Use your Brain!
Arithmetic 3PC For Any Modulus with Active Security

Hendrik Eerikson1, Marcel Keller4, Claudio Orlandi2, Pille Pullonen1, Joonas Puura3, Mark Simkin2

1 \{hendrik.eerikson, pille.pullonen\}@cyber.ee, Cybernetica AS
2 \{orlandi,simkin\}@cs.au.dk, Department of Computer Science, DIGIT, Aarhus University
3 University of Tartu (work done while at Cybernetica AS)
4 mks.keller@gmail.com, CSIRO’s Data61

\textbf{Abstract.} Secure multiparty computation (MPC) allows a set of mutually distrustful parties to compute a public function on their private inputs without revealing anything beyond the output of the computation. In recent years, a large effort has undergone into designing and implementing MPC protocols that can be used in practice. This paper focuses on the specific case of actively secure three-party computation with an honest majority, which is among the most popular models for real-world applications of MPC. In particular, we are interested in solutions which allow to evaluate arithmetic circuits over real-world CPU word sizes, like 32- and 64-bit words, that are secure against active adversaries that may arbitrarily deviate from the protocol description.

This paper presents better protocols for this important setting. Our starting point is the novel compiler of Damgård et al. from CRYPTO 2018, and we improve it in several ways: First, we present an improved version of their compiler which reduces the online communication complexity by a factor of 2. Next, we replace their preprocessing protocol (which performs arithmetic modulo a large prime) with a more efficient preprocessing which only performs arithmetic modulo powers of two (and is therefore more efficient). And finally, we present a novel protocol which replaces the preprocessing phase with a “postprocessing” check. The protocols we construct offer different efficiency tradeoffs and can therefore outperform each other in different deployment settings.

We also provide a fully-fledged implementation of our protocols, and extensive benchmarks of our framework in a LAN and in different WAN settings. Concretely, we achieve a throughput of 3 million 64-bit multiplications per second with each of the three parties located on a different continent and 10 million in the same location, thus achieving the most efficient implementation of a three-party computation protocol for arithmetic circuits modulo 2^{64} with active security.

“Brain, what do you want to do tonight?”
“The same thing we do every night, Pinky - try to take over the world!”

1 Introduction

Secure Multiparty Computation (MPC) is an umbrella term for a broad range of cryptographic techniques and protocols that enable a set of parties P_1, \ldots, P_n to compute some function f of their private inputs

* This work was supported by the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC), the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation program under grant agreement No 669255 (MPCPRO), No 731583 (SODA), No 803096 (SPEC), No 778615 (BiggerDecisions), and Estonian Research Council under grant IUT27-1.
MPC has started out as a purely theoretical research field in the 90ies, but has recently developed into a science on the brink of practical deployment. This is witnessed by the constantly increasing number of real-world use cases, MPC framework implementations, and startups (see [ABL+18] for a survey).

The landscape of MPC protocols is broad and diverse, and protocols differ greatly depending on many parameters such as the number of involved parties, the corruption threshold, the adversarial model, and the network setting.

In this paper we focus on one of the most popular models for MPC, namely three-party computation with an honest majority. This model has been used in different real-world applications of MPC [BCD+09, BTW12, BJSV15, BKK+16, AKTZ17], often in the so-called client-server scenario where a possibly large number of clients secret share their inputs to three computation servers who can then perform the desired computation securely on their behalf [JNO14] and return the result to the clients. A major advantage of the honest majority setting is that one can obtain protocols which do not rely on computationally expensive cryptographic operations such as exponentiations, oblivious transfer, etc, but typically only use light-weight arithmetic operations.

Existing implementations of three-party computation protocols for the honest-majority case fall into two broad categories: VIFF [DGKN09] and its successors [Sch18] only support arithmetic computations over prime order fields. Sharemind’s protocol suite [BJW08, BNTW12] can be used to evaluate arithmetic circuits with arbitrary word sizes, but is only secure against passive adversaries that follow the protocol faithfully. In practice this means that one has to either settle for rather weak security guarantees or one has to develop applications specifically tailored to rather unnatural word sizes instead of using the common 32- and 64-bit word sizes that dominate real-world system architectures. In particular, this means that a developer has to match the needs of the MPC framework it wants to use rather than the MPC framework matching the needs of the developer.

The main barrier to constructing actively secure protocols for evaluating arithmetic circuits with arbitrary word sizes lies in the fact that known approaches to achieving active security, like information checking techniques [RB89], require prime order fields. Up until recently it has been an open question to design protocols for arithmetic circuits with active security for arbitrary word sizes. In a recent work Damgård et al. [DOS18] addressed this question by presenting a protocol compiler that transforms passively secure protocols into actively secure ones that can tolerate up to $O(\sqrt{n})$ corruptions and only have a constant overhead in storage and computational work.

Our Contributions. In this paper we consider the class of protocols produced by compiler of Damgård et al. [DOS18], and we improve such protocols in several ways. The main idea behind Damgård et al.’s compiler is to let the real parties “emulate” virtual parties that execute the desired computation on behalf of the real parties. The crucial point behind their compiler is that the virtual parties can execute a passively secure protocol in a way that prevents any real party from actively misbehaving. Every time that a virtual party P_i is supposed to send a message to another virtual party P_j in the passively secure protocol, every real party that is emulating P_i computes the same message redundantly and sends it to every real party which is emulating P_j. Each real party emulating P_j therefore receives a set of messages and aborts in case the received messages are not all equal. Intuitively this approach ensures active security as long as there is at least one honest party in the emulating set of every virtual party, since any malicious party either follows the protocol (in which case we effectively only have passive corruptions) or sends a message that disagrees with the message that is sent by at least one honest party (in which case the honest receiving party and consequently all other parties abort the protocol). This approach heavily relies on the fact that all protocol

Note that virtual parties do not physically exist. Whenever we say that “virtual parties execute a protocol”, we really mean that the real parties simulate the virtual parties that execute the protocol.
messages are sent redundantly, thus incurring a multiplicative blow-up in the bandwidth overhead of the protocol.

Our first contribution is of theoretical nature: we present an improved compiler that significantly reduces the number of redundant messages that need to be sent during a protocol execution. The idea behind our approach is to elect one real party in each virtual party to be the “brain”, which sends all messages on behalf of its virtual party to all real parties in the receiving virtual party. The other real parties, the “pinkies”, still receive messages from the brains and thus can locally follow the protocol execution. At the end of the protocol, right before the output of the computation is released, we then let all parties perform a single check that guarantees that all messages which were sent by the brains during the protocol are consistent with the messages all the pinkies would have sent. This check can be performed very efficiently by only checking consistency of the hashes of the protocol transcripts. It is clear that if any of the brains cheated during the protocol execution, then it must have sent a message that is inconsistent with the view of at least one pinky, thus the protocol would abort during the checking phase. On the downside our new compiler now imposes a stronger security requirement on the protocol it starts with. Note that honest brains continue the protocol execution up to the checking phase even if a malicious brain misbehaves, which means that we need a protocol that does not leak any private information even if cheating during the computation phase occurs. Thankfully, most passively secure secret sharing based protocols provide exactly the security guarantees that we need. More concretely, these protocols follow a compute-then-open structure, where the output of the computation is only revealed in the last round and any cheating during the preceding computation rounds can only affect the correctness of the output, but not the privacy of the inputs. Thus, by performing the consistency check described above at the end of the computation phase and before the output phase, we can ensure that no information is leaked. The security property sketched above has previously appeared in the literature under the name of weak privacy [GIP+14].

We formally present our new compiler and prove its security in Section 4. For the specific three-party case, our compiler produces a protocol, which is roughly twice as efficient as the protocol produced by the compiler of Damgård et al., since in the three party case each virtual party is emulated by one pinky and one brain.

Our second contribution is an improved preprocessing protocol for generated secret-shared multiplication triples. Damgård et al. generate both triples modulo a prime and triples modulo a power of 2, followed by a check-and-sacrifice step. We replace this by a preprocessing phase which does not perform any arithmetic in the larger prime field and solely uses computation modulo a slightly larger power of 2, thus improving on efficiency. While the sacrifice step is not performed in a field anymore, security follows using similar arguments as in the recent work on SPDZ over rings [CDE+18].

Finally we show that it is possible to completely avoid the preprocessing phase if one wishes to do so. Recall that our underlying protocols are assumed to preserve privacy until the outputs are opened. We exploit this security property by running the multiplication protocols optimistically and then, prior to opening the outputs, perform a single combined check. The two protocols, with preprocessing and with the postprocessing check, therefore offer different efficiency tradeoffs. The protocol with preprocessing has a leaner online phase, whereas the protocol with postprocessing has a better overall performances. Descriptions of our protocols are given in Sections 5, 6, 7.

