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Abstract. A secret-sharing scheme allows some authorized sets of par-
ties to reconstruct a secret; the collection of authorized sets is called the
access structure. For over 30 years, it was known that any (monotone)
collection of authorized sets can be realized by a secret-sharing scheme
whose shares are of size 2n−o(n) and until recently no better scheme was
known. In a recent breakthrough, Liu and Vaikuntanathan (STOC 2018)
have reduced the share size to O(20.994n). Our first contribution is im-
proving the exponent of secret sharing down to 0.892. For the special case
of linear secret-sharing schemes, we get an exponent of 0.942 (compared
to 0.999 of Liu and Vaikuntanathan).
Motivated by the construction of Liu and Vaikuntanathan, we study
secret-sharing schemes for uniform access structures. An access struc-
ture is k-uniform if all sets of size larger than k are authorized, all sets
of size smaller than k are unauthorized, and each set of size k can be
either authorized or unauthorized. The construction of Liu and Vaikun-
tanathan starts from protocols for conditional disclosure of secrets, con-
structs secret-sharing schemes for uniform access structures from them,
and combines these schemes in order to obtain secret-sharing schemes for
general access structures. Our second contribution in this paper is con-
structions of secret-sharing schemes for uniform access structures. We
achieve the following results:

– A secret-sharing scheme for k-uniform access structures for large
secrets in which the share size is O(k2) times the size of the secret.

– A linear secret-sharing scheme for k-uniform access structures for a
binary secret in which the share size is Õ(2h(k/n)n/2) (where h is the
binary entropy function). By counting arguments, this construction
is optimal (up to polynomial factors).

– A secret-sharing scheme for k-uniform access structures for a binary

secret in which the share size is kn · 2Õ(
√
k logn).

Our third contribution is a construction of ad-hoc PSM protocols, i.e.,
PSM protocols in which only a subset of the parties will compute a
function on their inputs. This result is based on ideas we used in the
construction of secret-sharing schemes for k-uniform access structures
for a binary secret.

c©IACR 2023. This is the full version of the work presented at EUROCRYPT
2019 [6], which was published by Springer-Verlag.
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1 Introduction

A secret-sharing scheme is a method in which a dealer that holds a secret infor-
mation (e.g., a password or private medical data) can store it on a distributed
system, i.e., among a set of parties, such that only some predefined authorized
sets of parties can reconstruct the secret. The process of storing the secret infor-
mation is called secret sharing and the collections of authorized sets of parties
are called access structures. Interestingly, secret-sharing schemes are nowadays
used in numerous applications (in addition to their obvious usage for secure
storage), e.g., they are used for secure multiparty computation [15, 19], thresh-
old cryptography [24], access control [38], attribute-based encryption [29, 44],
and oblivious transfer [40, 43]. The original and most important secret-sharing
schemes, introduced by Blakley [18] and Shamir [39], are threshold secret-sharing
schemes, in which the authorized sets are all the sets whose size is larger than
some threshold.

Secret-sharing schemes for general access structures were introduced in [32]
more than 30 years ago. However, we are far from understanding constraints on
the share size of these schemes. In the original constructions of secret-sharing
schemes in [32], the share size of each party is 2n−O(logn). New constructions
of secret-sharing schemes followed, e.g., [16, 33, 17]; however, the share size of
each party in these schemes remains 2n−O(logn). In a recent breakthrough, Liu
and Vaikuntanathan [34] (building on [36]) showed, for the first time, that it is
possible to construct secret-sharing schemes in which the share size of each party
is O(2cn) with an exponent c strictly smaller than 1. In particular, they showed
that every access structure can be realized with an exponent of SLV = 0.994.
Moreover, they showed that every access structure can be realized by a linear
secret-sharing scheme with an exponent of 0.994 (a scheme is linear if each share
can be written as a linear combination of the secret and some global random
field elements; see Section 2 for a formal definition). On the negative size, the
best lower bound on the total share size required for sharing a secret for some
access structure is Ω(n2/ log n) [22, 23]. Thus, there is a huge gap between the
known upper and lower bounds.

1.1 Our Results

Our first result is an improvement of the secret-sharing exponent of general
access structure. In Section 3, we prove the following theorem.

Theorem 1.1. Every access structure over n parties can be realized by a secret-
sharing scheme with a total share size of 20.8916n+o(n) and by a linear secret-
sharing scheme with a total share size of 20.942n+o(n).

In a nutshell, the construction of [34] together with combinatorial covering de-
signs are being used to establish a recursive construction, which eventually leads
to the improved bounds.

We next construct secret-sharing schemes for uniform access structures. An
access structure is k-uniform if all sets of size larger than k are authorized, all
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sets of size smaller than k are unauthorized, and every set of size k can be
either authorized or unauthorized. Our second contribution is on the construc-
tion of secret-sharing schemes for uniform access structures. The motivation for
studying uniform access structures is twofold. First, they are related to protocols
for conditional disclosure of secrets (CDS), a primitive introduced by Gertner
et al. [28]. By various transformations [11, 12, 34, 2, 13], CDS protocols imply
secret-sharing schemes for uniform access structures. Furthermore, as shown
in [34], CDS protocols and secret-sharing schemes for uniform access structures
are a powerful primitives to construct secret-sharing schemes for general access
structures. Thus, improvements on secret-sharing schemes for uniform access
structures can lead to better constructions of secret-sharing schemes for general
access structures. Second, as advocated in [2], uniform access structures should
be studied as they are a useful scaled-down version of general access structures.
Studying uniform access structures can shed light on the share size required for
general access structures, which is a major open problem.

Three regimes of secret-sharing schemes for uniform access structures have
been studied. The first regime is the obvious one of secret-sharing schemes with
short secrets (e.g., a binary secret). The second regime is secret-sharing schemes
with long secrets. Surprisingly, there are secret-sharing for this regime that are
much more efficient than schemes with short secrets [2]. The third regime is
linear secret-sharing schemes with short secrets. Linear secret-sharing schemes
are schemes where the sharing of the secret is done using a linear transformation;
such schemes are interesting since in many applications linearity is required,
e.g., in the construction of secure multiparty computation protocols in [21] and
in the constructions of Attrapadung [7] and Wee [45] of public-key (multi-user)
attribute-based encryption.

In this paper we improve the constructions of secret-sharing schemes for uni-
form access structures in these three regimes. We describe our results according
to the order that they appear in the paper.

Long secrets. In Section 4, we construct secret-sharing schemes for n-party k-

uniform access structures for large secrets, i.e., secrets of size at least 2n
k

. Pre-
viously, the share size in the best constructions for such schemes was either ek

times the length of the secret [2] or n times the length of the secret (implied by
the CDS protocol of [2] and a transformation of [12]). We show a construction in
which the share size is O(k2) times the size of the secret. For this construction,
we use the CDS protocol of [2] with k2 parties (in contrast to [2], which uses
it with k parties) with an appropriate k2-input function. Combined with the
results of [12], we get a share size which is at most min(k2, n)-times larger than
the secret size.

Linear schemes. In Section 5, we design a linear secret-sharing scheme for
k-uniform access structures for a binary secret in which the share size is
Õ(2h(k/n)n/2) (where h is the binary entropy function). By counting arguments,
our construction is optimal (up to polynomial factors). Previously, the best con-
struction was implied by the CDS protocols of [13, 36] and had share size Õ(2n/2).
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Our construction is inspired by a linear 2-party CDS protocol of [27] and the
linear k-party CDS protocols of [13]. We use the ideas of these CDS protocols to
design a linear secret-sharing schemes for balanced k-uniform access structures
(where there is a set B of n/2 parties such that any minimal authorized set
of size k in the access structure contains exactly k/2 parties from B). Using a
probabilistic argument, we show that every k-uniform access structure can be
written as a union of O(n3/2) balanced access structures, thus, we can share the
secret independently for each balanced access structure in the union.

Short secrets. In Section 6, we describe a secret-sharing scheme for k-uniform

access structures for a binary secret in which the share size is kn · 2Õ(
√
k logn).

Previously, the best share size in a secret-sharing scheme realizing such access

structures was min
{

2O(k)+Õ(
√
k logn), 2Õ(

√
n)
}

, (by combining the results of [36]

with those of [2] and [12] respectively). We note that when k is very small (e.g.,
constant), the scheme based on [36] and on the work of Applebaum and Arkis [2]
outperforms our scheme. To achieve our result we define a new transformation
from a k-party CDS protocol to secret-sharing schemes for k-uniform access
structures. The idea of this transformation is that the shares of the parties
contain the messages in a CDS protocol of an appropriate function. The difficulty
is how to ensure that parties of an unauthorized set of size k cannot obtain two
messages of the same party in the CDS protocol (otherwise, the privacy of the
CDS protocol can be violated). We achieve this goal by appropriately sharing
the CDS messages among the parties.

Ad-hoc PSM. We also study private simultaneous messages (PSM) protocols,
which is a minimal model of secure multiparty computation protocols. In a PSM
protocol there are k parties and a referee; each party holds a private input xi and
sends one message to the referee without seeing the messages of the other par-
ties. The referee should learn the output of a pre-defined function f(x1, . . . , xn)
without learning any additional information on the inputs. We use the ideas of
the last transformation to construct ad-hoc PSM protocols (a primitive intro-
duced in [14]), i.e., PSM protocols in which only a subset of the parties will
compute a function on their inputs. We show that if a function f has a k-party
PSM protocol with complexity C, then it has a k-out-of-n ad-hoc PSM protocol
with complexity O(knC).

1.2 Related Work

Constructions of secret-sharing schemes. Shamir [39] and Blakley [18] showed
that threshold access structures can be realized by linear secret-sharing schemes,
in which the size of every share is the maximum between the log n and the secret
size. Ito, Saito, and Nishizeki constructed secret-sharing schemes for general
access structures in which the share size is proportional either to the DNF or
CNF representation of the access structure. Benaloh and Leichter [16] showed
that access structures that can be described by small monotone formulas can be
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realized by efficient secret-sharing schemes. Later, Karchmer and Wigderson [33]
showed that access structures that can be described by small monotone span
programs can also be realized by efficient secret-sharing schemes. Bertilsson and
Ingemarsson [17] presented multi-linear secret-sharing schemes for general access
structures. All the above schemes have share size 2n−O(logn). This was recently
improved in [34] (as we have already explained).

Secret-sharing schemes for uniform access structures. Secret-sharing schemes
for 2-uniform access structures were first introduced by Sun and Shieh [42].
Such schemes are called schemes for prohibited or forbidden graphs. 2-uniform
access structures were studied in many papers, such as [11, 27, 10, 9, 35, 36, 3,
2, 13]. Beimel et al. [11] proved that every 2-uniform access structure can be
realized by a (non-linear) secret-sharing scheme in which the share size of every
party is O(n1/2). Later, Gay et al. [27] presented linear secret-sharing schemes for
such access structures with the same share size. Liu et al. [35] constructed non-
linear secret-sharing scheme for 2-uniform access structures in which the share
size of every party is 2O(

√
logn log logn) = no(1). The notion of k-uniform access

structures was explicitly introduced by [2, 12] and was implicit in the work of [34].
By combining the CDS protocol of [36] and transformations of [2, 12], one can
obtain that every k-uniform access structure can be realized by a secret-sharing

scheme in which the share size of every party is min
{

2O(k)+Õ(
√
k logn), 2Õ(

√
n)
}

.

Applebaum and Arkis [2] (extending the work of Applebaum et al. [3]) showed a
secret-sharing scheme for k-uniform access structures for long secrets, in which
the share size of every party is O(ek) times the secret size (for long secrets).
Recently, Beimel and Peter [13] proved that every k-uniform access structure
can be realized by a linear secret-sharing scheme in which the share of every
party is min

{
(O(n/k))(k−1)/2, O(n · 2n/2)

}
.

Conditional disclosure of secrets (CDS) Protocols. Our constructions, described
in Section 1.1, start from CDS protocols and transform them to secret-sharing
schemes. In a conditional disclosure of secrets protocol, there are k parties and
a referee; each party holds a private input, a common secret, and a common
random string. The referee holds all private inputs but, prior to the protocol, it
does not know neither the secret nor the random string. The goal of the protocol
is that the referee will learn the secret if and only if the inputs of the parties
satisfy some pre-defined condition (e.g., all inputs are equal). The challenge is
that the communication model is minimal – each party sends one message to the
referee, without seeing neither the inputs of the other parties nor their inputs.

