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Abstract. We present an advanced encoding framework for predicate encryption (PE)
in prime order groups. Our framework captures a wider range of adaptively secure PE
schemes such as non-monotonic attribute-based encryption by allowing PE schemes to have
more flexible structures. Prior to our work, frameworks featuring adaptively secure PE
schemes in prime order groups require strong structural restrictions on the schemes. In
those frameworks, exponents of public keys and master secret keys of PE schemes, which
are also referred to as common variables, must be linear. In our work, we introduce a modular
framework which includes non-linear common variables in PE schemes. First, we formalize
non-linear structures which can appear in PE by improving Attrapadung’s pair encoding
framework (Eurocrypt’14). Then, we provide a generic compiler that features encodings
under our framework to PE schemes in prime order groups. Particularly, the security of
our compiler is proved by introducing a new technique which decomposes common variables
into two types and makes one of them be shared between semi-functional and normal spaces
on processes of the dual system encryption to mitigate the linear restriction. As instances
of our new framework, we introduce new attribute-based encryption schemes supporting
non-monotonic access structures, namely non-monotonic ABE, in prime order groups. We
introduce adaptively secure non-monotonic ABE schemes having either short ciphertexts (if
KP-ABE) or short keys (if CP-ABE) for the first time. Additionally, we introduce the first
non-monotonic ABE schemes supporting both adaptive security and multi-use of attributes
property in prime order groups.

Key words: pair encoding, non-monotonic access structure, attribute-based encryption, prime order
groups, dual system encryption

1 Introduction

Water’s dual system encryption [29] is a widely used proof methodology for adaptively secure
PE. After the seminal introduction by Waters, it becomes one of the most popular tools to prove
the adaptive security of PE. Subsequently, many PE schemes [21, 18, 7, 28, 15] use the dual system
encryption to prove their security. Later, Lewko and Waters [22] introduced a new technique for the
dual system encryption. Their novel technique (also referred to as a doubly selective technique in
[2]) shows that adaptive security of PE can be achieved computationally using selective techniques
via the dual system encryption. In detail, prior to their technique, a critical part of the dual system
encryption was proved only by information theoretical arguments, but they showed that it can
be proved by two selective proofs using the information delivered from the adversary’s queries.
This significantly extends the usage of the dual system encryption to a wider range of encryption
schemes.

Wee [30] and Attrapadung [2] introduced generic modular frameworks which generalize the
dual system encryption using encodings. They extract properties that are required by the dual



system encryption and formalize them through encoding frameworks. They also introduced generic
constructions applicable to those encodings and proved that they are adaptively secure only using
the properties defined in the frameworks. Therefore, these frameworks give a new insight to the
dual system encryption and make proving adaptive security of an encryption scheme much easier
since its security can be simply proved by showing that the corresponding encoding scheme of
the encryption scheme satisfies the properties that the frameworks required. In particular, Attra-
padung’s pair encoding framework suggested in [2] generalizes the doubly selective technique into
their framework.

Recently, the dual system encryption has been evolved in prime order groups via encodings [11,
4, 1, 16]. However, their generic constructions for encoding scheme commonly impose a structural
restriction on PE in prime order groups. In particular, they require exponents of public keys
and master secret keys (as also referred to as common variables) to be linear. This also results
that keys and ciphertexts of PE schemes to be linear in those variables. For example, we use
h1, ..., hm to denote common variables of a pair encoding scheme. The linearity of pair encoding
framework requires that public keys and master secret keys to be set g, gh1 , ..., ghm where g is a
group generator and cannot have as parameters group elements of which exponents are not linear
in hi such as gh

2
1 or gh1h2 .

Hence, the usage of encoding frameworks is significantly limited by this structure restriction.
Morevoer, the restriction cannot be simply addressed by including non-linear exponents into the
encoding framework because (1) it is not clear how the dual system encryption can be used to
prove the security of PE having non-linearity in prime order groups. Moreover, it still remains an
interesting question (2) whether we can define an encoding framework to capture non-linearity of
PE.

1.1 Our Contribution

The contribution of this paper is two-fold.

Improved framework. We introduce a modular framework which is applicable to PE schemes
having non-linear common variables in prime order groups. Prior to our works, existing frameworks
[11, 4, 1, 16] in prime order groups enforce PE schemes to have a simple linear structure. Our new
framework overcomes this barrier by suggesting a new framework and a new proof technique.

To mitigate the structural restriction and effectively express non-linearity of PE schemes,
we improve Attrapadung’s pair encoding framework [2] which is one of most popular encoding
frameworks for PE and provide a new compiler that features encodings in our improved framework
to an real PE schemes in prime order groups. Unlike the pair encoding framework, we decompose
common variables which are exponents of public keys and master secret keys into two types,
which are shared common variables w and hidden common variables h and restricted only hidden
common variables to be linear. We, then, define public keys (and master secret keys) of PE using
monomials b which consists of elements of w and h. This refinement flexibly describes even non-
linear exponents since there is no structural restriction on w unless it is a monomial. At the same
time, we set PE schemes still to be linear in hidden common variables, which we call relaxed
linearity in hidden common variables so that the dual system methodology can be applied for
the security analysis. Secondly, we provide a new generic compiler in prime order groups for our
framework and prove its security under simple static assumptions which were introduced by Lewko
and Waters [20]. We prove security of our new compiler using computational arguments based on
the doubly selective technique but we provide an additional refinement of the doubly selective
technique to handle non-linearity in PE schemes using both types of common variables. We show
that our refinement is still feasible by showing multiple new attribute-based encryption schemes
as instances.

