prove that E[Qi,j ] ≤ 2p

MN . Note that Qi,j ≥ 1 if and only if (1) Z
and U stay in the same cycle of Gπ that has length at least p, and (2) either
1 ≤ dπ(U,Z) ≤ p or 0 ≤ dπ(Z,U) ≤ p−1. In addition, Qi,j = 2 if and only if the
cycle above has length p+ `, with 0 ≤ ` ≤ p− 1, and `− 1 ≤ dπ(Z,U) ≤ p− 1.
For each k ≤MN , let Bk be the indicator random variable for the event that U
and Z belong to a k-cycle of Gπ. Then

E[Qi,j ] = E
[
Qi,j ·

MN∑
k=p

Bk

]
=

MN∑
k=p

E[Qi,jBk] .
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Fix k ∈ {p, . . . ,MN}. It suffices to show that E[Qi,jBk] ≤ 2p
(MN)2 . Note that

the chance that U stays within a k-cycle of Gπ is exactly:(k−1∏
i=1

MN − i
MN − i+ 1

) 1

MN − k + 1
=

1

MN
.

We consider the following cases.

Case 1: k = p. If U and Z belong to a p-cycle of Gπ then Qi,j = 2. Since Z is
chosen uniformly from ZM × ZN , independent of S and π,

E[Qi,jBp] = 2 · 1

MN
· p

MN
=

2p

(MN)2
.

Case 2: p + 1 ≤ k ≤ 2p − 1. If U belongs to a k-cycle of Gπ then there are
2p− 1−k positions for Z such that Qi,j = 2, and there are 2k+ 1− 2p positions
for Z such that Qi,j = 1. Hence

E[Qi,jBk] =
1

NM
· (2k + 1− 2p) + 2(2p− 1− k)

MN
=

2p− 1

(MN)2
≤ 2p

(MN)2
.

Case 3: k ≥ 2p. If U belongs to a k-cycle of Gπ then there are exactly 2p
positions for Z such that Qi,j = 1, and Qi,j = 0 otherwise. Hence

E[Qi,jBk] =
2p

(MN)2
.

Hence in every case, we have E[Qi,jBk] ≤ 2p
(MN)2 as claimed. This concludes the

proof.

C.3 Proof of Lemma 3

Let Xi and X ′i be the round-i intermediate values of X and X ′ respectively. Let
(G1, . . . , G4) be the functions specified by the key K. From part (a) of Lemma 4,
RH(X2) and RH(X ′2) are uniformly and independently distributed over ZN . We
consider the following two cases.

Case 1: RH(X2) = RH(X ′2), which happens with probability 1/N . Then using
part (b) of Lemma 4, in this case we always have LH(C) � LH(C ′) = LH(X) �
LH(X ′).

Case 2: RH(X2) 6= RH(X ′2). This case happens with probability 1− 1/N . Using
part (c) of Lemma 4, in this case, the conditional probability that LH(C) �
LH(C ′) = LH(X)� LH(X ′) is 1/M .

Combining the two cases,

Pr[LH(C)� LH(C ′) = LH(X)� LH(X ′)] =
1

N
+
(

1− 1

N

) 1

M

=
M +N − 1

MN
.

This concludes the proof.
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C.4 Proof of Lemma 4

Let (G1, . . . , G4) be the functions specified by the key K. First consider part(a).
Since X 6= X ′, we must have LH(X) 6= LH(X ′). On the one hand,

LH(X1) = G1(RH(X))� LH(X) 6= G1(RH(X ′))� LH(X ′) = LH(X ′1) .

On the other hand, recall that

RH(X2) = G2(LH(X1)� RH(X1)), and

RH(X ′2)) = G2(LH(X ′1)� RH(X ′2) .

Since G2 is a truly random function, independent of X1 and X ′1, the random
variables X2 and X ′2 are uniformly and independently distributed over ZN .

Next consider part (b). Then

LH(C)� LH(C ′) = LH(X3)� LH(X ′3)

=
(
LH(X2)�G3(RH(X2))

)
�
(
LH(X ′2)�G3(RH(X ′2))

)
= LH(X2)� LH(X ′2) ,

where the last equality is due to the fact that RH(X2) = RH(X ′2). On the other
hand, since LH(X2) = LH(X1) and LH(X ′2) = LH(X ′1),

LH(X2)� LH(X ′2) = LH(X1)� LH(X ′1)

=
(
LH(X)�G1(RH(X))

)
�
(
LH(X ′)�G1(RH(X ′))

)
= LH(X)� LH(X ′) ,

where the last equality is due to the fact that RH(X) = RH(X ′). Hence we have
LH(C)� LH(C ′) = LH(X)� LH(X ′).

Finally consider part (b). Then

LH(C)� LH(C ′) = LH(X3)� LH(X ′3)

=
(
LH(X2)�G3(RH(X2))

)
�
(
LH(X ′2)�G3(RH(X ′2))

)
.

Since RH(X2) 6= RH(X ′2) and G3 : ZN → ZM is a truly random function that
is independent of RH(X2) and RH(X ′2), the random variable LH(C)� LH(C ′) is
uniformly distributed over ZM , and thus in this case, the conditional probability
that LH(C)� LH(C ′) = LH(X)� LH(X ′) is 1/M .

C.5 Proof of Lemma 5

Let

δ = ∆− N

MN − 1
= λ ·

(M +N − 1

MN
− N

MN − 1

)
≥ λ(M − 2)

MN − 1
.
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First, recall that

E[V ] =
N

MN − 1
· size .

Hence

Pr [V ≥ ∆ · size] = Pr [V ≥ E[V ] + δ · size]

≤ Var[V ]

Var[V ] + δ2 · (size)2
≤ Var[V ]

δ2 · (size)2
, (7)

where the first inequality is due to one-sided Chebyshev’s inequality. Next, we
will give a lower bound of size. Partition X1, . . . , Xm to groups P1, . . . , Pd such
that Xi and Xj belong to the same partition only if they have the same right
segment. Since X1, . . . , Xm are t-wise right-matching, we have d ≤ t. For each
j ≤ d, let mj be the size of Pj . Then

size =

d∑
j=1

mj(mj − 1)

2
=

1

2

( d∑
j=1

m2
j

)
− 1

2

( d∑
j=1

mj

)

=
1

2

( d∑
j=1

m2
j

)
− m

2
≥ 1

2d

( d∑
j=1

mj

)2
− m

2
=
m2

2d
− m

2
≥ m2

2t
− m

2
(8)

where the first inequality is due to Cauchy-Schwartz inequality. From Equation (7)
and Equation (8), it suffices to show that

Var[V ] ≤ size · N

MN − 1
+ (size)2

N2

(MN − 2)(MN − 1)2
.

In order to do that, we will factor V as

V =
∑

(i,j)∈D

Bi,j

where Bi,j is the indicator random variable for the event LH(Ci) � LH(Cj) =
LH(Xi) � LH(Xj), and D is the set of all pairs (i, j) such that 1 ≤ i < j ≤ m,
and RH(Xi) = RH(Xj). Hence

Var[V ] =
∑

(i,j),(k,`)∈D

Cov(Bi,j , Bk,`) . (9)

If i = k and j = ` then

Cov(Bi,j , Bk,`) = Var[Bi,j ] ≤ Pr[Bi,j = 1] =
N

MN − 1
, (10)

where the inequality is due to the fact that Bi,j ∈ {0, 1}. If (i, j) 6= (k, `) then
we claim that

Cov(Bi,j , Bk,`) ≤
N2

(MN − 2)(MN − 1)2
. (11)
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Combining Equation (10) and Equation (11) gives us the desired bound on
Var[V ]. To prove Equation (11), note that since Pr[Bi,j ] = Pr[Bk,`] = N

MN−1 ,

Cov(Bi,j , Bk,`) = Pr[Bi,j ·Bk,` = 1]− Pr[Bi,j = 1] · Pr[Bk,` = 1]

= Pr[Bi,j ·Bk,` = 1]− N2

(MN − 1)2
. (12)

We now consider the following cases.

Case 1: i = k or j = `, but (i, j) 6= (k, `). Without loss of generality, assume
that i = k. Note that in this case, Xi, Xj , X` have the same right segments, and
thus their left segments are distinct. If LH(Xi)�LH(Xj) = LH(Ci)�LH(Cj) and
LH(Xi) � LH(X`) = LH(Ci) � LH(C`) then given Xi, Xj , X`, and Ci, there are
N possible values for Cj and also N possible values for C`, and those N2 pairs
are equally likely. Hence

Pr[Bi,j ·Bk,` = 1] =
N2

(MN − 1)(MN − 2)
.

Thus from Equation (12),

Cov[Bi,j , Bk,`] =
N2

(MN − 1)(MN − 2)
− N2

(MN − 1)2
=

N2

(MN − 2)(MN − 1)2
.