CDS protocols were introduced by Gertner et al. [28], who presented a linear
k-party CDS protocol for k-input functions f : [N ]k → {0, 1} with message size
O(Nk). CDS protocols are used in the constructions of many cryptographic pro-
tocols, for example, symmetrically-private information retrieval protocols [28],
attribute based encryption [27, 7, 45], and priced oblivious transfer [1].

CDS protocols have been studied in many papers [31, 27, 10, 3, 9, 35, 2, 36, 12,
13]. In the last few years there were dramatic improvements in the message size
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of CDS protocols. For a function f : [N ]k → {0, 1}, the message size in the best
known CDS protocols is as follows: (1) For a binary secret, the message size is

2Õ(
√
k logN) [36]. (2) For long secrets (of size at least 2N

k−1), the message size is
4 times the size of the secret [2]. (3) For a binary secret, there is a linear CDS
protocol with message size O(N (k−1)/2) [36, 13]. The best known lower-bound
for general CDS protocol is Ω(logN) [3–5]

Private simultaneous messages (PSM) Protocols. The model of k-party PSM
protocols for k-input functions f : [N ]k → {0, 1} was first introduced by Feige
et al. [26], for k = 2, and was generalized to any k in [26, 30]. In [26], it was
shown that every 2-input function has a 2-party PSM protocol with message
size O(N). Beimel et al. [11] improved this result by presenting a 2-party PSM
protocol with messages size O(N1/2). The best known lower bound for such 2-
party PSM protocol is 3 logN −O(log logN) [26, 4]. It was shown by Beimel et
al. [12] that there exists a k-party PSM protocol with message size O(k3 ·Nk/2).

Ad-hoc PSM protocols were presented by Beimel et al. in [14]. They showed
that if there is a k-party PSM protocol for a symmetric function f with message
size C, then there is a k-out-of-n ad-hoc PSM protocol for f with message size
O(k3 · ek · log n · C). Thus, by the PSM protocol of [12], there is a k-out-of-n
ad-hoc PSM protocol for every symmetric function with message size O(k6 ·
ekNk/2 · log n). In [14], they also showed that if there is a n-party PSM protocol
for a function f ′ related to f , with message size C, then there is a k-out-of-n
ad-hoc PSM protocol for f with message size n · C. This construction implies,
in particular, that ad-hoc PSM protocols with poly(n)-communication exist for
NC1 and different classes of log-space computation.

2 Preliminaries

Secret-Sharing Schemes. We present the definition of secret-sharing schemes,
similar to [8, 20].

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of par-
ties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by minΓ . We represent a
subset of parties A ⊆ P by its characteristic string xA = (x1, . . . , xk) ∈ {0, 1}n,
where for every j ∈ [n] it holds that xj = 1 if and only if Pj ∈ A. For an access
structure Γ , we define the function fΓ : {0, 1}n → {0, 1}, where for every subset
of parties A ⊆ P , it holds that fΓ (xA) = 1 if and only if A ∈ Γ .

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme with do-
main of secrets S is a pair Σ = 〈Π,µ〉, where µ is a probability distribution on
some finite set R called the set of random strings and Π is a mapping from S×R
to a set of n-tuples S1×S2×· · ·×Sn, where Sj is called the domain of shares of
Pj. A dealer distributes a secret s ∈ S according to Σ by first sampling a random
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string r ∈ R according to µ, computing a vector of shares Π(s, r) = (s1, . . . , sn),
and privately communicating each share sj to party Pj. For a set A ⊆ P , we
denote ΠA(s, r) as the restriction of Π(s, r) to its A-entries (i.e., the shares of
the parties in A).

Given a secret-sharing scheme Σ, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the max share size as max1≤j≤n {log |Sj |}, and
the total share size as

∑n
j=1 log |Sj |.

Let S be a finite set of secrets, where |S| ≥ 2. A secret-sharing scheme Σ =
〈Π,µ〉 with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of par-
ties. That is, for any set B =

{
Pi1 , . . . , Pi|B|

}
∈ Γ there exists a reconstruction

function ReconB : Si1 × · · · × Si|B| → S such that for every secret s ∈ S and
every random string r ∈ R, ReconB (ΠB(s, r)) = s.

Privacy. Every unauthorized set cannot learn anything about the secret from its
shares. Formally, there exists a randomized function Sim, called the simulator,
such that for any set T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ , every secret s ∈ S, and every

vector of shares (si1 , . . . , si|T |) ∈ Si1 × · · · × Si|T | ,

Pr[ Sim(T ) = (si1 , . . . , si|T |) ] = Pr[ΠT (s, r) = (si1 , . . . , si|T |) ],

where the first probability is over the randomness of the simulator Sim and the
second probability is over the choice of r from R at random according to µ.

A scheme is linear if the mapping that the dealer uses to generate the shares
that are given to the parties is linear, as we formalize at the following definition.

Definition 2.3 (Linear Secret-Sharing Schemes). Let Σ = 〈Π,µ〉 be a
secret-sharing scheme with domain of secrets S, where µ is a probability distri-
bution on a set R and Π is a mapping from S × R to S1 × S2 × · · · × Sn. We
say that Σ is a linear secret-sharing scheme over a finite field F if S = F, the
sets R,S1, . . . , Sn are vector spaces over F, Π is an F-linear mapping, and µ is
the uniform probability distribution over R.

Next, we present the definition of k-uniform access structures. In such access
structures, the authorized sets are all the subsets of parties of size greater than
k and some of the subsets of parties of size k.

Definition 2.4 (Uniform Access Structures). Let P = {P1, . . . , Pn} be a
set of parties. An access structure Γ ⊆ 2P is a k-uniform access structure, where
1 ≤ k ≤ n, if all sets of size less than k are unauthorized, all sets of size greater
than k are authorized, and each set of size exactly k can be either authorized or
unauthorized.

Now, we define threshold secret-sharing schemes, and give the known result
for such schemes, as presented in [39].
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Definition 2.5 (Threshold Secret-Sharing Schemes). Let Σ be a secret-
sharing scheme on a set of n parties P . We say that Σ is a t-out-of-n secret-
sharing scheme if it realizes the access structure Γt,n = {A ⊆ P : |A| ≥ t}.

Claim 2.6 ([39]). For every set of n parties P and for every t ∈ [n], there is
a linear t-out-of-n secret-sharing scheme realizing Γt,n ⊆ 2P for secrets of size `
in which the share size of every party is max {`, log n}.

Fact 2.7 ([16]). Let Γ1, . . . , Γt be access structures over the same set of n par-
ties, and let Γ = Γ1∪ · · ·∪Γt and Γ ′ = Γ1∩ · · ·∩Γt. If there exist secret-sharing
schemes with share size at most k realizing Γ1, . . . , Γt, then there exist secret-
sharing schemes realizing Γ and Γ ′ with share size at most kt. If the former
schemes are linear over a finite field F, then there exist linear secret-sharing
schemes over F realizing Γ and Γ ′ with share size at most kt.

Conditional Disclosure of Secrets Protocols. Next we define k-party con-
ditional disclosure of secrets (CDS) protocols, first presented in [28]. We consider
a model where a set of k parties P = {P1, . . . , Pk} hold a secret s and a common
random string r. In addition, every party Pi holds an input xi for some k-input
function f . In a CDS protocol for f , for every i ∈ [k], party Pi sends a message
to a referee, based on r, s and xi, such that the referee can reconstruct the secret
s if f(x1, . . . , xk) = 1, and it cannot learn any information about the secret if
f(x1, . . . , xk) = 0. Formally,

Definition 2.8 (Conditional Disclosure of Secrets Protocols – Syntax
and Correctness). Let f : X1 × · · · ×Xk → {0, 1} be some k-input function.
A k-party CDS protocol P for f with domain of secrets S consists of:

– A finite domain of common random strings R, and k finite message domains
M1, . . . ,Mk.

– Deterministic message computation functions Enc1, . . . ,Enck, where

Enci : Xi × S ×R→Mi

for every i ∈ [k].
– A deterministic reconstruction function

Dec : X1 × · · · ×Xk ×M1 × · · · ×Mk → {0, 1} .

We say that a CDS protocol P is correct (with respect to f) if for every inputs
(x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S,
and every common random string r ∈ R,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

The message size of a CDS protocol P is defined as the size of largest message
sent by the parties, i.e., max1≤i≤k {log |Mi|}.
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We define the privacy of CDS protocols with a simulator, i.e., given x1, . . . , xk
such that f(x1, . . . , xk) = 0, we can simulate the messages sent by the parties by
a simulator that has access to x1, . . . , xk and does not know the secret, in such
a way that one cannot distinguish between the messages sent by the parties and
the messages generated by the simulator. That is, a CDS protocol is private if
everything that can be learned from it can be learned from x1, . . . , xk without
knowing the secret.

Definition 2.9 (Conditional Disclosure of Secrets Protocols – Pri-
vacy). We say that a CDS protocol P is private (with respect to f) if there
exists a randomized function Sim, called the simulator, such that for every in-
puts (x1, . . . , xk) ∈ X1×· · ·×Xk for which f(x1, . . . , xk) = 0, every secret s ∈ S,
and every k messages (m1, . . . ,mk) ∈M1 × · · · ×Mk,

Pr[ Sim(x1, . . . , xk) = (m1, . . . ,mk) ]

= Pr[ (Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = (m1, . . . ,mk) ],

where the first probability is over the randomness of the simulator Sim and the
second probability is over the choice of r from R with uniform distribution (the
same r is chosen for all encryptions).

Private Simultaneous Messages Protocols. We next define k-party ad-
hoc private simultaneous messages (PSM) protocols, as presented in [14]. Let
P = {P1, . . . , Pn} be a set of n parties. For every i ∈ [n], party Pi holds an
input xi for some k-input function f , and a random string ri. In an ad-hoc PSM
protocol for f , only a subset of the parties A ⊆ P participates, where each of
them sends a single message to a referee, which is based on its input xi and
the random string ri. If exactly k parties participate and send messages, that
is, A = {Pi1 , . . . , Pik}, where i1 < · · · < ik, then the referee should be able to
compute f(xi1 , . . . , xik) using the k messages it gets, but should not learn any
additional information about the inputs xi1 , . . . , xik . The subset of participating
parties A is selected in an ad-hoc manner, and, in particular, the participating
parties are not aware of each other. The referee itself learns the set of parties A
(since it receives messages directly from the parties in A). Below, we present the
formal definition of ad-hoc PSM protocols.

Definition 2.10 (Ad-hoc Private Simultaneous Messages Protocols –
Syntax and Correctness). Let P = {P1, . . . , Pn} be a set of parties and let
f : Xk → Y be some k-input function. A k-out-of-n ad-hoc PSM protocol P for
f consists of:

– A finite domain of common random strings R, and a finite message do-
main M .

– Deterministic message computation functions Enc1, . . . ,Encn, where

Enci : X ×R→M

for every i ∈ [n].



10 Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter

– A deterministic reconstruction function

Dec :

(
P

k

)
×Mk → Y.

We say that an ad-hoc PSM protocol P is correct (with respect to f) if for any set
A = {Pi1 , . . . , Pik} ∈

(
P
k

)
, every inputs (xi1 , . . . , xik) ∈ Xk, and every common

random string r ∈ R,

Dec(A,Enci1(xi1 , r), . . . ,Encik(xik , r)) = f(xi1 , . . . , xik).

The message size of an ad-hoc PSM protocol P is the size of the messages
sent by each of the parties, i.e., log |M |.

Definition 2.11 (Ad-hoc Private Simultaneous Messages Protocols –
Privacy). We say that an ad-hoc PSM protocol P is private (with respect to f)
if:

– There exists a randomized function Sim, called a simulator, such that for
every A = {Pi1 , . . . , Pik} ∈

(
P
k

)
, every inputs (xi1 , . . . , xik) ∈ Xk, and every

k messages (mi1 , . . . ,mik) ∈Mk,

Pr[ Sim(A, f(xi1 , . . . , xik)) = (mi1 , . . . ,mik) ]

= Pr[ (Enci1(xi1 , r), . . . ,Encik(xik , r)) = (mi1 , . . . ,mik) ],

where the first probability is over the randomness of the simulator Sim and
the second probability is over the choice of r from R with uniform distribution
(the same r is chosen for all encryptions).