In Section 8, we provide extensive performance benchmarks of our framework, both in the LAN as well as different WAN settings. Our protocols have been integrated in two of the leading MPC frameworks, namely the Sharemind MPC protocol suite and MP-SPDZ. As described in Section 8, we achieve the most efficient implementation of a three-party computation protocol for arithmetic circuits modulo 2^{64} with active security. Other Related Work. The SPDZ family of protocols [BDOZ11, DPSZ12, DKL+13] efficiently implements MPC with active security in the dishonest majority setting. These protocols are split up into a slower, computationally secure offline phase in which correlated randomness in the form of so-called Beaver’s triples is generated and a faster, information-theoretically secure online phase in which these triples are consumed to compute the desired functionality. Active security in the online phase is achieved using information theoretic message authentication codes (MACs), which until recently limited the SPDZ approach to computation over fields. In a recent work of Cramer et al. [CDE+18], this limitation has been lifted, allowing to perform
computation modulo 2^k (by defining the MACs modulo to be $2^{k+\lambda}$ where λ is the security parameter, thus introducing an overhead proportional to the security parameter). An implementation (and optimizations) of [CDE+18] was presented in [DEF+19]. In addition [CRFG19] follows up [CDE+18] with a two-party protocol that uses homomorphic encryption and efficient zero-knowledge proofs in the precomputation phase.

Other recent works have considered active security in the three-party setting: [FLNW17] uses correlated random number generation to achieve efficient preprocessing and replication to achieve active security. The protocol was originally presented only for Boolean circuits, but it was then later noticed that the approach generalizes to general rings [MR18]. They mention actively secure protocols in this setting, but do not give detailed protocol descriptions and only implement semi-honest versions of their protocols. For finite fields, [CGH+18] achieves active security by running two copies of the computation, respectively with real and random inputs, and uses the latter to verify correctness (their approach can also be used for more than three parties).

After the first version of our paper appeared online, a very different protocol for the same three party honest majority setting was presented in [CCPS19]. They combine two linear secret sharing schemes, one between two and other between three parties where the former is used to share a component of the latter sharing. This allows them to create a circuit dependent precomputation phase where all the two party sharings of random values are precomputed based on the circuit structure. The online phase focuses on computing modifiers to turn the random precomputed sharings into the desired values. Moreover, novel techniques for honest-majority MPC over rings have very recently been deployed in [ACD+19]. It is however still unclear whether this can lead to protocols which are efficient in practice.

\section{Preliminaries}

We write $v \leftarrow X$ to denote the sampling of a uniformly random value v from set X. Throughout the paper λ denotes the security parameter. Given n parties P_1, \ldots, P_n, we write P_{i+1} to denote the party after P_i and we implicitly assume a wrap around of the party’s index. That is $P_{n+1} = P_1$ and $P_0 = P_n$.

\subsection{Security Definitions}

\section{Security Definitions}

We define security using the UC framework of Canetti [Can01]. Protocols proven secure in this framework retain security even when composed arbitrarily and executed concurrently. Concretely, we will use a flavour of the classical UC framework, which was proposed in [CDN15]. We will provide a short summary of the security framework here and refer the reader to [CDN15] for more details.

Security is defined by comparing a real and an ideal interaction. In the ideal interaction, we have a trusted party, called the ideal functionality \mathcal{F}, that receives inputs from all parties, computes some desired function on those inputs, and returns the result to the parties. In the real interaction, the parties do not have access to \mathcal{F}, but rather interact with each other according to some protocol description Π. The protocol Π may itself make use of some other auxiliary ideal functionality \mathcal{G}. In both interactions, the environment \mathcal{Z} chooses the inputs of all parties and acts as an adversary that may corrupt some subset of the parties passively or actively. We say that Π securely realizes \mathcal{F} if an adversary in the real world can not do “more harm” than an adversary in the ideal world. Concretely, we require the existence of a simulator \mathcal{S}, called ideal world adversary, that simulates \mathcal{Z}’s view of a real interaction. \mathcal{S} simulates the views of the corrupted players, the interaction with auxiliary functionality \mathcal{G}, and it may itself interact with \mathcal{F}. At the end of a protocol execution \mathcal{Z} outputs a single bit. Let $\text{IDEAL}_\lambda[\mathcal{Z}, \mathcal{S}, \mathcal{F}]$ and $\text{REAL}_\lambda[\mathcal{Z}, \Pi, \mathcal{G}]$ be the random variables that represent \mathcal{Z}’s output bit in the ideal and real execution, respectively. We say that Π securely realizes functionality \mathcal{F}, if \mathcal{Z} cannot distinguish whether it was part of a real interaction or whether it was communicating with the simulator \mathcal{S}.
Definition 1. \(\Pi \) securely implements functionality \(F \) with respect to a class of environments \(\text{Env} \) in the \(G \)-hybrid model, if there exists a simulator \(S \) such that for all \(Z \in \text{Env} \) we have

\[
|\Pr[\text{REAL}_\lambda[Z, \Pi, G] = 1] - \Pr[\text{IDEAL}_\lambda[Z, S, F] = 1]| \leq \text{negl}(\lambda)
\]

Using this definition we can now capture different security notions by different classes of environments.

Passive security. The environment \(Z \) can corrupt up to \(t \) parties. \(Z \) gets full read-only access to the corrupted parties internal tapes. All parties follow the protocol honestly. The simulator \(S \) is allowed to ask the ideal functionality \(F \) for the inputs of the corrupted parties.

Active security. The environment \(Z \) is allowed to corrupt up to \(t \) parties. \(Z \) gets full control of the corrupted parties. Once the ideal functionality \(F \) received inputs from all parties, it computes the output and sends it to \(Z \). The environment sends back a bit to \(F \) indicating whether the parties should obtain the output or \(\bot \). A slightly weaker notion known as active security with individual abort allows the adversary to specify which honest parties abort and which do not.

Active Security with “Weak Privacy”. We use the definition of active security with weak privacy [GIP+14, Definition 5.11] (a slight variant of the same property was defined under the name “active privacy” in [PL15]), which captures the security properties offered by many existing protocols [BGW88, Bea92] that follow the compute-then-open paradigm. These protocols are split into a computation and opening phase. The computation phase consists of multiple rounds of interaction, whereas the opening phase requires a single round of communication. Intuitively, weak privacy says that an active adversary cannot learn anything until the opening phase, and this is captured saying that there exists a simulator that can simulate the truncated view of the protocol up to the opening phase without having access to the inputs or outputs of any honest parties. Finally, these protocols are “linear”, meaning that the output of the parties in the protocol is a linear function of the messages sent in the opening phase.

Throughout the paper, we assume a synchronous communication network, a rushing adversary, and secure point-to-point channels.

3.1 Auxiliary Ideal Functionalities

We will make use of the following basic auxiliary ideal functionalities in this paper: The broadcast with individual abort functionality \(F_{\text{beast}} \) (Figure 1) allows a sender \(S \) to send a value \(v \) to a set of parties \(P \). The functionality guarantees that either a party aborts or it agrees on a consistent value with the other parties. Such a functionality is weaker than detectable broadcast [FGMv02], which requires that either all players agree on the same value or that all players unanimously abort. The functionality can easily be instantiated by letting the sender \(S \) send \(v \) to all parties in \(P \). Every party in \(P \) echoes the received value to all other parties in \(P \). Parties that receive consistent values output that value, parties that receive inconsistent values abort.

The message checking functionality \(F_{\text{check}} \) (Figure 2) allows a receiver, who holds a vector of messages, to check whether all other parties \(P_1, \ldots, P_n \) hold the same vector of messages. The functionality can be instantiated by letting each party \(P_i \) sends its input to \(R \). However, in this case the communication overhead would be \(\Theta(n\ell) \) messages, where \(\ell \) is the number of messages in a vector. Assuming the existence of collision-resistant hash functions, one can obtain a more communication efficient solution by simply letting all parties hash their message vectors into small digests before sending them to \(R \). The communication overhead of such a solution would be \(\Theta(n\lambda) \) bits if we assume that the output length of the hash function is \(\Theta(\lambda) \).