Case 2: i 6= k and j 6= ` and RH(Xi) 6= RH(Xk). Note that LH(Xi) � LH(Xj)
and LH(Xk)�LH(X`) are independently and uniformly distributed over ZM\{0},
and they are independent of Ci, Cj , Ck, C`. Hence

Pr[Bi,j ·Bk,` = 1] =
Pr[R1 ∩R2]

(M − 1)2
=

1− Pr[R1 ∪R2]

(M − 1)2
, (13)

where R1is the event LH(Ci) = LH(Cj), and R2 is the event LH(Ck) = LH(C`).
Note that Pr[R1] = Pr[R2] = N−1

MN−1 . By Principle of Inclusion and Exclusion,

Pr[R1 ∪R2] = Pr[R1] + Pr[R2]− Pr[R1 ∩R2]

=
2(N − 1)

MN − 1
− Pr[R1] · Pr[R2 | R1]

=
2(N − 1)

MN − 1
− N − 1

MN − 1
· Pr[R2 | R1] . (14)

We now compute Pr[R2 | R1]. Fix Ci and Cj such that LH(Ci) = LH(Cj) and
Ci 6= Cj . For any s ∈ ZM\{LH(Ci)}, if LH(Ck) = LH(C`) = s then there are
N(N − 1) possible values for (Ck, C`). If LH(Ck) = LH(C`) = LH(Ci) then there
are only (N − 2)(N − 3) possible values for (Ck, C`). Hence there are totally
(N −2)(N −3)+ (M −1)N(N −1) possible values for (Ck, C`), and these values
are equally likely. Thus

Pr[R2 | R1] =
(N − 2)(N − 3) + (M − 1)N(N − 1)

(MN − 2)(MN − 3)
. (15)
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Combining Equations (12), (13), (14), (15), and using some algebraic manipula-
tions,

Cov(Bi,j , Bk,`) =
N(N − 1)

(MN − 1)2(MN − 2)(MN − 3)
≤ N2

(MN − 1)2(MN − 2)
.

Case 3: i 6= k and j 6= `, but RH(Xi) = RH(Xk). In other words, Xi, Xj , Xk, X`

are distinct but have the same right segment. We now show that

Pr[Bk,` = 1 | Bi,j = 1]

≤ N

MN − 3
− 2N

(MN − 3)(MN − 2)
+

2

(MN − 3)(MN − 2)(M − 3)
, (16)

and thus from Equation (12) with some algebraic manipulations,

Cov(Bi,j , Bk,`) ≤
N2

(MN − 1)2(MN − 2)
.

To justify Equation (16), fix distinct Xi, Xj , Xk ∈ ZM × ZN of the same right
segment, and fix distinct Ci, Cj ∈ ZM × ZN such that LH(Ci) � LH(Cj) =
LH(Xi)�LH(Xk). Sample X` uniformly from ZM ×ZN , subject to the condition
that X` 6∈ {Xi, Xj , Xk} and X` is of the same right segment as Xi, Xj , Xk. Also
sample Ck and C` uniformly without replacement from ZM ×ZN\{Ci, Cj}. Let
Bad be the event LH(Xk)�LH(X`) ∈ {LH(Ci)�LH(Cj), LH(Cj)�LH(Ci)}. Then
Pr[Bad] ≤ 2

M−3 . We consider the following sub-cases.

Case 3.1: Bad does not happen. Let R be the event that LH(Xk) � LH(X`) ∈
{LH(Ck) � LH(Ci), LH(Ck) � LH(Cj)}. Then in this sub-case, Pr[R] = 2N

MN−2 .
Moreover,

Pr[Bk,` = 1 | R] =
N

MN − 3
, and

Pr[Bk,` = 1 | R] =
N − 1

MN − 3
.

Summing up, in this sub-case,

Pr[Bk,` = 1] =
N

MN − 3
· Pr[R] +

N − 1

MN − 3
· Pr[R]

=
N

MN − 3
− 2N

(MN − 3)(MN − 2)
.

Case 3.2: Bad happens. Let R be the event that LH(Xk)�LH(X`) ∈ {LH(Ck)�

LH(Ci), LH(Ck)� LH(Cj)}. Then in this sub-case, Pr[R] ≥ 2N−2
MN−2 . Moreover,

Pr[Bk,` = 1 | R] =
N

MN − 3
, and
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Pr[Bk,` = 1 | R] =
N − 1

MN − 3
.

Summing up, in this sub-case,

Pr[Bk,` = 1] =
N

MN − 3
· Pr[R] +

N − 1

MN − 3
· Pr[R]

=
N

MN − 3
− 1

MN − 3
· Pr[R]

≤ N

MN − 3
− 2N − 2

(MN − 3)(MN − 2)
.

Combining both Cases 3.1 and 3.2 above,

Pr[Bk,` = 1 | Bi,j = 1]

≤ N

MN − 3
− 2N

(MN − 3)(MN − 2)
+

2

(MN − 3)(MN − 2)
Pr[Bad]

≤ N

MN − 3
− 2N

(MN − 3)(MN − 2)
+

2

(MN − 3)(MN − 2)(M − 3)

as claimed.

C.6 Proof of Lemma 6

Let

δ =
M +N − 1

MN
−∆ = (1− λ)

(M +N − 1

MN
− N

MN − 1

)
≥ (1− λ)(M − 2)

MN
.

First, recall that

E[V ] =
M +N − 1

MN
· size .

Hence

Pr [V ≤ ∆ · size] = Pr [V ≤ E[V ]− δ · size]

≤ Var[V ]

Var[V ] + δ2 · (size)2
≤ Var[V ]

δ2 · (size)2
, (17)

where the first inequality is due to one-sided Chebyshev’s inequality. Next, we
will give a lower bound of size. Partition X1, . . . , Xm to groups P1, . . . , Pd such
that Xi and Xj belong to the same partition only if they have the same right
segment. Since X1, . . . , Xm are t-wise right-matching, we have d ≤ t. For each
j ≤ d, let mj be the size of Pj . Then

size =

d∑
j=1

mj(mj − 1)

2
=

1

2

( d∑
j=1

m2
j

)
− 1

2

( d∑
j=1

mj

)
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=
1

2

( d∑
j=1

m2
j

)
− m

2
≥ 1

2d

( d∑
j=1

mj

)2
− m

2
=
m2

2d
− m

2
≥ m2

2t
− m

2
(18)

where the first inequality is due to Cauchy-Schwartz inequality. From Equation (7)
and Equation (18), it suffices to show that

Var[V ] ≤ (M +N − 1) · size
MN

+
6.2(M − 1)(N − 1) · (size)2

M2N3
+

2
√

2 · (size)1.5

MN
.

In order to do that, we will factor V as

V =
∑

(i,j)∈D

Bi,j

where Bi,j is the indicator random variable for the event LH(Ci) � LH(Cj) =
LH(Xi) � LH(Xj), and D is the set of all pairs (i, j) such that 1 ≤ i < j ≤ m,
and RH(Xi) = RH(Xj). Hence

Var[V ] =
∑

(i,j),(k,`)∈D

Cov(Bi,j , Bk,`) . (19)

If i = k and j = ` then

Cov(Bi,j , Bk,`) = Var[Bi,j ] ≤ Pr[Bi,j = 1] =
M +N − 1

MN
, (20)

where the inequality is due to the fact that Bi,j ∈ {0, 1}, and the last equality
is due to Lemma 3. We claim that

(i) Let pairs be the number of pairs (i, j), (i, `) ∈ D such that either {i, j} ∩
{k, `} 6= ∅, but (i, j) 6= (k, `). Then

pairs ≤ 2
√

2 · (size)1.5 . (21)

(ii) If {i, j} ∩ {k, `} 6= ∅ but (i, j) 6= (k, `) then

0 < Cov(Bi,j , Bk,`) =
MN −M −N + 2

(MN)2
<

1

MN
. (22)

(iii) If {i, j} ∩ {k, `} = ∅ and RH(Xi) = RH(Xk) then

Cov(Bi,j , Bk,`) =
2(M − 1)(N − 1)

M2N3
≤ 6.2 · (M − 1)(N − 1)

M2N3
. (23)

(iv) If {i, j} ∩ {k, `} = ∅ and RH(Xi) 6= RH(Xk) then

Cov(Bi,j , Bk,`) ≤
6.2 · (M − 1)(N − 1)

M2N3
. (24)
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These claims will be justified later. Combining Equations (20), (21), (22), (23),
and (24), we obtain Equation (19).

Justifying Equation (21). If {i, j} ∩ {k, `} 6= ∅, but (i, j) 6= (k, `) then
Xi, Xj , Xk, X` must belong to one partition Ps. Let Is be the set of indices r
such that Xr ∈ Ps. Note that there is a one-to-one correspondence between such
a tuple (i, j, k, `) with a tuple (r1, r2, r3) such that r1, r2, r3 ∈ Is are distinct:

(i) Given (i, j, k, `), we can construct (r1, r2, r3) by deleting a duplicate number
in (i, j, k, `).

(ii) Given (r1, r2, r3), we can reconstruct (i, j, k, `) via i = min{r1, r2}, j =
max{r1, r2}, k = min{r2, r3}, and ` = max{r2, r3}.

Let µ = max{m1, . . . ,md}. Then

pairs =

d∑
t=1

mt(mt − 1)(mt − 2) ≤ (µ− 2)

d∑
t=1

mt(mt − 1) = 2(µ− 2)size .