– There exists a randomized function Sim′, called a simulator, such that for
every k′ < k, every A′ =

{
Pi1 , . . . , Pik′

}
∈
(
P
k′

)
, every inputs (xi1 , . . . , xik′ ) ∈

Xk′ , and every k′ messages (mi1 , . . . ,mik′ ) ∈M
k′ ,

Pr[ Sim′(A′) = (mi1 , . . . ,mik′ ) ]

= Pr[ (Enci1(xi1 , r), . . . ,Encik′ (xik′ , r)) = (mi1 , . . . ,mik′ ) ],

where the first probability is over the randomness of the simulator Sim′ and
the second probability is over the choice of r from R with uniform distribution
(the same r is chosen for all encryptions).

A PSM protocol is a k-out-k ad-hoc PSM protocol, where the privacy re-
quirement only holds for sets of size k (we do not require that a referee that gets
messages from less than k parties will not learn any information).

Notation. We denote the logarithmic function with base 2 and base e by log
and ln, respectively. Additionally, we use the notation [n] to denote the set
{1, . . . , n}. For 0 ≤ α ≤ 1, we denote the binary entropy of α by

h(α)
def
= −α logα− (1− α) log(1− α).

Next, we present an approximation of the binomial coefficients.
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Fact 2.12. For every k and every n such that k ∈ [n], it holds that(
n

k

)
= Θ(k−1/2 · 2h(k/n)n).

3 Secret-Sharing Schemes Realizing General Access
Structures from CDS Protocols

In this section we present a construction of secret-sharing schemes for a general
access structure. The starting point of our results is a work by Liu and Vaikun-
tanathan [34], in which they presented the first general construction with share
size O(2cn) with a constant c smaller than 1. In the first part of the section, we
give an outline of the construction in [34], presenting their results in terms of
access structures. Our main result, is the following theorem.

Theorem 3.1. Every access structure over n parties can be realized by a secret-
sharing scheme with a total share size of 20.892n+o(n) and by a linear secret-
sharing scheme with a total share size of 20.942n+o(n).

We say that an access structure Γ can be realized with an exponent of S
(resp., linearly realized with an exponent of S) if Γ can be realized by a secret-
sharing scheme (resp., linear secret-sharing scheme) with shares of size at most
2Sn+o(n) where n is the number of participants.1

3.1 Our construction

Following Liu and Vaikuntanathan [34], we decompose an access structure Γ to
three parts: a bottom part (that handles small sets), middle part (that handles
medium-size sets) and a top part (that handles large sets). Formally, we have
the following proposition.

Proposition 3.2 ([34]). For every access structure Γ over a set of n partici-
pants, and every slice parameter δ ∈ (0, 12 ), define the following access structures
over the same set of participants.

Γbot : A ∈ Γbot iff ∃A′ ∈ Γ s.t. A′ ⊆ A and |A′| ≤ (
1

2
− δ)n,

Γmid : A ∈ Γmid iff A ∈ Γ and (
1

2
− δ)n ≤ |A| ≤ (

1

2
+ δ)n, or |A| ≥ (

1

2
+ δ)n

Γtop : A /∈ Γtop iff ∃A′ /∈ Γ s.t. A ⊆ A′ and |A′| ≥ (
1

2
+ δ)n.

Then Γ = Γtop ∩ (Γmid ∪ Γbot). Consequently, if Γtop, Γmid, and Γbot can be
realized (resp., linearly realized) with exponent of S then so is Γ .

1 Formally, such a statement implicitly refers to an infinite sequence of (collections of)
access structures that is parameterized by the number of participants n.
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The “consequently” part follows from standard closure properties of secret-
sharing schemes (see Fact 2.7). Thus realizing Γ reduces to realizing Γtop, Γbot,
and Γmid. The main work in [34] is devoted to realizing the access structure Γmid.
Their main construction can be summarized as follows.

Lemma 3.3 ([34]). For every access structure Γ and every slice parameter
δ ∈ (0, 12 ), the access structure Γmid can be realized with an exponent of

M(δ) = h(0.5− δ) + 0.2h(10δ) + 10δ − 0.2 log(10),

and can be linearly realized with an exponent of

M`(δ) = h(0.5− δ) + 0.2h(10δ) + 10δ − 0.1 log(10).2

The extreme slices. Liu and Vaikuntanathan [34] realized Γtop and Γbot with
an exponent of h( 1

2 +δ) by exploiting the fact that the number of authorized (or
non-authorized) sets is exponential in h( 1

2 + δ). (The actual implementation is
based on the classical schemes of [32].) We show that the nice structure of these
access structures can be further exploited.

In particular, for a covering parameter α, the minimal authorized sets of Γbot

can be covered by exponentially-many αn-subsets of n. (A dual statement applies
to the maximal unauthorized sets of Γtop.) This property allows us to realize
Γbot and Γtop by decomposing each of them into (exponentially) many access
structures over αn parties and realizing each access structure via a general secret-
sharing scheme. Overall, we get a tradeoff between the size of the decomposition
(i.e., number of sub-access structures) and the number of players αn in each
part. Formally, in Section 3.2 we prove the following statement.

Lemma 3.4. Suppose that every access structure can be realized (resp., linearly
realized) with an exponent of S. Then, for every covering parameter α ∈ ( 1

2 , 1),
every access structure Γ and every slice parameter δ ∈ (0, 12 ), the access struc-
tures Γtop and Γbot can be realized (resp., linearly realized) with an exponent
of

X(S, δ, α)
def
= αS + h(0.5− δ)− h ((0.5− δ)/α)α.3

By combining Lemmas 3.3 and 3.4 with Proposition 3.2, we derive the fol-
lowing Theorem.

Theorem 3.5. Suppose that every access structure can be realized (resp., lin-
early realized) with an exponent of S (resp., S`). Then, for every covering pa-
rameter α ∈ ( 1

2 , 1) and slice parameter δ ∈ (0, 12 ), every access structure can be
realized with an exponent of max (M(δ),X(S, δ, α)) , and can be linearly realized
with an exponent of max (M`(δ),X(S`, δ, α)) .

2 The notation M stands for “middle”.
3 The notation X stands for eXternal slices.
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We can improve the secret sharing exponent by applying Theorem 3.5 recur-
sively as follows. Start with the Liu-Vaikuntanathan bound SLV = 0.994 as an
initial value, and iterate with carefully chosen values for δ and α.

Example 3.6. Consider a single application of Theorem 3.5 starting with SLV =
0.994 and taking δ = 0.037 and α = 0.99. In this case, M(δ) < 0.897 and
X(SLV, δ, α) < 0.9931, thus we get an exponent smaller than 0.9931.

Since each step of the recursion is parameterized by both δ and α, the problem
of finding the best choice of parameters in every step of the recursion becomes a
non-trivial optimization problem. In Section 3.3, we analyze the recursive pro-
cess and derive an analytic expression for the infimum of the process (over all
sequences of (δi, αi)). This leads to a general scheme with an exponent of 0.897
and a linear scheme with an exponent of 0.955. Finally, an additional (minor)
improvement is obtained by analyzing a low-level optimization to the middle
slice that was suggested by [34] (see Section 3.4). This leads to Theorem 3.1.

3.2 Realizing Γbot and Γtop (Proof of Lemma 3.4)

We start by introducing a fact about combinatorial covering designs by Erdös
and Spenser:

Fact 3.7 ([25]). Let P be a set of size n. For every positive integers c ≤ a ≤ n,

there exists a family G = {Gi}Li=1 of a-subsets of P , such that every c-
subset of P is contained in at least one member of G, and L = L(n, a, c) =
O((
(
n
c

)
log
(
a
c

)
)/
(
a
c

)
).

We next prove Lemma 3.4.

Proof (of Lemma 3.4). Let a = αn and c = (0.5 − δ)n and let G = {Gi}i∈[L]
be the family of a-subsets of P = {P1, . . . , Pn} promised by Fact 3.7. Using
Fact 2.12, the number of sets L satisfies

logL ≤ n(h(0.5− δ)− h((0.5− δ)/α)α+ o(1)).

Hence, to prove the lemma it suffices to realize Γbot and Γtop with share size of
L · 2Sαn+o(n). Towards this end, we decompose Γbot and Γtop according to G as
follows.

Γbot: Let T be the set of minimal authorized sets of Γbot. Recall that all these
sets are of size of at most c. For every i ∈ [L], let Ti = {T ∈ T : T ⊆ Gi}, and let
Γi be the access structure whose minimal authorized sets are the sets in Ti. By
Fact 3.7, T =

⋃
Ti and therefore Γbot =

⋃
i∈[L] Γi. Indeed, both in the RHS and

in the LHS, A is an authorized set iff there exists some T in T =
⋃
Ti such that

T ⊆ A. We further note that every minimal authorized set in Γi is a subset of
Gi and therefore Γi can be implemented as an access structure over αn parties
with share size of 2Sαn+o(n). To share a secret s according to Γbot =

⋃
i∈[L] Γi,

for every i ∈ [L] independently share s via the scheme of Γi. The share size of
the resulting scheme realizing Γbot is L · 2Sαn+o(n), as required.
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Γtop: We use a dual construction for Γtop. Let T ′ be the set of maximal unau-
thorized sets of Γtop. Recall that all these sets are of size at least n − c. For
every i ∈ [L], let T ′i = {T ∈ T ′ : Gi ⊆ T} = {T ∈ T ′ : T ⊆ Gi} and let Γ ′i
be the access structure whose maximal unauthorized sets are the sets in Ti. By
Fact 3.7, T ′ =

⋃
T ′i and therefore Γtop =

⋂
i∈[L] Γ

′
i . Indeed, both in the RHS

and in the LHS, A is an unauthorized set iff A ⊆ T for some T in T ′ =
⋃
T ′i . We

further note that all minimal authorized sets of Γ ′i are subsets of
⋂
T∈T ′i

T ⊆ Gi,
and therefore Γi can be implemented as an access structure over αn parties with
share size of 2Sαn+o(n). To share a secret s according to Γtop, sample L random
elements s1, . . . , sL in the domain of s satisfying s = s1 + . . .+ sL, and share si
via the scheme for Γi. A set A can reconstruct the secret iff it can reconstruct
each si iff A ∈ Γ ′i for every i iff A ∈

⋂
i∈[L] Γ

′
i = Γtop. Thus, we can realize Γtop

with share size of

L · 2(αS+o(1))n = 2(αS+h(0.5−δ)−h((0.5−δ)/α)α+o(1))n,

as required. ut

3.3 Analyzing the Recursion

In this section, we analyze the exponent achievable by repeated applications of
Theorem 3.5 by considering the following single-player game.

The exponent game. The goal of the player is to minimize a positive num-
ber S. The value of S is initialized to the LV-exponent 0.994, and can be up-
dated by making an arbitrary number of moves. In each move the player can
choose δ ∈ (0, 12 ) and α ∈ ( 1

2 , 1), if S < max(X(S, δ, α),M(δ)), update S to
max(X(S, δ, α),M(δ)); otherwise, S remains unchanged.

Recall that the function X(S, δ, α) represents the exponent of the external
slices and the function M(δ) represents the exponent of middle slice. We denote
by opt the infimum of S over all finite sequences of (δi, αi). Our goal is to
determine opt. A (δ, α)-move improves S if and only if (1) X(S, δ, α) < S and
(2) M(δ) < S. If the first condition holds we say that S is X-improved by (δ, α).
We begin by showing that the question of whether a given S can be X-improved
by a (δ, α)-move depends only on δ and S (and is independent of α and n).

Lemma 3.8. Fix a parameter δ ∈ (0, 12 ) and let X′(δ)
def
= h(0.5− δ)− (0.5− δ) ·

log ((0.5 + δ)/(0.5− δ)) .

– If S ≤ X′(δ), then there does not exist any α for which S > X(S, δ, α).
– For every S′ > X′(δ) there exists an α < 1 such that X(S, δ, α) ≤ αS+ (1−
α)S′ for every S > X′(δ).

Proof. Fix some S. The exponent S is X-improved by (δ, α) if and only if

h(0.5− δ)− h
(
0.5−δ
α

)
α

1− α
< S. (1)
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Denote the LHS by X′(δ, α). Clearly, S can be X-improved by (δ, α) if and only
if S is larger than infα(X′(δ, α)) (assuming that the infimum exists). We next
show that infα(X′(δ, α)) = X′(δ). Indeed, for any fixed δ, the function X′(δ, α)
is monotonically decreasing with α, and since α < 1, we get that

inf
α

(X′(δ, α)) = lim
α→1

h(0.5− δ)− h ((0.5− δ)/α)α

1− α
,

which by l’Hôpitals Rule, simplifies to X′(δ). The first item of the claim follows.
For the second item, take any α ∈ (0, 1) such that

h(0.5− δ)− h
(
0.5−δ
α

)
α

1− α
≤ S′

(by the definition of the limit and since S′ > X′(δ), such α exists). Thus,

X(S, δ, α) = αS + h(0.5− δ)− h ((0.5− δ)/α)α ≤ αS + (1− α)S′.

