
Verifiable Delay Functions from Supersingular
Isogenies and Pairings

Luca De Feo1[0000−0002−9321−0773], Simon Masson2, Christophe Petit3, and
Antonio Sanso4

1 Université Paris Saclay – UVSQ, LMV, CNRS UMR 8100, Versailles, FR.
https://defeo.lu/

2 Thales and Université de Lorraine
3 University of Birmingham

4 Adobe Inc. and Ruhr Universität Bochum

Abstract. We present two new Verifiable Delay Functions (VDF) based
on assumptions from elliptic curve cryptography. We discuss both the ad-
vantages and drawbacks of our constructions, we study their security and
we demonstrate their practicality with a proof-of-concept implementation.

1 Introduction

A Verifiable Delay Function (VDF), first formalized in 2018 by Boneh, Bonneau,
Bünz and Fisch [10], is a function f : X → Y that takes a prescribed wall-clock
time to evaluate, independently of the parallelism of the architecture employed,
and such that its output can be verified efficiently. In a nutshell, it is required
that anyone can evaluate f in T sequential steps, but no less, even with a large
number of processors; on top of that, given an input x and an output y, anyone
must be able to verify that y = f(x) in a short amount of time, desirably in
polylog(T).

An example of a delay function lacking efficient verification is a chained
one-way function:

s→ H(s)→ H(H(s))→ · · · → H(T)(s) = a.

This clearly takes T steps to evaluate, even on a parallel computer, however the
only feasible way to verify the output is to re-evaluate the function. Two related
known crypto primitives are the time-lock puzzles defined by Rivest, Shamir,
and Wagner in [65] and proofs of sequential work [53,20]. The problem with the
former is that it is not publicly verifiable while the latter is not a function (i.e.,
it does not have a unique output).

A VDF based on univariate permutation polynomials over finite fields is
presented in [10], along with other candidate constructions, none being entirely
satisfactory (see next section). The same work listed as an open problem to find
theoretically optimal VDFs based on simple assumptions closer to those typically
found in other asymmetric protocols. Pietrzak [59] and Wesolowski [75] responded
to the challenge by proposing two practical VDFs based on exponentiation in a
group of unknown order. Both VDFs are surveyed in [11].

https://defeo.lu/

Our contribution. We present a new framework for VDFs, and two instantiations
of this framework using isogenies of supersingular elliptic curves and bilinear
pairings. Both our constructions are optimal and perfectly sound. We observe that
the construction based on univariate permutation polynomials of Boneh et al. [10]
also has both properties, but its security relies on an ad hoc limit assumption
on the amount of parallelism available to the adversary. Moreover, unlike the
VDF constructions of Pietrzak [59] and Wesolowski [75], ours are inherently
non-interactive, the output being efficiently verifiable without attaching a proof.
By using mathematical tools also used in other cryptographic contexts, our
constructions benefit from pre-existing research in these areas both from an
efficiency and security point of view. Finally, while the use of isogenies does not
magically make our functions post-quantum (in fact they can be broken with a
discrete logarithm computation), one of our two constructions still offers some
partial resistance to quantum attacks; we call this property quantum annoyance.

The main drawback of our proposals is that, given current knowledge, the only
secure way to instantiate our VDFs requires a trusted setup, or, said otherwise,
that our VDFs can be easily backdoored. Indeed, both our setups require to
start from a supersingular elliptic curve with unknown endomorphism ring. No
general algorithm is known to compute the endomorphism ring of supersingular
elliptic curves, however the only known ways to generate supersingular curves
involve a random isogeny walk from a curve with small discriminant (e.g., j = 0
or j = 1728), and it has been shown that knowledge of the isogeny walk permits
computing the endomorphism ring in polynomial time [46,30]. Hence, the only
way to instantiate our VDFs involves a trusted setup that performs a random
isogeny walk and then forgets it. We stress that trusted setups also appear in
other constructions, and that does not rule them out for practical applications;
in fact, the Ethereum cryptocurrency is currently considering standardization of
a VDF based on a trusted RSA setup [28]. Furthermore, while it is clear that a
trusted setup is necessary in the RSA setting, this looks much less like a fatality
in our case: it is totally believable that in the near future a way is found to
generate random supersingular curves with unknown endomorphism ring, thus
bypassing the need for the trusted setup. Finally, a distributed trusted setup
with n − 1 threshold security can be efficiently constructed in our case purely
from isogeny assumptions, whereas the RSA setting requires heavy multi-party
computation machinery and very large bandwidth.

Another limitation on the utility of our VDFs is that the time required to
setup public parameters is of the same order of magnitude as that required to
evaluate the function; furthermore, validating public parameters requires the
same amount of time as evaluating the function, and the evaluator is required
to use O(T) storage for evaluating in optimal time. While these drawbacks are
acceptable in applications that require delays in the order of minutes or hours
(the majority of applications in blockchains), they prevent our VDFs from being
used with very long delays. In our implementation, we propose some possible
tradeoffs that mitigate these problems, however further research is needed to
better address them.

2

Related work. Isogenies and pairings were first used together for cryptographic
purposes in several patents [41,42,14]. In particular, a patent by Broker, Charles
and Lauter [14] describes a generalization of BLS signatures [12], where the secret
scalar is replaced by a walk in an isogeny graph. We will construct our VDFs
using a similar structure in Section 3.

More recently, Koshiba and Takashima [47,48] have provided a framework
and security definitions for some cryptographic protocols involving pairings and
isogenies, called isogenous pairing groups. They also present key-policy attribute-
based encryption schemes based on their framework.

Our new VDF construction does not fit within any of the previous frameworks:
while the isogeny is secret there, here it is public. Moreover the isogeny involved
in our construction has very large degrees to achieve the delay property; using
isogenies of such degree would make any of the previous protocols unnecessarily
slow. Security properties required for VDFs differ significantly in nature from
traditional cryptographic protocols, and none of the computational assumptions
previously used in isogeny-based cryptography, including those in [47], is relevant
to our construction.

Outline. This paper is organized as follows. In Section 2 we formalize Verifiable
Delay Functions and we go through some of the proposed solutions. Section 3
to Section 5 provide a description of our VDFs, together with a review of the
basic theory of supersingular isogeny graphs. Section 6 gives security proofs and
reviews the available attacks against our proposals. Finally Section 7 provides an
optimized implementation of our VDFs, and related benchmarks.

2 Verifiable Delay Functions

In this section, we recall previous work on Verifiable Delay Functions (VDF).

2.1 Definition

We recall here the formal definition of a Verifiable Delay Function, following [10].
A VDF consists of three algorithms:

1. Setup(λ, T) → (ek, vk) : is a procedure that takes a security parameter λ, a
delay parameter T , and outputs public parameters consisting of an evaluation
key ek and a verification key vk.

2. Eval(ek, s) → (a, π) : is a procedure to evaluate the function on input s. It
produces the output a from s, and a (possibly empty) proof π. This procedure is
meant to be infeasible in time less than T .

3. Verify(vk, s, a, π) → {true, false} : is a procedure to verify that a is indeed the
correct output for s, with the help of the proof π.

A VDF shall satisfy three security properties: Correcteness, stating that
a honest evaluator always passes verification, Soundness, stating that a lying
evaluator never passes verification, and Sequentiality, stating that it is impossible

3

to correctly evaluate the VDF in time less than T − o(T), even when using
poly(T) parallel processors. We will give formal security definitions in Section 6,
but see also [10].

According to [10], the Setup routine should run in time poly(λ); here we
slightly relax this constraint and allow it to run in poly(T, λ). Eval must be
doable in time T ; Verify in time poly(λ). A VDF is said to be optimal when T
is allowed to be in o(2λ) without harming security; note that it does not make
sense to have T ∈ O(2λ), since in that case it is cheaper to break soundness than
to run Eval.

2.2 Applications

We highlight a few applications of VDFs:

– Constructing a trustworthy randomness beacon, like the one introduced
by Rabin in [62], where a public service produces a continuous stream of guar-
anteed unbiased randomness. The classic approach consisting in extracting
randomness from entropy pool sources, such as stock prices or proof-of-work
blockchains à la Bitcoin, has been shown to be manipulable by active at-
tackers [58]. For example, while the price of a particular stock may seem
unpredictable to a passive observer, a powerful trader can influence the
market trend, making the random output biased. Here is where VDFs are
useful: if the beacon is calculated by applying a VDF with a long enough
delay to the entropy source, the malicious trader would not have the time to
try to “adjust” the market at his own advantage.

The other common solution based on the “commit-and-reveal” paradigm
with multiparty randomness has also been shown to have flaws. Indeed a
malicious party with the intention of manipulating the output might refuse
to reveal his commitment after seeing the other opened commitments, forcing
to restart the protocol. This can be mitigated by threshold techniques, as
shown in [68], or by replacing commitments with VDFs, as shown by Lenstra
and Wesolowski [51].

– VDFs may be used to reduce the energy consumption of blockchains based on
proofs-of-work. An elegant idea by Cohen [19] combines proofs-of-resources
with incremental VDFs in order to achieve Consensus from Proof of
Resources. In particular, he describes a technique based on proof of space
where the mining reward is roughly equal to the value of the space owned,
without each miner running a large parallel computation. At high level
this works as follows. Suppose a miner controls N out of S units of the
total space and splits his proof π (proving control of the N units) into N
pieces π1, π2...πN . The miner then computes Hi = HASH(πi) ∈ [0, N] and
τ = min(H1, ...,HN). At this point the miner evaluates a VDF with time
delay proportional to τ . The first miner that successfully computes the output
is the “winner” and has the block assigned. For a miner that controls N units

4

of the total space this will happen with a probability that is about N/S. The
Chia blockchain5 has been designed to work with this model.

For a description of other applications of VDFs, such as proof of replication
or computational timestamping, we refer to [10].

2.3 Existing constructions

So far, few constructions meet the requirements of a VDF; we summarize them
below.