Instances. As instances of our new encoding, we introduce two new attribute-based encryption
(ABE) schemes supporting a non-monotonic access structure as follows:

• Non-monotonic CP-ABE with short keys (Scheme 1).
• Non-monotonic KP-ABE with short ciphertexts (Scheme 2).
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Table 1. Comparisons of NM-CP-ABE schemes in prime order groups

Scheme
Multi-use

Security Assumptions type
NM-CP-ABE

of Att. CT Priv. Key

LSW [19] Yes Selective RO+n-MEBDH KP 3n+ 1 2t+ t′

AHLLPR [5] Yes Selective n-DBDHE KP 4 (N + 1)t

YAHK [31]
Yes Selective q-types CP 3t+ 1 4n+ 2
Yes Selective q-types KP 4n+ 1 3t

OT [26]
No Adaptive DLIN CP 14t+ 5 14nũ+ 5
No Adaptive DLIN KP 14nũ+ 5 14t+ 5

Scheme 1 Yes Adaptive Static + q-types CP 3(N + 2)t+ 6 21
Scheme 2 Yes Adaptive Static + q-types KP 24 3(N + 2)t+ 9
Scheme 3 Yes Adaptive Static + q-types CP 9t+ 6 12n+ 9
Scheme 4 Yes Adaptive Static + q-types KP 12n+ 12 9t+ 9

t: the number of attributes in an access policy, t’: the number of negated attributes in an access policy,
n: the number of attributes in attribute sets, N: the maximum number of attributes in attribute sets
ũ: the maximum number of appearances of an attribute in an access policy.
Static: ’Static’ in Assumptions implies that LW1, LW2 and DBDH

• Unbound Non-monotonic CP-ABE (Scheme 3).
• Unbound Non-monotonic KP-ABE (Scheme 4).

We introduce new ABE schemes having short parameters which are either short keys (Scheme
1) or short ciphertexts (Scheme 2). Prior to our work, non-monotonic KP-ABE scheme with short
ciphertexts [5] is only selectively secure and there is no scheme supporting short keys. Also, we
introduce two new unbounded ciphertext-policy ABE schemes supporting a non-monotonic access
policy. The new unbounded schemes are truely unbounded since it supports arbitrary attributes
and multi-use of attributes at the same time. Existing ABE schemes supporting non-monotonic
access structures are restricted by selective security [31, 19] or one-use of attributes [26] where
one-use of attributes means that an attribute does not appear more than once in an access policy.

1.2 Our Technique

Syntax of Pair Encoding Framework [2]. Before we explain our technique, we briefly introduce
Attrapadung’s pair encoding framework.

In pair encoding, instances for a predicate Rκ : X × Y → {0, 1} consist of four deterministic
algorithms which are Param, Enc1, Enc2 and Pair.

Param(κ) → ω: It takes as input an index κ and outputs the number of common variables ω of
b = (b1, ..., bω). The common variables are shared with Enc1 and Enc2.
Enc1(x) → (k := (k1, ..., km1);m2): It takes as x ∈ X and outputs a sequence of polynomials of
{ki}i∈[m1] with coefficient in Zp and m2 which is the number of variables. Every ki is a linear
combination of monomials α, rk, bjrk where k ∈ [m2] and α, r1, ..., rm2

∈ Zp are variables.
Enc2(y) → (c := (c1, ..., cw1);w2) It takes as y ∈ Y and outputs a sequence of polynomials of
{ci}i∈[1,w1] with coefficient in Zp and w2 which is the number of variables. Every ci is a linear
combination of monomials s, sk, bjs, bjsk where k ∈ [w2] and s, s1, ..., sw2

∈ Zp are variables.
Pair(x, y)→ E takes as inputs x and y and outputs a reconstruction matrix E such that kEc> =
αs.

The instances of the pair encoding framework satisfy multiple properties, namely linearity in
random variables, parameter vanishing and computational or perfect α hiding. Those properties
are also required to our new encoding. We discuss them further in Section 4.

Difficulty. There are a few works [16, 4, 11, 1] that feature adaptively secure PE schemes in prime
order groups. In particular, the works of Kim et al. [16] and Attrapadung [4] include the doubly
selective technique which achieves adaptive security using selective security proofs in their frame-
works. All works implicitly or explicitly assume that all parameters of encodings are linear in
common variables. Particularly, In [4], the author clearly mention that their framework requires
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stricter structural restrictions. They defines the scheme satisfying those restrictions as a regular
encoding. For example, hihi′ cannot be used and computed in their framework. The work of Kim
et al. [16, 1] also explicitly defines linearity in common variables of keys and ciphertexts as a new
property for their security analysis. Also, the techniques suggested in [11, 1] assume that linearity
in common variables and use them for their proofs, implicitly using the structural definition of pair
encodings. As described in the overview of pair encoding, the pair encoding was not defined only
by properties, but also required to have a certain structure which is linear in common variables.