Note that the choice of α is independent of S (as long as S > X′(δ)). ut

Lemma 3.8 takes into account only the effect of the outer slices, Γtop and
Γbot. Recall, however, that the cost of the medium slice Γmid prevents us from
going below M(δ). Let δ? ∈ (0, 0.5) denote the positive value that satisfies
X′(δ?) = M(δ?). Let us denote by S? the value of X′(δ?) = M(δ?). The curves
of M(δ) and X(δ) are depicted in Fig. 1, and δ? ≈ 0.037, S? ≈ 0.897. The
following two claims show that the infimum of the game, opt, equals to S?.

Claim 3.9. For every constant S′′ > S? there exists an α < 1 and an integer
i (where α and i are independent of n) such that a sequence of i (δ, α)-moves
improve the exponent to S′′.

Proof. Choose any constant S′ such that S? < S′ < S′′ and let α be a constant
guaranteed by Lemma 3.8 for δ? and S′, that is for every S > S′, the exponent S
can be improved to αS+(1−α)S′. Furthermore, let S0 = 0.994 be the exponent
of the secret-sharing scheme of [34] and define Sj = αSj−1 + (1−α)S′ for every
j > 0. By Lemma 3.8, the exponent Sj can be achieved after j (δ, α)-moves. By
induction, Sj = αjS0 + (1 − αj)S′ < αjS0 + S′. Taking an integer i such that
αi ≤ (S′′ − S′)/S0 completes the proof. ut

Claim 3.10. There is no (δ, α)-move that takes a value A > S? to a value
B < S?. Consequently, any finite number of steps ends in a value S > S? and
opt ≥ S?.

Proof. Assume towards a contradiction that there is some (δ, α)-move that takes
some value A > S? to some value B < S?. If δ > δ?, then B ≥ M(δ) > S?,
contradiction. Thus, we can assume that δ ≤ δ?. Choose some S ∈ (B,S?).
Observe that a (δ, α)-move from S leads to a value D ≤ B < S, and so this
move improves S. It follows that S > X(S, δ, α) and, by Lemma 3.8, S > X′(δ) ≥
X′(δ?) = S?, contradiction.

We conclude that in both cases δ > δ? and δ ≤ δ?, we get a contradiction,
and B ≥ S?. ut
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Overall we get that opt = S? which is about 0.897.

Theorem 3.11. Every access structure can be realized with share size
2(0.897+o(1))n.

Remark 3.12. We note that our analysis holds even if the function M(δ) is re-
placed with a different function that represents the exponent of the middle slice.
That is, for any choice of M(δ) the value of opt equals to infδ max(X′(δ),M(δ))
(assuming that the initial starting point is over the M(δ) curve).

In particular, the following theorem is obtained by replacing M(δ) with the
exponent M`(δ) for a linear realization of the middle layer (from Lemma 3.3).

Theorem 3.13. Every access structure can be linearly realized with share size
of 2(0.955+o(1))n.

Fig. 1. A description of the functions M(δ) and X′(δ). The horizontal axis repre-
sents the value of δ and the vertical axis represents the resulting exponents. The solid
black curve corresponds to the exponent M(δ) of the middle slice Γmid, as defined in
Lemma 3.3 (the minor improvements of Section 3.4 do not appear here). The function
X′(δ) appears as the dashed blue line. For comparison, we plot in the dotted red line
the exponent that is achieved for Γtop and Γbot via the simple (non-recursive) con-
struction from [34]. Our exponent appears as the y-coordinate of the intersection of
the black and blue curves, and the exponent of [34] appears at the y-coordinate of the
intersection of the red and black curves.
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3.4 Minor improvement of share size for Γmid

In this section we give a tighter analysis for the constructions of M(δ) and M`(δ)
from [34]. These ideas were suggested in [34], but were not implemented.

Lemma 3.14. For every access structure Γ and every slice parameter δ ∈ (0, 12 ),
the access structure Γmid can be realized with an exponent of

M(δ) = h(0.5− δ) + 0.2h(10δ) + 2 log(26)δ − 0.2 log(10),

and can be linearly realized with an exponent of

M`(δ) = h(0.5− δ) + 0.2h(10δ) + 2 log(26)δ − 0.1 log(10).

The above expressions slightly improves over the ones obtained in Lemma 3.3.
In particular, the third summand in both M(δ) and M`(δ) is reduced from 10δ
to 2 log(26)δ.

Proof. We assume familiarity with the construction of [34]. In the original analy-
sis of reduction 4 in [34, Section 3.4], the expression 10δ is added to the exponent
(of both M(δ) and M`(δ)) due to an enumeration over all possible subsets that
are taken from a universe of size 10δn. It is noted there that it actually suf-
fices to enumerate only over subsets T that satisfy the following condition. For
a given (fixed) partition of the universe to 2δn bins of size 5 each, the set T
must contain at least 2 elements from each bin. The number of such sets is
(25 −

(
5
0

)
−
(
5
1

)
)
2δn

= 22 log(26)δn, and so the lemma follows. ut

We can further improve the exponent of the linear scheme by reducing the last
summand as follows.

Lemma 3.15. For every access structure Γ and every slice parameter δ ∈ (0, 12 ),
the access structure Γmid can be linearly realized with an exponent of M`(δ) =
h(0.5− δ) + 0.2h(10δ) + 2 log(26)δ − (0.1 + δ) log(10).

Proof. Again, we assume familiarity with the construction of [34]. The last re-
duction of [34, Section 3.5] utilizes a protocol for conditional disclosure of secrets

(CDS) with an input size of
(
n/k
a/k

)k
for a = 1

2−δ and k = n/5. As the authors note,

for this choice of parameters, the input size of the CDS is actually
(
n/k
a/k

)k−2δ
.

(In general, this holds whenever
(
n/k
ba/kc

)
=
(
n/k
da/ke

)
.) This improvement becomes

useful in the linear case (which employs linear CDS), and eventually it leads to
the improvement stated in the lemma. ut

Proof (proof of Theorem 3.1). As stated in Remark 3.12, the analysis of the
recursive process holds when M(δ) is updated to some M′(δ), and the new
infimum of the exponent game becomes X′(δ?), where δ? satisfies X′(δ?) =
M′(δ?). By using the bounds obtained in Lemmas 3.14 and 3.15, we derive
Theorem 3.1. ut
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4 Secret-Sharing Schemes Realizing k-Uniform Access
Structures with Long Secrets

In this section, we present a construction of secret-sharing schemes for k-uniform
access structures on n parties using k2-party CDS protocols. Using the CDS
protocols of [2] with long secrets, we obtain secret-sharing schemes for long
secrets in which the share size of every party is only O(k2) times the secret size.

In [2], it was shown how to construct a secret-sharing scheme realizing any
k-uniform access structure Γ in which the share size of every party is O(ek) times
the message size, with big secrets. To construct this scheme, they used a family
of perfect hash functions from [n] to [k], where each such function defines a k-
uniform access structure, and use a k-party CDS protocol to realize every such
access structure. Since the number of perfect hash functions for sets of size k and
range of size k is bigger than ek, each share in the secret-sharing scheme of [2]
contains O(ek) messages of the CDS protocol. We improve their construction
by taking a family of perfect hash functions from [n] to [k2], and construct a
secret-sharing scheme using a k2-party CDS protocol for every function in this
family, such that the resulting scheme realizes Γ .

The definition of a family of perfect hash functions is presented next.

Definition 4.1 (Families of Perfect Hash Functions). A set of functions
Hn,k,t = {hi : [n]→ [t] : i ∈ [`]} is a family of perfect hash functions if for every
set A ⊆ [n] such that |A| = k there exists at least one index i ∈ [`] such that
|hi(A)| = | {hi(a) : a ∈ A} | = k, i.e., hi restricted to A is one-to-one.

To construct a secret-sharing scheme that realizes the k-uniform access struc-
ture Γ , we construct a scheme, using a CDS protocol for the function f (defined
in Definition 4.2), that realizes the access structure Γh (defined in Definition 4.3),
for every function h among a family of perfect hash functions.

Definition 4.2 (The Function f). Let Γ be a k-uniform access structure with

n parties. The k2-input function f : {0, 1, . . . , n}k
2

→ {0, 1} is the function that
satisfies f(x1, . . . , xk2) = 1 if and only if

{
Pxi

: i ∈ [k2], xi 6= 0
}
∈ Γ .

For example, if k = 2, n = 5, and the authorized sets of size k = 2 are exactly
{P1, P2} , {P3, P5}, then f(1, 3, 5, 0) = f(1, 2, 0, 0) = f(0, 2, 0, 1) = f(3, 0, 0, 5) =
1 and f(0, 0, 0, 0) = f(0, 2, 0, 0) = f(0, 2, 3, 0) = f(2, 0, 0, 5) = 0.

Definition 4.3 (The Access Structure Γh). Let Γ be a k-uniform access
structure with n parties and let h : [n] → [k2] be a function. The k-uniform
access structure Γh is the access structure that contains all the subsets of parties
of size greater than k, and all authorized subsets from Γ of size k such that h
restricted to the indices of the parties of such subset is one-to-one. That is,

Γh = {A ⊆ P : |A| > k}∪{A ⊆ P : A ∈ Γ, |A| = k, and | {h(j) : Pj ∈ A} | = k} .
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Using a simple probabilistic proof, we show that there exists a family of
perfect hash function Hn,k,k2 = {h1, . . . , h`} with ` = Θ(k · log n) functions.
Moreover, if Hn,k,k2 is a family of perfect hash functions, then Γ = ∪h∈Hn,k,k2Γh.
Thus, constructing secret-sharing schemes realizing Γh for every h ∈ Hn,k,k2 , we
get a secret-sharing scheme realizing Γ .

We start with a scheme that realizes the k-uniform access structure Γh, as
defined in Definition 4.3; this scheme uses a CDS protocol for f , as defined
in Definition 4.2. The scheme is described in Fig. 2; we next give an informal
description. For every j ∈ [n], we give the message of the h(j)th party in the
CDS protocol when holding the input j, and for every i ∈ [k2], we share the
message of the ith party in the CDS protocol when holding the input 0 using a
k-out-of-k2 scheme among the parties Pj for which h(j) 6= i.

Every authorized set A ∈ Γh can reconstruct the secret, since every Pj ∈ A
gets the message of the h(j)th party in the CDS protocol when holding the input
j, and the parties in A can reconstruct the messages of the other parties in the
CDS protocol from the k-out-of-k2 scheme, because | {h(j) : Pj ∈ A} | = k. Thus,
the parties in A can reconstruct the secret since they hold messages for a 1-input
of f .

Every unauthorized set A /∈ Γ that does not collide on h (that is, for every
two different parties Pj , Pj′ ∈ A it must hold that h(j) 6= h(j′)), the parties in
A cannot learn any other messages except for the above mentioned messages.
Thus, if |A| = k then the parties in A hold messages for a 0-input of f , so by
the privacy of the CDS protocol for f they cannot learn any information about
the secret.

However, if A collides on h, then the parties in A hold two different messages
of the same party in the CDS protocol for f , and CDS protocols cannot ensure
any privacy in this scenario. To overcome this problem, we choose two random
elements s1, s2 from the domain of secrets such that s = s1 + s2. We share s1
using a k-out-of-k2 scheme and give the h(j)th share to party Pj , and apply the
above scheme using a CDS protocol for f with the secret s2. Now, if A collides
on h, the parties in A may learn information about s2, but they cannot learn
s1, so the privacy of the scheme holds.

Lemma 4.4. Let Γ be a k-uniform access structure with n parties, and let h :
[n] → [k2] be a function. Assume that for every k-input function f : [N ]k →
{0, 1} there is a k-party CDS protocol for f , for secrets of size t, in which the
message size is c(k,N, t). Then, the scheme Σh described in Fig. 2, is a secret-
sharing scheme for secrets of size t realizing Γh in which the share size of every
party is O(log n+ k2 · c(k2, n+ 1, t)).