Modular square roots. One of the earlier examples of a VDF can be found in
the 1992 paper by Dwork and Naor [29]. The underlying idea is rather simple:
given a prime number p such that p = 3 mod 4, a (canonical) square root

a =
√
s mod p can be computed using the formula a = s

p+1
4 . This requires about

log(p) sequential squaring operations. On the other hand, verifying correctness
only requires to check that a2 = s. While there is a gap between the evaluation
and the verification operations, this simple approach has two issues: first, the
gap is only polynomial in the delay parameter T = log(p), secondly, due to the
possibility of parallelizing field multiplications, this gap vanishes asymptotically
if the evaluator is provided with large amounts of parallelism (see also Table 1).
Lenstra and Wesolowski introduced with Sloth [51] the possibility of chaining
square root operations. The problem with this construction, though, is that it
does not achieve asymptotically efficient verification.

Time-lock puzzles. Time-lock puzzles were introduced by Rivest, Shamir, and
Wagner [65] to provide encryption that can only be decrypted at a set time in
the future. They use a classical RSA modulus N = pq; the encryption key is

then a = s2
T

mod N for some starting value s. Now, it is clear that any party
knowing ϕ(N) can compute the value of a quickly (they can reduce the exponent
e = 2T mod ϕ(N)). But for everyone else the value of a is obtained by computing
T sequential squaring operations.

The main reason why this construction cannot be classified as a VDF is that
there is not an efficient way to perform public verification without giving away
the factorization of N . This issue has recently been solved, independently, by
Pietrzak and Wesolowski. We briefly present their constructions next; for a more
in-depth survey, see [11].

Wesolowski’s VDF. In 2018, Wesolowski presented a VDF based on groups of
unknown order [75]. His work leverages the time lock puzzle described above,

introducing a way to publicly verify the output a = s2
T

. He defines an interactive
protocol where, after seeing the output a, the verifier sends to the prover a
random prime ` < B, where B is some small bound. The prover replies with the

5 https://chia.net/.

5

https://chia.net/

VDF Sequential Parallel Verify Setup Proof
Eval Eval size

Modular square root T T 2/3 T 2/3 T —
Univariate permutation
polynomials6

T 2 > T − o(T) log (T) log (T) —

Wesolowski’s VDF (1 + 2
log (T)

)T (1 + 2
s log (T)

)T λ4 λ3 λ3

Pietrzak’s VDF (1 + 2√
T

)T (1 + 2

s
√
T

)T log (T) λ3 log (T)

This work T T λ4 Tλ3 —
This work (optimized) T T λ4 T log(λ) —

Table 1. VDF comparison—Asymptotic VDF comparison: T represents the delay
factor, λ the security parameter, s the number of processors. For simplicity, we assume
that T is super-polynomial in λ. All times are to be understood up to a (global across
a line) constant factor.

value b = sb2
T /`c; the verifier then checks that a = b`sr, where r = 2T mod `.

Because the verifier only uses public randomness, this protocol can be made
non-interactive using the Fiat–Shamir heuristic. Wesolowski’s proposal shines
for the shortness of the proof (only one group element) and the speed of the
verification (only two group exponentiations).

Wesolowski suggests two ways of instantiating groups of unknown order. The
first one is using RSA groups (Z/NZ)∗, like in Rivest–Shamir–Wagner, and
thus requires a trusted third party to produce the modulus N . The second is
using class groups of imaginary quadratic number fields [15,52]. While the former
instantiation is better studied in public key cryptography, the second has the
advantage of not requiring a trusted setup.

Pietrzak’s VDF. Concurrently with Wesolowski, Pietrzak [59] introduced another
protocol to verify Rivest–Shamir–Wagner time-lock puzzles. Pietrzak’s verification
procedure is an interactive recursive protocol, where the prover outputs a proof
π consisting of O(log(T)) group elements, and the verifier needs about O(log(T))
time to do the verification. The main advantage of his construction is that
the prover only needs about O(

√
T) group multiplications to build π. Pietrzak

presents his protocol using RSA groups, but class groups like in Wesolowski’s VDF
can also be used (although this affects slightly the computational assumptions
needed for soundness).

Univariate permutation polynomials. Boneh, Bonneau, Bünz and Fisch explored
in their seminal paper [10] an approach based on permutation polynomials over
finite fields Fp. In full generality, their proposal is a weaker form of VDF, where
a certain amount of parallelism is needed to give an advantage to the evaluator

6 According to [10, § 5.1], one must limit the evaluator to O(T 2) parallel processors
for the bound on parallel Eval to hold. VDFs based on permutation polynomials can
be evaluated in time O

(
log2(T)

)
using O(T 3.8) parallel processors.

6

(see [10, Definition 5]). The gist of their approach is that, given a permutation
polynomial of degree T , inverting such polynomial implies computing polynomial
GCDs. This operation takes O(log(p)) multiplications of dense polynomials of
degree O(T), and it is conjectured that it cannot be done in less than T steps
on at most O(T 2) processors (see [10, Assumption 2]). On the other hand, any
such polynomial can be evaluated, and thus verified, using O(log(T)) operations
on O(T) processors, which is exponentially smaller. Moreover, there exists a
family of permutation polynomials, due to Guralnick and Müller [37], that can
be evaluated in O(log(T)) operations without parallelism, and it is conjectured
in [10] that the derived VDF is secure.

The drawbacks of this construction are that the parallelism of the evaluator
needs to be polynomially bounded in T , and that it is based on assumptions that
have been seldom studied in a cryptographic setting.

Incrementally Verifiable SNARK For completeness we need to mention that
a theoretical, albeit impractical, VDF can be constructed using Incrementally
Verifiable SNARKs. Again, we refer to [10] for a deeper analysis of the topic.

We compare the asymptotic performance of the VDFs above and of our
proposal in Table 1. Outside of modular square roots, all VDFs constructions meet
the requirements of an optimal VDF, however each has its qualitative strengths
and weaknesses: permutation polynomials require to bound the parallelism of
the evaluator, and are based on little studied assumptions; VDFs derived from
time-lock puzzles are interactive, have no perfect soundness, and may or may
not require a trusted setup; ours need a trusted setup, and require an effort to
validate public parameters comparable to evaluating the VDF.

3 A new VDF construction framework

We start by describing a framework for defining VDFs inspired by the BLS
signature scheme based on pairing groups [12]. Recall that BLS uses a pairing
friendly elliptic curve E/Fp, with a non-degenerate bilinear pairing eN : X1 ×
X2 → Fpk , where X1, X2 are subgroups of prime order N , and the extension
degree k is called the embedding degree. The secret key in BLS is a scalar s < N ,
and the public key is a pair of points P, sP ∈ X1. To sign a message m, the
signer computes a hash Q = H(m) ∈ X2, and gives back the signature sQ. The
verifier then checks that en(P, sQ) = en(sP,Q).

The BLS signature is also naturally a Verifiable Random Function fs : X2 →
X2, where only the owner of the trapdoor s can evaluate fs, while anyone
can verify the result [56]; however, it is not a VDF, because both evaluation
and verification are in polylog(N). Our generalization, instead, has efficient
instantiations based on isogeny graphs of supersingular elliptic curves, where
the evaluation can be made exponentially slower than the verification. If the
trapdoor is kept secret, one obtains a signature/identification protocol based on

7

walks in isogeny graphs; if the trapdoor is made public, one obtains a VDF.7 We
will present our instantiations in Section 5.

Let X1, X2, Y1, Y2, G be groups of prime order N , let eX : X1 ×X2 → G and
eY : Y1 × Y2 → G be non degenerate bilinear pairings. Furthermore, assume
that there is a pair of bijections φ : X1 → Y1 and φ̂ : Y2 → X2 that satisfy the
following diagram,

X1 × Y2 Y1 × Y2

X1 ×X2 G

φ× 1

1× φ̂ eY

eX

Note that the diagram implies φ and φ̂ are group isomorphisms.
We shall assume that the pairings eX , eY can be evaluated in time polylog(N),

whereas both φ and φ̂ can be evaluated in sequential time T , where T is some
parameter independent from N (but still in o(N)).

Let P be any generator of X1, the public parameters of our system are
going to be (N,X1, X2, Y1, Y2, G, eX , eY , P, φ(P)). From this setup, we derive
two primitives:

An identification protocol. The maps φ and φ̂ are the trapdoor. The verifier gives
an element Q ∈ Y2 to the prover, the proof is the element φ̂(Q). Then, the verifier
checks that

eX(P, φ̂(Q)) = eY (φ(P), Q).

It should be apparent that BLS signatures correspond to the special case
where X1 = Y1 and X2 = Y2 are orthogonal groups with respect to an elliptic
pairing eX = eY , and φ = φ̂ = [s] is the multiplication endomorphism by a secret
scalar s.

The same abstract scheme already appears in a patent by Broker, Charles and
Lauter [14], although their implementation is different, and likely less efficient.
We shall see in Section 6 that our instantiation presents the minor advantage
over BLS signatures of being partially resistant to quantum attacks.

A VDF. The maps φ and φ̂ are also part of the public parameters. The VDF is
the map φ̂, Eval simply amounts to evaluating it at points Q ∈ Y2. To verify the
output, one checks that

eX(P, φ̂(Q)) = eY (φ(P), Q).

It should be clear that, because the map R 7→ eX(P,R) is an isomorphism,
verification succeeds if and only if the output is correct; this will be used to prove
correctness and soundness in Section 6. By hypothesis, Eval takes T sequential
steps, while the pairings can be evaluated in time polylog(N).

7 Note that this is different from a trapdoor VDF, as defined by Wesolowski [75], where
the trapdoor is used to efficiently compute the evaluation.

8

4 Preliminaries on supersingular curves

Before describing the instantiations, we review some basic facts on supersingular
curves, pairings and isogenies. For details on elliptic curves over finite fields
see [66,73,67], for their use in cryptography see [9,32,23], for ideal class groups of
quadratic imaginary fields see [22], for maximal orders of quaternion algebras
see [71,72].