On the other hand,

size =

d∑
t=1

mt(mt − 1)

2
≥ (µ− 1)µ

2
≥ (µ− 2)2

2
.

Thus

pairs ≤ 2(µ− 2)size ≤ 2
√

2 · size1.5

as claimed.

Justifying Equation (22). Without loss of generality, assume that i = k. For
any r ≤ 4, let Xr

i be the intermediate round-r output of Xi. Let (G1, . . . , G4) be
the functions specified by the key of F. Since Xi 6= Xj and RH(Xi) = RH(Xj),
we must have LH(Xi) 6= LH(Xj). Hence

LH(X1
i ) = LH(Xi)�G1(RH(Xi))

6= LH(Xj)�G1(RH(Xj)) = LH(X1
j ) .

Repeating this argument, we conclude that the left segments of X1
i , X

1
j , X

1
` are

distinct. We consider the following cases.

Case 1: RH(X2
i ) = RH(X2

j ) and RH(X2
i ) = RH(X2

` ), meaning that

RH(X1
i )�G2(LH(X1

i )) = RH(X1
j )�G2(LH(X1

j ))

RH(X1
i )�G2(LH(X1

i )) = RH(X1
` )�G2(LH(X1

` )) .

Since LH(X1
i ), LH(X1

j ), LH(X1
` ) are distinct and G2 : ZM → ZN is a truly ran-

dom function, this case happens with probability 1/N2. From Lemma 4, in this
case we always have (Bi,j = 1) and (Bk,` = 1).
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Case 2: RH(X2
i ) = RH(X2

j ) and RH(X2
i ) 6= RH(X2

` ). This case happens with

probability 1
N

(
1 − 1

N

)
. Now again in this case, from Lemma 4, Bi,j = 1 with

certainty, and Bk,` = 1 with probability 1/M . Hence in this case the conditional
probability that Bi,j = 1 and Bk,` = 1 is 1/M .

Case 3: RH(X2
i ) 6= RH(X2

j ) and RH(X2
i ) = RH(X2

` ). This is similar to Case 2.

Case 4: RH(X2
i ) 6= RH(X2

j ) and RH(X2
j ) = RH(X2

` ). This case again happens

with probability 1
N

(
1− 1

N

)
. From Lemma 4, we have

LH(Cj)� LH(C`) = LH(Xj)� LH(X`) . (25)

Assume that Bi,j = 1, which by Lemma 4 happens with probability 1/M . We
now prove that Bi,` will be 1. Indeed, since Bi,j = 1,

LH(Ci)� LH(Cj) = LH(Xi)� LH(Xj) . (26)

Performing the operation � on Equation (25) and Equation (26) side by side,
we obtain

LH(Ci)� LH(C`) = LH(Xi)� LH(X`) .

Hence in this case, the conditional probability that Bi,j = 1 and Bk,` = 1 is
1/M .

Case 5: RH(X2
i ),RH(X2

j ),RH(X2
` ) are distinct. This case happens with proba-

bility

1− 1

N2
− 3

N

(
1− 1

N

)
= 1− 3

N
+

2

N2
.

In this case, LH(Ci)� LH(Cj) is

(LH(X2
i )�G3(RH(X2

i ))� (LH(X2
j )�G3(RH(X2

j )) ,

and a similar formula holds for LH(Ci)� LH(C`). As RH(X2
i ),RH(X2

j ),RH(X2
` )

are distinct and G3 is a truly random function, LH(Ci)� LH(Cj) and LH(Ci)�
LH(C`) are independently and uniformly distributed in ZM . Hence in this case
the conditional probability that Bi,j = 1 and Bk,` = 1 is 1/M2.

Combining all cases,

Pr[(Bi,j = 1) ∩ (Bk,` = 1)] =
1

N2
+

3

MN

(
1− 1

N

)
+
(

1− 3

N
+

3

N2

) 1

M2

=
(M +N − 1)2

(MN)2
+
MN −M −N + 2

(MN)2
.

Hence

Cov(Bi,j , Bk,`) = Pr[(Bi,j = 1) ∩ (Bk,` = 1)]− Pr[Bi,j = 1] · Pr[Bk,` = 1]

=
MN −M −N + 2

(MN)2
.
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Justifying Equation (23). Since Xi 6= Xj and RH(Xi) = RH(Xj), we must
have LH(Xi) 6= LH(Xj). Hence

LH(X1
i ) = LH(Xi)�G1(RH(Xi))

6= LH(Xj)�G1(RH(Xj)) = LH(X1
j ) .

Repeating this argument, we conclude that the left segments of X1
i , X

1
j , X

1
k , X

1
`

are distinct. Thus RH(X2
i ),RH(X2

j ),RH(X2
k), and RH(X2

` ) are independent and
uniformly distributed over ZN , since they are produced from G2 on distinct
inputs. We consider the following cases.

Case 1: RH(X2
i ) = RH(X2

j ) and RH(X2
k) = RH(X2

` ). This case happens with

probability 1/N2. In this case, from Lemma 4, we always have (Bi,j = 1) and
(Bk,` = 1).

Case 2: RH(X2
i ) = RH(X2

j ) and RH(X2
k) 6= RH(X2

` ). This case happens with

probability 1
N

(
1− 1

N

)
. In this case, from Lemma 4, Bi,j = 1 with certainty, and

Bk,` = 1 with probability 1/M . Hence in this case the conditional probability
that (Bi,j = 1) and (Bk,` = 1) is 1/M .

Case 3: RH(X2
i ) 6= RH(X2

j ) and RH(X2
k) = RH(X2

` ). This is similar to Case 2.

Case 4: RH(X2
i ) 6= RH(X2

j ) and RH(X2
k) 6= RH(X2

` ), which happens with prob-

ability (1− 1/N)2. Let Bad be the event that

{RH(X2
i ),RH(X2

j )} = {RH(X2
k),RH(X2

` )} ,

which happens in this case with conditional probability 2
N(N−1) .

� First suppose that Bad does not happen. Then LH(Ci)� LH(Cj) is

(LH(X2
i )�G3(RH(X2

i ))� (LH(X2
j )�G3(RH(X2

j ))

and a similar formula holds for LH(Ck)� LH(C`).

Case 4.1: {RH(X2
i ),RH(X2

j )} ∩ {RH(X2
k),RH(X2

` )} = ∅. As the right segments

of X2
i , X

2
j , X

2
k , X

2
` are distinct and G3 is a truly random function, LH(Ci) �

LH(Cj) and LH(Ck)� LH(C`) are independently and uniformly distributed over
ZM . Hence in this sub-case the conditional probability that Bi,j = 1 and Bk,` = 1
is 1/M2.

Case 4.2: |{RH(X2
i ),RH(X2

j )} ∩ {RH(X2
k),RH(X2

` )}| = 1. Without loss of gen-

erality, suppose that RH(X2
k) 6∈ {RH(X2

i ),RH(X2
j )} and RH(X2

` ) = RH(X2
i ).

Again, LH(Ci)�LH(Cj) and LH(Ck)�LH(C`) are independently and uniformly
distributed over ZM . Hence in this sub-case the conditional probability that
Bi,j = 1 and Bk,` = 1 is 1/M2.

Summing up, if Bad does not happen, the conditional probability that Bi,j = 1
and Bk,` = 1 is 1/M2.
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� Next suppose that Bad does happen. In this sub-case, from Lemma 4, Bi,j = 1
with probability 1/M , and thus the conditional probability that Bi,j = 1 and
Bk,` happens is at most 1/M .

� Combining the two sub-cases, in Case 4, the conditional probability that
Bi,j = 1 and Bk,` = 1 is at most

Pr[Bad]
1

M
+ (1− Pr[Bad])

1

M2
=

1

M2
+ Pr[Bad] · M − 1

M2

=
1

M2
+

2(M − 1)

M2N(N − 1)
.

Combining all cases,

Pr[(Bi,j = 1) ∩ (Bk,` = 1)] ≤
(M +N − 1

MN

)2
+

2(M − 1)(N − 1)

M2N3
.

Hence

Cov(Bi,j , Bk,`) ≤ Pr[(Bi,j = 1) ∩ (Bk,` = 1)]− Pr[Bi,j = 1] · Pr[Bk,` = 1]

≤ 2(M − 1)(N − 1)

M2N3
.

Justifying Equation (24). Again LH(X1
i ) 6= LH(X1

j ) and LH(X1
k) 6= LH(X1

` ).

Let S = {LH(X1
i ), LH(X1

j )} ∩ {LH(X1
k), LH(X1

` )}. We consider the following
cases.

Case 1: |S| = 0. Using the same argument as in the justification of Equation (23),

in this case Cov(Bi,j , Bk,`) ≤ 2(M−1)(N−1)
M2N3 .