Proof. Let s ∈ S be the secret, where S is a finite set, and let t = log |S|. Let P
be a k2-party CDS protocol for the function f : {0, 1, . . . , n}k

2

→ {0, 1} defined
in Definition 4.2 with message size c(k2, n+ 1, t).

We prove that the secret-sharing scheme Σh realizes the k-uniform access
structure Γh with share size as in the lemma. First, we prove that in scheme
Σh, every authorized set (i.e., a set in Γh) can reconstruct the secret s. Then,



20 Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter

The secret: An element s ∈ S.
The scheme: Let f : {0, 1, . . . , n}k

2

→ {0, 1} be a k2-input function as
in Definition 4.2, and let P be a k2-party CDS protocol for f .

1. Share the secret s using a (k + 1)-out-of-n secret-sharing scheme among
the parties in P , that is, for every j ∈ [n], give the jth share from this
scheme to party Pj .

2. Choose a random element s1 ∈ S, and let s2 = (s1 + s) mod |S|.
3. Share the element s1 using a k-out-of-k2 secret-sharing scheme. For every

j ∈ [n], we give the h(j)th share from this scheme to party Pj .
4. Apply the k2-party CDS protocol P to the k2-input function f with the

secret s2 and a common random string r that is chosen at random. For
every i ∈ [k2], let mi,x be the message of the ith party in the CDS protocol
P when holding the input x ∈ {0, 1, . . . , n}.

5. For every j ∈ [n], give the message mh(j),j to party Pj .
6. For every i ∈ [k2], share the message mi,0 using a k-out-of-k2 secret-

sharing scheme. For every j ∈ [n] such that h(j) 6= i, give the h(j)th share
from this scheme to party Pj .

Fig. 2. A secret-sharing scheme Σh realizing the k-uniform access structure Γh.

we prove that every unauthorized set (i.e., a set not in Γh) cannot learn any
information about s1 or s2, and, thus, it cannot learn any information about the
secret s.

Correctness. Every authorized set of size greater than k can reconstruct the
secret using the (k+ 1)-out-of-n secret-sharing scheme described in step 1 of the
scheme Σh.

For an authorized set A of size k, it holds that | {h(j) : Pj ∈ A} | = k, i.e., the
parties in A hold k different shares of s1 from the k-out-of-k2 scheme described
in step 3 of the scheme Σh. Thus, the parties in A can reconstruct s1 from this
scheme.

Next, let J = {h(j) : Pj ∈ A}. Every party Pj ∈ A holds the message mh(j),j

of the CDS protocol P for f with the secret s2, as described in step 5 of the
scheme Σh. For every i ∈ [k2] such that i /∈ J , the parties in A hold k different
shares from the k-out-of-k2 scheme in which the secret is the message mi,0 of the
CDS protocol P for f with the secret s2, as described in step 6 of the scheme
Σh. Hence, the parties in A can reconstruct mi,0. Overall, the parties in A hold
the messages (mh(j),j)Pj∈A and (mi,0)i/∈J of the CDS protocol P for f with the
secret s2, that is, the messages of the k2 parties in the CDS protocol P for the
secret s2 when holding a 1-input of f . Thus, the parties in A can reconstruct s2
and, together with s1, they can reconstruct the secret s.

Privacy. Let A be an unauthorized set and let J = {h(j) : Pj ∈ A}. Observe
that the size of A is at most k. If |J | < k, then the parties in A hold less than
k shares from the k-out-of-k2 scheme for s1 in step 3, and so the parties in A
cannot learn any information about the secret s.
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If |J | = k, then A /∈ Γ . For every h(j) ∈ J , the parties in A get only k − 1
shares from the k-out-of-k2 scheme for mh(j),0 (as Pj does not get such share),
so they cannot learn mh(j),0. This implies that the parties in A hold only the
messages (mh(j),j)Pj∈A and (mi,0)i/∈J of the CDS protocol P for f with the
secret s2; these messages are for a zero-input of f . By the privacy of the CDS
protocol P, the parties in A cannot learn any information about s2, so they
cannot reconstruct the secret s in the scheme Σh.

Formally, a simulator Sim for a set A /∈ Γ such that | {h(j) : Pj ∈ A} | = k
applies the simulator of the (k + 1)-out-of-n secret-sharing scheme with the set
A and returns the output of this simulator. Then, the simulator Sim chooses a
random element s′1 ∈ S and shares s′1 using a k-out-of-k2 secret-sharing scheme,
and for every j such that Pj ∈ A it returns the h(j)th share from this scheme
as part of the share of party Pj . Finally, Sim applies the simulator of the CDS
protocol P with inputs y1, . . . , yk2 , where yh(j) = j for every Pj ∈ A and all other
k2 − k yi’s are set to zero. It lets m′i be the output of the simulator of P for the
message of the ith party in P. For every j such that Pj ∈ A, the simulator Sim
returns m′h(j) as part of the share of party Pj . For every i /∈ {h(j) : Pj ∈ A}, it

shares m′i using a k-out-of-k2 secret-sharing scheme (this message is for an input
yi = 0) and for every Pj ∈ A it gives the h(j)th share from this scheme as part
of the share of party Pj . Finally, for every Pj ∈ A, it invokes the simulator of
Shamir’s scheme to generate k−1 shares for the parties

{
Ph(j′) : Pj′ ∈ A \ {Pj}

}
and gives Pj′ ∈ A the share of Ph(j′).

Share Size. The share size of every party in the scheme Σh is O(k2 · c(k2, n+
1, t) + max {t, log n}) = O(log n+ k2 · c(k2, n+ 1, t)). ut

Using a simple probabilistic argument, we show the existence of a family of
perfect hash functions with a small number of functions (satisfying a stronger
requirement than in Definition 4.1).

Lemma 4.5. There exists a family of perfect hash functions Hn,k,k2 ={
hi : [n]→ [k2] : i ∈ [`]

}
, where ` = Θ(k · log n), such that for every subset

A ⊆ [n] there are at least `/4 functions h ∈ Hn,k,k2 for which |h(A)| = k.

Proof. We show that there exists a family of hash functions Hn,k,k2 as above
with Θ(k · log n) functions using the probabilistic method.

As a first step in the proof, we choose with uniform distribution a function
h : [n]→ [k2], and fix a subset A ⊆ [n] such that |A| = k. Then,

Pr[ |h(A)| 6= k] = Pr[∃j1, j2 ∈ A, j1 6= j2 : h(j1) = h(j2) ]

≤
∑

j1,j2∈A
j1 6=j2

Pr[ h(j1) = h(j2) ] =

(
k

2

)
· 1

k2
<

1

2
.

Next, we show that if we choose at random ` = 16 · k · lnn = Θ(k · log n)
functions as above, we can get the desired family Hn,k,k2 = {h1, . . . , h`}.

We bound the probability that for a given subset A ⊆ [n] of size k, there
exist at most `/4 functions h ∈ Hn,k,k2 that we choose at random, such that
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|h(A)| = k. For every i ∈ [`], let Xi be a boolean random variable such that

Xi = 1 if |hi(A)| = k and Xi = 0 otherwise. Additionally, let X =
∑`
i=1Xi,

i.e., X is the number of hash functions hi, for i ∈ [`], such that |hi(A)| = k. As
we have shown above, Pr[ Xi = 0 ] = Pr[ |hi(A)| 6= k ] < 1

2 , so by linearity of

expectation, E(X) =
∑`
i=1E(Xi) =

∑`
i=1 Pr[Xi = 1 ] > ` · 12 = `

2 . Then, using

the Chernoff bound that says that Pr[X ≤ (1− δ) ·E(X) ] ≤ e−E(X)·δ2/2 for all
0 < δ < 1 (see e.g., [37]), we get that

Pr[X ≤ `/4 ] ≤ Pr[X ≤ E(X)/2 ] ≤ e−
E(X)·(1/2)2

2 < e−
`
16 =

1

ek·lnn
=

1

nk
.

By the union bound, since there are
(
n
k

)
< nk subsets of [n] of size k, the

probability that there exists a subset A ⊆ [n] such that |A| = k with at most `/4
functions hi, for i ∈ [`], such that |h(A)| 6= k, is less than 1. So, the probability
that for every subset A ⊆ [n] with |A| = k there are more than `/4 hash functions
hi, for i ∈ [`], such that |h(A)| = k is greater than 0, and in particular a family
Hn,k,k2 of ` = Θ(k · log n) hash functions such as in the lemma exists. ut

Using a family of perfect hash function Hn,k,k2 as in Lemma 4.5 and the
scheme of Lemma 4.4 for every function in Hn,k,k2 , we get the a scheme in which
the share size is O(k3 · log n) times the message size in the CDS protocol. Using
Stinson’s decomposition [41], we reduce the overhead.

Theorem 4.6. Let Γ be a k-uniform access structure with n parties. Assume
that for every k-input function f : [N ]k → {0, 1} there is a k-party CDS protocol
for f , for secrets of size t, in which the message size is c(k,N, t). Then, for every
t′ > log n, there is a secret-sharing scheme realizing Γ , for secrets of size t =
t′ ·Θ(k ·log n), in which the share size of every party is O(k3 ·log n·c(k2, n+1, t′)).

Proof. By Lemma 4.5, there exists a family of perfect hash functions Hn,k,k2 ={
hi : [n]→ [k2] : i ∈ [`]

}
with ` = Θ(k · log n) functions, such that for every

subset A ⊆ [n] there is at least `/4 functions h ∈ Hn,k,k2 for which |h(A)| = k.
By Lemma 4.4, for every i ∈ [`] there is a secret-sharing scheme Σhi realizing
the k-uniform access structure Γhi , for secrets of size t, in which the share size of
every party is O(k2 · c(k2, n+ 1, t)). Also, by the definition of a family of perfect
hash functions it holds that Γ = ∪h∈Hn,k,k2Γh.

To construct the desired secret-sharing scheme that realizes Γ , we use the
Stinson’s decomposition technique [41]. Let F be a finite field that contains at
least max {n, `} elements. By an abuse of notation, we will assume that F is
a prime field. Let s = (s1, . . . , s`/4) ∈ F`/4 be the secret. We use a (0, `/4)-
ramp secret-sharing scheme (that is, a scheme in which every set of size `/4
can reconstruct the secret, while there are no requirements on smaller sets) to
generate shares s1, . . . , s` ∈ F of s (that is, we choose a polynomial Q of degree
`/4 − 1 such that Q(i) = si for every i ∈ [`/4] and define si = Q(i) for every
i ∈ {`/4 + 1, . . . , `}). Then, for every 1 ≤ i ≤ `, we independently generate
shares of si using the scheme Σhi that realizes the k-uniform access structure
Γhi

, and give the shares to the parties in P . Since every set A ⊆ P such that
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|A| = k satisfies |hi(A)| = k for at least `/4 values of i ∈ [`], every authorized
set A ∈ Γ such that |A| = k can reconstruct at least `/4 values from s1, . . . , s`.
Thus, by the property of the ramp scheme, the parties in A can reconstruct
s = (s1, . . . , s`/4).

Finally, let t′ = log |F|. The combined scheme is a secret-sharing scheme
that realizes the access structure Γ , in which the share size of every party is
` ·O(k2 · c(k2, n+ 1, t′)) = O(k3 · log n · c(k2, n+ 1, t′)). ut

Remark 4.7. In the secret-sharing scheme of Theorem 4.6, if we start with a
linear or multi-linear CDS protocol, then we result with a multi-linear secret-
sharing scheme (i.e., a scheme in which the secret is a vector over a finite field F,
the random string is a vector over F chosen with uniform distribution, and each
share is a vector over F, where every element in the vector is a linear combination
of the secret and the random elements).

Using the multi-linear CDS protocol of [2] for long secrets, in which the
message size is O(t), for secrets of size t (for big enough t), we get the following
result.

Corollary 4.8. Let Γ be a k-uniform access structure with n parties. Then,
there is a multi-linear secret-sharing scheme realizing Γ , for secrets of size t =

Ω(k · log n · 2(n+1)k
2

), in which the share size of every party is O(k2 · t).

Remark 4.9. We can apply the transformation of Theorem 4.6 also to CDS pro-
tocols with short secrets. However, the best known k-party CDS protocol for
such secrets of [36] (for k-input functions f : [N ]k → {0, 1}) have message size

2Õ(
√
k logN), thus, using a k2-party CDS would result in an inefficient secret-

sharing scheme.