Let E be an elliptic curve defined over a finite field Fq of characteristic p.
Recall that the order of E(Fq) is #E(Fq) = q + 1 − t, where t is the trace of
the Frobenius endomorphism π. Then, a curve is supersingular if and only if p
divides t. Every supersingular curve is isomorphic to a curve defined over Fp2 , so,
for a fixed prime p, there is only a finite number of supersingular curves, up to
isomorphism.

An isogeny of E is an algebraic group morphism from E to some other curve
E′. For separable isogenies,8 the degree is the size of their kernel; isogenies of
degree ` are called `-isogenies. A separable isogeny is said to be cyclic if its kernel
is; we will mostly deal with cyclic isogenies in this work.

For any `-isogeny φ : E → E′, there is a unique `-isogeny φ̂ : E′ → E,
called the dual of φ, such that φ ◦ φ̂ = [`] on E′ and φ̂ ◦ φ = [`] on E. This
shows that being `-isogenous is a symmetric relation, and that being isogenous
is an equivalence relation. Further, a theorem of Tate states that two curves are
isogenous over Fq if and only if they have the same number of points over Fq, thus
in particular a supersingular curve can only be isogenous to other supersingular
curves.

One can define several bilinear pairings on supersingular curves. In this
paper we will use the Weil pairing eN : E[N]× E[N] → µN for describing the
protocol, although the (reduced) Tate pairing is better suited for implementation
purposes. The pairings will have embedding degree 2 or 1, depending on the
VDF, construction. Most importantly, both pairings will satisfy the compatibility
condition

eN (φ(P), Q) = eN (P, φ̂(Q))

for any isogeny φ : E → E′ and points P ∈ E[N], Q ∈ E′[N]. See [9, Chapters IX–
X] for more details.

Graphs of supersingular isogenies have been studied by Mestre [55], Pizer [60,61],
Kohel [45], Delfs and Galbraith [26], among others. We distinguish two important
families: graphs of `-isogenies and curves defined over a prime field Fp (i.e.,
expressed by rational fractions with coefficients in Fp), and graphs of `-isogenies
defined over the algebraic closure F̄p (or, equivalently, over Fp2). In the following,
we shall assume that p > 3.

Graphs over Fp. For the first case, Delfs and Galbraith showed that one obtains
the same kinds of undirected graphs as for ordinary curves. In this case t = 0 and
#E(Fp) = p+ 1, thus there is a unique isogeny class containing all supersingular

8 An isogeny is separable if it induces a separable extension of function fields. We will
only use separable isogenies in this work.

9

curves defined over Fp. To give a more precise classification, following Kohel [45],
we say that an isogeny φ : E → E′ is horizontal whenever EndFp

(E) ' EndFp
(E′);

Delfs and Galbraith showed that there are one or two horizontal isogeny classes
of supersingular curves over Fp, according to whether p = ±1 mod 4. Precisely:

– If p = 1 mod 4, then End(E) ' Z[
√
−p] for all curves, and the isogeny class

contains h curves, up to Fp-isomorphism, where h is the class number of the
imaginary quadratic field Q(

√
−p).

– If p = −1 mod 4, then End(E) is isomorphic to one of Z[
√
−p] or Z[(1 +√

−p)/2]; the horizontal isogeny class associated to Z[(1 +
√
−p)/2] is called

the surface and contains h curves up to Fp-isomorphism; the horizontal
isogeny class associated to Z[

√
−p] is called the floor, and contains h or 3h

curves, according to whether p = 7 mod 8 or p = 3 mod 8 respectively.

The connectivity of the `-isogeny graphs will now depend on the chosen degree
`. Specifically:

– If ` is an odd prime and
(−p
`

)
= −1 (i.e., −p is not a square modulo `), no

`-isogeny of supersingular curves is defined over Fp, i.e., the `-isogeny graph
is made of isolated vertices.

– If ` is an odd prime and
(−p
`

)
= 1, every curve has exactly two horizontal

`-isogenies, thus each horizontal isogeny class is partitioned into a finite
number of cycles.

– If ` = 2 and p = 1 mod 4, then every curve has exactly one horizontal
`-isogeny.

– If ` = 2 and p = −1 mod 4, then every curve on the floor has exactly one
non-horizontal `-isogeny going to a curve on the surface, whereas for curves
on the surface:
• If p = 7 mod 8, they have exactly two horizontal `-isogenies, plus one

non-horizontal going to the floor, dual to the one coming from the floor;
• If p = 3 mod 8, they have three non-horizontal isogenies going to three

curves on the floor, dual to the ones coming from the floor.

In the rest of this work, we will only be interested in cycles of horizontal
isogenies, thus either ` odd and

(−p
`

)
= 1, or ` = 2, p = 7 mod 8 and the curves

on the surface.

Graphs over Fp2 . Over Fp2 there is more than one isogeny class, indeed the trace
t of a supersingular curve can take any of the values 0,±p,±2p. The values t = 0
and t = ±p produce exceptional classes made of only one element, and are thus
not interesting for cryptography. The cases t = ±2p produce two distinct classes,
each with bp/12c+ cp elements, where 0 ≤ cp ≤ 2 is a constant depending only
on p mod 12; these two classes are isomorphic in the sense that each curve in one
is F̄p-isomorphic to exactly one curve in the other, and thus we typically speak
of supersingular graphs over F̄p and over Fp2 indistinctly.

For any prime ` 6= p, the `-isogeny graph of supersingular curves over Fp2 is
an (`+ 1)-regular multi-graph, undirected outside of the two special vertices j =

10

0, 1728. In Fp2 we do not encounter the concept of horizontal isogenies anymore:
every endomorphism ring is isomorphic to a maximal order in a quaternion
algebra, and to every maximal order corresponds exactly a pair of (Fp2/Fp-Galois
conjugate) supersingular curves.

It is still true, however, that we may find inside the graph a sub-structure
inherited from the graph of supersingular curves defined over Fp. One may
be tempted to think that the Fp2-graph contains the Fp-graph as a subgraph,
however the situation is slightly subtler: indeed, supersingular curves over Fp are
isogenous to their quadratic twists, thus the Fp-graph contains pairs of vertices
that become isomorphic in Fp2 . Hence, the `-isogeny graph of curves and isogenies
defined over Fp is a double cover (outside the ramification points at j = 0, 1728)
of the Fp-subgraph contained in the `-isogeny graph over Fp2 . Fear not: this
technical detail will be completely irrelevant to us.

5 Two instantiations with supersingular elliptic curves

We now give two instantiations of the VDF described in Section 3, using supersin-
gular elliptic curves for the pairing groups, and isogenies of prime power degree
for the maps φ, φ̂. We will see in Section 6 that the choice of the curves severely
affects the security of the protocol, however we ignore this issue for the moment.
In this section we will describe the VDFs using the Weil pairing, however for
implementation purposes we will use the Tate pairing in Section 7.

5.1 VDF from supersingular curves over Fp

Our first construction uses supersingular curves defined over a prime field Fp. It
shares similarities with the key exchange protocol CSIDH [16] and with the VDF
based on class groups of imaginary quadratic fields by Wesolowski [75].

Let p be a prime such that p+ 1 contains a large prime factor N . Let ` be
one of:

– ` = 2, only if p = 7 mod 8, or
– a small prime such that

(−p
`

)
= 1.

Let E/Fp be a supersingular elliptic curve, and denote by eN (·, ·) the Weil
pairing on E[N]. When ` = 2 we shall add the requirement that E[2] ⊂ E(Fp),
implying that E is on the surface. By construction #E(Fp) = p+ 1, and E(Fp)
contains exactly one cyclic subgroup of order N , that we shall use as X2 =
E[N] ∩ E(Fp).

Let u ∈ Fp2 \ Fp such that u2 ∈ Fp. We define a map

υ : E → Ẽ

(x, y) 7→ (u2x, u3y)

to a quadratic twist Ẽ of E, i.e., to a curve that is isomorphic to E over Fp2
but not over Fp. By construction, Ẽ has the same order #Ẽ(Fp) = p+ 1, and it

11

Setup(λ, T)
1. Choose primes N, p with the properties above, according to the security pa-

rameter λ;
2. Select a supersingular curve E/Fp;
3. Choose a direction on the horizontal `-isogeny graph, and compute a cyclic

isogeny φ : E → E′ of degree `T , and its dual φ̂;
4. Choose a generator P of X1 = υ−1(Ẽ[N] ∩ Ẽ(Fp)), and compute φ(P);
5. Output (ek, vk) =

(
φ̂, (E,E′, P, φ(P))

)
.

Eval(φ̂, Q ∈ Y2)
1. Compute and output φ̂(Q).

Verify(E,E′, P,Q, φ(P), φ̂(Q))
1. Verify that φ̂(Q) ∈ X2 = E[N] ∩ E(Fp);
2. Verify that eN (P, φ̂(Q)) = eN (φ(P), Q).

Fig. 1. Instantiation of the Verifiable Delay Function over Fp

contains exactly one cyclic subgroup X̃1 = Ẽ[N]∩ Ẽ(Fp); we shall then set X1 to

υ−1(X̃1). Finally, the restriction of the Weil pairing to X1×X2 is non-degenerate,
as wanted.9

The map φ will be instantiated with an isogeny of degree `T , and the map φ̂
with its dual. In practice, we assume that these isogenies are stored as a sequence
of T isogenies of degree ` (e.g., specified by their kernels), so that evaluating φ

and φ̂ can be done in time polynomial in ` and linear in T . For a representation
that is more compact by a (large) constant factor, see Section 7.