Case 2: |S| = 1. Due to symmetry, without loss of generality, assume that
LH(X1

i ) = LH(X1
k) but LH(X1

j ) 6= LH(X1
` ). Then (1) RH(X2

i ) 6= RH(X2
k), (2)

RH(X2
i ),RH(X2

j ), and RH(X2
` ) are independent and uniformly distributed over

ZN , and (3) RH(X2
j ),RH(X2

k), and RH(X2
` ) are independent and uniformly dis-

tributed over ZN . Using a similar analysis as in the justification of Equation (23),
with the observation that now the (conditional) probability of the event Bad be-

comes just 1
N(N−1) , in this case, Cov(Bi,j , Bk,`) ≤ (M−1)(N−1)

M2N3 .

Case 3: |S| = 2. We consider the following sub-cases.

Case 3.1: LH(X1
i ) = LH(X1

k) and LH(X1
j ) = LH(X1

` ). Note that

LH(X1
i )− LH(X1

j ) = LH(Xi)� LH(Xj) , and

LH(X1
k)− LH(X1

` ) = LH(Xk)� LH(X`) .

Thus this case happens if and only if LH(X1
i ) = LH(X1

k) and LH(Xi)�LH(Xj) =
LH(Xk)�LH(X`). Since LH(Xk)�LH(X`) is uniformly distributed over ZM\{0}



54 Hoang, Miller, and Trieu

independent ofXi, Xj , Xk and their intermediate outputs, this case happens with
probability 1

M(M−1) . In this case, Cov(Bi,j , Bk,`) ≤ Pr[Bi,j = 1] = M+N−1
MN .

Case 3.2: LH(X1
i ) = LH(X1

` ) and LH(X1
j ) = LH(X1

k). This case is similar to
Case 3.1.

Summing up, totally,

Cov(Bi,j , Bk,`) ≤
2(M − 1)(N − 1)

M2N3
+

2

M(M − 1)
· M +N − 1

MN

≤ 6.2 · (M − 1)(N − 1)

M2N3
,

where the last inequality is due to the fact that M ≥ N ≥ 64.

C.7 Proof of Lemma 8

Let (G1, G2, G3, G4) be the functions specified by the key of the Feistel network.
For each message Xr, let Xt

r denote its round-t intermediate value. For part (a),
since RH(Xi) = RH(Xj) and Xi 6= Xj , from Lemma 7, Xi and Xj cannot collide
at round 1. Likewise, Xk and X` do not collide at round 1.

For part (b), assume to the contrary that Xj and Xk collide at round 1, meaning
that LH(X1

j ) = LH(X1
k). Then on the one hand,

RH(X2
j )� RH(X2

k) =
(
G2(LH(X1

j ))� RH(Xj)
)
�
(
G2(LH(X1

k))� RH(Xk)
)

= RH(Xj)� RH(Xk) .

On the other hand, since LH(Cj) = LH(Ck),

RH(X2
j )� RH(X2

k) =
(
RH(Cj)�G4(LH(Cj))

)
�
(
RH(Ck)�G4(LH(Ck))

)
= RH(Cj)� RH(Ck) .

Hence
RH(Xj)� RH(Xk) = RH(Cj)� RH(Ck) ,

violating the non-degeneracy conditions of the edge (vi,j , vk,`). Thus Xj and Xk

cannot collide at round 1.

For part (c), assume to the contrary that there are two inter-group collisions at
round 1. From parts (a) and (b), the collisions must be between Xi and Xk, and
between Xj and X`, meaning that LH(X1

i ) = LH(X1
k) and LH(X1

j ) = LH(X1
` ).

Hence

LH(Xi)� LH(Xj) =
(
LH(X1

i )�G1(RH(Xi))
)
�
(
LH(X1

j )�G1(RH(Xj))
)

= LH(X1
i )� LH(X1

j ) ,
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and likewise,
LH(Xk)� LH(X`) = LH(X1

k)� LH(X1
` ) .

Since LH(X1
i ) = LH(X1

k) and LH(X1
j ) = LH(X1

` ),

LH(Xi)� LH(Xj) = LH(Xk)� LH(X`) ,

violating the non-degeneracy requirements of the edge (vi,j , vk,`).

For part (d), assume to the contrary that there is some collision, say between
Xi and X`, at round 2. We claim that

G3(RH(X2
i )) = G3(RH(X2

j )), (27)

and likewise
G3(RH(X2

k)) = G3(RH(X2
` )) . (28)

To justify Equation (27), note that on the one hand, since RH(Xi) = RH(Xj),

LH(X1
i )� LH(X1

j ) =
(
G1(RH(Xi))� LH(Xi)

)
�
(
G1(RH(Xj))� LH(Xj)

)
= LH(Xi)� LH(Xj) = LH(Ci)� LH(Cj) ,

where the last equality is due to the fact that vi,j is a node in G. On the other
hand,

LH(X1
i )� LH(X1

j ) =
(
LH(Ci)�G3(RH(X2

i ))
)
�
(
LH(Cj)�G3(RH(X2

j ))
)

=
(
LH(Ci)� LH(Cj)

)
�
(
G3(RH(X2

i ))�G3(RH(X2
j ))
)
.

Hence G3(RH(X2
i )) � G3(RH(X2

j )) must be 0, justifying Equation (27). Now,
from Equation (27) and Equation (28), if Xi and X` collide at round 2, meaning
that RH(X2

i ) = RH(X2
` ), it follows that

G3(RH(X2
j )) = G3(RH(X2

k)) .

Moreover, since LH(Cj) = LH(Ck),

LH(X1
j ) = LH(Cj)�G3(RH(X2

j )) = LH(Ck)�G3(RH(X2
k)) = LH(X1

k) .

In other words, Xj and Xk collide at round 1, contradicting part (b).

C.8 Proof of Lemma 10

For part (a), let i, j ∈ {1, . . . , p} be arbitrary distinct indices, and let Bi,j be the
Bernoulli random variable such that Bi,j = 1 if and only if G contains node vi,j .
We now compute Pr[Bi,j = 1]. First, since Xi and Xj are sampled uniformly
without replacement from ZM×ZN , the chance that RH(Xi) = RH(Xj) is M−1

MN−1 .
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Next, given that RH(Xi) = RH(Xj), from Lemma 3, the conditional probability
that LH(Ci)� LH(Cj) = LH(Xi)� LH(Xj) is M+N−1

MN . Thus

Pr[Bi,j = 1] =
M − 1

MN − 1
· M +N − 1

MN
=

(M − 1)(M +N − 1)

MN(MN − 1)

Hence

E[|V |] = E
[∑
i 6=j

Bi,j

]
=
∑
i6=j

E[Bi,j ] =
∑
i 6=j

Pr[Bi,j = 1]

=
p(p− 1)(M − 1)(M +N − 1)

MN(MN − 1)
.

For part (b), let i, j ∈ {1, . . . , p} be arbitrary distinct indices, and let Di,j be the
Bernoulli random variable such that Di,j = 1 if and only if G contains node vi,j ,
and this node is good. We now compute Pr[Di,j = 1]. For each t ∈ {1, 2, 3, 4}, let
Xt
i and Xt

j denote the round-t intermediate outputs of Xi and Xi respectively.
Then, from part (b) of Lemma 4, Di,j = 1 if and only if RH(Xi) = RH(Xj) and
RH(X2

i ) = RH(X2
j ). Again, the chance that RH(Xi) = RH(Xj) is M−1

MN−1 . From
part (a) of Lemma 4, given that RH(Xi) = RH(Xj), the conditional probability
that X2

i = X2
j is exactly 1/N . Thus Pr[Di,j = 1] = M−1

(MN−1)N . Hence

E[Z] = E
[∑
i 6=j

Di,j

]
=
∑
i 6=j

E[Di,j ] =
∑
i6=j

Pr[Di,j = 1]

=
p(p− 1)(M − 1)

(MN − 1)N
.

For part (c), for distinct i, j, k, ` ∈ {1, . . . , p}, let Bi,j,k,` denote the Bernoulli
random variable such that Bi,j,k,` = 1 if and only if (vi,j , vk,`) is an edge in G.
Then

E[|E|] = E
[ ∑
i,j,k,`

Bi,j,k,`

]
=
∑
i,j,k,`

E[Bi,j,k,`] =
∑
i,j,k,`

Pr[Bi,j,k,` = 1] .

We claim that each Pr[Bi,j,k,` = 1] is at most (M+N)2

M3N4 . Hence

E[|E|] ≤ p!

(p− 4)!
· (M +N)2

M3N4
.

We now justify the claim above. Fix (i, j, k, `) ∈ ({1, . . . , p})4 such that i, j, k, `
are distinct. For Bi,j,k,` = 1, the messages Xi, Xj , Xk, X` have to satisfy the
following constraints:

(i) RH(Xi) = RH(Xj) and RH(Xk) = RH(X`), but RH(Xj) 6= RH(Xk).

(ii)
(
LH(Xi)� LH(Xj)

)
6=
(
LH(Xk)� LH(X`)

)
.

(iii) LH(Xi) 6= LH(Xj) and LH(Xk) 6= LH(X`).
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First, there are N(N − 1) choices for RH(Xi),RH(Xj),RH(Xk),RH(X`) meeting
condition (i). Moreover, there are M2(M−1)(M−2) choices of LH(Xi), LH(Xj),
LH(Xk), LH(X`) meeting (ii) and (iii). Hence if Xi, Xj , Xk, X` are sampled uni-
formly without replacement from ZM × ZN , the chance that they satisfy the
constraints above is

N(N − 1)M2(M − 1)(M − 2)

MN(MN − 1)(MN − 2)(MN − 3)
≤ 1

N2
.