Our Solution. Our solution largely adopts the notion of the pair encoding framework. However,
the pair encoding framework cannot properly describe non-linear common variables. Therefore,
we improves the syntax of pair encoding. The most significant change in our framework is that
we decompose variables used as exponents of public keys and master secret keys into two types
hidden common variables and shared common variables to express non-linearity in PE schemes as
follows:

• Hidden common variables are variables projected into semi-functional space without being
correlated with its original values. Moreover, the semi-functional values of hidden common
variables must be hidden before they are projected. These variables required by the dual
system encryption technique. To satisfy these requirements, the hidden common variables
must be linear. All common variables in existing frameworks [11, 4, 1, 16] are hidden common
variables.
• Shared common variables are also projected into the semi-functional part but their projected

values are exactly same as their original values in normal parts. In other words, these vari-
ables are shared both in semi-functional parts and normal parts in semi-functional keys or
ciphertexts.

In detail, the exponents of public keys and master secret keys in our encoding framework are
composition of those two types common variables. We use b(w, b0,h) = (b1, ...., bω) to denote the
exponents of those parameters and also use w = (w1, ..., wω1) and h = (h1, ..., hω2) to denote
shared common variables and hidden common variables, respectively. bi is defined as a monomial
which is bi = b0fi(w) or fi(w)hj where fi(w) is a monomial consisting of the elements of w and
j ∈ [ω2] and b0 is a variable adopted for linear operation. This setting makes b(w, b0,h) linear in
(b0,h). More formally, by the definition of b, for all b0, b

′
0 ∈ Zp and h,h′ ∈ Zω2

p

b(w, b0,h) + b(w, b′0,h
′) = b(w, b0 + b′0,h+ h′).

We call this property relaxed linearity in hidden common variables.

Notation Previous notation of pair encoding framework cannot properly describe the linearity of
common variables. This deficiency makes us adopt a new variable b0 in our encoding framework as
Kim et al. does in their work [16]. In detail, even if hidden common variables of b are linear form
(i.e. the maximum degree of those variables is set to be 1), the relaxed linearity in hidden common
variables of b cannot properly be notated if some coordinates of b do not have an element of h.
Therefore, we use a new variable b0 to denote the change the values during the addition and place
b0 where an element of h does not appear. Therefore, all coordinates of b must contain either b0
or hi and linear in those variables.

Dual system encryption in prime order groups We feature the dual system encryption in
the prime order groups using relaxed linearity in hidden common variables. In particular, we use
the technique of Kim et al. [16], which is a generic compiler that works for pair encoding schemes.
Their technique generalizes Lewko and Waters’ IBE [20] and utilizes it as a building block of a
nested dual system encryption to achieve adaptively secure PE scheme in prime order groups.
Linearity in common variables which they additionally defined in their work is a core property
to prove the security of their compiler in prime order groups. Using the property, the common
variables are projected into semi-functional parts and hidden before they are projected. In a high
level, the simulator sets a common variable h = dh′ + h′′ where d ∈ Zp is given using a group
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Normal parts Semi-functional parts

KSGA [16]
Key k(α, x, (1,h); r) k(α′, x, (1,h′); r′)
CT c(y, (1,h); s, s) c(y, (1,h′); s′, s′)

A [4]
Key k(α, x,h; r) k(α′, x, ,h′; r)
CT c(y,h; s, s) c(y,h′; s, s)

Ours
Key k(α, x, b(w, 1,h); r) k(α′, x, b(w, 1,h′); r′)
CT c(y, b(w, 1,h); s, s) c(y, b(w, 1,h′); s′, s′)

Fig. 1. Comparisons of normal and semi-functional pars in encoding frameworks

generator g such as gd in the instances of an assumption and h′ and h′′ are values generated by
the simulator. This setting is essential to hide the values of h′ which are projected and forms
common variables in semi-functional parts. However, it is available only if the linear operation in
common variables such as addition is possible because the simulator cannot explicitly compute h
as the value d is only given as a form of gd. For example, a normal ciphertext gc(·,(·,h),·) can only
be computed by (gd)c(·,(·,h

′),·)gc(·,(·,h
′′),·) using the linearity in common variables.

In our framework, the exponents of public parameters are more complex monomials, but the
simulator still can hide common variable before they are projected into semi-functional parts using
the relaxed linearity in hidden common variables property. For example, we can define the relaxed
linearity for Enc1 using relaxed linearity in hidden common variables as

k(α, x, b(w, b0,h); r) + k(α′, x, b(w, b′0,h
′); r) = k(α+ α′, x, b(w, b0 + b′0,h+ h′); r)

where x is a predicate; α and α′ are values denote master secret; and r are random values for
the security anlaysis. Therefore, this property allows the simulator to set a monomial fi(w)hj =
dfi(w)h′′j +fi(w)h′j similarly to Kim et al.’s compiler and projects fi(w)h′j into the semi-functional
space to form a semi-functional key as shown in Fig. 1.

There exists another compiler potentially work in our encodings from Attrapadung [4]. Their
compiler is secure under the matrix DH assumption which can be reduced to the standard DLIN.
In their security analysis, the common values can be projected without correlating with their
original values, but random variables are shared between normal parts and semi-functional parts
as we show in Fig. 1. Due to this limitation, they redefined the pair encoding to regular encoding
with extra structural restrictions. Due to these restrictions, considering non-linearity with the
regular encoding is quite complex and our motivation is easing the structural restrictions of pair
encoding. Because Kim et al.’s technique provides more flexible structure to PE and their security
is also secure under static and simple assumptions, we utilize their compiler as a backbone of our
compiler.

Refined computational α hiding In our setting, the values of w are not hidden. Those values
are projected into semi-functional parts by fi(w), but the projected values are identical with their
original values as shown in Fig. 1. Sharing w is not typical in the dual system encryption because
it means w must be defined and fixed when a system sets up, which is not required in the dual
system encryption.