Because of the way we have chosen `, the graph of (horizontal) `-isogenies
containing E is a cycle of length dividing the class number h, thus an isogeny
of degree `T is obtained by choosing a direction on the cycle and composing T
isogeny steps each of degree `. The isogeny φ : E → E′ defines an image curve
E′/Fp having the same group structure as E; in particular we define the cyclic

groups Y1 = υ−1(Ẽ′[N]∩ Ẽ′(Fp)) and Y2 = E′[N]∩E′(Fp), where Ẽ′ = υ(E′) is
a quadratic twist of E′.

Note that it is easy to sample uniformly from any of the groups X1, X2, Y1, Y2,
in a way that does not reveal discrete logarithms:10 one simply takes random
points on the curves or on their twists and multiplies by the cofactor (p+ 1)/N .
The algorithms defining the VDF are described in Figure 1.

The similarity with Wesolowski’s VDF is evident here: all `-isogenies with the
same direction correspond to an ideal a of norm ` inside the quadratic imaginary
order O ' EndFp

(E), which is also a representative of an ideal class in Cl(O).
Composing isogenies corresponds to multiplying ideals, thus φ corresponds to
aT and φ̂ corresponds to a−T in Cl(O). While Wesolowski raises elements to

9 We note that a distorsion map X1 → X2 may be used to define a self-pairing on
X1, however efficient distortion maps only exist for very few supersingular curves.
Fortunately, we will not need distorsion maps.

10 In the elliptic curve cryptography literature, this is typically called hashing into the
groups.

12

the power 2T , we only do the equivalent of raising to the power T , because no
analogue of the square-and-multiply algorithm is known for composing isogenies.
Of course, the fundamental difference is in the way we verify the computation.

5.2 VDF from supersingular curves over Fp2

Our second VDF is very similar to the previous one, but uses supersingular curves
defined over Fp2 , thus sharing some similarities with the Charles–Goren–Lauter
hash function [17], and with SIDH [38,25]. It deviates slightly from the paradigm
presented in Section 3 in that the inputs are not taken in a cyclic group, and
evaluation is slower than the previous one by a factor of about 2 (see Section 7),
but has some advantages over it that will be discussed in Section 6.

Like before, we choose a prime p such that p+ 1 contains a large prime factor
N , and a small prime `, e.g., ` = 2.11 We again choose a supersingular elliptic
curve E/Fp (this will be necessary to define the orthogonal groups X1, X2),
however we see it as a curve over Fp2 , so that t = −2p and #E(Fp2) = (p+ 1)2.

Like before, we define X1 = υ−1(Ẽ[N] ∩ Ẽ(Fp)) and X2 = E[N] ∩ E(Fp),
where Ẽ = υ(E) is a quadratic twist of E over Fp. The maps φ, φ̂ are again a
cyclic isogeny of degree `T and its dual, however, over Fp2 , there are (`+ 1)`T−1

possible choices for them, instead of just two; we will select one of them by doing
a non-backtracking12 random walk in the full `-isogeny graph.

On the image curve E′, we define Y1 = φ(X1) and Y2 = φ(X2). However,
we are now faced with a difficulty: there is no known efficient way to sample
from Y2 or Y1, indeed E′ is generally defined over Fp2 and it has therefore no
Fp-twists. To bypass this problem, we deviate from the abstract description of
Section 3, obtaining an N -to-1 map instead of a bijection. Let π be the Frobenius
endomorphism of E/Fp, the trace map on E/Fp2 is the map

Tr : E/Fp2 → E/Fp,
P 7→ P + π(P).

In particular, the trace map sends E[N] to X2, and satisfies

eN (P,Tr(R)) = eN (P, (1+π)(R)) = eN ((1−π)(P), R) = eN ([2]P,R) = eN (P,R)2

for all P ∈ X1 and R ∈ E[N]. We thus define our VDF as

f : E′[N]→ X2,

Q 7→ (Tr ◦φ̂)(Q);

verification is done by checking a pairing equation as before. The algorithms are
described in Figure 2.

11 For this VDF, there is no practical reason to choose any other prime than ` = 2.
12 An isogeny walk is called non-backtracking if no isogeny step is followed by its dual,

or, equivalently, if the full walk corresponds to a cyclic isogeny.

13

Setup(λ, T)
1. Choose primes N, p with the properties above, according to the security pa-

rameter λ;
2. Select a supersingular curve E/Fp;
3. Perform a random non-backtracking walk of length T in the `-isogeny Fp2 -graph,

defining a cyclic `T -isogeny φ : E → E′ and its dual φ̂;
4. Choose a generator P of X1 = υ−1(Ẽ[N] ∩ Ẽ(Fp)), and compute φ(P);
5. Output (ek, vk) =

(
φ̂, (E,E′, P, φ(P))

)
.

Eval(φ̂, Q ∈ E′[N])
1. Compute and output (Tr ◦φ̂)(Q).

Verify(E,E′, P,Q, φ(P), (Tr ◦φ̂)(Q))
1. Verify (Tr ◦φ̂)(Q) ∈ X2 = E[N] ∩ E(Fp);
2. Verify that eN (P, (Tr ◦φ̂)(Q)) = eN (φ(P), Q)2.

Fig. 2. Instantiation of the Verifiable Delay Function over Fp2

A bijective VDF over Fp2 . If a bijection is wanted, an alternative VDF using
the Fp2-graph would swap roles by having E′ defined over Fp, and E over Fp2 .
During the Setup phase, a basis (P,R) of X1 × X2 is sampled by evaluating

φ̂/2T on a basis of Y1 × Y2, and it is added to the verification key vk. Then,

sampling Q in Y2 is easy, and verifying that φ̂(Q) ∈ X2 can be done by checking

that eN (R, φ̂(Q)) = 1. However this protocol is less efficient, because verification
requires three pairing computations instead of two.

5.3 Properties of the VDFs.

In slight disagreement with the definitions of [10], the Setup routines presented

here take O(T) time to compute the isogenies φ, φ̂, and produce evaluation keys
of size O(T). While the size of the evaluation key can be reduced by redoing
parts of the computation in Eval (see Section 7), the only known way to verify
the public parameters is to, essentially, rerun the Setup.

We also note that, although T can be arbitrary (we discuss bounds on T
in the next section), neither of our VDFs is incremental in the sense of [10],
meaning that a single parameter set produced by Setup shall support more than
one delay T . A possible workaround is to have Setup include some intermediate
curves in the verification key, so that a single Setup can be used for many delay
parameters up to T , at the cost of increasing the size of the verification key.

Finally, the VDF over Fp is decodable in the sense of [10], meaning that given

the output φ̂(Q) one can compute the input Q (although not more efficiently than

evaluating φ̂); the VDF over Fp2 , on the other hand, is obviously not decodable
because it is non-injective.

14

6 Security and parameter sizes

We now give formal security definitions and proofs, following [10]. A VDF must
satisfy three security properties: correctness, soundess, and sequentiality, as
defined below. In [10], soundness is a weaker property where the evaluator is
allowed a negligible cheating probability; we introduce here the stronger notion
of perfect soundness, which is achieved by our VDFs.

Definition 1 (Correctness, soundness). The VDFs of Section 5 are correct
if, for any λ, T , public parameters (ek, vk) ← Setup(λ, T), and all input Q, if
R← Eval(ek, Q) then Verify(vk, Q,R) outputs true.

They are perfectly sound if for all λ, T , public parameters (ek, vk)← Setup(λ, T),
and all input Q, if R 6= Eval(ek, Q) then Verify(vk, Q,R) outputs false.

Theorem 1. The VDFs of Section 5 are correct and perfectly sound.

Proof. The map R 7→ eN (P,R) is a group isomorphism between the output
space X2 ⊂ E[N] and the multiplicative subgroup µN ⊂ Fp2 . Hence, verification
succeeds if and only if the output is correct.

Sequentiality is the defining property of VDFs, and is much subtler to define.
Intuitively, we want it to be impossible to evaluate the VDF faster than running
Eval, even given an unbounded amount of parallel resources, and even if the
adversary is allowed a large amount of precomputation after the public parameters
are generated. We must of course exclude trivial cases where, for example, the
adversary precomputes a list of input-output pairs, hence we model security as a
game where the adversary is allowed a polynomial amount of precomputation,
after which he receives a random input point Q and must produce the output
φ̂(Q) (or Tr ◦φ̂(Q)) faster than Eval with non-negligible probability. We also
introduce here a new definition: if the adversary cannot break sequentiality, even
when he is allowed a quantum precomputation before seeing the point Q, we say
that the VDF is quantum annoying.

Definition 2 (Sequentiality, quantum annoyance). The VDFs of Section 5
are sequential if no pair of randomized algorithms A0, which runs in total time
poly(T, λ), and A1, which runs in parallel time less than T , can win with non-
negligible probability the following sequentiality game

1. (ek, vk)
$← Setup(λ, T), where the random input tape to Setup is filled with

uniformly distributed bits,
2. A← A0(λ, ek, vk, T),

3. Q
$← Y2, uniformly sampled,

4. Q′ ← A1(A, vk, Q),

where winning is defined as outputting Q′ = φ̂(Q) (or Q′ = Tr ◦φ̂(Q)).
Moreover, if A0 is allowed a quantum computation in poly(T, λ), we say that

the VDFs are quantum annoying.

15

We leave aside the question of formally defining a computational model where
“running in parallel time less than T” has a definite meaning; see [10,75] for
details.

We shall see soon that Setup must use secret randomness to select the starting
curve E/Fp; after that, Setup is only left with choosing the isogeny φ : E → E′

and the generator P ∈ E[N], and both choices can done using public randomness.

Furthermore A0 is allowed poly(T) computation, so it can compute φ̂ and evaluate

φ on P (and also evaluate φ̂ on polynomially many points of Y2). Hence, choice
of E/Fp aside, Setup can be absorbed into A0; this justifies defining the following
problem, which is a simple rewording of the sequentiality hypothesis:

Definition 3 (Isogeny shortcut problem (over k)). Let E/Fp be a curve
uniformly sampled in the set of all supersingular curves defined over a finite field
Fp. Given an isogeny φ : E → E′ of degree `T to a curve E′/k, with k = Fp or
k = Fp2 ; being allowed a precomputation taking total time poly(T, λ), evaluate

φ̂(Q) on a random point Q ∈ E′[N] ∩ E′(k) in parallel time less than T .