Suppose that Xi, Xj , Xk, X` satisfy the constraints (i), (ii), (iii) above. What
remains is to prove that the conditional probability that Bi,j,k,` = 1 is at most
(M+N)2

M3N2 . Let (G1, G2, G3, G4) be the functions specified by the key of the Feistel
network. For each message Xr, let Xt

r denote its round-t intermediate value.
From Lemma 8, there is at most one collision at round 1, between either Xi and
Xk, or between Xi and X`, or between Xj and X`. Without loss of generality,
assume that Xi and X` do not collide at round 1, and Xj and X` also do not
collide at round 1. From part (d) of Lemma 8, there are at most two collisions
at round 2. We consider the following cases.

Case 1: There are exactly two collisions at round 2. From Lemma 8, Xi and Xj

collide at round 2, and Xk and X` also collide at round 2. Since LH(X1
i ), LH(X1

j ),

LH(X1
` ) are distinct, and LH(X1

k) and LH(X1
` ) are distinct, and G2 is a truly

random function independent of the round-1 outputs, this case happens with
probability at most 1/N2. Moreover, since LH(Ck) = G3(RH(X2

k)) � LH(X2
k)

and LH(Cj) = G3(RH(X2
j ))� LH(X2

j ), and RH(X2
k) 6= RH(X2

j ), the conditional
probability that LH(Ck) = LH(Cj) in this case is 1/M . Hence the conditional
probability that Bi,j,k,` = 1 in this case is at most 1/MN2.

Case 2: There is exactly one collisions at round 2. From Lemma 8, this is
either the collision between Xi and Xj , or between Xk and X`. Without loss
of generality, suppose that Xi and Xj collide at round 2. Since LH(X1

i ) and
LH(X1

j ) are distinct, and G2 is a truly random function independent of the
round-1 outputs, this case happens with probability at most 1/N . Moreover,
recall that

(1) LH(Cj) = G3(RH(X2
j ))� LH(X2

j ) and the similar formulas hold for Xk and
X` respectively,

(2) RH(Xj),RH(Xk),RH(X`) are distinct, and
(3) G3 is a truly random function independent of the round-2 output.

Hence in this case, LH(Cj), LH(Ck), LH(C`) are (conditionally) independent,
truly random strings in ZM . Thus in this case the chance that LH(Cj) = LH(Ck)
and LH(Ck)�LH(C`) = LH(Xk)�LH(X`) is at most 1/M2. Taking into account
the two possibilities for the collision at round 2, the conditional probability that
Bi,j,k,` = 1 in this case is at most 2/M2N .

Case 3: There is no collision at round 2. Then in this case LH(Ci), LH(Cj),
LH(Ck), LH(C`) are (conditionally) independent, truly random strings in ZM .
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Hence in this case the chance that LH(Cj) = LH(Ck) and LH(Ck) � LH(C`) =
LH(Xk) � LH(X`) and LH(Ci) � LH(Cj) = LH(Xi) � LH(Xj) is at most 1/M3.
Thus the conditional probability that Bi,j,k,` = 1 in this case is at most 1/M3.

Summing over all three cases, the conditional probability that Bi,j,k,` = 1 is at
most

1

MN2
+

2

M2N
+

1

M3
=

1

M

( 1

M
+

1

N

)2
=

(M +N)2

M3N2
.

C.9 Proof of Lemma 12

Setup. Let (G1, G2, G3, G4) be the functions specified by the key of the Feistel
network. For each message Xi, let Xt

i denote its round-t intermediate value. Fix
(i, j, k, `, r, s) ∈ ({1, . . . , p})6 such that i, j, k, `, r, s are distinct and

(i) RH(Xi) = RH(Xj), RH(Xk) = RH(X`), and RH(Xr) = RH(Xs), and
(ii) RH(Xi),RH(Xk) and RH(Xr) are distinct, and

(iii)
(
LH(Xi)� LH(Xj)

)
�
(
LH(Xk)� LH(Xj)

)
�
(
LH(Xr)� LH(Xs)

)
= 0.

The conditions above are necessary so that there exist (Ci, . . . , Cs) such that T =
(vi,j , vk,`, vr,s) is a triangle in G.12 Let Good be the event that T = (vi,j , vk,`, vr,s)
forms a triangle of zero weight in G, and all the three nodes are good. Let Bad
be the event that T is a triangle of zero weight in G, but some of its nodes is
bad. We will prove that

Pr[Bad] ≤ Pr[Good] · N

M − 9

( 4

M
+

33N

(N − 2)M2
+

39

M2

)
, and (29)

Pr[Good] ≥ 1

N3M2

(
1− 4

N
− 9

M

)
. (30)

Those claims will be justified later below.

For part (a), since Good and Bad are disjoint,

Pr[Good | Good ∪ Bad] =
Pr[Good]

Pr[Good ∪ Bad]
=

Pr[Good]

Pr[Good] + Pr[Bad]

=
1

1 + Pr[Bad]/Pr[Good]
.

Thus from Equation (29),

Pr[Good | Good ∪ Bad] ≥ 1

1 + ε
,

12 To justify condition (iii), note that T = (vi,j , vk,`, vr,s) to be a triangle, we must have
LH(Xi) � LH(Xj) = LH(Ci) � LH(Cj), LH(Xk) � LH(X`) = LH(Ck) � LH(C`), and
LH(Xr) � LH(Xs) = LH(Cr) � LH(Cs). Summing those formulas side-by-side, and
taking into account that LH(Cj) = LH(Ck), LH(C`) = LH(Cr), LH(Cs) = LH(Ci), we
obtain (iii).
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where ε = N
M−9 ·

(
4
M + 33N

(N−2)M2 + 39
M2

)
.

For part (b), for each tuple L = (i, j, k, `, r, s) ∈ ({1, . . . , p})6 such that i, j, k, `, r,
and s are distinct, let BL be indicator random variable for the event that T =
(vi,j , vk,`, vr,s) forms a triangle of zero weight in G, and all the three nodes are
good. Let Λ denote the number of triangles of zero-weight in G whose all nodes
are good. Then

E[Λ] =
1

3
E
[∑
L
BL

]
=

1

3

∑
L

E[BL] =
∑
L

Pr[BL = 1] ,

where the factor 1/3 is due to the fact that each triangle is counted three
times from its three nodes in the sum

∑
LBL. For each L, BL = 1 only if

(1) (Xi, . . . , Xs) satisfy conditions (i), (ii), (iii) above, and (2) the event GoodL
happens. To estimate the probability of event (1), first note that there are at
least

N(N − 1)(N − 2) ≥ N3
(

1− 3

N

)
choices of for (RH(Xi), . . . ,RH(Xs)) such that RH(Xi) = RH(Xj),RH(Xk) =
RH(X`),RH(Xr) = RH(Xs), and RH(Xi),RH(Xk), and RH(Xr) are distinct.
Next, there are at least

M3(M − 1)(M − 4) ≥M5 ·
(

1− 5

M

)
choices for LH(Xi), . . . , LH(Xs) such that

– LH(Xi) 6= LH(Xj), LH(Xk) 6= LH(X`), LH(Xr) 6= LH(Xs), and
– LH(Xi)� LH(Xj), LH(Xk)� LH(X`), LH(Xr)� LH(Xs) are distinct, and

–
(
LH(Xi)� LH(Xj)

)
�
(
LH(Xk)� LH(Xj)

)
�
(
LH(Xr)� LH(Xs)

)
= 0.

To see why, let ∆1 = LH(Xi) � LH(Xj), ∆2 = LH(Xk) � LH(X`), and ∆3 =
LH(Xr)� LH(Xs). The constraints above mean that

(i) ∆1, ∆2, ∆3 are distinct and non-zero, and
(ii) ∆1 �∆2 �∆3 = 0.

Since there are M3 choices of the triple
(
LH(Xi), LH(Xk), LH(Xr)

)
, and LH(Xj),

LH(X`), LH(Xs) are completely determined from LH(Xi), LH(Xk), LH(Xr), ∆1,
∆2, ∆3, it suffices to show that there are at least (M − 1)(M − 4) triples
(∆1, ∆2, ∆3) meeting the constraints (i) and (ii) above. For any elementX ∈ ZM ,
let −X denote 0 � X and −2X denote 0 � (X � X). By substituting ∆3 =
−(∆1 �∆2) as specified by (ii), the condition (i) becomes (iii) ∆1 6= {0,−2∆2}
and ∆2 6∈ {0,−∆1,−2∆1}. Since there are at least (M − 1)(M − 3) pairs
(∆1, ∆2) ∈ (ZM\{0})2 such that ∆2 6∈ {−∆1,−2∆1}, and there are exactly
M − 1 pairs (∆1, ∆2) ∈ (ZM\{0})2 such that ∆1 = −2∆2, there are at least

(M − 1)(M − 3)− (M − 1) = (M − 1)(M − 4)
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pairs (∆1, ∆2) ∈ (ZM )2 meeting the constraint (iii).