3.2 Additive Secret Sharing

We recall what additive secret sharing is and how to perform some basic operations on it. We will use this type of secret sharing in our three-party protocol in Section 5 and the modulus \(2^m \) defines the word size over
Multiplication using a multiplication triple:
\[a \cdot b \mod 2 \]
where \(c \)

Sharing a value: If party \(P \) wants to share a value \(\alpha \in \mathbb{Z}_2^m \), it picks uniformly random \(a_1, a_2 \in \mathbb{Z}_2^m \), sets \(a_3 = a - a_1 - a_2 \mod 2^m \), and sends \(a_j \) to each \(P_j \). We write \([a]_m \) to denote an additive secret sharing of \(a \) modulo \(2^m \). For a prime \(p \), we will abuse notation and use \([a]_p \) to denote a secret sharing of \(a \) modulo \(p \).

Revealing a value: To open a value \([a]_m \), every party \(P_i \) sends its value \(a_i \) to \(P_{i-1} \) and \(P_{i+1} \).

Addition by a constant: To add constant \(c \) to \([a]_m \), i.e., compute \([b]_m \) with \(b = c + a \mod 2^m \), we let \(P_1 \) locally compute \(b_1 = a_1 + c \mod 2^m \), while \(P_2 \) and \(P_3 \) just set their \(b_i = a_i \).

Addition: Addition of two values \([a]_m \) and \([b]_m \) can be performed locally by each party. To compute \([c]_m \), where \(c = a + b \mod 2^m \), every party \(P_i \) locally adds its shares, i.e., every party computes \(c_i = a_i + b_i \mod 2^m \).

Multiplication using a multiplication triple: Given a secret shared multiplication triple \(([x]_m, [y]_m, [z]_m)\) with \(z = x \cdot y \mod 2^m \) and two secret shared values \([a]_m \) and \([b]_m \), we compute \([c]_m \) with \(c = a \cdot b \mod 2^m \) as follows:

1. Open \(e = [x]_m + [a]_m \)
2. Open \(d = [y]_m + [b]_m \)
3. Every party \(P_i \) computes \([c]_m = [z]_m + e \cdot [b]_m + d \cdot [a]_m - cd \)

which computations will be performed. For example, for arithmetic computations over 64-bit integers, one can set \(m = 64 \). For the sake of concreteness, we restrict our attention to the three-party case.

Sharing a value: If party \(P \) wants to share a value \(\alpha \in \mathbb{Z}_2^m \), it picks uniformly random \(a_1, a_2 \in \mathbb{Z}_2^m \), sets \(a_3 = a - a_1 - a_2 \mod 2^m \), and sends \(a_j \) to each \(P_j \). We write \([a]_m \) to denote an additive secret sharing of \(a \) modulo \(2^m \). For a prime \(p \), we will abuse notation and use \([a]_p \) to denote a secret sharing of \(a \) modulo \(p \).

Revealing a value: To open a value \([a]_m \), every party \(P_i \) sends its value \(a_i \) to \(P_{i-1} \) and \(P_{i+1} \).

Addition by a constant: To add constant \(c \) to \([a]_m \), i.e., compute \([b]_m \) with \(b = c + a \mod 2^m \), we let \(P_1 \) locally compute \(b_1 = a_1 + c \mod 2^m \), while \(P_2 \) and \(P_3 \) just set their \(b_i = a_i \).

Addition: Addition of two values \([a]_m \) and \([b]_m \) can be performed locally by each party. To compute \([c]_m \), where \(c = a + b \mod 2^m \), every party \(P_i \) locally adds its shares, i.e., every party computes \(c_i = a_i + b_i \mod 2^m \).

Multiplication using a multiplication triple: Given a secret shared multiplication triple \(([x]_m, [y]_m, [z]_m)\) with \(z = x \cdot y \mod 2^m \) and two secret shared values \([a]_m \) and \([b]_m \), we compute \([c]_m \) with \(c = a \cdot b \mod 2^m \) as follows:

1. Open \(e = [x]_m + [a]_m \)
2. Open \(d = [y]_m + [b]_m \)
3. Every party \(P_i \) computes \([c]_m = [z]_m + e \cdot [b]_m + d \cdot [a]_m - cd \)
3.3 Additive Replicated Secret Sharing

We will use additive replicated secret sharing in our preprocessing protocol in Section 6. Since our preprocessing protocol focuses on the three-party case, we will also restrict our attention to this case here.

Sharing a value: If party P_i wants to share a value $a \in \mathbb{Z}_{2^m}$, it sets $a_i = 0$ and then samples $a_{i+1}, a_{i-1} \leftarrow \mathbb{Z}_{2^m}$ under the constraint that $a = a_1 + a_2 + a_3 \mod 2^m$. It then sends a_{j-1} and a_{j+1} to each P_j.\(^6\) We write $\left\langle a \right\rangle_m$ to denote an additive replicated secret sharing of a modulo 2^m. As above, we will abuse notation and for a prime p we will write $\left\langle a \right\rangle_p$ to denote the replicated additive secret sharing modulo p.

Sharing a random value: This is a subroutine which will be useful in later protocols. If the parties want to generate shares of a random value they can do it in the following two ways:

Unconditionally secure version: Each party P_i picks a random $s_{i-1} \in \mathbb{Z}_{2^m}$ and sends it to P_{i+1} while at the same time receiving s_{i+1} from P_{i-1}.

Computationally secure version: At the beginning of the protocol, once and for all, the parties run the unconditionally secure version, and interpret their shares as PRF keys K_1, K_2, K_3 such that party P_i knows K_{i-1} and K_{i+1}. When they want to generate the j-th random share, the parties define their shares $s_{i-1} = F_{K_{i-1}}(j)$ and $s_{i+1} = F_{K_{i+1}}(j)$.

Revealing a shared value: To reveal a secret shared value $\left\langle a \right\rangle_m$, each party P_i sends a_{i-1} to P_{i-1} and a_{i+1} to P_{i+1}. Each P_j receives a_j from P_{j-1} and P_{j+1}, checks consistency of the received values, and outputs $a = a_1 + a_2 + a_3 \mod 2^m$ if the check passed. *(Computational Security:) Opening several values $a^{(1)}, \ldots, a^{(n)}$ can be optimized with computational security as follows: Each P_j only receives $a_j^{(l)}$ from P_{j-1} and computes $a^{(l)} = a_1^{(l)} + a_2^{(l)} + a_3^{(l)} \mod 2^m$. In addition the parties broadcast hashes of $(a^{(1)}, \ldots, a^{(n)})$ and abort in case of a mismatch.*

Addition by a constant: To add a public constant c to a secret shared value $\left\langle a \right\rangle_m$, i.e., to compute $\left\langle b \right\rangle_m$, where $b = c + a \mod 2^m$, we set $b_1 = a_1 + c$, $b_2 = a_2$, and $b_3 = a_3$.

Addition: The addition of two values $\left\langle a \right\rangle_m$ and $\left\langle b \right\rangle_m$ can be performed locally by each party. To compute $\left\langle c \right\rangle_m$, where $c = a + b \mod 2^m$ every party P_i locally adds their shares, i.e., it computes $c_{i-1} = a_{i-1} + b_{i-1} \mod m$ and $c_{i+1} = a_{i+1} + b_{i+1} \mod m$.

Multiplication by a constant: To multiply $\left\langle a \right\rangle_m$ by constant c, i.e., to obtain $\left\langle b \right\rangle_m$ with $b = c \cdot a \mod 2^m$, every party P_i computes $b_{i-1} = c \cdot a_{i-1} \mod 2^m$ and $b_{i+1} = c \cdot a_{i+1} \mod 2^m$.

Optimistic multiplication: Given $\left\langle a \right\rangle_m$ and $\left\langle b \right\rangle_m$, we can compute $\left\langle c \right\rangle_m$ optimistically, where $c = a \cdot b \mod 2^m$ as follows:

1. The parties generate shares of a random value $\left\langle s \right\rangle_m$ as described above.
2. Each P_i computes $u_{i+1} = a_{i+1}b_{i+1} + a_{i+1}b_{i-1} + a_{i-1}b_{i+1} + s_{i-1}$ and sends u_{i+1} to P_{i-1}.
3. P_i receives u_{i-1}, thus defining $\left\langle v \right\rangle_m$.
4. The parties compute $\left\langle w \right\rangle_m = \left\langle u \right\rangle_m - \left\langle s \right\rangle_m$.