We address this problem by redefining computational α hiding property of pair encoding frame-
work. We use two oracles which are indistinguishable to each other to simulate the refined compu-
tational hiding property. In our setting, the oracles output shared common variables w by include
gb(w,1,1) in initial instances so that the simulator create public keys and normal parts of private
keys using w. It is worth noting that the oracles in the other techniques [16, 4] only output a group
generator g in an initial instance. Fig. 2 shows that the difference of our oracles.

One of the difficulties to construct these oracles is proving our refined computational α hiding
property. In the existing pair encoding schemes, the computational α hiding is usually proved via
the doubly selective technique. Because the initial instance does not include any public parame-
ters, the oracles can select public parameters after they see the target predicate of the challenge
ciphertext or the challenge key . However, this benefit is not valid in ours because our oracles must
output shared common variables before they see the target predicate.
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Oracles of [16, 4, 22] Our Oracles

Initial Instance: g gb(w,1,1)

CT Instance: gc(y,h
′;s′,s′) gc(y,b(w,1,h

′);s′,s′)

Key Instance∗: gk(α
′,x,h′;r′) gk(α

′,x,b(w,1,h′);r′)

∗ : α′ is either a random value or 0

Fig. 2. Our Refined Computational α-hiding

However, we observed that, even in selective security proofs, some common variables can be set
without using any information of the target predicate or some existing selective security proofs can
be easily modified to set a part of common variables without knowing the target predicate. This
allows us to use the variables independently created from the target predicate as shared common
variables and build the oracles because selecting which common variables to be hidden or shared
is quite flexible in our framework. This implies that we still can prove the refined computational α
hiding property based on existing selective proofs as the other existing pair encoding schemes do.
We show that achieving those oracles is feasible providing new instances such as attribute-based
encryption schemes supporting non-monotonic access structures .

2 Related Work

Conjunctive schemes with ABE with monotonic access structures and identity based revocation
systems were introduced for a revocation [6, 23] to fill the gap between practice and theory when a
practical ABE scheme with non-monotonic access structures was absence. In those schemes, only
a special attribute such as identity can be used to revoke users and the attribute for the revocation
cannot be reused in an access policy. Inner product encryption [14, 24, 7, 25] naturally achieves a
non-monotonic access structure using polynomials. However, expressing a Boolean formula using
inner product is less efficient than ABE schemes. A technique to feature encryption schemes in
composite order groups into prime order groups were introduced by Lewko [17] using Dual Pairing
Vector Spaces (DPVS) [24, 25]. However, their conversion technique is not generic and the efficiency
of a converted scheme linearly increases in the size of vector it uses. Dual System Groups (DSG)
[12] were recently introduced. Chen and Wee showed that DSG can be utilized to construct a
wide range of encryption schemes in prime order groups. Many generic constructions [11, 1, 4] for
encoding schemes in prime order groups utilize DSG except Kim et al.’s work [16]. Instead of
using DSG, Kim et al.[16] generalized the Lewko and Waters’ IBE [20] to construct the general
construction.

3 Preliminary

3.1 Bilinear Maps

Let G be a group generator which takes a security parameter λ as input and outputs (p, G1, G2,
GT , e), G1, G2 and GT are cyclic groups of prime order p, and e : G1 ×G2 → GT is a map such
that e(ga, hb) = e(g, h)ab for all g ∈ G1 h ∈ G2 and a, b ∈ Zp and e(g, h) 6= 1 ∈ GT whenever
g 6= 1 and h 6= 1. We assume that the group operations in G1, G1 and GT as well as the bilinear
map e are all computable in polynomial time with respect to λ. It should be noted that the map
e is symmetric if G1 = G2. If G1 6= G2, the map e is asymmetric.

3.2 Non-monotonic access Structure

Definition 1 (Access Structure) [9] Let {P1, ..., Pn} be a set of parties. A collection A ⊂ 2{P1,...,Pn}

is monotone if ∀B,C: if B ∈ A and B ⊂ C, then C ∈ A. A monotonic access structure is a mono-
tone collection A of non-empty subsets of {P1, ..., Pn}, i.e., A ⊂ 2{P1,...,Pn} \ {}. The sets in A are
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called the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) [9] A secret sharing scheme Π over a set
of parties P is called linear (over Zp) if (1) The shares for each party form a vector over Zp. (2)
There exists a matrix A called the share-generating matrix for Π. The matrix A has m rows and
` columns. For all i = 1, ...,m, the ith row of A is labeled by a party ρ(x) (ρ is a function from
{1, ...,m} to P). When we consider the column vector v = (s, r2, ..., r`), where s ∈ Zp is the secret
to be shared and r2, ..., r` ∈ Zp are randomly chosen, then Av is the vector of m shares of the
secret s according to Π. The share (Av)i belongs to party ρ(x).

Moving from monotone to non-monotonic access structures For a non-monotonic access
structure, we adopt a technique from Ostrovsky, Sahai and Waters [27]. They assume a family of
linear secret sharing schemes {ΠA}A∈A for a set of monotonic access structures A ∈ A. For each
access structure A ∈ A, the set of parties P underlying the access structures has the following
properties: The names of the parties may be of two types: either it is normal (like x) or primed
(like x′), and if x ∈ P then x′ ∈ P and vice versa. They conceptually associate primed parties as
representing the negation of normal parties.