6.1 Attacks

We now discuss three natural attack strategies on the isogeny shortcut problem,
and we use them to set parameter sizes. We summarize their complexities in
Table 2 on page 19.

Pairing inversion. The simplest attack exploits the same properties as the verifi-
cation. It works both against the VDFs and the generalization of BLS signatures
sketched in Section 3. Given P, φ(P), Q, to compute φ̂(Q) (or (Tr ◦φ̂)(Q)) it is
enough to solve the pairing inversion problem eN (P, ·) = eN (φ(P), Q). Note
that this attack must be repeated for each new input Q.

The hardness of the pairing inversion problem impacts the size of N and p.
Given that our curves have embedding degrees 2 or 1, the best algorithm at our
disposal is the Number Field Sieve for Fp2 , with (heuristic) complexity Lp(1/3).
The current record for computing discrete logarithms in Fp2 is for a prime p of
almost 300 bits [2], while for a security of 128 bits it is recommended to take p
of around 1500 bits, and N of 256 bits. We will use the complexity of this attack
to set parameter sizes in Section 7.3.

Computing shortcuts. A different path to breaking our VDFs consists in finding
a “simpler” isogeny from E to E′, agreeing with φ on E[N], but taking less
parallel time to compute. This kind of attacks can be decomposed in two steps:
first find a “simpler” isogeny ψ : E → E′ (e.g., of lower degree), then find an

endomorphism ω ∈ End(E) such that ω ◦ ψ̂ agrees with φ̂ on E′[N].
Concerning the first step, when deg φ is super-polynomial in p, a lower degree

isogeny ψ : E → E′ always exists; indeed Pizer [60,61] has shown that `-isogeny
graphs of supersingular curves over F̄p are optimal expanders for any prime `,
and thus have diameter in O(log(p)), implying that there is an `-isogeny walk
connecting E to E′ of degree polynomial in p. However, it may be difficult to

16

compute such an isogeny in general: the best generic algorithm in the case of
Fp2 -graphs is a birthday paradox method [33,26], that finds a collision in O(

√
p)

isogeny steps on average. Note that the only quantum speedup known for this
problem is a generic Grover search, giving a square-root acceleration at best [8].

For curves over Fp, computing the structure of the class group Cl(End(E))
allows an attacker to find an equivalent isogeny ψ, of (smooth) lower degree.
A similar computation is at the hearth of the signature scheme CSI-FiSh [6],
and has recently been demonstrated to be doable for primes of around 500 bits.
Nevertheless, the asymptotically best algorithm, due to Jao and Soukharev [40],
computes an equivalent isogeny of smooth subexponential degree using Lp(1/2)
operations, and is thus not better than the pairing inversion attack mentioned
above. We will sketch later how a similar attack can be performed in polynomial
time on a quantum computer.

After computing a “simpler” isogeny ψ : E → E′, we are left with the
problem of finding ω such that ω ◦ ψ̂ = φ̂ on E′[N]. This problem can be solved
by computing discrete logarithms in E[N], which is again not easier than the
pairing inversion problem; however, this attack needs only be performed once on
the public parameters, and can then be used to speed up any evaluation.

So far, we have only discussed the computation of shortcuts in the generic
case; however, when E or E′ are special curves, there are much better ways to
solve this problem, that would lead to a complete break of our VDFs. We discuss
this issue in Subsection 6.2.

Parallel isogeny evaluation. Finally, the last attack path would be to find a better
parallel algorithm for evaluating isogenies of degree `T . All known algorithms
require to go through each of the T intermediate curves, one after the other. Bar-
ring shortcut techniques as described above, it seems unlikely that an algorithm
“skipping” intermediate curves could exist. This is not dissimilar from the case
of VDFs based on groups of unknown order, where one argues that in order to

compute g2
T

all intermediate values g2
i

must be computed. After all, a 2-isogeny
is only a simple generalization of the multiplication-by-2 map of an elliptic curve,
it thus seems believable that a chain of 2-isogenies must be evaluated sequentially
passing through all intermediate curves.

It is certainly possible to aggregate steps in blocks, e.g., replace two 2-isogenies
with one 4-isogeny, as it is typically done in implementations of SIDH/SIKE [21].
This is analogous to replacing n squarings with a single power-of-2n in group-
based VDFs; previous work on parallel modular exponentiation suggests that, in
some complexity models, there may be a small asymptotic gain in doing so [4],
however the viability of these algorithms has never been validated in practice.
At any rate, algorithms for parallel modular exponentiation would need to be
adapted for isogeny evaluation, and we believe that, in this respect, isogeny-based
VDFs can only be as weak as group-based VDFs, but no more. This is certainly
the newest and most unusual problem in the area of elliptic curve cryptography,
and the one that needs more investigation.

17

Bounds on T . None of the attacks so far has set an upper bound on T . By the
birthday paradox, we shall take T smaller than the square root of the size of the
isogeny graph, because a loop in the isogeny walk could be optimized away from
Eval. Given that the size of the isogeny graphs is O(

√
p) and O(p) respectively,

we obtain bounds of O(4
√
p) for Fp, and O(

√
p) for Fp2 .

However, these bounds are much higher than the best attacks, that are
subexponential in p. Thus T is effectively only bounded by the theoretical limit
of being subexponential in λ.

On future attack improvements. While the isogeny shortcut problem is new, we
argue that improvements to any of the three attack strategies outlined above would
have important consequences in cryptography, beyond our VDF constructions.
Pairing inversion is a well-known problem in classical cryptography, and an
attack on it will affect a large number of pairing-based protocols [34]. Shortening
an isogeny walk from a curve leads to an endomorphism of this curve; this is
believed to be hard computational task, which underlies the security of other
cryptosystems [17,36]. Finally, faster parallel isogeny computations will benefit
other isogeny-based cryptographic protocols, such as key exchange [38,16,1] and
signatures [76,24].

Quantum security. We briefly analyze our proposals in the post-quantum setting.
Obviously, Shor’s algorithm breaks the pairing inversion problems in polynomial
time, thus our VDFs cannot be considered post-quantum. However, looking at
Definition 2, we see that this attack can only be applied after the input point
Q is given to A1; thus our VDFs have a chance of being quantum annoying as
defined there. In a plausible future where quantum computers do exist, but are
very expensive and slow, it may still be more interesting to evaluate the VDF
in the legitimate way, rather than attack the pairing inversion problem with
Shor’s algorithm. We argue that, given current knowledge, our VDF over Fp2 is
quantum annoying, whereas the one over Fp is not.

Indeed, as long as the input point Q is unknown, the only strategy currently
available for A0 is to compute an isogeny shortcut, as described previously. In
the Fp2 case, this would involve finding a cycle in the isogeny graph through
E/Fp and E′/Fp2 , a problem that is believed to be quantum-resistant when E
and E′ are generic supersingular curves [35,30].

For the Fp case, on the other hand, it is enough to compute the structure
of Cl(End(E)), along with a basis of “short” generators, a task doable in poly-
nomial time on a quantum computer using Kitaev’s generalization of Shor’s
algorithm [44]. Then an isogeny ψ : E → E′ of lower degree defined over Fp
can be computed by solving a closest vector problem: although polynomial-time
lattice reduction algorithms (both classical and quantum) can only reach isogeny
degrees exponential in log(p), this may be enough to break some large delay
parameters, and it can be very efficient in practice, as showcased by the signature
scheme CSI-FiSh [6]. Finally, since ψ and φ are both defined over Fp, the subgroup

X2 = E[N]∩E(Fp) is an eigenspace for the endomorphism ψ̂ ◦ φ; then a discrete

logarithm computation in X2 finds a scalar s such that [s] ◦ ψ̂ = φ̂ on Y2.

18

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1/2) O(
√
p) polylog(p) O(4

√
p)

Pairing inversion Lp(1/3) Lp(1/3) polylog(p) polylog(p)

Table 2. Complexity of the known attacks on the sequentiality of our VDFs, assuming
the endomorphism rings of the supersingular curves are unknown (see Subsection 6.2 for
a polynomial time classical attack when the endomorphism rings are known). Computing
shortcuts targets public parameters independently of the input to the VDFs, and can
be thus be run as a pre-computation. Pairing inversion attacks a single input point, and
must be re-run for every new input.

Security of the identification protocol. For completeness, we briefly come back to
the security of the generalization of the BLS identification protocol sketched in
Section 3.

We are not interested in sequentiality in this case, thus shortcut attacks
are not relevant here. Instead, key recovery is equivalent to the problem of
finding a secret isogeny φ : E → E′, given E,E′, a basis (P,Q) of E[N], and
φ(P), φ(Q). This problem is much more similar to classical problems in isogeny
based cryptography, and is obviously harder than the isogeny shortcut problem.

The best known classical attacks, both for the Fp and the Fp2 case, are in the
square root of the graph size (respectively, O(4

√
p) and O(

√
p)). But key recovery

is hard even for quantum computers: the best attack for the Fp case is Kuperberg’s
algorithm for the Hidden Shift Problem [49,63,50,18,13,7,39,5], which finds φ in
exp(

√
log(p)) quantum operations; whereas in the Fp2 case quantum computers

give a square-root speedup via Grover’s algorithm at best [8].
Hence, both identification protocols have a security property similar to the

quantum annoyance defined in Defintion 2: any forgery requires running a new
instance of Shor’s algorithm, while key recovery is infeasible on quantum comput-
ers. This may be a useful replacement for basic BLS signatures in contexts where
Shor’s algorithm is slow and expensive, and signatures must be produced fast.