\(^6\) This is a small yet non-trivial optimization of the protocol of [DOS18], where a_i is also a random share and the other two parties have to echo this value to each other to check consistency. By setting $a_i = 0$ we save communication of 4 ring elements per input gate, and one additional round of communication. Note that this change has no impact on security. Remember that we have at most one corrupt party. If P_i is corrupt we need that the two other parties receive the same value of a_i, and this is trivially achieved by setting the value to 0. If one of the other two parties is corrupt, they would learn this share anyway so whether it is random or a constant value it has not impact on security.
3.4 Additive Replicated Secret Sharing with Redundant Shares

In some of our protocols we use a different kind of replicated secret sharing, which we denote as $[x]_{m,\lambda}$. Those are sharing of values in \mathbb{Z}_{2^m} but represented with shares in $\mathbb{Z}_{2^{m+\lambda}}$, where λ is a security parameter. Those shares work as the regular additive replicated secret sharings described in the previous sections (e.g., all basic commands are unchanged), but employ shares in a larger ring – this is useful for checking correctness of multiplication triples as we shall see. We describe some basic protocols that can be run with this kind of shares:

Share Coversion (Up): To convert $[x]_m$ to $[x]_{m,\lambda}$ each party simply interprets their shares as elements of the larger ring (in other words, the shares are padded with 0s in the λ most significant positions). Note that in general $\sum_i x_i \mod 2^{m+\lambda} \neq x$, that is the sum can be either equal to x or to $x + 2^m$ depending on the magnitude of the shares. However, since the semantic of our sharing is that the shared value is $\sum_i x_i \mod 2^m$ the protocol is indeed correct (and this notation allows us a simpler description of more advanced protocols).

Share Conversion (Down): To convert $[x]_{m,\lambda}$ to $[x]_m$ each party P_i reduces their shares modulo 2^m i.e., compute $x_i'_{i+1} = x_{i+1} \mod 2^m$ and $x_i'_{i-1} = x_{i-1} \mod 2^m$.

Both operations preserve the shared value because computing modulo 2^m and modulo $2^{m+\lambda}$ are commutative as 2^m divides $2^{m+\lambda}$ and both operations trivially preserve the replication of shares.

3.5 Additive Replicated Secret Sharing over the Integers

Finally, we recall the replicated secret sharing over integers used by Damgård et al. [DOS18]. The authors observed that one can secret share a value $a \in \mathbb{Z}_{2^m}$ over the integers using shares with bit-length $m + \lambda$. The λ extra bits ensure that the statistical distance between the distributions of shares for any two values in \mathbb{Z}_{2^m} is negligible in λ.

Sharing a value: To share a value $a \in \mathbb{Z}_{2^m}$, P_i picks $a_1, a_2 \leftarrow \{0, \ldots, 2^m - 1\}$ and sets $a_3 = a - a_1 - a_2$. The shares are distributed among the parties as above. We write $[a]_Z$ to denote an additive replicated secret sharing of a over the integers.

Optimistic multiplication: Optimistic multiplication of $[a]_Z$ and $[b]_Z$ is similar to optimistic multiplication modulo p. Let B be a bound on the share amplitude. To optimistically compute $[c]_Z$ with $c = a \cdot b$ we do the following:

1. The parties generate shares of a random value $[s]_Z$ as described above, but where s_i are chosen in $\{0, \ldots, 2^{2\lceil \log B \rceil + \lambda + 2} - 1\}$ (if the information-theoretic version of the generation of s_i is used, parties also check that the received shares are in the right range);
2. Each P_i computes u_{i+1} as described above (but over the integer);
3. P_i receives u_{i-1} and checks that $|u_{i-1}| \leq 2^{2\lceil \log B \rceil + \lambda + 3}$;
4. The parties compute $[c]_m = [u]_m - [s]_m$.

All other operations are analogous to their counterparts modulo m. For a more detailed exposition refer to [DOS18].

4 Extension of the Compiler by Damgård et al.

The compiler COMP$_{old}$ by Damgård et al. [DOS18] takes an n-party passively $(t^2 + t)$-secure protocol Π and transforms it into a protocol COMP$_{old}$ (Π) that is secure with abort against t active corruptions7. For example, for $t = 1$, the compiler can transform a passively two-secure three-party protocol into a protocol that is secure against one active corruption. The high-level idea of the compiler is to let virtual parties

7 The authors also show how to achieve active security with guaranteed output delivery, but here we only focus on the case of security with abort.
execute the passively secure protocol on behalf of the real parties. Each virtual party \(P_i \) is simulated by \(t + 1 \) real parties \(P_1, \ldots, P_{t+1} \) in a way that prevents an active adversary, who controls at most \(t \) real parties, from actively corrupting any of the virtual parties. In the following we will write \(P_j \in P_i \) to denote that real party \(P_j \) is simulating virtual party \(P_i \).

The workflow of their compiler can be split into two phases. In the first phase, for each virtual party \(P_i \), all real parties \(P_j \in P_i \) agree on a common input and randomness that will be used by \(P_i \) during the execution of the passively secure protocol \(\Pi \). Having the same input and the same randomness, every \(P_j \in P_i \) will be able to redundantly compute the exact same messages that \(P_i \) is supposed to send during the execution of \(\Pi \). In the second phase, the virtual parties run \(\Pi \) to compute the desired functionality from the inputs and randomness that the virtual parties have agreed upon. Whenever \(P_i \) is supposed to send a message to \(P_j \) according to \(\Pi \), every real party simulating \(P_i \) will send a separate message to every real party simulating \(P_j \). Each real party verifies that it receives the same message from all sending real parties and aborts if this is not the case.

Intuitively, the resulting protocol is secure against \(t \) active corruptions, since an adversary cannot misbehave on behalf of a virtual party it is simulating, and at the same time be consistent with at least one other honest real party that simulates the same virtual party.

From an efficiency point of view, every message from one \(P_i \) to some other \(P_j \) is sent redundantly from \(t + 1 \) to \(t + 1 \) real parties. That is, if the passively secure protocol \(\Pi \) sends \(\ell \) messages during a protocol execution, then COMP\textsubscript{old}(\Pi) will send roughly \(\mathcal{O}(\ell \cdot t^2) \) many messages.

4.1 A New Compiler for Protocols with Weak Privacy

We present a new compiler COMP\textsubscript{new}, which makes slightly stronger assumptions about the starting protocol \(\Pi \), but compiles it into an actively secure protocol in a more communication efficient manner. COMP\textsubscript{new} takes as input a \((t^2 + t)\)-weakly private protocol \(\Pi \) and outputs a compiled protocol COMP\textsubscript{new}(\Pi) that is secure against \(t \) active corruptions. If \(\Pi \) sends \(\ell \) messages in total, then our compiled protocol will only send \(\mathcal{O}(\ell \cdot t + t^2) \) messages.

![Simulation Strategy](image)

Fig. 3: An illustration of our simulation strategy for the case of three parties with one active corruption. Dashed circles represent virtual parties. Solid circles inside the dashed circles represent the real parties that simulate the given virtual party. The brains of each virtual party are highlighted in gray. The figure illustrates the process of virtual party \(P_2 \) sending a message to virtual party \(P_3 \). The black arrows indicate that \(P_1 \), the brain of \(P_2 \), sends one message to \(P_2 \) and one to \(P_1 \), which is omitted in reality, since it is sending a message to itself. \(P_3 \) stores this message in its transcript.
Our new compiler follows the approach of COMP\textsubscript{old}. However, instead of verifying the validity of every single message between virtual parties as soon as it is sent, we will let the real parties simulate the virtual parties in a more optimistic and communication efficient fashion, where the correctness of all communicated messages is only verified once at the end of the computation phase, right before the opening phase of Π. Pushing the whole verification to the end of the computation phase allows us to reduce the total number of redundant messages that are sent. This new simulation strategy crucially relies on the weak active privacy of Π, since we are now allowing the adversary to misbehave up to the opening phase without aborting the protocol execution.

The first phase of COMP\textsubscript{new}, where all parties agree on their inputs and random tapes, is identical to that of COMP\textsubscript{old} and is thus equally efficient. In the second phase, our new simulation approach works by selecting one arbitrary real party P_i in each virtual party P_j to be the brain $B_j := P_i$ of that virtual party. The brains will act on behalf of their corresponding virtual parties in an optimistic fashion and execute the computation phase of Π up to the opening phase. All other real parties, the pinkies, will receive the messages that their corresponding virtual parties should receive, which enables them to follow the protocol locally. However, the pinkies will not send any messages during the computation phase. They will only become actively involved in the opening phase to ensure that all brains behaved honestly during the computation phase. Once correctness is ensured, all parties will jointly perform the opening phase of Π. During the computation phase of Π, whenever virtual party P_j is supposed to send a message to virtual party P_j, we let B_j send one message to each real party in P_j. The receiving real parties do not perform any checks at this moment and just store the message. B_j will optimistically continue the protocol execution on behalf of P_j according to Π and the received message. This simulation strategy is illustrated in Figure 3.