We let P̃ denote the set of all normal parties in P. For every set S̃ ⊂ P̃, N(S̃) ⊂ P is defined by
N(S̃) = S̃∪{x′|x ∈ P̃ \S̃}. For each access structure A ∈ A over a set of parties P, a non-monotonic
access structure NM(A) over the set of parties P̃ is defined by specifying that S̃ is authorized in
NM(A) iff N(S̃) is authorized in A. Therefore, the non-monotonic access structure NM(A) will
have only normal parties in its access sets. For each access set X ∈ NM(A), there will be a set in
A that has the elements in X and primed elements for each party not in X. Finally, a family of
non-monotonic access structures Ã is defined by the set of these NM(A) access structures.

3.3 Computational Assumptions

Our compiler needs three simple static assumptions which are also used in [16, 20]. For the following

assumptions, we define G = (p,G1, G2, GT , e)
R←− G and let f1 ∈ G1 and f2 ∈ G2 be selected

randomly.

Assumption 1 (LW1) Let a, c, d ∈ Zp be selected randomly. Given

D := {f1, fa1 , fac
2

1 , fc1 , f
c2

1 , fc
3

1 , fd1 , f
ad
1 , f cd1 , f c

2d
1 , f c

3d
1 ∈ G1, f2, f

c
2 ∈ G2},

it is hard to distinguish between T0 = fac
2d

1 and T1
R←− G1.

Assumption 2 (LW2) Let d, t, w ∈ Zp be selected randomly. Given

D := {f1, fd1 , fd
2

1 , f tw1 , fdtw1 , fd
2t

1 ∈ G1, f2, f
c
2 , f

d
2 , f

w
2 ∈ G2},

it is hard to distinguish between T0 = f cw2 and T1
R←− G2.

Assumption 3 (Decisional Bilinear Diffie-Hellman (DBDH) Assumption) Let a, c, d ∈ Zp be
selected randomly. Given

D := {f1, fa1 , f c1 , fd1 ∈ G1, f2, f
a
2 , f

c
2 , f

d
2 ∈ G2},

it is hard to distinguish between T0 = e(f1, f2)acd and T1
R←− GT .

3.4 Predicate Encryption

We adopt the definition of PE and its adaptive security of [2].

Definition of Predicate Encryption [2]. A PE for a function Rκ consists of Setup, Encrypt,
KeyGen and Decrypt as follows:
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Setup(1λ, κ)→ (PK,MSK): The algorithm takes in a security parameter 1λ and an index κ which
is allocated uniquely for the function R. It outputs a public parameter PK and a master secret
key MSK.
Encrypt(x,M,PK)→ CT : The algorithm takes in a predicate x ∈ X , a public parameter PK and
a plaintext M . It outputs a ciphertext CT .
KeyGen(y,MSK,PK) → SK: The algorithm takes in a predicate y ∈ Y, MSK and PK. It
outputs a private key SK.
Decrypt(PK,SK,CT ) → M : the algorithm takes in SK for y and CT for x. If Rκ(x, y) = 1, it
outputs a message M ∈M. Otherwise, it aborts.

Correctness. For all (x, y) ∈ X×Y such thatRκ(x, y) = 1, if SK is the output of KeyGen(y,MSK,PK)
and CT is the output of Encrypt(x,M,PK) where PK and MSK are the outputs of Setup(1λ, κ),
Decrypt(SK,CT ) outputs M for all M ∈M.

Definition of Adaptive Security of Functional Encryption [2]. A functional encryption
for a function Rκ is adaptively secure if there is no PPT adversary A which has a non-negligible
advantage in the game between A and the challenge C defined below.

Setup : C runs Setup(1λ, κ) to create (PK, MSK). PK is sent to A.
Phase 1 : A requests a private key for yi ∈ Y and i ∈ [q1]. For each yi, C returns SKi created by

running KeyGen(yi,MSK,PK).
Challenge : When A requests the challenge ciphertext of x ∈ X , for Rκ(x, yi) = 0; ∀i ∈ [q1], and

submits two messages M0 and M1, C randomly selects b from {0, 1} and returns the challenge
ciphertext CT created by running Encrypt(x,Mb, PK).

Phase 2 : This is identical with Phase 1 except for the additional restriction that yi ∈ Y for
i = q1 + 1, ..., qt such that Rκ(x, yi) = 0; ∀i ∈ {q1 + 1, ..., qt}

Guess : A outputs b′ ∈ {0, 1}. If b = b′, then A wins.

We define an adversary A’s advantage as AdvPEA (λ) := |Pr[b = b′]− 1/2|.

4 Our Encoding Framework

In this section, we introduce our new encoding framework. We largely take a notion of pair encoding
framework to describe our encoding. However, our encoding framework can capture the predicate
family that requires non-linear parameters.

4.1 Syntax

Our encoding scheme for a predicate Rκ in prime order p consists of four deterministic algorithms
Param, Enc1, Enc2 and Pair.

Param(κ) → (b := (b1, b2, ..., bω);ω1, ω2, ω): It takes as input a predicate family κ and outputs
integers ω1, ω2, ω ∈ p and a sequence of monomials {bi}i∈[ω] ∈ Zp with the sequence of variables
of {b0, hj ;hj ∈ h} and functions fi where b0 ∈ Zp, h ∈ Zω2

p and fi(w) is a monomial consisting
of the elements of w ∈ Zω1

p . That is, for all i ∈ [ω], bi = b0fi(w) or fi(w)hj . b shared by the
following two algorithms Enc1 and Enc2. We let w = (w1, ..., wω1) denote the shared common
variables and h = (h1, ..., hω2) denote the hidden common variables. b0 is a variable for the
linearity? ? ?.