Hence the chance that event (1) happens is at least

M5N3(1− 3/N)(1− 5/M)

MN(MN − 1) · · · (MN − 5)
≥ 1

MN3

(
1− 3

N
− 5

M

)
.

Next, from Equation (30), the conditional probability that event (2) happens,

given event (1), is at least 1
N3M2

(
1− 4

N −
9
M

)
. Hence

Pr[BL = 1] ≥ 1

M3N6

(
1− 7

N
− 14

M

)
,

and thus

E[Λ] ≥ p!

3(p− 6)!
· 1

M3N6

(
1− 7

N
− 14

M

)
justifying part (b).

The number of bad nodes in a triangle. We first prove by contradiction
that if Bad happens then at least two nodes of the triangle T are bad. Assume
to the contrary that Bad happens but exactly one node of T is bad. Without
loss of generality, assume that this bad node is vr,s. Since both vi,j and vk,` are
good, from Lemma 9,

G4(LH(Ci))�G4(LH(Cj)) = Label(vi,j)

G4(LH(Ck)�G4(LH(C`)) = Label(vk,`) .

Adding the two equations above side by side, and observing that LH(Cj) =
LH(Ck), we obtain

G4(LH(Ci))�G4(LH(C`)) = Label(vi,j)� Label(vk,`) .

On the other hand, since LH(C`) = LH(Cr) and LH(Cs) = LH(Ci),

G4(LH(Cs))�G4(LH(Cr)) = Label(vi,j)� Label(vk,`) .

Since T has zero weight, Label(vi,j)� Label(vk,`) = 0� Label(vr,s). Hence

G4(LH(Cr))�G4(LH(Cs)) = Label(vr,s) .

Since G4(LH(Cr)) = RH(Cr)� RH(X2
r ) and G4(LH(Cs)) = RH(Cs)� RH(X2

s ),(
RH(Cr)� RH(X2

r )
)
�
(
RH(Cs)� RH(X2

s )
)

= Label(vr,s) . (31)

By expanding Label(vr,s) = RH(Cr)�RH(Cs), Equation (31) above can be sim-
plified as

RH(X2
r ) = RH(X2

s ) .

In other words, vr,s is also good, which is a contradiction.
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Characterizing collisions. We will now characterize the collisions among
the queries.

� First, from Lemma 8, Xi and Xj cannot collide at round 1, and neither do
Xk and X`, and neither do Xr and Xs. Next, from Lemma 8, Xj and Xk do not
collide at round 1, and neither do X` and Xr, and neither do Xs and Xi.

� Next, suppose that Bad happens. From Lemma 8,

(a) If all nodes of T are bad then there is no collision at round 2.
(b) If exactly one node of T , say vi,j , is good, then the only collision at round 2

is between Xi and Xj .

� Next partition the six queries into three groups: {Xi, Xj}, {Xk, X`}, {Xr, Xs}.
Thus at round 1, there is no intra-group collisions. From Lemma 8, between any
two groups, there is at most one inter-group collision at round 1.

� Suppose that S = {LH(X1
i ), LH(X1

j ), LH(X1
k), LH(X1

` ), LH(X1
r ), LH(X1

s )} con-

tains exactly three elements. We now prove that among LH(X1
i ), LH(X1

j ), LH(X1
k),

LH(X1
` ), LH(X1

r ), LH(X1
s ), each value repeats at most twice. Assume to the con-

trary that this claim is not true. Then there are only two possible cases.

Case 1: Among LH(X1
i ), LH(X1

j ), LH(X1
k), LH(X1

` ), LH(X1
r ), LH(X1

s ), there is
some value that repeats exactly three times. Due to the first characterization, this
value is either LH(X1

i ), LH(X1
k), LH(X1

r ), or LH(X1
j ), LH(X1

` ), LH(X1
s ). Without

loss of generality, suppose that LH(X1
i ), LH(X1

k), LH(X1
r ) are the same. On the

one hand, since |S| = 3, there are at least three collisions at round 1. On the
other hand, from the first and third characterizations, at round 1, there are at
most three collisions. Hence there are exactly three collisions at round 1. This
means that LH(X1

j ), LH(X1
` ), LH(X1

s ) are distinct, and they are all different from

LH(X1
i ). Hence the set S contains at least 4 elements, which is a contradiction.

Case 2: Among LH(X1
i ), LH(X1

j ), LH(X1
k), LH(X1

` ), LH(X1
r ), LH(X1

s ), there is
some value that repeats four times or more. By Pigeonhole principle, among
the three groups {Xi, Xj}, {Xk, X`}, {Xr, Xs}, there must be two groups such
that between them there are two collisions, violating the third characterization.

� Finally partition the six queries into three groups {Xs, Xi}, {Xj , Xk}, {X`, Xr}.
We now show that at round 1, between any two groups, there cannot be two
inter-group collisions that involve the same query. Assume to the contrary that
there are two inter-group collisions between, say the first and second groups,
that involve the same queries. By symmetry, without loss of generality, assume
that the collisions are between Xs and Xj , and between Xs and Xk. On the one
hand, since LH(X1

s ) = LH(X1
j ),

RH(X2
s )� RH(X2

j ) =
(
G2(LH(X1

s )� RH(Xs)
)
�
(
G2(LH(X1

j )� RH(Xj)
)

= RH(Xs)� RH(Xj) .

On the other hand,

RH(X2
s )� RH(X2

j ) =
(
RH(Cs)�G4(LH(Cs))

)
�
(
RH(Cj)�G4(LH(Cj))

)
.
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Hence

G4(LH(Cs))�G4(LH(Cj)) =
(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
.

Likewise,

G4(LH(Cs))�G4(LH(Ck)) =
(
RH(Cs)� RH(Ck)

)
�
(
RH(Xs)� RH(Xk)

)
.

Since LH(Cj) = LH(Ck),

RH(Cj)� RH(Xj) = RH(Ck)� RH(Xk) ,

violating the non-degeneracy requirements of the edge (vi,j , vk,`).

Proof ideas. Let D be the set of all possible (Ci, . . . , Cs) such that T is a
zero-weight triangle of G. On the one hand, we will show that

Pr[Good] ≥ |D| · 1

N8M3

(
1− 9

M

)
.

Our approach is to fix an arbitrary element in D for (Ci, . . . , Cs), and then
imagine that at the front, we apply the plaintexts with a 2-round Feistel network,
and at the back, we apply the ciphertexts with the inverse of a 2-round Feistel.
On the other hand, to bound Pr[Bad], we will consider several cases based on
the collisions at the first and last rounds. In the d-th case, we will show that
Bad happens only for a corresponding subset Dd ⊆ D. We then fix an arbitrary
element of Dd for (Ci, . . . , Cs) and also bound the probability that two Feistel
networks meet properly at the middle by a certain number εd. Thus

Pr[Bad] ≤ |D| ·
∑
d

|Dd|
|D|
· εd .

Bounding the chance of Good. We first give a lower bound of Pr[Good]. Fix
an arbitrary element in D for (Ci, . . . , Cs). First, recall that Xi and Xj are of
the same right segment, and so do Xk and X`, and Xr and Xs. Hence from
Lemma 7 and the characterization of collisions, the chance that no two queries
collide at round 1 is at least

1− 1

M
− 2

M
− 3

M
− 3

M
= 1− 9

M
.

To see why, the only possible collisions at round 1 are: (i) between Xk and Xi,
which happens with probability at most 1/M , (ii) between X` and one element of
{Xi, Xj}, which happens with probability at most 2/M , (iii) between Xr and one
element of {Xi, Xj , Xk}, which happens with probability at most 3/M , and (iv)
between Xs and one element of {Xj , Xk, Xr}, which happens with probability
at most 3/M .

Next, assume that we have no collision at round 1. Since LH(X1
i ), LH(X1

j ),

LH(X1
k), LH(X1

` ), LH(X1
r ), LH(X1

s ) are distinct and since G2 is a truly random
function, the chance that at the front, the following events happen is 1

N5 :
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(1) Xi and Xj collide at round 2,
(2) Xk and X` collide at round 2,
(3) Xr and Xs collide at round 2,
(4) RH(X2

j )� RH(X2
k) = RH(Cj)� RH(Ck),

(5) RH(X2
` )� RH(X2

r ) = RH(C`)� RH(Cr).

Suppose that the five events above all happen. They then imply that

RH(X2
s )� RH(X2

i ) = RH(Cs)� RH(Ci) . (32)

Moreover, since LH(Cj) 6= LH(Ck), it follows that RH(X2
j ) 6= RH(X2

k). Likewise,

RH(X2
` ) 6= RH(X2

r ) and RH(X2
s ) 6= RH(X2

i ). Let (Li, Ri), . . . , (Ls, Rs) denote
the outputs produced by the two-round Feistel network at the front on inputs
Xi, . . . , Xs respectively; note that Ri = Rj , Rk = R`, Rr = Rs, and Ri, Rk, Rr
are distinct. Now we need to bound the probability that the outputs at the back
are exactly (Li, Ri), . . . , (Ls, Rs). At the back, since LH(Ci), LH(Ck), LH(Cr) are
distinct and G4 is a truly random function, the following events happen with
(conditional) probability 1/N3:

(a) RH(Ci)�G4(LH(Ci)) = Ri,
(b) RH(Ck)�G4(LH(Ck)) = Rk,
(c) RH(Cr)�G4(LH(Cr)) = Rr.