At the end of the computation phase, all real parties jointly make sure that for each pair (P_i, P_j), the sending virtual party P_i always behaved honestly towards the receiving virtual party P_j. This is accomplished by using a message checking protocol (that implements F_{check}). If any of these checks output different, then the protocol execution is aborted.

In the opening phase, after passing the previous check, every virtual party is supposed to send its last opening message to all other virtual parties. For each pair (P_i, P_j), all real parties in P_i send the last message to all real parties in P_j. Every receiving party checks that all $t + 1$ received messages are consistent and aborts if this is not the case.

In our formal description, let $f(x_1, \ldots, x_n)$ be the n-party functionality that we want to compute. For the sake of simplicity and without loss of generality, we assume that all parties learn the output of the computation. Let P_i be the virtual party that is simulated by real parties $P_1, \ldots, P_{t+\ell}$. Let V_i be the set of virtual parties in whose simulation P_i participates. Let f' be a related n-party functionality that takes as input (x'_1, \ldots, x'_n) from every P_i and outputs $f(\sum_{i=1}^{n} x'_i, \ldots, \sum_{i=1}^{n} x'_n)$. That is, every party inputs one secret share of every original input. The functionality f' reconstructs the original inputs for f from the secret shares and then evaluates f on those inputs. Let $\Pi_{f'}$ be a passively $(t^2 + t)$-secure protocol with robust privacy that securely implements $F_{f'}$. The formal description of our compiler is given in Figure 4.

Throughout our description we assume that honest parties consider message that they do not receive as malicious and act accordingly.

Theorem 1. Let $n \geq 3$. Assume $\Pi_{f'}$ implements n-party functionality $F_{f'}$ with $(t^2 + t)$-weak privacy. Then, COMP\textsubscript{new}($\Pi_{f'}$) implements functionality F_f with active security under individual abort against t corruptions. If $\Pi_{f'}$ has a total bandwidth cost of t messages, then COMP\textsubscript{new}($\Pi_{f'}$) has a total bandwidth cost of $O(t \cdot t + t^2)$ messages.

Remark. Similar to Damgård et al. [DOS18], we prove our result for the case of active security with individual abort, where some honest parties may terminate, while some may not. As in their work, our result easily extends to unanimous abort with one additional round of secure broadcast.

Proof. Our proof closely follows the proof of Damgård et al. [DOS18] for the COMP\textsubscript{old} compiler. Let P^* be the set of corrupted real parties and let V^* be the set of virtual parties that are simulated by at least one corrupt real party. Let $S_{f'}$ be the simulator of the $(t^2 + t)$-weakly private protocol $\Pi_{f'}$. We will use this
simulator to construct a simulator S for the overall actively secure protocol $\text{COMP}_{\text{rev}}(\Pi_f')$. The simulator S works as follows:

1. For each party $P_i \in \mathbb{P}^*$ and $j \in [n]$, the adversary Z sends (x^i_j, \mathbb{P}_j) to the ideal functionality \mathcal{F}_bcast, which is emulated by the simulator S. For any invocation that involves a corrupted party, the environment decides which outputs are \bot and which get delivered. For each $\mathbb{P}_j \in \mathbb{V}^*$ and each corrupt real party in \mathbb{P}_j, we send back (x^i_1, \ldots, x^i_n), where x^i_j is either the share that was sent by Z if P_i is corrupt or otherwise a uniformly random share.

2. For each corrupted party $P_i \in \mathbb{P}^*$, we reconstruct its input as $x_i = \sum_{j=1}^n x^i_j$.

3. S sends the inputs of the corrupted parties to \mathcal{F}_f and receives back the output of the computation $z = f(x_1, \ldots, x_n)$.

4. For each $\mathbb{P}_i \in \mathbb{V}^*$ we consider two cases. If the brain B_i is corrupted, then it chooses a random tape r_i and sends it to \mathcal{F}_bcast, which again is simulated by S. If B_i is honest, then the simulator picks a uniformly random r_i and sends it back to Z on behalf of \mathcal{F}_bcast. Again, the environment can decide that some of the outputs in this step will be \bot, which will then be handled accordingly by our simulator.

5. At this point, we know the inputs and the random tapes of all virtual parties $\mathbb{P}_i \in \mathbb{V}^*$. We can therefore compute the exact messages that we would expect from an honest party following the protocol. We initialize the simulator S_f with parties $\mathbb{P}_1, \ldots, \mathbb{P}_n$ and the set of corrupted players \mathbb{V}^*.

6. When S_f queries \mathcal{F}_f for the inputs of the corrupted parties, we provide it with (x^i_1, \ldots, x^i_n) for each $\mathbb{P}_i \in \mathbb{V}^*$.

7. We now describe how to simulate the computation phase of the protocol.
\(S \) queries \(S'_f \) for the messages that the honest brains send to the corrupted virtual parties. For each message \(m \) to some \(P_i \in V^* \), we send \(m \) to each corrupted real party in \(P_i \) (unless the sender received \(\bot \) in one of step 1 or 4 of this simulator in which case it sends nothing).

\(Z \) outputs the messages that the corrupt parties send to the honest ones. Since we know the input and random tape of each corrupted party, we can see which messages are honestly generated and which are not. Forward the message of the sending brain to \(S'_f \) as the message of \(P_i \).

8. At the end of the computation phase, we simulate the check protocol as follows. For each pair \((P_i, P_j)\), for each real party \(R \in P_j \), we have one invocation of the functionality \(F_{\text{check}} \). The simulator \(S \) needs to simulate the ideal functionality towards the corrupted parties in each invocation that involves a corrupted party. Note that the inputs of all honest parties to each check are known from the previous part of the simulation. We, at this point, also know whether any of the corrupted brains cheated or not and if so which check invocation should fail. Furthermore, whenever a corrupted party sends a value to the check functionality, we know whether it’s the correct one or not. Using the above observations it follows that the simulator always knows how to simulate each invocation of \(F_{\text{check}} \) and when to return different, when to return same, and when to abort the computation.

9. If all checks passed, meaning that the adversary did not misbehave at any point in time, then we continue the simulation. The simulator \(S \) knows all the last messages of each corrupted party and it knows the output of the functionality \(z \). Since the opening phase is a linear reconstruction of the last messages, the simulator picks a uniformly last message for each honest party under the condition that the linear combination of all last messages results in \(z \). The simulator faithfully executes the last step of the protocol compiler with the corrupted parties. For any simulated honest real party that receives incorrect messages from \(Z \), we will instruct \(F_f \) to make this party abort. For any honest real party that receives the correct last round messages, we instruct \(F_f \) to deliver the output of the computation.

The simulation of the first protocol phase (steps 1-4) is perfect. The adversary sees uniformly random shares, random tapes, or of the things it sent itself just like in a real protocol execution. The simulation of \(F_{\text{bcast}} \) is identical to a real execution. The indistinguishability of the simulation in step 6 directly follows from the security guarantees of \(S'_f \). As in the real execution, we do not send anything from real honest parties that may have aborted during the first phase. Otherwise, in both the real and the ideal world, the protocol does not abort during the computation phase. During the computation phase the simulator has access to the random tapes and inputs of the corrupted parties, thus always knows when and where cheating occurred. This enables us to correctly determine when and where the protocol would abort and simulate the outcome of the check phase in step 8 correctly.

5 Efficient Three-Party Computation

All of our protocols are fundamentally based on the seminal work of Beaver [Bea92], who presented a conceptually simple and clean approach for passively secure circuit evaluation. We present two flavors of protocols. One with preprocessing and two different instantiations of the preprocessing phase and one without preprocessing, but some light postprocessing. The protocols that involve preprocessing have a larger total runtime, but a leaner online phase, whereas the postprocessing protocol has a smaller overall runtime. Our protocol with preprocessing is presented in this section and the two different preprocessing protocols are presented in Section 6. Our protocol with postprocessing is presented in Section 7.

5.1 Beaver’s Circuit Evaluation Approach

The circuit evaluation approach by Beaver [Bea92] enables, in our case, three parties to evaluate an arithmetic circuit \(f \) over arbitrary rings \(\mathbb{Z}_{2^m} \) with security against two passive corruptions. The protocol is split into a preprocessing and an online phase. During the preprocessing phase the parties jointly generate some function-independent correlated randomness in the form of additively secret shared multiplication triples \([a_{i}]_m, [b_{i}]_m, [c_{i}]_m\), where \(c_{i} = a_{i} \cdot b_{i} \mod 2^{m} \). In the online phase these triples are then consumed to securely evaluate
some desired function f. Beaver’s online phase works in three steps. First, all parties additively secret share their input among the other parties. Then, all parties jointly evaluate the circuit in a gate-by-gate fashion on the secret shared values. Additions are performed locally, and multiplications require interaction as well as correlated randomness as explained in Section 3.2. In the last step, the parties jointly reconstruct the secret shared values of the output wires of the circuit. Note that the reconstruction phase is just a linear function of the messages received during the opening phase.