Enc1(x ∈ X ) → (k := (k1, k2, ..., km1
);m2): It takes as inputs a predicate x and outputs a

sequence of polynomials {ki}i∈[m1] with coefficients in Zp, and m2 ∈ Zp where m2 is the
number of random variables. Every polynomial ki is a linear combination of monomials of the
form α, rib0, αbj , ribj in variables α, r1, ..., rm2 and b0, b1, ..., bω. In more detail, for i ∈ [m1],

ki := δiα+
∑
j∈[m2]

δi,jrjb0 +
∑
j∈[m2],k∈[ω] δi,j,krjbk

? ? ? b0 is used for the security analysis. It is fixed as 1 in an encoding scheme (and its actual construction).
It has other values only in security proofs
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where δi, δi,j , δi,j,k ∈ Zp are constants which define ki.
Enc2(y ∈ Y)→ (c := (c1, c2, ..., cm̃1

); m̃2): It takes as inputs a predicate y and outputs a sequence
of polynomials {ci}i∈[m̃1] with coefficients in Zp, and m̃2 ∈ Zp where m̃2 is the number of
random variables. Every polynomial ci is a linear combination of monomials of the form
sb0, sib0, sbj , sibj in variables s, s1, ..., sm̃2

and b0, b1, ..., bω. In more detail, for i ∈ [m̃1],

ci := φis b0 +
∑
j∈[m̃2]

φi,jsjb0 +
∑
j∈[m̃2],k∈[ω] φi,j,ksjbk

where φi, φi,j , φi,j,k ∈ Zp are constants which define ci.
Pair(x, y) → E: It takes inputs x ∈ X and y ∈ Y. It outputs E ∈ Zm1×m̃1

p .

Correctness: The correctness holds symbolically when b0 = 1. if Rκ(x, y) = 1, for every (x, y) ∈
X × Y such that Rκ(x, y) = 1, there exists E ∈ Zm1×m̃1

p satisfying kEc> = αs where kEc> =∑
i∈[m1],j∈[m̃1]

Ei,jkicj .

4.2 Properties

We describe properties that our encodings have.
Property 1. (Relaxed linearity in hidden common variables) Suppose w, r, s and s are
fixed, our encodings are linear in α and h for all (α, b0,h) ∈ Zp × Zp × Zω2

p . That is, for all

α, α′, b0, b
′
0 ∈ Zp,h,h′ ∈ Zω2

p , the followings hold:

k(α, x, b(w, b0,h); r) + k(α′, x, b(w, b′0,h
′); r) = k(α+ α′, x, b(w, b0 + b′0,h+ h′); r)

c(y, b(w, b0,h); s, s) + c(y, b(w, b′0,h
′); s, s) = c(y, b(w, b0 + b′0,h+ h′); s, s)

Property 2. (Linearity in random variables) Suppose w and h are fixed, our encodings are
linear in α, s, r and s for all (α, s, r, s) ∈ Zp × Zp × Zm2

p × Zm̃2
p . That is, for all α, α′, s, s′ ∈

Zp, r, r′ ∈ Zm̃2
p and s, s′ ∈ Zm̃2

p , the followings hold:

k(α, x, b(w, b0,h); r) + k(α′, x, b(w, b0,h); r′) = k(α+ α′, x, b(w, b0,h); r + r′)

c(y, b(w, b0,h); s) + c(y, b(w, b0,h); s′) = c(y, b(w, b0,h); s+ s′)

where w, b0,h ∈ Zω1
p × Zp × Zω2

p .

Property 3. (Parameter Vanishing) For all α, b0, b
′
0 ∈ Zp,w,w′ ∈ Zω1

p ,h,h
′ ∈ Zω2

p , there

exists 0 ∈ Z2k+1
p which makes following two distributions are statistically identical:

k(α, x, b(w, b0,h); 0) and k(α, x, b(w, b′0,h
′); 0).

Property 4. (Computational α hiding) We let g1 ∈ G1 and g2 ∈ G2 be selected randomly.
For all (x, y) ∈ X ×Y such that Rκ(x, y) = 0, the following two distributions are computationally
indistinguishable:

{gb(w,1,1)1 , g
b(w,1,1)
2 , g

c(y,(b(w,1,h);s,s)
1 , g

k(α,x,b(w,1,h);r)
2 }

≈ {gb(w,1,1)1 , g
b(w,1,1)
2 , g

c(y,(b(w,1,h);s,s)
1 , g

k(0,x,b(w,1,h);r)
2 }

where α, s
R←− Zp, w

R←− Zω1
p , h

R←− Zω2
p , r

R←− Zw2
p and s

R←− Zm2
p .

To prove the computational α hiding, we define oracles OCosβ and OSelβ where β = {0, 1}.
OCosβ and OSelβ simulates computational α hiding for Phase I (Co-selective Security) and Phase
II (Selective Security) of the adaptive security model, respectively. The responses of oracles are
defined following:

• Initial instance: {gb(w,1,1)1 , g
b(w,1,1)
2 }

• k-type response: g
k(β·α,x,b(w,1,h);r)
2

9



• c-type response: g
c(y,b(w,1,h);s,s)
1

Oracles for co-selective SecurityOCosβ : When the oracle receives an initial query before it
receives any other query, it outputs the initial instance After the initial instance, the oracle only
can respond to the k-type query. When the oracle receives the k-type query for a predicate x, it
sends the k-type response. After it responds, it can respond to the c-type query for a description
y if Rκ(x, y) = 0. When the oracle receives the c-type query for y, it outputs the c-type response.