5 Optimal Linear Secret-Sharing Schemes Realizing
k-Uniform Access Structures

In this section, we show how to construct a linear secret-sharing scheme realizing
n-party k-uniform access structures in which the share size of every party is
O(n · 2h(k/n)n/2). Using a result of [9], we prove a matching lower bound, which
shows that our construction is optimal (up to a small polynomial factor).

We start by giving some high-level ideas of our linear secret-sharing scheme.
We are inspired by the linear CDS protocols of [13], where for every Boolean
n-input function they construct a linear CDS protocol with message size O(2n/2)
(a similar protocol with the same message size was independently constructed
in [36]). By a transformation of [12], this implies that for every uniform access
structure, there is a linear secret-sharing scheme with share size O(n · 2n/2). We
want to optimize this construction for k-uniform access structures for k < n/2.

As a first step, we define balanced k-uniform access structures, where a k-
uniform access structure is balanced if there exists a set of parties B of size
n/2 such that every authorized set A of size k contains exactly k/2 parties in
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B (that is, |A ∩ B| = k/2 and |A \ B| = k/2). We construct an optimized
secret-sharing scheme for balanced k-uniform access structures. We then show
(using a probabilistic argument) that every k-uniform access structure Γ is a
union of O(k1/2 ·n) balanced k-uniform access structures. Thus, to realize Γ , we
independently share the secret for each of the balanced access structures.

Definition 5.1 (The Access Structure ΓB). Let Γ be a k-uniform access
structure with n parties for some even k and let B ⊆ P be a subset of parties.
The k-uniform access structure ΓB is the access structure that contains all the
subsets of parties of size greater than k and all authorized subsets from Γ of size
k that contain exactly k/2 parties from the subset B. That is,

ΓB = {A ⊆ P : |A| > k} ∪ {A ⊆ P : A ∈ Γ, |A| = k, and |A ∩B| = k/2} .

Next, we show our basic linear scheme, which realizes the access structure ΓB .

The secret: An element s ∈ F, where F is a finite field.
The scheme: Assume without loss of generality that B =

{
P1, . . . , Pn/2

}
,

and let U = {U ⊆ B : |U | = k/2} and V =
{
V ⊆ B : |V | = k/2

}
.

1. Share the secret s using a (k + 1)-out-of-n secret-sharing scheme among
the parties in P , that is, for every j ∈ [n], give the jth share from this
scheme to party Pj .

2. Choose two random elements s1, s2 ∈ F, and let s3 = s1 + s2 + s.
3. Share the element s1 using a k/2-out-of-n/2 secret-sharing scheme among

the parties in B, that is, for every j ∈ [n/2], give the jth share from this
scheme to party Pj .

4. Share the element s2 using a k/2-out-of-n/2 secret-sharing scheme among
the parties in B, that is, for every j ∈ [n/2], give the jth share from this
scheme to party Pn/2+j .

5. For every U ∈ U , choose a random element rU ∈ F.

6. For every V =
{
Pj1 , . . . , Pjk/2

}
∈ V, choose k − 1 random elements

qj1V , . . . , q
jk/2−1

V ∈ F.

7. Let qV = s3 +
∑
U∈U:U∪V /∈Γ rU and q

jk/2

V = qV − (qj1V + · · ·+ q
jk/2−1

V ).a

8. For every j ∈ {1, . . . , n/2}, give the elements (rU )U∈U:Pj /∈U to Pj .

9. For every j ∈ {n/2 + 1, . . . , n}, give the elements (qjV )V ∈V:Pj∈V to Pj .

a We assume that for every V ∈ V there exists a U ∈ U such that U ∪V /∈ Γ ;
for example, this can be achieved by adding a “dummy” U0 ∈ U .

Fig. 3. A linear secret-sharing scheme ΣB realizing the k-uniform access structure ΓB .

Lemma 5.2. Let F be a finite field and Γ be a k-uniform access structure with
n parties for some even k and some even n, and let B be a subset of parties
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such that |B| = n/2. Then, the scheme ΣB, described in Fig. 3, is a linear
secret-sharing scheme over F realizing ΓB in which the share size of every party
is O(k−1/2 · 2h(k/n)n/2 · log |F|).

Proof. Let s ∈ F be the secret. We prove that the secret-sharing scheme ΣB is a
linear scheme that realizes the k-uniform access structure ΓB , with share size as
in the lemma. First, we prove that in scheme ΣB , every authorized set (i.e., a set
in ΓB) can reconstruct the elements s1, s2, and s3, and, thus, it can reconstruct
the secret s. Then, we prove that every unauthorized set (i.e., a set not in ΓB)
cannot learn any information about at least one of the field elements s1, s2, and
s3, and, thus, it cannot learn any information about the secret s.

Correctness. Every authorized set of size greater than k can reconstruct the
secret using the (k + 1)-out-of-n secret-sharing scheme.

For an authorized set A ∈ ΓB of size k, it holds that |A ∩ B| = k/2. Thus,
the parties in A∩B can reconstruct the element s1 and the parties in A∩B can
reconstruct the element s2 from the k/2-out-of-n/2 schemes. Additionally, the
parties in A∩B hold the elements (rU )U∈U except for the element rA∩B (since for
every U ∈ U such that U 6= A∩B there exist at least one party from A∩B that is
not in U) and the parties in A∩B hold the elements qj

A∩B for every Pj ∈ A∩B,

so they can reconstruct qA∩B . Since A = (A ∩ B) ∪ (A ∩ B) is an authorized
set then the element rA∩B is not part of the sum computing qA∩B . Thus, the
parties in A can reconstruct the element s3 and compute s = s1 + s2 + s3.

Privacy. For an unauthorized setA of size less than k it holds that |A∩B| < k/2
or |A ∩ B| < k/2, so the parties in A cannot learn any information about the
secret s from the scheme ΣB .

For an unauthorized set A of size k, if |A ∩B| 6= k/2, then |A ∩B| < k/2 or
|A ∩B| < k/2, so as above the parties in A cannot learn any information about
the secret s from the scheme ΣB .

Otherwise, if |A ∩ B| = k/2, then (A ∩ B) ∪ (A ∩ B) = A /∈ Γ , and the
element rA∩B is part of the sum computing qA∩B , and the parties in A do not
get the element rA∩B , so they cannot learn s3 from qA∩B . Similarly, for every
V =

{
Pj1 , . . . , Pjk/2

}
∈ V such that V 6= A ∩ B, there exists at least one party

in Pji ∈ V that is not in A ∩ B (and, hence, not in A), so the parties in A do

not get the element qjiV . Thus, the parties in A cannot learn qV , and, hence, they
cannot learn s3 from it.

Formally, a simulator Sim first applies the simulator of the (k + 1)-out-of-n
secret-sharing scheme for the set A and returns the output of this simulator.
Then, Sim chooses random elements s′1, s

′
2, s
′
3 ∈ F, it shares s′1 using a k/2-out-

of-n/2 secret-sharing scheme, and for every j ∈ [n/2] it returns the jth share
from this scheme as part of the share of party Pj . Similarly, Sim shares s′2 using
a k/2-out-of-n/2 secret-sharing scheme, and for every j ∈ [n/2] it returns the
jth share from this scheme as part of the share of party Pn/2+j . Finally, for
every U ∈ U , the simulator Sim chooses random elements r′U ∈ F, and for every

V =
{
Pj1 , . . . , Pjk/2

}
∈ V, it chooses k−1 random elements q′j1V , . . . , q

′jk/2−1

V ∈ F,
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and lets

q′V = s′3 +
∑

U∈U :U∪V /∈Γ

r′U and q
′jk/2

V = q′V − (q′j1V + · · ·+ q
′jk/2−1

V ).

For every j ∈ {1, . . . , n/2} such that Pj ∈ A, Sim returns the elements
(r′U )U∈U :Pj /∈U as part of the share of party Pj , and for every j ∈ {n/2 + 1, . . . , n}
such that Pj ∈ A, it returns the elements (q′jV )V ∈V:Pj∈V as part of the share of
party Pj .
Share Size. The share size of every party in the scheme ΣB is

O((|U|+ |V|) · log |F|+ max {log |F|, log n}) = O

((
n/2

k/2

)
· log |F|

)
= O(k−1/2 · 2h(k/n)n/2 · log |F|),

where the last equality holds by Fact 2.12. ut

In the following we prove that a k-uniform access structure can be decom-
posed to ` = O(k1/2 · n) balanced access structures.

Lemma 5.3. Let P be a set of n parties for some even n, and let k be an even
integer. Then, there are ` = Θ(k1/2 · n) subsets B1, . . . , B` ⊆ P , each of them of
size n/2, such that for every subset A ⊆ P of size k it holds that |A∩Bi| = k/2,
for at least one i ∈ [`].

Proof. We choose at random a subset B ⊆ P of size n/2, and for a given subset
of parties A ⊆ P of size k, we compute the probability that the size of A ∩B is
k/2. Note that this probability is the same as the probability that |A∩B| = k/2
for a given subset of parties B of size n/2, and a random subset of parties A
of size k, since this probability is the same for every subset A ⊆ P of size k.
The number of subsets A of size k is

(
n
k

)
. The number subsets A of size k such

that |A ∩B| = k/2 is the number of options to choose k/2 parties from the n/2
parties from B times the number of options to choose k/2 parties from the n/2

parties from B, which is
(
n/2
k/2

)2
. Thus,

Pr
B←( P

n/2)
[ |A ∩B| = k/2 ] = Pr

A←(P
k)

[ |A ∩B| = k/2 ]

=

(
n/2
k/2

)2(
n
k

) =

Θ

((
1√
k
· 2h(k/n)n/2

)2)
Θ
(

1√
k
· 2h(k/n)n

) = Θ

(
1

k1/2

)
.

Hence, it holds that Pr[ |A ∩B| 6= k/2 ] = 1−Θ
(

1
k1/2

)
.

We repeat the above process ` = Θ(k1/2 · n) times, and we get ` random
subset of parties B1, . . . , B` of size n/2. By the union bound we get that

Pr[ ∃A ⊆ [n], |A| = k : ∀Bi, i ∈ [`], |A ∩Bi| 6= k/2 ]

≤
(
n

k

)
· (Pr [ |A ∩B| 6= k/2 ])

` ≤ 2n ·
(

1−Θ
(

1

k1/2

))`
≤ 2n · 1

en
< 1.



Secret-Sharing Schemes for General and Uniform Access Structures 27

Thus, the probability of choosing the desired subsets B1, . . . , B` is greater than 0,
and in particular such subsets exist. ut

Now, we are ready to present our final linear scheme, which realizes every
k-uniform access structure.

Theorem 5.4. Let Γ be a k-uniform access structure with n parties. Then, for
every finite field F, there is a linear secret-sharing scheme realizing Γ , for secrets
from F, in which the share size of every party is O(n · 2h(k/n)n/2 · log |F|).

Proof. Let s ∈ F be the secret. By adding dummy parties (which either belong
to all authorized sets or belong to none of them), we can assume without loss
of generality that k and n are even. By Lemma 5.3, there exist ` = Θ(k1/2 · n)
subsets B1, . . . , B` ⊆ P , where |Bi| = n/2 for every i ∈ [`], such that for every
subset A ⊆ P of size k it holds that |A ∩ Bi| = k/2 for at least one i ∈ [`].
Thus, we get that Γ = ∪`i=1ΓBi . By Lemma 5.2, for every i ∈ [`] there is a linear
secret-sharing scheme ΣBi realizing the k-uniform access structure ΓBi , in which
the share size of every party is O(k−1/2 · 2h(k/n)n/2 · log |F|). We independently
realize every access structure ΓBi

using the linear scheme ΣBi
with secret s; the

combined scheme is a linear secret-sharing scheme realizing the access structure
Γ in which the share size of every party is

` ·O(k−1/2 · 2h(k/n)n/2 · log |F|) = O(n · 2h(k/n)n/2 · log |F|).

ut

5.1 A Lower Bound for Linear Schemes Realizing k-Uniform Access
Structures.

Using a result of [9] we prove a lower bound of Õ(2h(k/n)n/2) on the share size of
at least one party in every linear secret-sharing scheme that realizes k-uniform
access structures, for one-bit secrets. As we have shown above for one-bit secrets
(that is, F = {0, 1}), this bound is tight up to a poly(n) factor.