Proposition 1. Let f be an arithmetic circuit with N multiplication gates. Given N preprocessed multiplication triples, the three-party protocol $Beaver_f$, implements functionality F_f with 2-weak privacy and has linear reconstruction.

5.2 Our Protocol with Preprocessing

We focus on the popular setting with three parties and one active corruption and obtain our protocol by applying Theorem 1 to Beaver’s circuit evaluation approach. Let f be the three-party functionality that shall be computed, where each party P_i has an input $x_i \in \mathbb{Z}_2^m$. As before, let f' be the related three-party functionality that first recomputes the original inputs from the additive secret shares and then evaluates f. Let N be the number of multiplication gates in f and assume for the moment that all real parties have already shared this many replicated secret shares of multiplication triples $[a_i]_m, [b_i]_m, [c_i]_m$ in a preprocessing phase. Our concrete preprocessing protocol will be described in detail in Section 6. Since for $1 \leq i \leq 3$, virtual party P_i will be simulated by P_{i-1} and P_{i+1}, it holds that real parties holding replicated shares is equivalent to virtual parties holding additive secret shares. This way, one can think of those replicated shares as parts of the real parties’ inputs that have already been shared correctly among the virtual parties during preprocessing. We state the compiled protocol $COMP_{\text{new}}(Beaver_{f'})$ in Figure 5.

Concrete Efficiency. We explicitly state the communication complexity of the protocol: Addition gates require no communication. Evaluating a multiplication gate requires sending 6 words of m bit each. The opening phase, including the checking protocol, requires sending 5 hash values (we choose 256 as the output of the hash) as well as the output shares giving a total of $1280 + 4m \cdot |\text{out}|$ bits for out output gates.

6 Preprocessing

During the preprocessing phase we generate replicated secret sharings of multiplication triples $c = a \cdot b \mod 2^m$. We describe two versions of the preprocessing phase.

The first is obtained combining the preprocessing of Damgård et al. [DOS18] with the batch verification technique of Ben-Sasson et al. [BFO12]. The generation of multiplication triples is split in three steps. First, using the techniques of Damgård et al., we optimistically generate secret shared multiplication triples over the integers. Next, we interpret them as triples in a field \mathbb{Z}_p, for some sufficiently large prime p, and perform the batch verification protocol of Ben-Sasson et al. to ensure that all triples are correct. Lastly, we reduce all integer shares modulo 2^m to obtains shares of multiplication triples in our desired ring \mathbb{Z}_2^m.

The second version of the protocol is inspired by the work of Cramer et al. [CDE+18], where MACs modulo some prime are replaced with MACs modulo $2^{m+\lambda}$ with 2^m being the “plaintext space” and λ being a statistical security parameter. Following this approach, we replace the computation modulo prime in the correctness check with a check performed over $2^{m+\lambda}$, which still guarantees security. Due to the computational complexity of performing computation modulo primes, this second version of the preprocessing offers significantly improved performances.

8 The functionalities f and f' have equally many multiplication gates, since reconstructing the inputs from additive secret shares does not require any multiplications.

9 Valid multiplication triples over integers are valid multiplication triples modulo 2^m.

13
Given an optimistically generated triple

Verifier of a Single Multiplication Triple

use the optimistic multiplication of replicated secret shares from Section 3.5 to compute

\(J \)

random values the integers is straightforward. First each party \(P_i \)

Optimistic generation of a multiplication triple over the integers as a triple in

Section 6.1 [DOS18]-style Preprocessing

\(Z \)

multiplication triple in

the preprocessing of Damgård et al. proceeds as follows. First, the authors optimistically generate another

\(Z \)

a

wrap-around due to the modulo operation happens.

SingleVerify

The check,

\(Z \)

the other one [DO10]. Concretely, the authors sacrifice the triple in

over the integers as a triple in

\(Z \)

\(N \)

of multiplication triples allows us to verify

\(Z \)

multiplication triples in

\(\mathcal{F}_{\text{bcast}} \)

a

for

\(z_{i-1} := (x_{i-1}^1, x_{i-1}^2, x_{i-1}^3) \) and

\(z_{i+1} := (x_{i+1}^1, x_{i+1}^2, x_{i+1}^3) \) via the broadcast and

aborts if any of the shares equals \(\perp \).

2. Randomness: Each virtual brain \(B_j \) chooses a uniformly random string \(r_i \) and sends \((r_i, P_j) \) to \(\mathcal{F}_{\text{bcast}} \). The receiving real parties abort if they receive \(\perp \).

3. Computation phase: All virtual parties now evaluate Beaver’ in a gate-by-gate fashion, where each

\(P_i \)

uses input \(z_i \) as follows:

– Multiplication gates are evaluated using correlated randomness.

– All other types of gates are executed locally.

4. Check: For each pair \((P_i, P_j)\), we use \(\mathcal{F}_{\text{check}} \) to verify the correctness of the messages sent from \(P_i \) to \(P_j \).

5. Opening phase:

(a) For each output wire \(w \), for each pair \((P_i, P_j)\), all real parties in \(P_i \) send their secret share of \(w \) to

all real parties in \(P_j \).

(b) For all \(P_j \), all \(P_k \in P_j \) check that all messages they received are equal. If not, abort.

(c) If all received shares are consistent, then reconstruct the output wire value \(w \) and terminate.

Fig. 5: Protocol for three-party arithmetic circuit evaluation over the ring \(\mathbb{Z}_{2^m} \) with active security with abort against one active corruption.

6.1 [DOS18]-style Preprocessing

Optimistic Generation of Multiplication Triples

Optimistic generation of a multiplication triple over the integers is straightforward. First each party \(P_i \)
uses replicated secret sharing over the integers to share random values \(a_i, b_i \in \mathbb{Z}_{2^m} \). All parties jointly compute \(\|a\|_Z = \sum_{i=1}^{3} [a_i]_Z \) and \(\|b\|_Z = \sum_{i=1}^{3} [b_i]_Z \) and then use the optimistic multiplication of replicated secret shares from Section 3.5 to compute \(\|c\|_Z \).

Verification of a Single Multiplication Triple

Given an optimistically generated triple \(\|a\|_Z, \|b\|_Z, \|c\|_Z \), the preprocessing of Damgård et al. proceeds as follows. First, the authors optimistically generate another multiplication triple in \(\mathbb{Z}_p \), where \(p \) is a prime such that \(p > c \). Then they interpret the multiplication triple over the integers as a triple in \(\mathbb{Z}_p \) and employ the standard technique of “sacrificing” one triple to check the other one [DO10]. Concretely, the authors sacrifice the triple in \(\mathbb{Z}_p \) to check the triple over the integers. The check, SingleVerify, is described in detail in Figure 6. The rationale behind this approach is that if the multiplicative relation \(a \cdot b = c \) holds over the integers, then it also holds in \(\mathbb{Z}_p \), since \(p > c \) and thus no wrap-around due to the modulo operation happens.

Efficient Batch Verification

Now given \(N \) optimistically generated multiplication triples \(\|a_i\|_Z, \|b_i\|_Z, \|c_i\|_Z \)
over the integers, we would like to efficiently check that, for all \(i \in \{1, \ldots, N\} \), the multiplicative relationship \(a_i \cdot b_i = c_i \) holds. Checking every multiplication triple separately, would require us to generate \(N \) additional multiplication triples in \(\mathbb{Z}_p \) and perform \(N \) invocations of SingleVerify.

Instead, we use a clever idea of Ben-Sasson et al. [BFO12]. Using their technique for verifying the validity of multiplication triples allows us to verify \(N \) triples with \(N \) additional optimistic multiplications and a
SingleVerify

Inputs: Shared triples \([a][z], [b][z], [c][z]\) and \([x][p], [y][p], [z][p]\) with prime \(p > c\)

In the following we interpret the triple over the integers as a triple in the field \(\mathbb{Z}_p\).

1. Every party \(P_i\) picks a random \([r_i][p]\).
2. The parties compute \([e][p] = \sum_{i=1}^N [r_i][p]\) and open \(r\).
3. Parties compute \([c][p] = r[x][p] + [a][p]\).
4. Parties compute \([d][p] = [y][p] + [b][p]\).
5. Open \(e, d\) and compute \([f][p] = de - rd[x][p] - e[y][p] + r[z][p] - [c][p]\)
6. Open \([t][p]\) and output **success** if \(t = 0\) and fail otherwise.