Finally, we remark that our protocol, unlike BLS, is succinct, in the sense
that the secret isogeny is potentially sub-exponentially larger than the proof
of knowledge. At present, this seems rather limited, since our protocol is not
zero-knowledge, however we hope that further research may add more useful
properties to it.

6.2 Shortcut attacks on special curves

We now come back to the shortcut attacks analyzed previously. We saw that the
best algorithms available in the general case have exponential or sub-exponential
complexity, and are in general not better than a simple pairing inversion attack.
However, when the endomorphism ring of the starting curve E is known, a much
better algorithm exists, completely breaking sequentiality of our VDFs. We now
present a sketch of the attack, and the only known solution to avoid it.

19

Attack overview. We shall suppose that the delay parameter T is super-linear in
log(p). To simplify our description we also assume that E is the curve defined by
the equation y2 = x3 + x, with j-invariant j = 1728. However, the attack can be
generalized to an arbitrary curve provided we know its endomorphism ring. It
can also be applied to our VDF over Fp, because an attacker is not bound to
keep all computations in Fp.

The attack has two main steps. First, we compute an alternative isogeny
ψ : E → E′ with a powersmooth and reasonably small degree (polynomial in p).
This is achieved by adapting a strategy used in [57,30] to compute a collision
to Charles–Goren–Lauter (CGL) hash function [17]. Second, we compute an

endomorphism ω ∈ End(E) such that the actions of ω ◦ ψ̂ and φ̂ are identical on
E[N]. By expressing ω on a set of generators of End(E), we are able to evaluate

ω ◦ ψ̂ efficiently on E[N], and thus we can answer evaluation queries in a time
much shorter than T .

Computing shortcuts. Let φ : E = E0 → ET = E′ be given as a composition
of degree ` isogenies. We now show how to compute an alternative isogeny
ψ : E → E′ with much shorter degree.

A natural idea to solve this problem is to translate this problem to an
analogous problem in the quaternion algebra Bp,∞ ramified at p and at infinity,
solve the problem in the quaternion algebra, and translate the solution back to
the geometric setting. Indeed End(E0) is isomorphic to a maximal order O0 of
Bp,∞, and by assumption on E this isomorphism is fully known. Translating
the problem back and forth (from isogenies to their corresponding ideals and
conversely) can be done using techniques dating back to Waterhouse [74], and the
“quaternion isogeny” algorithm of Kohel, Lauter, Petit and Tignol (KLPT) [46]
can be used to solve the problem in the quaternion algebra. Unfortunately, the
translation algorithms require to compute torsion points of order deg φ, which
have exponential size in general.

We adapt an idea used in the collision algorithm of [57,30] to avoid this
problem. Let φi : E0 → Ei correspond to the first i steps of the isogeny. Let
Ii be the corresponding ideal, and let n(Ii) = `i denote its norm. Assume we
have already computed an ideal Ji in the class of Ii with powersmooth norm. We
sketch how to compute an ideal in the class of Ii+1 with powersmooth norm.

1. Compute the ` + 1 ideals Ki+1,k, k = 0, . . . , ` with norm n(Ji)` such that
Ki+1,k mod n(Ji)O0 = Ji (algorithms for this task are provided in [43]).

2. Apply the powersmooth quaternion isogeny algorithm to each Ki+1,k to
obtain new ideals Ji+1,k in the same classes respectively.

3. Translate each ideal Ji+1,k to an isogeny ψi+1,k.
4. Identify the (usually unique) k such that the image of ψi+1,k has j-invariant
ji+1 = j(Ei+1) .

5. Let Ji+1 = Ji+1,k.

To obtain the desired isogeny ψ, we repeat those steps for i = 1, . . . , T − 1. When
i = T − 1, we additionally set ψ = ψT,k.

20

The heuristic bounds and the experiments in [46] show that the degree of ψi is
polynomial in p (more precisely O(p7/2)) and the computation can be completed
in time poly(T, log(p)). The isogeny ψ : E → E′ has powersmooth degree much
smaller than that of φ, and can therefore be evaluated much faster.

Matching image points on the N-torsion. Let ι : E → E : (x, y) → (−x, iy)
where i2 = −1, and let π : E → E : (x, y) → (xp, yp). We have End(E) =

〈1, ι, 1+π2 , ι+πι2 〉, so the endomorphism θ := ψ̂ ◦φ can be written as θ = a0 + a1ι+
a2π + a3πι with a0, a1, a2, a3 ∈ Z[1/2]. Moreover we have

ai = 〈θ, αi〉 := (θ ◦ α̂i + αi ◦ θ̂)/2

for αi = 1, ι, π, πι respectively, and these coefficients can be computed using a
variant of Schoof’s algorithm [45, Theorem 81], by evaluating those maps on
small torsion points and applying the Chinese remainder theorem. Note that
|ai| ≤ deg θ degαi, so this computation can be performed in time poly(T, log p).

If we now set ω = rθ̂, where r = `T /(a20 + a21 + pa22 + pa23), then ω ◦ ψ̂ = φ̂.
But ω can be evaluated at any point of E as

ω(Q) =
∑

[rai mod N] α̂i(Q),

at a cost of only O(log(N)) operations. Thus we can replace Eval(Q) with the

evaluation of ψ̂ followed by the evaluation of ω, for a total costs of only polylog(p),
which is less than T by hypothesis.

Countering the attack. The KLPT algorithm only works when the starting curve
E has an endomorphism ring that is, in their words, extremal and special. Extremal
means that E is defined over Fp, a condition common to all instantiations of our
VDF; however only few curves are also special, for example j(E) = 1728, or other
curves with complex multiplication by an order with small discriminant.

The KPLT algorithm extends to a non-special curve E, when a path E → E0

to a special curve E0 is known. Unfortunately, all known methods to select
random supersingular curves do so by starting a random walk from some special
curve; hence, there is no known way to produce a random supersingular curve
E/Fp without producing a backdoor E → E0.

At present, the only way to counter the attack presented here is to use a
trusted setup to produce a random curve E/Fp, i.e., having a trusted authority
(or many trusted authorities engaged in a multi-party protocol) compute a walk
E0 → E from a special curve E0, and then throw the backdoor away.

A note on ordinary curves. It is natural to ask whether it is possible to obtain
VDFs from ordinary isogeny graphs. Although it is conceivable to have a variant
of our VDF over Fp using ordinary curves, no secure instantiation is currently
known. Indeed, all known ordinary pairing-friendly curves are obtained using
variations of the CM method, and thus have small quadratic discriminant and
small isogeny class. In this case it is possible to compute the structure of End(E),
and do a shortcut attack similar to the one above.

21

We proceed in two steps as before. We first find an isogeny ψ : E → E′ of
small powersmooth degree; since the isogeny class is small, this can even be done
by exhaustive search.

Then, we are left with the problem of finding ω ∈ End(E) such that ω ◦ ψ̂ = φ̂
when restricted to E[N]. We proceed as before: using Schoof’s algorithm we

compute θ = ψ̂ ◦ φ = a+ bπ for some a, b ∈ Q, then we set ω = `T θ̂/(a2 + pb2),

and we replace Eval by ω ◦ ψ̂.
A family of ordinary pairing friendly elliptic curves with generic discriminant

would provide the perfect instantiation for our VDFs, as it would not be vul-
nerable to any known shortcut attack, and thus would not need a trusted setup.
Unfortunately, all known constructions of pairing-friendly elliptic curves use
complex multiplication and hence produce curves with small discriminants [31].

7 Implementation

Our proposed VDFs can be easily implemented using the fundamental blocks
already available for pairing-based and isogeny-based cryptography. A drawback
of our method being the long setup time and the large evaluation key, we present
here an implementation that improves both by orders of magnitude.

7.1 Eval

We focus on 2-isogenies, as they are the most obvious candidate for an implemen-
tation. There are two standard ways to compute a 2-isogeny walk from a curve
E : y2 = f(x). The first is to factor the 2-division polynomial f(x) to obtain all
the points of order 2, then use Vélu’s formulas [70] to test all directions and step
in the wanted one. Since Vélu’s formulas also produce the generator of the dual
isogeny to the direction one is coming from, this root can be quotiented out from
f(x), and thus we are left with solving one square root per curve. The second way
is to take a point at random on E and multiply it by the cofactor #E/2. If we
obtain a 2-torsion point defining the wanted direction, then we compute it and
we move to the next curve; otherwise we try with a different point. Both ways
require O(log(p)) operations in the base field for one step, and thus O(T log(p))
operations to compute the full isogeny walk. After the isogeny φ is computed,
the list of the kernel points can be stored so to be able to evaluate φ in O(T)
operations. However, this implies storing T points and curves, which may require
a large storage.

Fortunately, using isogeny evaluation techniques pioneered in SIDH [25], and
applied in [27] to the CGL hash function [17], it is possible to absorb the log(p)
factor and shorten the evaluation key size by the same amount. For this, we
choose a prime of the form p = 2nfN − 1, so that all curves in the isogeny graph
have rational points of order 2n−1 or 2n (depending on whether we use Fp-graphs
or Fp2-graphs). This way, a single point Pi on Ei can be used to define n (or
n − 1) consecutive steps in the graph, and the corresponding isogeny can be
evaluated in n log(n) operations using the optimal strategy techniques from [25].

22

More in detail, in the Fp2 case, the curve Ei has group structure E(Fp2) '
(Z/(p+ 1)Z)2, and is usually not defined over Fp. We can compute a point Pi
of order 2n by taking a point at random and multiplying by fN , then verifying
that Pi has the wanted order. We check that Pi does not start a backtracking
isogeny and we use it to advance n steps in the graph, then we start again.

In the Fp case, because we chose a curve on the surface, the group structure
is E(Fp) ' Z/p+1

2 Z× Z/2Z (see [54]), hence the highest order we can get for Pi
is 2n−1. Such point Pi will define 2n−2 horizontal isogeny steps in the “positive”
direction determined by the ideal (π − 1) ⊂ End(E), plus one last step that is
either in the same direction, or going to the floor. To avoid “getting stuck” on
the floor, we use Pi to advance n− 2 steps, then start again.