Oracles for selective SecurityOSelβ : This oracle is identical to OCosβ except the order of
the responses. This oracle first outputs the initial instance. Then, it outputs the k-type response
before the c-type response.

4.3 The Compiler

For a predicate family Rκ : X ×Y → {0, 1} and its encoding E(Rκ, p), A PE scheme PE(E(Rκ, p))
consists of four algorithms Setup, KeyGen, Encrypt and Decrypt. We use subscripts to denote
where group elements belong (e.g. g1 ∈ G1, g2 ∈ G2).

• Setup(1λ, κ) → 〈PK,MSK〉. The setup algorithm randomly chooses bilinear groups G =

(p, G1, G2, GT ) of prime order p > 2λ. It takes group generators g1
R←− G1, g2

R←− G2 from G.
It executes (b, ω1, ω2, ω) ← Param and sets b0 = 1. It randomly selects α, a, yu, yv, yf ∈ Zp,
w ∈ Zω1

p and h ∈ Zω2
p . It sets τ = yv + a · yu. It publishes public parameters (PK) as

{e(g1, g2)α, g1, g
a
1 , g

τ
1 , g

b(w,1,h)
1 , g

a·b(w,1,h)
1 , g

τ ·b(w,1,h)
1 }.

It sets MSK as {α, g2, gb(w,1,h)2 , f2 = g
yf
2 , u2 = fyu2 , v2 = fyv2 }.

• KeyGen(x,MSK) → SK. The algorithm takes as inputs x ∈ X and MSK . To generate
SK, it runs (k;m2) ← Enc1 and randomly selects r ∈ Zm2

p and z ∈ Zm1
p where m1 = |k|. It

parses α from MSK and outputs SK := (D1,D2,D3) following:

D1 = g
k(α,x,b(w,1,h);r)
2 vz2 , D2 = uz2 , D3 = f−z2 .

• Encrypt(M,y, PK)→ CT. The algorithm takes as inputs y ∈ Y, a message M and PK.
It runs (c; m̃2) ← Enc2 and randomly selects s ∈ Zp and s ∈ Zm̃2+1

p . The algorithm sets
C0 = M · e(g1, g2)αs and outputs CT := (C0,C1,C2,C3) following:

C1 = g
c(y,b(w,1,h);s,s)
1 ,C2 = (ga1 )c(y,b(w,1,h);s,s),C3 = (gτ1 )c(y,b(w,1,h);s,s).

• Decrypt(x, y, SK,CT )→ M. It takes as inputs SK for x ∈ X and CT for y ∈ Y. It runs
E ← Pair(x, y) and computes

A1 = e(CE
>

1 ,D1), A2 = e(CE
>

2 , D2), A3 = e(CE
>

3 ,D3).

Suppose Rκ(x, y) = 1, A1 ·A2 ·A3 = e(g1, g2)αs. It outputs M = C0/e(g1, g2)αs.

Correctness For (x, y) ∈ X × Y such that Rκ(x, y) = 1, E is a reconstruction matrix E such
that cEk> = αs because b0 = 1. Therefore, we can compute followings:

A1 = e(CE
>

1 ,D1) = e(g1, g2)cE
>k>e(g1, v2)cE

>z> = e(g1, g2)αse(g1, v2)cE
>z>

A2 = e(CE
>

2 ,D2) = e(g1, u2)a·cE
>z> , A3 = e(CE

>

3 ,D3) = e(g1, f2)−τ ·cE
>z>

It should be noted that τ = yv + ayu where yv and yu are discrete logarithms of v2 and u2 to
the base f2, respectively. Therefore, A1 ·A2 ·A3 = e(g1, g2)αs.
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Theorem 1. Suppose the assumptions LW1, LW2 and DBDH hold in G, for all encoding E(Rκ, p)
with a predicate family Rκ and a prime p, PE(E(Rκ, p)) is adaptively secure. Precisely, for any
PPT adversary A, there exist PPT algorithms B1, B2, B3, B4 and B5, whose running times are
the same as A such that, for any λ,

Adv
FE(P )
A (λ) ≤ wt ·AdvLW1

B1
(λ) + 2 ·mt ·AdvLW2

B2
(λ) +AdvLW3

B3
(λ)

+q1 ·AdvOCMHB4
(λ) + q2 ·AdvOSMHB5

(λ)

where q1 and q2 are the numbers of key queries in phases I and II, respectively, and mt is the total
number of random variables used to simulate all private keys and wt is the number of random
variables used in the challenge ciphertext.

5 Security Analysis

We define the semi-functional (SF) algorithms to security proofs. To create various types of keys
and the challenge ciphertext, the simulator first randomly selects h′ ∈ Zω2

p which is shared in
semi-functional algorithms.