Fig. 6: Verification of multiplication triple \(([a][z], [b][z], [c][z])\). **SingleVerify** takes as input two potentially incorrect multiplication triples and sacrifices one to check the other.

single invocation of **SingleVerify.** The main idea behind their approach is to encode all multiplication triples \((a_1, b_1, c_1), \ldots, (a_N, b_N, c_N)\) as three polynomials \((f, g, h)\), where the relation \(f \cdot g = h\) will hold if all multiplication triples are correct. Instead of checking each multiplication triple separately, we will evaluate the polynomials at a random point \(z\) and and verify that the polynomial relation \(f(z) \cdot g(z) \equiv h(z) \mod p\) holds.

More concretely, let \(f\) and \(g\) be polynomials with coefficients in \(\mathbb{Z}_p\) of degree \(N-1\) with \(f(i) = a_i\) and \(g(i) = b_i\). These polynomials are uniquely defined by the values \(a_1, \ldots, a_N\) and \(b_1, \ldots, b_N\). Since, we expect \(h\) to be \(f \cdot g\) and thus of degree \(2N - 2\), we require \(2N - 1\) points to uniquely define it. For \(i \in \{1, \ldots N\}\), we set \(h(i) = c_i\). For \(i \in \{N + 1, \ldots 2N - 1\}\), we set \(h(i) = f(i) \cdot g(i)\), where the multiplication of \(f(i)\) and \(g(i)\) is performed optimistically. If all multiplication triples and all optimistic multiplications are correct, then \(f \cdot g = h\) holds and an evaluation at a random point \(z\) will always fulfil \(f(z) \cdot g(z) \equiv h(z) \mod p\). If, however, some multiplication triple is not valid, then \(f \cdot g \neq h\) and in this case the two polynomials \(f \cdot g\) and \(h\) can agree on at most \(2N - 2\) many points. This means that for a uniformly random point \(z \in \mathbb{Z}_p\), we have \(\Pr[f(z) \cdot g(z) = h(z) | f \cdot g \neq h] \leq \frac{2N - 2}{p^{N-1}}\).

This trick crucially relies on the fact that we can interpolate and evaluate additively secret shared polynomials. Say we are given shares of points \([a_i][p]\) for \(i \in \{1, \ldots, N\}\) of polynomial \(f\) and we would like to evaluate \(f\) on point \(z\). Define Kronecker delta \(\delta_i^N(x)\) as

\[
\delta_i^N(x) := \prod_{j=1, j \neq i}^{N} \frac{x - j}{i - j} = \begin{cases} 1 & x = i \\ 0 & x \neq i \end{cases}
\]

Evaluating polynomial \(f\) at point \(z\) is then done by computing

\[
[f(z)][p] = \sum_{i=1}^{N} (\delta_i^N(z) \cdot [a_i][p])
\]

We provide a formal description of the batch verification protocol in Figure 7. Its security directly follows from the security of the preprocessing of Damgård et al. and the batch verification protocol of Ben-Sasson et al. Let \(P_{\text{Triple}}\) be the protocol that first optimistically generates \(N\) multiplication triples over the integers, then executes the batch verification, and finally reduces all shares modulo \(2^n\). The concrete efficiency of this protocol is discussed in Section 8.
Verification of a Single Multiplication Triple:

we will re-use this protocol introduce the protocol in the context of our postprocessing based protocol. At its core, the protocol uses the sacrifice step of the MASCOT protocol [KOS16]. (The parameter can be instantiated using only cheap field operations (as we are working in the honest majority case). However, here they are used in a very different context, since SPD...)

Fig. 7: Batch verification of multiplication triples.

6.2 [CDE+18]-style Preprocessing

Optimistic Generation of Multiplication Triple: As in the previous subsection, optimistic generation of a multiplication triple is straightforward. This time, the parties (using replicated secret sharing), generate random sharings \([x]_m, [y]_m\) and then use the optimistic multiplication protocol to compute \([z]_m\).

Verification of a Single Multiplication Triple: We present here a verified multiplication protocol in \(\mathbb{Z}_p\) where, in order to mitigate zero divisors, most of the computation is executed in \(\mathbb{Z}_{2^m}\) for a statistical parameter \(\lambda\). The techniques used in this kind of preprocessing are inspired by the protocol SPDZ\(2^k\) [CDE+18]. However, here they are used in a very different context, since SPDZ\(2^k\) is a protocol for the dishonest majority case (and therefore their preprocessing phase requires expensive public-key operations), while our protocol can be instantiated using only cheap field operations (as we are working in the honest majority case).

Figure 8 presents the basic version of our protocol (the notation \([\cdot]_{m,\lambda}\) used in this section was introduced in Section 3.4). At its core, the protocol uses the sacrifice step of the MASCOT protocol [KOS16]. (The protocol is here used for checking correctness of preprocessed multiplication triples, but in the next section we will re-use this protocol introduce the protocol in the context of our postprocessing based protocol.)
The fact that Correctness follows easily thanks to the correctness of optimistic multiplication and that the Correctness can be generated non-interactively using PRSS. Similarly, r can be generated using PRSS and then opening the result. We now evaluate the properties of our protocol.

Note that generating the share of a can be done non-interactively using PRSS. Similarly, r can be generated using PRSS and then opening the result. We now evaluate the properties of our protocol.

Correctness. Correctness follows easily thanks to the correctness of optimistic multiplication and that the fact that

$$rz + c - ey = rxy + ay - (rx + a) \cdot y = 0 \mod 2^{m+\lambda}.$$

Security. Assuming that all openings are verified using F_{check} (which ensures that a corrupt party cannot send different shares to different parties), the corrupt party can only deviate by adding an additive error in the optimistic products. We define the (potential) errors as $z = xy + \epsilon_z$ and $c = ay + \epsilon_c$. If the input tuple $\llbracket x \rrbracket_m, \llbracket y \rrbracket_m, \llbracket z \rrbracket_m$ is incorrect then we have that $\epsilon_z \neq 0 \mod 2^m$. Inserting into the check equation (1), we get

$$rxy + r\epsilon_z + ay + \epsilon_c - (rx + a)y = r\epsilon_z + \epsilon_c \mod 2^{m+\lambda}.$$

Since r is a uniformly random λ-bit number, it follows that $r\epsilon_z \mod 2^{m+\lambda}$ is uniform in a set of at least size 2^λ. Since the ϵ_c is chosen by the adversary before r is sampled, the adversary will be able to make the protocol accept an incorrect tuple with probability at most 2^λ. This argument corresponds to the proof of Claim 6 by Cramer et al. [CDE+18].

Efficient Batch Verification: The check can be batched for an arbitrary number of triples, which makes the cost for generating the random number r negligible (similarly to many other protocols in the literature that sacrifice a tuple to check another one).

Furthermore, one can reduce the communication for the final step of the protocol: If the parties hold $\{\llbracket x^{(j)} \rrbracket_m \}$ and would like to check if $x^{(j)} = 0$ for all j, every party P_i computes $x^{(j)}_i = 0 - x^{(j)}_{i-1} - x^{(j)}_{i+1}$. All parties then hash $\{x^{(j)}_0, x^{(j)}_1, x^{(j)}_2\}_{\forall j}$ and broadcast their result. If there is a mismatch, they abort. With these two optimizations, the asymptotic communication per triple is determined by the two optimistic multiplications and the opening of c. All involve sending one $m + \lambda$-bit value to one other party, so we arrive at $3(m + \lambda)$ bits per party and multiplication. If the protocol is used for preprocessing there are another m bits sent per party and multiplication during the online phase, otherwise $3(m + \lambda)$ is the total cost per multiplication. For the common choice of $m = 64$ and $\lambda = 40$, this gives a total of 312 bits.

7 Protocol with Postprocessing

Our postprocessing protocol is similar in spirit to our [CDE+18]-style preprocessing protocol from Section 6.2 in the sense that we use similar building blocks, but in a different order, which allows us to reduce the total
Input Each party P_i has input x_i.