Using these techniques, only ≈ T/n points need to be computed and the full
walk is computed in O(T log n) operations. One has the choice between storing
all the intermediate 2-torsion points, or storing only the higher order points
Pi. In the first case, we use O(T) storage and evaluation time; in the second
case, we use O(T/n) storage and O(T log n) evaluation time. Since n ≈ log p, the
slowdown in the second case is likely to be negligible in front of other factors,
such as data transfer delays, or speedups due to dedicated hardware.

In practice, we use a projective (x, z)-only Montgomery model for our curves,
for which small degree isogeny formulas are the most efficient [21]. Points defined
over Fp2 are then stored in 4 log2(p) bits, and a curve is represented by y2 =

x3 + ax2 + x using 2 log2(p) bits. The isogeny φ̂ is decomposed in small degree
isogenies, and each one is represented by its kernel and its image curve. If we
choose to represent φ̂ as a composition of 2-isogenies, its representation is stored in
2T log2(p) bits. If we decide to represent it as a composition of 2n-isogenies, storing
kernels and curve coefficients requires T/n(4 log2(p) + 2 log2(p)) = 6T log2(p)/n
bits.

7.2 Verify

For verification, we apply standard optimization techniques for the pairing
computation. We use Tate pairings instead of Weil pairings, thus the verification
equation (e.g., in the Fp-case)

fφ̂(Q)(P)(p
2−1)/N = fQ(φ(P))(p

2−1)/N

can be checked by computing two Miller loops and one final exponentiation.
We stress that, while most of the implementation efforts on pairing have

focused on ordinary elliptic curves with smaller field sizes, such as BN curves [3],
our situation is somewhat different. In particular, our curves have large rho-value
ρ = log(p)/ log(N), and thus the Tate pairing is to be preferred to the ate pairing,
because it features a shorter Miller loop.

We use common optimizations for the Miller loop, such as quadratic twist
tricks. In the final exponentiation, we benefit from the special form of the prime
p, indeed

p2 − 1

N
= (p− 1)

p+ 1

N
= (p− 1)2nf = (2nfN − 2)2nf = 2n+1f(2n−1fN − 1).

23

7.3 Benchmarks

To validate our proposals, we implemented a (non-optimized) proof of concept in
SageMath [69].13 For a 128-bit secure VDF, we choose a prime N of 256 bits,
and set n = 1244, f = 63 to obtain a 1506-bit prime p = 2124463N − 1. To the
present day, discrete logarithm computations in the subgroup of order N of Fp2 ,
using the best available variants of NFS, are believed to require more than 2128

computations.
We ran benchmarks on an Intel Core i7-8700 processor clocked at 3.20GHz.

We measure the throughput of evaluation as a number of 2-isogeny steps per
millisecond, testing for various delay parameters and averaging over them; this
gives a rough idea of the degree of the isogeny needed to achieve the wanted
delay. Since the duration of setup also depends on the degree of the isogeny,
we use the same methodology to measure it. For verification, we simply give
the (average) running time for a single verification, as this is the most pertinent
measure. Currently, our pairing implementation is faster over Fp because these
curves benefit of the distortion map to compute the pairing entirely over Fp. Over
Fp2 , points are twice larger and many additional vertical lines and inversions are
needed to compute the pairing. The results are given in Table 3.

Protocol Step ek size Time Throughput

Fp graph
Setup 238 kb – 0.75 isog/ms

Evaluation – – 0.75 isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb – 0.35 isog/ms

Evaluation – – 0.23 isog/ms
Verification – 4 s –

Table 3. Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, with SageMath
8.5

We stress that these numbers only show that our VDFs are practical, however
they do not say much on how they compare to other VDF proposals. Indeed,
while setup and verification can be compared on the basis of their speed (in
software), it is mostly meaningless to compare evaluation this way.

The meaningful comparison is on circuit surface and clock frequency for a
single step of the evaluation loop. At this stage, it is impossible for us to give such
numbers, however we can give some qualitative arguments to compare our VDFs
to the competitors. At the 128 bits security level, the unit step in RSA-based
VDFs is a squaring modulo an RSA modulus of more than 2000 bits. This unit
step is roughly comparable to one multiplication in our field Fp. In the simplest
case, the unit step in our VDFs is the evaluation of a 2-isogeny over Fp (or Fp2);
using the best formulas for Montgomery curves [64], this requires 2 parallel runs

13 Source code at https://github.com/isogenies-vdf/isogenies-vdf-sage/.

24

https://github.com/isogenies-vdf/isogenies-vdf-sage/

of 2 multiplications each. Thus we expect the circuit for one unit step of our
VDF to have roughly double the surface and half the clock frequency. Similar
considerations also apply to VDFs based on class groups.

8 Conclusion and perspectives

We presented two new candidate Verifiable Delay Functions, based on assumptions
from pairing-based and isogeny-based cryptography. Our VDFs are practical,
and offer several advantages over previous proposals.

At present, our constructions require a trusted setup to generate initial
parameters. It is an important open problem to find an algorithm to generate
random supersingular curves in a way that does not reveal their endomorphism
ring, and we encourage the community to work on it. As long as such an algorithm
is missing, it is interesting to look for efficient multi-party algorithms for doing
isogeny walks.

It would also be interesting to reduce the cost of validating public parameters,
ideally to a time independent from the delay parameter T . Relatedly, our VDFs
have large storage requirements for the evaluator; in our implementation we
presented a way to mitigate this issue, however this creates a compromise between
storage and evaluation time, that needs to be carefully considered by the evaluator,
depending on the intended application. More research on practical ways to
mitigate the price of the large storage is desirable.

Here we only sketched the shortcut attack against insecure instances using
special curves. It would be interesting to do a more detailed analysis of its
complexity, of its limitations, and of its possible generalizations; we leave this as
future work. We also encourage research on alternative ways to break the Isogeny
Shortcut Problem, for example finding ways to parallelize isogeny evaluation.

Finally, our VDFs can be seen as a generalization of BLS signatures: if the
isogeny is kept secret, we obtain a proof of knowledge of an isogeny walk between
two curves, that can be used for identification or signatures. At the moment, the
only advantage over BLS signatures is a weak form of quantum resistance; we
hope that further research would add useful properties to our protocol enabling
more applications.

Acknowledgments. We would like to thank Bill Allombert, Razvan Barbulescu,
Jeff Burdges, Wouter Castryck, Jeroen Demeyer, Andreas Enge, Steven Galbraith,
Matthew Green, Philipp Jovanovic, Jean Kieffer, Enea Milio, Aurel Page, Lorenz
Panny, Damien Robert, Barak Shani and Benjamin Wesolowski for fruitful
discussions. We are grateful to the anonymous reviewers for their attentive
reading and their helpful comments, and to Day Yu for catching some mistakes.

Luca De Feo was supported by the French Programme d’Investissements
d’Avenir under the national project RISQ no P141580-3069086/DOS0044212.

25

References

1. Azarderakhsh, R., Koziel, B., Campagna, M., LaMacchia, B., Costello, C., Longa,
P., De Feo, L., Naehrig, M., Hess, B., Renes, J., Jalali, A., Soukharev, V., Jao, D.,
Urbanik, D.: Supersingular isogeny key encapsulation (2017), http://sike.org

2. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the
discrete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) Advances in Cryptology – EUROCRYPT 2015. pp. 129–155. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
In: Preneel, B., Tavares, S. (eds.) Selected Areas in Cryptography. pp. 319–331.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

4. Bernstein, D., Sorenson, J.: Modular exponentiation via the explicit chinese
remainder theorem. Mathematics of Computation 76(257), 443–454 (2007).
https://doi.org/10.1090/S0025-5718-06-01849-7

5. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: Optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2019. pp. 409–441. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_15

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based signa-
tures through class group computations. In: Advances in Cryptology - ASIACRYPT
2019 (2019)

7. Biasse, J.F., Iezzi, A., Jacobson, M.J.J.: A note on the security of CSIDH. In:
Chakraborty, D., Iwata, T. (eds.) Progress in Cryptology – INDOCRYPT 2018. pp.
153–168. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-030-05378-9_9

8. Biasse, J.F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: International Conference in Cryptology in
India. pp. 428–442. Springer (2014)

9. Blake, I.F., Seroussi, G., Smart, N., et al.: Advances in Elliptic Curve Cryptography,
London Mathematical Society Lecture Note Series, vol. 317. Cambridge University
Press, New York, NY, USA (2005)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 757–788.
Springer International Publishing, Cham (2018)

11. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712 (2018), https://eprint.iacr.org/2018/712

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
Journal of Cryptology 17(4), 297–319 (Sep 2004). https://doi.org/10.1007/

s00145-004-0314-9
13. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-

nary isogeny-based schemes. Cryptology ePrint Archive, Report 2018/537 (2018),
https://eprint.iacr.org/2018/537

14. Broker, R.M., Charles, D.X., Lauter, K.E.: Cryptographic applications of efficiently
evaluating large degree isogenies (Aug 2012), US Patent 8,250,367

15. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: In Proceedings of
Public Key Cryptography and Computational Number Theory. pp. 1–15 (2001)

16. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S.D. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing (2018)

26

http://sike.org
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-05378-9_9
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://eprint.iacr.org/2018/537

17. Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions
from expander graphs. Journal of Cryptology 22(1), 93–113 (Jan 2009).
https://doi.org/10.1007/s00145-007-9002-x

18. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

19. Cohen, B.: Proofs of space and time. Blockchain Protocol Analysis and Security Engi-
neering (2017), https://cyber.stanford.edu/sites/default/files/bramcohen.
pdf

20. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B.,
Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 451–
467. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8_15

21. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for Supersingular Isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016: 36th Annual International Cryptology Conference. pp. 572–601. Springer
Berlin Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