Suppose that the three events above happen. Since LH(Ci) = LH(Cs) and from
Equation (32), Rs �Ri = RH(Cs)� RH(Ci), we obtain

RH(Cs)�G4(LH(Cs)) = Rs .

Likewise,

RH(C`)�G4(LH(C`)) = R` ,

RH(Cj)�G4(LH(Cj)) = Rj .

Thus the right segments of the outputs produced by the back two-round in-
verse Feistel match what were produced by the front. Now, at the back, since
Ri, Rk, Rr are distinct and G3 is a truly random function, the following events
happen with (conditional) probability 1/M3:

(i) LH(Ci)�G3(Ri) = Li,
(ii) LH(Ck)�G3(Rk) = Lk,
(iii) LH(Cr)�G3(Rr) = Lr.

Suppose that the three events above happen. Then since Ri = Rj , from event (i),

LH(Cj)�G3(Rj) = Li �
(
LH(Cj)� LH(Ci)

)
= Li �

(
LH(Xj)� LH(Xi)

)
= Lj ,
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where the second equality follows from the fact that vi,j ∈ V , and the third
equality follows from the fact that (1) Li = G1(RH(Xi)) � LH(Xi), (2) Lj =
G1(RH(Xj))� LH(Xj) and (3) RH(Xi) = RH(Xj). Likewise,

LH(C`)�G3(R`) = L` ,

LH(Cs)�G3(Rs) = Ls .

Thus the left segments of the outputs produced by the back two-round inverse
Feistel match what were produced by the front. Totally, when we restrict the

ciphertexts, Good happens with conditional probability at least 1
N8M3

(
1− 9

M

)
.

Hence,

Pr[Good] ≥ |D| · 1

N8M3

(
1− 9

M

)
. (33)

Now, to justify Equation (30), we only need to give a lower bound for |D|. First,
there are at least M choices for (LH(Ci), . . . , LH(Cs)) such that

– LH(Ci), LH(Ck), LH(Cr) are distinct, and
– LH(Cj) = LH(Ck), LH(C`) = LH(Cr), LH(Cs) = LH(Ci), and
– LH(Ci)�LH(Cj) = LH(Xi)�LH(Xj), LH(Ck)�LH(C`) = LH(Xk)�LH(X`),

and LH(Cr)� LH(Cs) = LH(Xr)� LH(Xs).

Next, there are at least

N ·N · (N − 1)(N − 1) · (N − 2) ≥ N5
(

1− 4

N

)
choices for (RH(Ci), . . . ,RH(Cs)) such that

– RH(Cj) � RH(Ck) 6= RH(Xj) � RH(Xk), RH(C`) � RH(Cr) 6= RH(X`) �
RH(Xr), and RH(Cs)� RH(Ci) 6= RH(Xs)� RH(Xi), and

–
(
RH(Ci)� RH(Cj)

)
�
(
RH(Ck)� RH(C`)

)
�
(
RH(Cr)� RH(Cs)

)
= 0.

Hence,

|D| ≥MN5
(

1− 4

N

)
,

and thus

Pr[Good] ≥ 1

N3M2

(
1− 4

N
− 9

M

)
justifying Equation (30).

Bounding the chance of Bad. We next give an upper bound of Pr[Bad].
From the characterizations of collisions, the set S = {LH(X1

i ), LH(X1
j ), LH(X1

k),

LH(X1
` ), LH(X1

r ), LH(X1
s )} contains at least three distinct elements, and the set

S∗ = {LH(X2
i ), LH(X2

j ), LH(X2
k), LH(X2

` ), LH(X2
r ), LH(X2

s )} contains at least 5
elements.

Below, we will consider several cases. In each case, we will fix the values of
(Ci, . . . , Cs) from a certain subset of D. Let Li, . . . , Ls be the left segments of
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the round-1 intermediate outputs of the two-round Feistel network at the front
on inputs Xi, . . . , Xs respectively. Let Ri, . . . , Rs be the right segments of the
round-1 intermediate outputs of the two-round inverse Feistel at the back on
inputs Ci, . . . , Cs respectively. We then bound the probability that the right
segments of the outputs at the front are Ri, . . . , Rs, and the left segments of the
outputs at the back are Li, . . . , Ls.

Case 1: |S| = 6 and |S∗| = 6. Fix an arbitrary element of D for (Xi, Ci, . . . ,
Xs, Cs). In this case Li, . . . , Ls are distinct, and Ri, . . . , Rs are distinct, and
thus the chance that G2(Lt) � RH(Xt) = Rt and G3(Rt) � Lt = LH(Ct) for
every t ∈ {i, j, k, `, r, s} happen with probability 1

M6N6 . Hence in this case, Bad
happens with probability at most |D| · 1

M6N6 ≤ |D| · 1
M5N7 .

Case 2: |S| = 6 and |S∗| = 5. From the characterization of collisions, there is
exactly one good node in T , say vi,j , and the only collision at round 2 is between
Xi and Xj . From Lemma 9, in this case we require that

G4(LH(Ci))�G4(LH(Cj)) = Label(vi,j) .

Fix an arbitrary element of D for (Ci, . . . , Cs). In this case Li, . . . , Ls are distinct,
and Rj , . . . , Rs are distinct. Hence the chance that (1) G2(Lt)�RH(Xt) = Rt for
every t ∈ {i, j, k, `, r, s}, (2) G3(Rm)�Lm = LH(Cm) for every m ∈ {j, k, `, r, s},
and (3) G4(LH(Ci)) � G4(LH(Cj)) = Label(vi,j) is 1

M5N7 . By accounting for
three possibilities of what the good node in T is, in this case Bad happens with
probability at most |D| · 3

M5N7 .

Case 3: |S| = 5 and |S∗| = 6. Thus there is one collision at round 1, and without
loss of generality, assume that this collision is between Xi and Xk. This means
that

LH(X2
i )� LH(X2

k) =
(
G2(LH(X1

i ))� RH(Xi)
)
�
(
G2(LH(X1

k))� RH(Xk)
)

= RH(Xi)� RH(Xk) .

On the other hand,

LH(X2
i )� LH(X2

k) =
(
RH(Ci)�G4(LH(Ci))

)
�
(
RH(Ck)�G4(LH(Ck))

)
.

Hence

G4(LH(Ci))�G4(LH(Ck)) =
(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
.

Moreover, since Xi collides with Xk at round 1,

G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk) .

Fix an arbitrary element ofD for (Ci, . . . , Cs). In this case Lj , . . . , Lk are distinct,
and Ri, . . . , Rk are distinct. Hence the chance that the following events happen
is 1

M7N6 :

(1) G2(Lt)� RH(Xt) = Rt for every t ∈ {j, k, `, r, s},
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(2) G3(Rm)� Lm = LH(Cm) for every m ∈ {i, j, k, `, r, s},
(3) G4(LH(Ci))�G4(LH(Ck)) =

(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
,

(4) G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk).

By accounting for the nine possibilities of the collision at round 1, in this case
the probability that Bad happens is at most |D| · 9

M7N6 ≤ |D| · 9
M6N7 .

Case 4: |S| = 5 and |S∗| = 5. From the characterization of collisions, there is
exactly one good node in T , say vi,j , and the only collision at round 2 is between
Xi and Xj . We consider the following sub-cases.

Case 4.1: The collision at round 1 is either between Xi and Xk, or between Xs

and Xj , or between Xs and Xk. Suppose that the collision at round 1 is between
Xi and Xk; the other cases are similar. This then leads to an equation of G1

and another equation of G4:

G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk)

G4(LH(Ci))�G4(LH(Ck)) =
(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
On the other hand, the collision between Xi and Xj at round 2 leads to another
equation of G4:

G4(LH(Ci))�G4(LH(Cj)) = RH(Ci)� RH(Cj) .

Since LH(Cj) = LH(Ck), the two equations above on G4 imply that

RH(Ci)� RH(Cj) =
(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
. (34)

Let D1 be the subset of D such that any (Ci, . . . , Cs) ∈ D1 satisfies Equation (34)
above. Note that

|D1|
|D|
≤ 1

N − 2
.

To see why, fix Ci, Cj , Cr, Cs, LH(Ck), LH(C`) such that there exists at least
one corresponding (Ci, . . . , Cs) ∈ D. Any pair (RH(Ck),RH(C`)) that makes
(Ci, . . . , Cs) fall in D is called compatible. Then there are at least N − 2 pairs
(RH(Ck),RH(C`)) ∈ (ZN )2 such that(

RH(Ci)� RH(Cj)
)
�
(
RH(Ck)� RH(C`)

)
�
(
RH(Cr)� RH(Cs)

)
= 0 (35)

and RH(Ck) 6= RH(Cj), and RH(C`) 6= RH(Cr). and all these pairs are compati-
ble. On the other hand, there is at most one pair (RH(Ck),RH(C`)) that satisfies
both Equation (34) and Equation (35).