Theorem 5.5. For most k-uniform access structures Γ with n parties, the share
size of at least one party for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γ is Ω(k−3/4 · n−1/2 · 2h(k/n)n/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over F
in which the largest share contains s field elements, then the size of the share of
at least one party is s · log |F|. For the share size of every party to be less than

k−3/4 · n−1/2 · 2h(k/n)n/2, it must be that |F| ≤ 2k
−3/4·n−1/2·2h(k/n)n/2

(otherwise,
each share contains at least k−3/4 · n−1/2 · 2h(k/n)n/2 bits), and, obviously, s ·
log |F| ≤ k−3/4 · n−1/2 · 2h(k/n)n/2.

We say that the rank of an access structure Γ is r if the size of every minimal
authorized set in Γ is at most r, so the rank of k-uniform access structures is
k + 1. By [9], for every finite field F and integers s, r, n such that s > log n,
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there are at most 22rns
2·log |F| access structures Γ with n parties and rank r such

that there exists a linear secret-sharing scheme over F realizing Γ in which each
share contains at most s field elements. Let θ = s · log |F|. Thus, there are at

most 22(k+1)n(θ/ log |F|)2·log |F| < 22(k+1)nθ2 k-uniform access structures Γ with n
parties such that there exists a linear secret-sharing scheme over F realizing Γ
in which the share size of each party is at most θ.

Next, we count the number of linear schemes that realize k-uniform access
structures in which the share size of each party is at most

θ < k−3/4 · n−1/2 · 2h(k/n)n/2.

Since we are counting linear schemes, we need to sum the number of lin-
ear schemes that realizes k-uniform access structures for every possible fi-

nite field (there are at most 2k
−3/4·n−1/2·2h(k/n)n/2

such fields, because |F| ≤
2k
−3/4·n−1/2·2h(k/n)n/2

). From all the above, the number of such linear schemes is
at most

2k
−3/4·n−1/2·2h(k/n)n/2+2(k+1)nθ2 .

By Fact 2.12, the number of k-uniform access structures is 2(n
k) =

2Θ(k−1/2·2h(k/n)n). Thus, if half of the k-uniform access structures Γ with n par-
ties have linear secret-sharing schemes in which the share size of every party is
at most θ, then

2k
−3/4·n−1/2·2h(k/n)n/2+2(k+1)nθ2 ≥ 1

2
· 2Θ(k−1/2·2h(k/n)n),

that is,

k−3/4 · n−1/2 · 2h(k/n)n/2 + 2(k + 1)nθ2 ≥ Θ(k−1/2 · 2h(k/n)n),

and so

θ = Ω(k−3/4 · n−1/2 · 2h(k/n)n/2).

ut

6 Transformation from CDS to Secret-Sharing and
Implications to Ad-hoc PSM

In this section, we describe a new transformation from a k-party CDS proto-
col to a secret-sharing scheme for k-uniform access structure. This construction
improves the secret-sharing schemes for k-uniform access structures, for short se-
crets, compared to the scheme implied by the construction of [34]. We also show
how to use the ideas of our transformation to construct a k-out-of-n ad-hoc PSM
protocol from k-party PSM protocol.
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6.1 The Transformation for Uniform Access Structures

We show how to realize any k-uniform access structure Γ with n parties using a
k-party CDS protocol for the function g, defined in Definition 6.1.

Definition 6.1 (The Function g). Let Γ be a k-uniform access structure with
n parties. The k-input function g : [n]k → {0, 1} is the function that satisfies
g(x1, . . . , xk) = 1 if and only if x1 < · · · < xk and A = {Px1

, . . . , Pxk
} is an

authorized set, that is, A ∈ Γ .

We say that a party Pxi
is the ith party in A if and only if there are i − 1

parties before it and there are k − i parties after it, when the indices of the
parties are sorted. The idea of our scheme is that if party Px is the ith party
in a set A of size k, then its share will contain the message of the ith party in
the CDS protocol for g (with the shared secret) when holding the input x. The
problem with this idea is that the dealer does not know which set of parties will
try to reconstruct the secret and it does not know if Px is the ith party. If the
dealer gives to two parties in the set the message of the ith party in the CDS
protocol, then these parties get two different messages of the same party in the
CDS protocol with different input, so we cannot ensure the privacy of the CDS
protocol. Hence, some unauthorized sets may learn information about the secret.
To solve this problem, the message of the ith party in the CDS protocol that
party Px gets will be masked by two random elements, such that only if Px is the
ith party in A, then the parties in A can learn this message. For this, the dealer
shares one of the above mentioned random elements using a (i−1)-out-of-(x−1)
secret-sharing scheme and gives the shares to all parties before Px, and shares
the second random element using a (k − i)-out-of-(n− x) secret-sharing scheme
and gives the shares to all parties after Px.

Theorem 6.2. Let Γ be a k-uniform access structure with n parties, and assume
that for every k-input function f : [N ]k → {0, 1} there is a k-party CDS protocol
for f for a one-bit secret, in which the message size is c(k,N, 1). Then, the
scheme Σg, described in Fig. 4, is a secret-sharing scheme realizing Γ , for a
one-bit secret, in which the share size of every party is O(k · n · c(k, n, 1)).

Proof. We prove that the secret-sharing scheme Σg is a scheme that realizes Γ
with share size as in the theorem. Let s ∈ {0, 1} be the secret and P be a k-party
CDS protocol for g : [n]k → {0, 1} (defined in Definition 6.1), for a one-bit secret,
in which the message size is c(k, n, 1). We prove that every subset of parties A of
size k can learn only the messages corresponding to the parties in A of the CDS
protocol for the function g (that is, party Pj ∈ A can learn only the message
mi,j , where Pj is the ith party in A), so A can reconstruct the secret using these
messages if and only if it is an authorized set. Additionally, we show that subsets
of parties of size less than k cannot learn any messages of the CDS protocol for
the function g, so such subsets cannot learn any information about the secret.

Correctness. An authorized set of size greater than k can reconstruct the
secret using the (k + 1)-out-of-n secret-sharing scheme.
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The secret: An element s ∈ {0, 1}.
The scheme: Let g : [n]k → {0, 1} be the k input function defined in Defini-
tion 6.1 and let P be a k-party CDS protocol for g.

1. Share the secret s using a (k + 1)-out-of-n secret-sharing scheme among
the parties in P , that is, for every j ∈ [n], give the jth share from this
scheme to party Pj .

2. Apply the k-party CDS protocol P to the k-input function g with the
secret s and a common random string r that is chosen at random. For
every i ∈ [k], let mi,x be the message of the ith party in the CDS protocol
P when holding the input x ∈ [n].

3. For every i ∈ {2, . . . , k} and every j ∈ {i, . . . , n− k + i}, choose a random
string qi,j (of the same size as mi,j), and for every j ∈ {1, . . . , n− k + 1},
let q1,j = 0 (i.e., a string of zeroes).

4. For every i ∈ {1, . . . , k − 1} and every j ∈ {i, . . . , n− k + i}, choose a
random string ri,j (of the same size as mi,j), and for every j ∈ {k, . . . , n},
let rk,j = 0.

5. For every i ∈ {1, . . . , k} and every j ∈ {i, . . . , n− k + i}, give the string
mi,j ⊕ ri,j ⊕ qi,j to party Pj .

6. For every i ∈ {2, . . . , k} and every j ∈ {i, . . . , n− k + i}, share the string
qi,j using a (i − 1)-out-of-(j − 1) secret-sharing scheme among the first
j − 1 parties (i.e., the parties P1, . . . , Pj−1), that is, for every w ∈ [j − 1],
give the wth share from this scheme to party Pw.

7. For every i ∈ {1, . . . , k − 1} and every j ∈ {i, . . . , n− k + i}, share the
string ri,j using a (k − i)-out-of-(n− j) secret-sharing scheme among the
last n − j parties (i.e., the parties Pj+1, . . . , Pn), that is, for every w ∈
[n− j], give the wth share from this scheme to party Pj+w.

Fig. 4. A secret-sharing scheme Σg realizing a k-uniform access structure Γ .

Let A = {Px1
, . . . , Pxk

} be an authorized set of size k such that x1 < · · · < xk.
For every i ∈ [k], party Pxi gets the string mi,xi ⊕ ri,xi ⊕ qi,xi . Additionally, the
parties Px1 , . . . , Pxi−1 get i − 1 shares from the (i − 1)-out-of-(xi − 1) scheme
for the string qi,xi

, so they can reconstruct qi,xi
, and the parties Pxi+1

, . . . , Pxk

get k − i shares from the (k − i)-out-of-(n − xi) scheme for the string ri,xi
, so

they can reconstruct ri,xi
. Overall, for every i ∈ [k], the parties Px1

, . . . , Pxk

learn the strings mi,xi ⊕ ri,xi ⊕ qi,xi , ri,xi , and qi,xi , so they can reconstruct the
message mi,xi of the CDS protocol for g. Since g(x1, . . . , xk) = 1, and the parties
in A hold the messages m1,x1

, . . . ,mk,xk
, they can reconstructs the secret s from

those messages of the CDS protocol for g.

Privacy. Let A = {Px1
, . . . , Pxk

} be an unauthorized set of size k such that
x1 < · · · < xk. As claimed above, the parties in A can learn the messages
m1,x1

, . . . ,mk,xk
, but since g(x1, . . . , xk) = 0, the parties in A cannot learn the

secret from the CDS protocol for g (by the privacy of the CDS protocol).

We show that the parties in A cannot learn any other messages from the CDS
protocol for g. For x ∈ [n] such that Px /∈ A, the parties in A cannot learn mi,x
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for every i ∈ [k], since they do not get this message (even masked by random
strings). Consider an x ∈ [n] such that Px ∈ A and x 6= xi for some i ∈ [k].
If x < xi (that is, Px is smaller than the ith party in A) then the parties in
A cannot learn the string qi,x, since they hold less than i − 1 shares from the
(i − 1)-out-of-(x − 1) for the string qi,x, so the parties in A cannot learn the
message mi,x. Otherwise, if x > xi (that is, Px is bigger than the ith party in
A) then the parties in A cannot learn the string ri,x, since they hold less than
k − i shares from the (k − i)-out-of-(n − x) for the string ri,x, so the parties
in A cannot learn the message mi,x. Thus, the parties in A cannot learn any
information about the secret s.

The last argument holds for unauthorized sets A of size less than k, so such
sets A cannot learn any messages from the CDS protocol for g, and, thus, cannot
learn any information about the secret s.

Formally, a simulator Sim first applies the simulator of the (k + 1)-out-of-n
secret-sharing scheme for a one-bite secret with the set A and returns the output
of this simulator. Then, Sim applies the simulator of the CDS protocol P with
inputs x1, . . . , xk; let m′i be the output of the simulator of P for the message of
the ith party in P (when holding the input xi). Then, for every i ∈ {2, . . . , k} and
every j ∈ {i, . . . , n− k + i}, the simulator Sim chooses a random string q′i,j , and
for every i ∈ {1, . . . , k − 1} and every j ∈ {i, . . . , n− k + i}, the simulator Sim
chooses a random string r′i,j . For every j ∈ {1, . . . , n− k + 1}, let q′1,j = 0, and
for every j ∈ {k, . . . , n}, let r′k,j = 0. For every i ∈ {1, . . . , k} the simulator Sim
returns m′i⊕r′i,xi

⊕q′i,xi
and (r′i,j⊕q′i,j)j 6=xi as part of the share of party Pxi . For

every i ∈ {2, . . . , k} and every j ∈ {i, . . . , n− k + i}, the simulator Sim shares
q′i,j using an (i−1)-out-of-(j−1) secret-sharing scheme, and for every w ∈ [j−1]
such that Pw ∈ A, it returns the wth share from this scheme as part of the share
of party Pw. For every i ∈ {1, . . . , k − 1} and every j ∈ {i, . . . , n− k + i}, the
simulator Sim shares r′i,j using a (k − i)-out-of-(n − j) secret-sharing scheme,
and for every w ∈ [n− j] such that Pj+w ∈ A, it returns the wth share from this
scheme as part of the share of party Pj+w.

Share Size. The share size of every party in the scheme Σh is

O(k · n · c(k, n, 1) + log n) = O(k · n · c(k, n, 1)).

ut

Using the CDS protocol of [36], in which the message size is

2O(
√
k logn log(k logn)), for a one-bit secret, we get the following result.

Corollary 6.3. Let Γ be a k-uniform access structure with n parties. Then,
there is a secret-sharing scheme realizing Γ , for a one-bit secret, in which the
share size of every party is k · n · 2O(

√
k logn log(k logn)).