22. Cox, D.A.: Primes of the form x2 + ny2: Fermat, class field theory, and complex
multiplication. Wiley (1997)

23. De Feo, L.: Mathematics of isogeny based cryptography (2017), http://arxiv.org/
abs/1711.04062

24. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class
group actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EU-
ROCRYPT 2019. pp. 759–789. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4_26

25. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3),
209–247 (2014)

26. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography 78(2), 425–440 (Feb 2016).
https://doi.org/10.1007/s10623-014-0010-1

27. Doliskani, J., Pereira, G.C.C.F., Barreto, P.S.L.M.: Faster cryptographic hash
function from supersingular isogeny graphs. Cryptology ePrint Archive, Report
2017/1202 (2017), https://eprint.iacr.org/2017/1202

28. Drake, J.: Minimal VDF randomness beacon. Ethereum Research (2018), https:
//ethresear.ch/t/minimal-vdf-randomness-beacon/3566

29. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) Advances in Cryptology — CRYPTO’ 92. pp. 139–147.
Springer Berlin Heidelberg, Berlin, Heidelberg (1993). https://doi.org/10.1007/
3-540-48071-4_10

30. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: Reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 329–368.
Springer International Publishing (2018)

31. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic
curves. Journal of Cryptology 23(2), 224–280 (2010). https://doi.org/10.1007/
s00145-009-9048-z

32. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press (2012)

33. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent attack.
In: Advances in cryptology–EUROCRYPT 2002 (Amsterdam), Lecture Notes in
Computer Science, vol. 2332, pp. 29–44. Springer, Berlin (2002)

27

https://doi.org/10.1007/s00145-007-9002-x
https://cyber.stanford.edu/sites/default/files/bramcohen.pdf
https://cyber.stanford.edu/sites/default/files/bramcohen.pdf
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-662-53018-4_21
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/s10623-014-0010-1
https://eprint.iacr.org/2017/1202
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z

34. Galbraith, S.D., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans-
actions on Information Theory 54(12), 5719–5728 (2008). https://doi.org/10.
1109/TIT.2008.2006431

35. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Advances in Cryptology–ASIACRYPT 2016: 22nd Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. pp. 63–91. Springer (2016)

36. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Advances in Cryptology - ASIACRYPT
2017. pp. 3–33 (2017). https://doi.org/10.1007/978-3-319-70694-8_1

37. Guralnick, R.M., Müller, P.: Exceptional polynomials of affine type. Journal of
Algebra 194(2), 429–454 (1997). https://doi.org/10.1006/jabr.1997.7028

38. Jao, D., De Feo, L.: Towards Quantum-Resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography. Lecture
Notes in Computer Science, vol. 7071, pp. 19–34. Springer Berlin / Heidelberg,
Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

39. Jao, D., LeGrow, J., Leonardi, C., Ruiz-Lopez, L.: A polynomial quantum space
attack on CRS and CSIDH. In: MathCrypt 2018 (2018), to appear

40. Jao, D., Soukharev, V.: A subexponential algorithm for evaluating large degree isoge-
nies. In: ANTS IX: Proceedings of the Algorithmic Number Theory 9th International
Symposium. Lecture Notes in Computer Science, vol. 6197, pp. 219–233. Springer,
Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_19

41. Jao, D.Y., Montgomery, P.L., Venkatesan, R., Boyko, V.: Systems and methods
for generation and validation of isogeny-based signatures (Nov 2009), US Patent
7,617,397

42. Jao, D.Y., Venkatesan, R.: Use of isogenies for design of cryptosystems (Mar 2009),
US Patent 7,499,544

43. Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for quaternion
orders. SIAM Journal on Computing 39(5), 1714–1747 (2010). https://doi.org/10.
1137/080734467

44. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. arXiv
preprint quant-ph/9511026 (1995), https://arxiv.org/abs/quant-ph/9511026

45. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkley (1996)

46. Kohel, D.R., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-isogeny path
problem. LMS Journal of Computation and Mathematics 17(A), 418–432 (2014)

47. Koshiba, T., Takashima, K.: Pairing cryptography meets isogeny: A new framework
of isogenous pairing groups. Cryptology ePrint Archive, Report 2016/1138 (2016),
https://eprint.iacr.org/2016/1138

48. Koshiba, T., Takashima, K.: New assumptions on isogenous pairing groups with
applications to attribute-based encryption. In: Lee, K. (ed.) Information Security
and Cryptology – ICISC 2018. pp. 3–19. Springer International Publishing, Cham
(2019). https://doi.org/10.1007/978-3-030-12146-4_1

49. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal of Computing 35(1), 170–188 (2005)

50. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: Severini, S., Brandao, F. (eds.) 8th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC
2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 22, pp. 20–34.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013).
https://doi.org/10.4230/LIPIcs.TQC.2013.20

28

https://doi.org/10.1109/TIT.2008.2006431
https://doi.org/10.1109/TIT.2008.2006431
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1006/jabr.1997.7028
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-14518-6_19
https://doi.org/10.1137/080734467
https://doi.org/10.1137/080734467
https://arxiv.org/abs/quant-ph/9511026
https://eprint.iacr.org/2016/1138
https://doi.org/10.1007/978-3-030-12146-4_1
https://doi.org/10.4230/LIPIcs.TQC.2013.20

51. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,
and trx. International Journal of Applied Cryptography 3(4), 330–343 (2017).
https://doi.org/10.1504/IJACT.2017.089354, https://iacr.org/2015/366

52. Long, L.: Binary quadratic forms. Chia Network (2018), https://github.com/

Chia-Network/vdf-competition/blob/master/classgroups.pdf
53. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential

work. In: Proceedings of the 4th conference on Innovations in Theoretical Computer
Science. pp. 373–388. ACM (2013)

54. Menezes, A., Vanstone, S., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: STOC ’91: Proceedings of the twenty-third annual
ACM symposium on Theory of computing. pp. 80–89. ACM, New York, NY, USA
(1991). https://doi.org/10.1145/103418.103434

55. Mestre, J.F.: La méthode des graphes. Exemples et applications. In: Proceedings of
the international conference on class numbers and fundamental units of algebraic
number fields (Katata, 1986). Nagoya University, Nagoya (1986), http://boxen.
math.washington.edu/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf

56. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039). pp. 120–130
(Oct 1999). https://doi.org/10.1109/SFFCS.1999.814584

57. Petit, C., Lauter, K.: Hard and easy problems for supersingular isogeny graphs.
Cryptology ePrint Archive, Report 2017/962 (2017), http://eprint.iacr.org/
2017/962

58. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryptogra-
phy and Communications 10(1), 211–233 (Jan 2018). https://doi.org/10.1007/
s12095-017-0264-3

59. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 124, pp. 60:1–60:15. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.
4230/LIPIcs.ITCS.2019.60

60. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the Amer-
ican Mathematical Society (N.S.) 23(1) (1990). https://doi.org/10.1090/

S0273-0979-1990-15918-X
61. Pizer, A.K.: Ramanujan graphs. In: Computational perspectives on number the-

ory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7. Amer. Math. Soc.,
Providence, RI (1998)

62. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and Sys-
tem Sciences 27(2), 256–267 (1983). https://doi.org/10.1016/0022-0000(83)
90042-9

63. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv:quant-ph/0406151 (Jun 2004), http://

arxiv.org/abs/quant-ph/0406151
64. Renes, J.: Computing isogenies between Montgomery curves using the action of (0,

0). In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography. pp. 229–247.
Springer International Publishing (2018)

65. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto.
Tech. rep., Cambridge, MA, USA (1996)

66. Silverman, J.H.: The arithmetic of elliptic curves, Graduate Texts in Mathematics,
vol. 106. Springer-Verlag, New York (1992)

67. Sutherland, A.: Elliptic curves. Lecture notes from a course (18.783) at MIT (2017),
http://math.mit.edu/classes/18.783/2017/lectures

29

https://doi.org/10.1504/IJACT.2017.089354
https://iacr.org/2015/366
https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf
https://doi.org/10.1145/103418.103434
http://boxen.math.washington.edu/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf
http://boxen.math.washington.edu/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf
https://doi.org/10.1109/SFFCS.1999.814584
http://eprint.iacr.org/2017/962
http://eprint.iacr.org/2017/962
https://doi.org/10.1007/s12095-017-0264-3
https://doi.org/10.1007/s12095-017-0264-3
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1016/0022-0000(83)90042-9
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/quant-ph/0406151
http://math.mit.edu/classes/18.783/2017/lectures

68. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer,
M.J., Ford, B.: Scalable bias-resistant distributed randomness. In: IEEE Symposium
on Security and Privacy. pp. 444–460. IEEE Computer Society (2017)

69. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.0) (2018), https://www.sagemath.org

70. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des
Sciences de Paris 273, 238–241 (1971)

71. Vignéras, M.F.: Arithmétique des Algèbres de Quaternions, vol. 800. Springer Berlin
Heidelberg (1980). https://doi.org/10.1007/bfb0091027

72. Voight, J.: Quaternion algebras (2018), https://math.dartmouth.edu/~jvoight/
quat-book.pdf

73. Washington, L.C.: Elliptic curves: Number theory and cryptography, 2nd ed. CRC
Press (2008)

74. Waterhouse, W.C.: Abelian varieties over finite fields. Annales Scientifiques de
l’École Normale Supérieure 2(4), 521–560 (1969)

75. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2019. pp. 379–407. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13

76. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.)
Financial Cryptography and Data Security. pp. 163–181. Springer International
Publishing, Cham (2017)

30

https://www.sagemath.org
https://doi.org/10.1007/bfb0091027
https://math.dartmouth.edu/~jvoight/quat-book.pdf
https://math.dartmouth.edu/~jvoight/quat-book.pdf
https://doi.org/10.1007/978-3-030-17659-4_13

	Verifiable Delay Functions from Supersingular Isogenies and Pairings