1. Each party P_i secret shares its input x_i using the secret sharing with redundant shares as described in Section 3.4 to obtain $[x_i]_{m,\lambda}$.
2. All parties jointly evaluate the desired circuit, where multiplications are performed optimistically as described in Section 3.3. Let $\{(x_i)_{m,\lambda}, (y_i)_{m,\lambda}, (z_i)_{m,\lambda}\}_{i \in [N]}$ be the set of all the performed multiplications, where x_i, y_i are the left and right inputs and z_i is the output of the i-th multiplication gate.
3. For $i \in [N]$, compute a random $[a_i]_{m,\lambda}$ and optimistically compute $[c_i]_{m,\lambda} = [y_i \cdot a_i]_{m,\lambda}$.
4. All parties jointly generate a random value $r \in \ZZ_{2^\lambda}$.
5. The parties reveal $[c_i]_{m,\lambda} = r[x_i]_{m,\lambda} + [a_i]_{m,\lambda}$.
6. For each $i \in [N]$ the parties check
 \[r[x_i]_{m,\lambda} + [c_i]_{m,\lambda} - e_i[y_i]_{m,\lambda} \equiv 0 \]
 and abort if any of these checks fails.
7. If all checks passed, then the parties jointly open the output wires of the computed circuit.

Fig. 9: Protocol for secure circuit evaluation that does not require a preprocessing phase.

computation time at the cost of a slightly more expensive online phase. We describe our protocol in Figure 9 for the three party setting. For the sake of simplicity we describe the protocol with separate checks for each multiplication gate, but optimizations like the batch verification described in Section 6.2 can be applied equally well to this protocol. The security proof for the protocol is completely analogous to the security proof in Section 6.2.

8 Implementation and Evaluation

To help adoption and accessibility of our protocols, we implemented them using Sharemind [Bog13] and the MP-SPDZ framework [Dat]. While some protocols mentioned in this work are only implemented in either framework, we have implemented the basic semi-honest and the postprocessing protocol from Section 7 in both. We provide extensive benchmarks in both LAN and WAN settings for both implementations as well as a theoretical analysis of the asymptotic communication. Throughout this section, we use a statistical security parameter $\lambda = 40$.

8.1 Communication

Table 1 shows the communication complexity per multiplication in $\ZZ_{2^{64}}$ with the various protocols for statistical security parameter $\lambda = 40$. While the numbers are obtained from running the protocols in batches of at least one million with rounding, they match the asymptotic cost one would expect from a manual analysis. For comparison, we have added the figures reported in a recent concurrent work by Chaudhari et al. [CCPS19] (averaged over the parties because their protocol is asymmetric).

One optimistic multiplication in \ZZ_{2^m} requires sending m bits, and using Beaver multiplication in the data-dependent phase requires opening two masked values, thus sending $2m$ bits. A CDE+18-style sacrifice [CDE+18] requires two optimistic multiplications and one opening in $\ZZ_{2^{m+\lambda}}$, while ABF+17 [ABF+17] asymptotically requires three optimistic multiplications and two classic sacrifices that require two openings each.\footnote{Because of cut-and-choose we cannot use the trick used for DOS18-style sacrificing.} This comes down to $7m$ bits. Finally, DOS18 preprocessing [DOS18] with SingleVerify requires two
optimistic multiplications in \mathbb{Z}_p and two openings in \mathbb{Z}_p as well as sending two $m + \lambda$-bit values for sharing over the integers, totalling in $2(m + \lambda) + 3 \log p$ bits. It roughly holds that $\log p > 7 + 2m + 3\lambda$, so for our choice of parameters $\log p > 255$. The slight difference to the figure in the table comes from rounding up to multiples of eight. Using BatchVerify in Figure 7 allows to avoid the openings in \mathbb{Z}_p, bringing the complexity to slightly more than ABF+17 preprocessing.

8.2 Implementation in Sharemind

Sharemind already supported semi-honest computation in \mathbb{Z}_2^{32} and \mathbb{Z}_2^{64}. We have added [DOS18]-style preprocessing with BatchVerify from Section 6.1 and postprocessing from 7.

8.3 Implementation in MP-SPDZ

MP-SPDZ already supported replicated secret sharing in \mathbb{Z}_2^{64} and \mathbb{Z}_p as well as the protocol for \mathbb{Z}_p by Lindell and Nof [LN17]. Its use of C++ templating easily allows to add new protocols reusing existing components, and it provides an efficient implementation of \mathbb{Z}_{2^k} arithmetic for any k. It also uses Montgomery representation for arithmetic modulo a prime.

We have implemented the following protocols: [DOS18]-style preprocessing with SingleVerify from Section 6.1, cut-and-choose preprocessing of triples similar to Araki et al. [ABF+17], and [CDE+18]-style preprocessing as well as postprocessing from Section 6.2.

8.4 Benchmarks

We have run our implementations in SIMD fashion, that is, combining the communication of a varying number of multiplications in as few network messages as possible. It is of little surprise that up to a certain number the throughput increases.

Figure 10 shows our benchmarks for various numbers of parallel multiplications in a LAN, that is AWS c5.9xlarge instances in the same region. This type features 36 virtual CPUs, 72 GiB of RAM, and 10 Gbit/s network connection.

All benchmarks in this section are averages over ten executions. The figure for cut-and-choose is limited to 1048576 because the analysis by Araki et al. [ABF+17] mandates batches of at least this size. The plot shows that all malicious protocols perform similarly except the [DOS18] protocol, and that the postprocessing protocol is slightly ahead as one would expect.

Figure 11 shows our benchmarks for various numbers of parallel multiplications in a continental WAN, that is one AWS c5.9xlarge instance in each of Frankfurt, London, and Paris. The results mirror the results in the LAN setting except for the fact that 2^{20} parallel multiplications perform better than 2^{15} for all protocols. This is most likely because of the increased network delay of up to 12 ms.

According to Damgård et al. [DOS18], $p > 100 \cdot 2^{2m + 2\lambda}$, but a quick recalculation of $24 \cdot B^2 2^\lambda$ with $B = 2^{m + \lambda + 1}$ shows that it should be 3λ instead of 2λ in the inequality for p.

\[\begin{array}{ccc}
\text{Preprocessing Data-dep. Total} \\
\hline
\text{DOS18 preprocessing (single)} & 992 & 128 & 1120 \\
\text{DOS18 preprocessing (batch)} & 464 & 128 & 592 \\
\text{ABF+17 preprocessing} & 448 & 128 & 576 \\
\text{CDE+18 preprocessing} & 312 & 128 & 440 \\
\text{Postprocessing} & - & 312 & 312 \\
\text{Semi-honest} & - & 64 & 64 \\
\text{Malicious ASTRA [CCPS19]} & 448 & 85 & 553 \\
\end{array}\]
Fig. 10: Throughput in LAN

Fig. 11: Throughput in continental WAN
Finally, 12 shows our benchmarks for a global WAN, that is one AWS c5.9xlarge instance in each of Frankfurt, Northern California, and Tokyo. The largest network latency we observed is 236 ms in this setting.

![Graph showing throughput in global WAN](image)

Fig. 12: Throughput in global WAN

8.5 Multithreading

We generally found that our protocols do not use all bandwidth that is available. Figure 13 supports this by showing that increasing from a single thread to 128 increases the output while keeping same the number of parallel multiplications.

![Graph showing throughput with postprocessing in global WAN](image)

Fig. 13: Throughput with postprocessing on MP-SPDZ in global WAN
9 Comparison with Other Related Work.

In this section, we provide a comparison with the most relevant previous works.

The concurrent work of Choudhary et al. [CCPS19] does not provide throughput of multiplications for their offline phase, only for more complex computation such as AES evaluation. It is therefore hard to compare their implementation to ours. Furthermore, AES evaluation does not lend itself to computation in \mathbb{Z}_{2^k} for $k > 1$, which makes a rather odd benchmark in this setting.

Three party honest majority actively secure multiplication with 61-bit Mersenne field is implemented in [CGH+18] where they measure that a circuit with 10^6 multiplication gates and depth 20 can be evaluated in 0.3 seconds in a single AWS region (presumably 10 Gbit/s networks). This amounts to a throughput of 3.3 million multiplications per second, while our postprocessing protocol with Sharemind in a LAN achieved 2.9 million for a slightly smaller batch size that $10^6/20$. This shows that our protocol is competitive despite the extra effort needed for rings as compared to fields.

The batchwise multiplication verification is optimized in [NV18]. The authors estimate that their computation optimizations achieves up to 10^7 two-party verifications per second using multithreading for 64-bit primes and up to $5 \cdot 10^6$ with 128-bit prime. Their estimations are based on their implementation of the computations and estimates for the communication but they do not benchmark the protocol with communication. From a conceptual point of view, [NV18] uses similar verification ideas as we do, hence their work indicates that our implementation might also benefit from more optimized field arithmetic. However, we still need to use larger fields to accommodate the integer secret sharing meaning we need more communication to achieve triples modulo 2^k of the same length as their modulo prime triples.

References