6.2 The Transformation for Ad-hoc PSM Protocols

We use the same ideas as in the above transformation to construct a k-out-of-n
ad-hoc PSM protocol for a function f : [N ]k → Y using a k-party PSM protocol
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for f . Recall that some k parties Pi1 , . . . , Pik , holding inputs xi1 , . . . , xik ∈ [N ] re-
spectively, participate in the protocol, and they want to compute f(xi1 , . . . , xik).
However, the participating parties do not know which k parties among the n par-
ties participate in the protocol. In Fig. 5, we describe our ad-hoc PSM protocol;
in the protocol there is an offline stage, which contains computation that only
depends on the common string, and an online stage in which each participating
party sends its message.

Offline stage of the protocol: Let P be a k-party PSM protocol for f .

1. Apply the k-party PSM protocol P for the k-input function f with a
common random string r that is chosen at random. For every i ∈ [k] let
mi,x be the message of the ith party in the PSM protocol P when holding
the input x ∈ [N ].

2. For every i ∈ {2, . . . , k} and every j ∈ {i, . . . , n− k + i}, choose a random
string qi,j (of the same size as mi,j), and for every j ∈ {1, . . . , n− k + 1},
let q1,j = 0 (i.e., a string of zeroes).

3. For every i ∈ {1, . . . , k − 1} and every j ∈ {i, . . . , n− k + i}, choose a
random string ri,j (of the same size as mi,j), and for every j ∈ {k, . . . , n},
let rk,j = 0 (i.e., a string of zeroes).

4. For every i ∈ {2, . . . , k} and every j ∈ {i, . . . , n− k + i}, share the string
qi,j using a (i − 1)-out-of-(j − 1) secret-sharing scheme among the first
j − 1 parties (i.e., the parties P1, . . . , Pj−1). For every w ∈ {1, . . . , j − 1},
let qwi,j be the share of party Pw.

5. For every i ∈ {1, . . . , k} and every j ∈ {i, . . . , n− k + i}, share the string
ri,j using a (k − i)-out-of-(n − j) secret-sharing scheme among the last
n− j parties (i.e., the parties Pj+1, . . . , Pn). For every w ∈ {j + 1, . . . , n},
let rwi,j be the share of party Pw.

Online stage of the protocol for a set A of k parties: Each party Pj ∈ A
holds an input xj ∈ [N ].

1. Every party Pj ∈ A sends to the referee the string mi,xj ⊕ ri,j ⊕ qi,j for
every i ∈ {1, . . . , k}.

2. Every party Pw ∈ A sends to the referee the string qwi,j for every i ∈
{1, . . . , k} and every j > w.

3. Every party Pw ∈ A sends to the referee the string rwi,j for every i ∈
{1, . . . , k} and every j < w.

Fig. 5. A k-out-of-n ad-hoc PSM protocol Pf for a k-input function f : [N ]k → Y .

Theorem 6.4. Let f : [N ]k → Y be a k-input function, for some integer k, and
assume that there is a k-party PSM protocol for f with message size cf (k,N).
Then, the protocol Pf , described in Fig. 5, is a k-out-of-n ad-hoc PSM protocol
for f with message size O(k · n · cf (k,N)).
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Proof. The correctness of the protocol follows from the fact that given k parties
Pi1 , . . . , Pik , the referee learns the messages m1,xi1

, . . . ,mk,xik
, as explained in

the proof of Theorem 6.2, and thus, by the correctness of the PSM protocol for
f , the referee can learn f(xi1 , . . . , xik). The privacy of the protocol follows from
the privacy of the PSM protocol and the fact that the referee learns only the
messages m1,xi1

, . . . ,mk,xik
, as proved in Theorem 6.2. Note that for less than

k parties, the referee cannot learn any message of the PSM protocol, again like
in Theorem 6.2. ut

By the PSM protocol of [12], in which the message size is O(k3 · Nk/2), we
get the following result.

Corollary 6.5. Let f : [N ]k → Y be a k-input function, for some integer k.
Then, there is a k-out-of-n ad-hoc PSM protocol for f with message size O(k4 ·
n ·Nk/2).

6.3 Improving the Ad-hoc PSM Protocol for Symmetric Functions

We combine the protocol of Section 6.2 with the ideas of Section 4, and construct
a better k-out-of-n ad-hoc PSM protocol for symmetric functions f : [N ]k → Y ,
where a function f is symmetric if for a given input x = (x1, . . . , xk), the output
of f on the input x is the same as the output of f on any permutation on
the order of the xi’s, that is, for every x = (x1, . . . , xk) and every permutation
π : [k]→ [k], it holds that f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

Our construction consists of two steps. First, we show that we can construct
a k-out-of-n ad-hoc PSM protocol for f using Θ(k · log n) invocations of a k-
out-of-k2 ad-hoc PSM protocol. Then, we use the protocol of Theorem 6.4 with
k2 parties, and get a k-out-of-n ad-hoc PSM protocol for f with message size
O(k4 · log n · cf (k,N)), where cf (k,N) is the message size of a k-party PSM
protocol for f .

For the first step, we show a general transformation from k-out-of-t ad-hoc
PSM protocols to k-out-of-n ad-hoc PSM protocols, for every k ≤ t ≤ n. This
transformation generalizes and improves the construction of [11], which only
works when t = k. As mentioned above, we use this transformation for t = k2.
For our transformation, we take a family of perfect hash functions Hn,k,t, and
construct a k-out-of-n ad-hoc PSM protocol for f using independent copies of a
k-out-of-t ad-hoc PSM protocol for f , one copy for each hash function h ∈ Hn,k,t.

In the k-out-of-t ad-hoc PSM protocol for h, denoted by Ph, party Pj simu-
lates the h(j)th party in Ph. If h is one-to-one on a set of k parties, that is, the
set does not collide on h, then the referee gets k messages of k different parties of
the protocol Ph, so it can compute the output of f on the inputs of the parties.

If a set collides on h, then the referee gets at least two messages of the same
party of the protocol Ph, so the privacy is not guaranteed. To solve this prob-
lem, every party encrypts its message of the protocol Ph using an information-
theoretic encryption system that is secure as long as the adversary sees at most
k encryptions. We also share the encryption key using a k-out-of-t secret-sharing
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scheme, and party Pj sends to the referee the h(j)th share from this scheme.
For sets of size less than k and sets of size k that collide on h, the referee cannot
reconstruct the key and sees at most k encrypted messages, thus cannot learn
any information on the messages of the protocol Ph. For the encryption system,
we use a polynomial of degree k as the encryption key; to encrypt a message
each party masks it by a unique point of the polynomial.

Observe that the referee might learn the output of f from more than one
protocol, for several functions from Hn,k,t, so the requirement for symmetric
functions is necessary, since the order of the parties in a set of size k can change
according to the different hash functions.

Offline stage of the protocol: Let P be a k-out-of-t ad-hoc PSM protocol
for f : [N ]k → Y and let h : [n]→ [t] be a hash function.

1. Apply the k-out-of-t ad-hoc PSM protocol P for the k-input function f
with a common random string r chosen at random with uniform distri-
bution. For every i ∈ [t] let mi,x be the message of the ith party in the
ad-hoc PSM protocol P when holding the input x ∈ [N ].

2. Choose a random polynomial Q of degree k over a finite field F such that
log |F| > max {logn, cf (k, t,N)}.

3. Share the polynomial Q (i.e., its coefficients) using a k-out-of-t secret-
sharing scheme. For every i ∈ {1, . . . , t}, let qi be the ith share from this
scheme.

Online stage of the protocol for a set A of k parties: Each party Pj ∈ A,
who holds an input xj ∈ [N ], sends mh(j),xj ⊕Q(j) and qh(j) to the referee.

Fig. 6. A k-out-of-n ad-hoc PSM protocol Ph for a symmetric k-input function f :
[N ]k → Y .

Lemma 6.6. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k, and assume that there is a k-out-of-t ad-hoc PSM protocol P for f
with message size cf (k, t,N), and that there is a family of perfect hash function
Hn,k,t = {hi : [n]→ [t] : i ∈ [`]}. Then, there is a k-out-of-n ad-hoc PSM protocol
for f with message size O(` · k ·max {cf (k, t,N), log n}).

Proof. We show that the protocol that consist of the ` independent k-out-of-t ad-
hoc PSM protocols Ph, described in Fig. 6, for every h ∈ Hn,k,t, is a k-out-of-n
ad-hoc PSM protocol. We prove that for every subset of k parties that holds the
inputs xi1 , . . . , xik ∈ [N ], the referee can compute f(xi1 , . . . , xik). Next, we show
that for every subset of k parties or less, the referee cannot learn any additional
information (except for the output of f for subsets of k parties) about the inputs
of the parties.
Correctness. Let A = {Pi1 , . . . , Pik} ⊆ P be a subset of k parties. Thus, there
exist a function h ∈ Hn,k,t such that | {h(i1), . . . , h(ik)} | = k. In the protocol
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Ph the referee can reconstruct the polynomial Q, since it gets k distinct shares
of the k-out-of-t secret-sharing scheme for Q. Thus, the referee can compute
Q(ij) for every j ∈ [k]. Additionally, for every j ∈ [k], party Pij ∈ A sends to
the referee the message mh(ij),xij

⊕Q(ij). Overall, for every j ∈ [k], the referee

has the strings mh(ij),xij
⊕ Q(ij) and Q(ij), so it can reconstruct the message

mh(ij),xij
of the k-out-of-t ad-hoc PSM protocol P for f . By the correctness of

the protocol P, the referee can compute f(xi1 , . . . , xik).
Privacy. Consider a subset A =

{
Pi1 , . . . , Pik′

}
⊆ P of k′ ≤ k parties and a

function h ∈ Hn,k,t. If | {h(i1), . . . , h(ik′)} | < k then the referee cannot learn the
polynomial Q, since it gets less than k distinct shares of the k-out-of-t secret-
sharing scheme for Q. Furthermore, since the degree of Q is k, the k′ ≤ k
points Q(i1), . . . , Q(ik′) are uniformly distributed, i.e., the encrypted messages
mh(i1),xi1

⊕Q(i1), . . . ,mh(ik′ ),xi
k′
⊕Q(ik′) are uniformly distributed. So the ref-

eree cannot learn any information on the message of the ad-hoc PSM protocol
P from the messages of Ph. If | {h(i1), . . . , h(ik′)} | = k (in particular k′ = k)
then the referee learns exactly the above mentioned messages mh(ij),xij

for every

j ∈ [k] (i.e., k messages of distinct k parties in the protocol P), and by the privacy
of the ad-hoc PSM protocol P that uses h the referee cannot learn any additional
information (not implied by f(xi1 , . . . , xi1)) about the inputs of the parties from
the messages it gets in this protocol. Thus, since for every h ∈ Hn,k,k2 the k-out-
of-t ad-hoc PSM protocol P that uses h is private, and since those protocols are
independent, we get that the resulting k-out-of-n ad-hoc PSM protocol is also
private.
Message Size. The message of each party in the protocol Ph (for some h ∈
Hn,k,t) contains one message of P and one share Q, a polynomial of degree k
over a field F such that log |F| ≈ max {log n, cf (k, t,N)}, thus the message size is
O(kmax {log n, cf (k, t,N)}). The message size of the resulting k-out-of-n ad-hoc
PSM protocol for f is O(` · k ·max {log n, cf (k, t,N)}). ut

By taking t = k2 and using our ad-hoc PSM protocol from Theorem 6.4 and
the family of perfect hash functions from Lemma 4.5, we get the following result.

Theorem 6.7. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k, and assume that there is a k-party PSM protocol for f with message
size cf (k,N). Then, there is a k-out-of-n ad-hoc PSM protocol for f with message
size O(k5 · log n · cf (k,N)).

Proof. By Theorem 6.4, there is a k-out-of-k2 ad-hoc PSM protocol for f with
message size O(k · k2 · cf (k,N)) = O(k3 · cf (k,N)), and by Lemma 4.5, there is
a family of perfect hash functions Hn,k,k2 with ` = Θ(k · log n) functions.

Thus, by Lemma 6.6, there is a k-out-of-n ad-hoc PSM protocol for f with
message size O(` · k · k3 · cf (k,N)) = O(k5 · log n · cf (k,N)). ut

Finally, again by the PSM protocol of [12], we obtain the next result.

Corollary 6.8. Let f : [N ]k → Y be a k-input symmetric function, for some
integer k. Then, there is a k-out-of-n ad-hoc PSM protocol for f with message
size O(k8 · log n ·Nk/2).
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