Next, fix an arbitrary element of D for (Ci, . . . , Cs). In this case Lj , . . . , Lk are
distinct, and Rj , . . . , Rk are distinct. Hence the chance that the following events
happen is 1

M6N6 :

(1) G2(Lt)�RH(Xt) = Rt and G3(Rt)�Lt = LH(Ct) for every t ∈ {j, k, `, r, s},
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(2) G4(LH(Ci))�G4(LH(Ck)) =
(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
,

(3) G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk).

By accounting for three possibilities of the good node in T , and three corre-
sponding possibilities of the collision at round 1, in Case 4.1, Bad happens with
probability at most |D1| · 9

M6N6 ≤ |D| · 9
(N−2)M6N6 .

Case 4.2: The collision at round 1 is neither between Xi and Xk, nor between
Xs and Xj , nor between Xs and Xk. Suppose that the collision at round 1 is
between Xi and Xr; the other cases are similar. This then leads to an equation
of G1 and another equation of G4:

G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk)

G4(LH(Ci))�G4(LH(Cr)) =
(
RH(Ci)� RH(Cr)

)
�
(
RH(Xi)� RH(Xk)

)
On the other hand, the collision between Xi and Xj at round 2 leads to another
equation of G4:

G4(LH(Ci))�G4(LH(Cj)) = RH(Ci)� RH(Cj) .

Note that the two equations on G4 are linearly independent. Fix an arbitrary
element of D for (Ci, . . . , Cs). In this case Lj , . . . , Lk are distinct, and Rj , . . . , Rk
are distinct. Hence the chance that the following events happen is 1

M6N7 :

(1) G2(Lt)�RH(Xt) = Rt and G3(Rt)�Lt = LH(Ct) for every t ∈ {j, k, `, r, s},
(2) G4(LH(Ci))�G4(LH(Cr)) =

(
RH(Ci)� RH(Cr)

)
�
(
RH(Xi)� RH(Xk)

)
,

(4) G4(LH(Ci))�G4(LH(Cj)) = RH(Ci)� RH(Cj),
(4) G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk).

By accounting for three possibilities of the good node in T , and six corresponding
possibilities of the collision at round 1, in Case 4.2, Bad happens with probability
at most |D| · 18

M6N7 .

Case 5: |S| ∈ {3, 4} and |S∗| = 6. Thus at round one we have at least two colli-
sions. Partition the six queries into three groups {Xs, Xi}, {Xj , Xk}, {X`, Xr}.
We consider the following cases.

Case 5.1: The two collisions at round 1 are between the same two groups,
say the first and the second groups. From the characterization of collisions, the
collisions at round 1 must be between Xi and Xk, and between Xs and Xj . This
leads to the following equations of G1 and G4:

G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk)

G1(RH(Xs))� LH(Xs) = G1(RH(Xj))� LH(Xj)

G4(LH(Ci))�G4(LH(Ck)) =
(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
G4(LH(Cs))�G4(LH(Cj)) =

(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
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Since LH(Ck) = LH(Cj) and LH(Ci) = LH(Cs), the equations on G4 imply that(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
=
(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
. (36)

Let D2 be the subset of D such that any (Ci, . . . , Cs) ∈ D2 satisfies Equation (36)
above. Again

|D2|
|D|
≤ 1

N − 2
.

Fix an arbitrary element of D2 for (Ci, . . . , Cs). In this case R1, . . . , Rs are
distinct. Since |S| ≥ 3, there exists a subset I ⊆ {i, j, k, `, r, s} such that |I| = 3
and the values Lt, with t ∈ I, are distinct. Hence the chance that the following
events happen is 1

M8N4 :

(1) G2(Lt)� RH(Xt) = Rt for every t ∈ I,
(2) G3(Rm)� Lm = LH(Cm) for every m ∈ {i, j, k, `, r, s},
(3) G4(LH(Ci))�G4(LH(Ck)) =

(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
,

(4) G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk),
(5) G1(RH(Xs))� LH(Xs) = G1(RH(Xj))� LH(Xj).

By accounting for three possibilities of the two collisions at round 1, in Case 5.1,
Bad happens with probability at most |D2| · 3

M8N4 ≤ |D| · 3
(N−2)M6N6 .

Case 5.2: The two collisions at round 1 are between different two groups. As-
sume that those collisions are between Xi and Xk, and between Xj and Xr; the
other cases are similar. Fix an arbitrary element of D for (Ci, . . . , Cs). In this case
R1, . . . , Rs are distinct. Since |S| ≥ 3, there exists a subset I ⊆ {i, j, k, `, r, s}
such that |I| = 3 and the values Lt, with t ∈ I, are distinct. Hence the chance
that the following events happen is 1

M8N5 :

(1) G2(Lt)� RH(Xt) = Rt for every t ∈ I,
(2) G3(Rm)� Lm = LH(Cm) for every m ∈ {i, j, k, `, r, s},
(3) G4(LH(Ci))�G4(LH(Ck)) =

(
RH(Ci)� RH(Ck)

)
�
(
RH(Xi)� RH(Xk)

)
,

(4) G4(LH(Cj))�G4(LH(Cr)) =
(
RH(Cj)� RH(Cr)

)
�
(
RH(Xj)� RH(Xr)

)
,

(5) G1(RH(Xi))� LH(Xi) = G1(RH(Xk))� LH(Xk),
(6) G1(RH(Xr))� LH(Xr) = G1(RH(Xj))� LH(Xj).

By accounting for three possibilities of the two collisions at round 1, in Case 5.2,
Bad happens with probability at most |D| · 3

M8N5 ≤ |D| · 3
M7N6 .

Case 6: |S| = 4 and |S∗| = 5. This is similar to Case 5 and the chance that Bad
happens in this case is at most

3
(
|D| · 3

(N − 2)M6N6
+ |D| · 3

M7N6

)
= |D| · 9

(N − 2)M6N6
+ |D| · 9

M7N6
,
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where the factor 3 is due to the accounting of the three possibilities of the good
node of T .

Case 7: |S| = 3 and |S∗| = 5. Since |S∗| = 5, there must be a good node, say vi,j
in T . On the other hand, since |S| = 3, there must be exactly three collisions at
round 1. Assume that those collisions are between Xi and X`, between Xj and
Xs, and between Xk and Xr; the other cases are similar. The collisions between
Xi and X`, and between Xj and Xs lead to the following equations:

G1(RH(Xi))� LH(Xi) = G1(RH(X`))� LH(X`)

G1(RH(Xs))� LH(Xs) = G1(RH(Xj))� LH(Xj)

G4(LH(Ci))�G4(LH(C`)) =
(
RH(Ci)� RH(C`)

)
�
(
RH(Xi)� RH(X`)

)
G4(LH(Cs))�G4(LH(Cj)) =

(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
On the other hand, the collision between Xi and Xj at round 2 leads to another
equation of G4:

G4(LH(Ci))�G4(LH(Cj)) = RH(Ci)� RH(Cj) .

Since LH(Cs) = LH(Ci), the three equations above on G4 imply that(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
= RH(Ci)� RH(Cj) . (37)

Let D3 be the subset of D such that any (Ci, . . . , Cs) ∈ D3 satisfies Equation (37)
above. Again,

|D3|
|D|
≤ 1

N − 2
.

Fix an arbitrary element of D3 for (Ci, . . . , Cs). In this case, Rj , . . . , Rs are
distinct, and Li, Lj , Lk are distinct. Hence the chance that the following events
happen is 1

M7N5 :

(1) G2(Lt)� RH(Xt) = Rt for every t ∈ {i, j, k},
(2) G3(Rm)� Lm = LH(Cm) for every m ∈ {j, k, `, r, s},
(3) G1(RH(Xi))� LH(Xi) = G1(RH(X`))� LH(X`),
(4) G1(RH(Xs))� LH(Xs) = G1(RH(Xj))� LH(Xj),

(5) G4(LH(Ci))�G4(LH(C`)) =
(
RH(Ci)� RH(C`)

)
�
(
RH(Xi)� RH(X`)

)
,

(6) G4(LH(Cs))�G4(LH(Cj)) =
(
RH(Cs)� RH(Cj)

)
�
(
RH(Xs)� RH(Xj)

)
.

By accounting for four possibilities of the three collisions at round 1, and three
possibilities of the good node in T , in this case, Bad happens with probability
at most |D3| · 12

(N−2)M7N5 ≤ |D| · 12
(N−2)M6N6 .

Summing over all cases, we obtain

Pr[Bad] ≤ |D| ·
( 4

M5N7
+

33

(N − 2)M6N6
+

39

M6N7

)
. (38)
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Wrapping up. From Equation (33) and Equation (38), we conclude that

Pr[Bad] ≤ Pr[Good] · N

M − 9

( 4

M
+

33N

M2(N − 2)
+

39

M2

)
.

This concludes the proof.