SFKeyGen(x,MSK,h′, j, α′) → SK : The algorithm takes as inputs the master secret key

MSK, x ∈ X and j ∈ [m2]. Then, the algorithm selects α′
R←− Zp and r̃j

R←− Zm2
p of which the

first j elements are random variables and the others are 0. It also creates a normal key (D1, D2,
D3) using KeyGen. It outputs SK := 〈D′1,D

′
2,D

′
3〉 following:

D′1 = D1 · f
−ak(α′,x,b(w,1,h′);r̃j)
2 ,D′2 = D2 · f

−τk(α′,x,b(w,1,h′);r̃j)
2 ,D′3 = D3

We define the type of SK as follows:

The type of SK :

Nominally semi-functional (NSF) if α′ = 0
Temporary semi-functional (TSF) if α′ 6= 0 and j 6= 0
Semi-functional (SF) if α′ 6= 0 and j = 0

In particular, in SF keys, r̃0 equals the zero vector 0 by the definition. Due to the parameter
vanishing property, it does not require h′ as the inputs and we can rewrite SK as follows:

D′1 = D1 · f−ak(α
′,x,b(w,0,0′);0)

2 ,D′2 = D2 · f−τk(α
′,x,b(w,0,0′);0)

2 .

SFEncrypt(M,y, PK,h′, j)→ CT : The algorithm takes as inputs a message M , the public key
PK and a description y ∈ Y and j ∈ [w2 +1]. It sets f1 = g

yf
1 and u1 = fyu1 . It generates a normal

ciphertext (C0,C1,C2,C3). If j = 0, it selects s̃
R←− Zp. The algorithm sets C ′0 = C0 and outputs

CT following:

C ′1 = C1, C
′
2 = C2 · fc(y,b(w,1,h

′);s̃,0)
1 , C ′3 = C3 · u1c(y,b(w,1,h

′);s̃,0).

If j > 0, it selects a random value s̃
R←− Zp and a random vector s̃j

R←− Zw2
p where the first j

elements are random variables and the others are 0. The algorithm then sets C ′0 = C0 and outputs
CT := 〈C ′0,C

′
1,C

′
2,C

′
3〉 where

C ′1 = C1, C
′
2 = C2 · f

c(y,b(w,1,h′);s̃,s̃j−1)
1 , C ′3 = C3 · u1c(y,b(w,1,h

′);s̃,s̃j−1).

In particular, we call CT a semi-functional (SF) ciphertext if j = m̃2.

We describe the security games that we use for the security proof in Table 2. In the proof, we
will show that all games in Table 2 are indistinguishable.

The most critical part among them is the invariance between games GNk,m2
and GTk,m2

where

m2 is the number of variables in the kth key. There are two cases based on the value of k, either
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Table 2. Games for Security Analysis

GReal : This is a real game that all keys and ciphertexts are normal.

G0,j : CT ← SFEncrypt(M,y, PK,h′, j) for j = 0, 1, ..., m̃2

G0 : (= G0,m̃2 = GN1,0 by the definitions)

GNk,j : α′i
R←− Zp, h′

R←− Zω2
p

SKi ←


SFKeyGen(x,MSK,0, 0, α′i) if i < k (type = SF)

SFKeyGen(x,MSK,h′, j, 0 ) if i = k (type = NSF)
KeyGen(x,MSK) if i > k (type = Normal)

GTk,m2−j : α′i
R←− Zp, h′

R←− Zω2
p

SKi ←


SFKeyGen(x,MSK,0, 0, α′i) if i < k (type = SF)

SFKeyGen(x,MSK,h′,m2 − j, α′i ) if i = k (type = TSF)

KeyGen(x,MSK) if i > k (type = Normal)

Gk : (= GTk,0 = GNk+1,0 by the definitions)

α′i
R←− Zp, SKi ←

{
SFKeyGen(x,MSK,h′, 0, α′i) if i <= k (type = SF)
KeyGen(x,MSK) if i > k (type = Normal)

GFinal : M ′
R←−M, CT ← SFEncrypt(M,y, PK,h′, j)

k ≤ q1 or k > q1 where the q1 is the number of key queries that the adversary requests before it
requests the challenge ciphertext. We provide the proofs of those two cases in Lemmas 3 and 4.

Lemma 1.1. Suppose there exists a PPTA who can distinguish GReal and G0,0 with non-negligible
advantage ε. Then, we can build an algorithm B which breaks LW1 with the advantage ε using
A.

Proof: In this proof, given instance from LW1

{f1, fa1 , fac
2

1 , f c1 , f
c2

1 , f c
3

1 , fd1 , f
ad
1 , f cd1 , f c

2d
1 , fc

3d
1 , T ∈ G1, f2, f

c
2 ∈ G2},

B will simulate either GameReal or Game0,0 depending on the value of T using A to break the
assumption.

Setup: For the predicate family with an index κ, B run Param(κ) to generate b, ω1, ω2 and ω. It,
then, randomly selects α, yg, yu ∈ Zp,w ∈ Zw1

p ,h′,h′′ ∈ Zw2
p and it sets

g1 = f c
2

1 f
yg
1 , gh1 = (f c

2

1 )h
′
fh
′′

1 , ga1 = fac
2

1 (fa1 )yg , ga·h1 = (fac
2

1 )h
′
(fa1 )h

′′

gα2 = (f c
2

2 )αf
αyg
2 , g2 = f c

2

2 f
yg
2 , gh2 = (f c

2

2 )h
′
fh
′′

2 , gb2 = f2, v2 = f c2 , u2 = fyu2 .

The values of h are set implicitly by gh1 = f
(c2h′+h′′)
1 since the simulator does not know the value

of c2. Also, it implies that τ = c+ ayu, yv = c and y−1f = c2 + yg. It publishes public parameters
as follows:

PK := {e(g1, g2)α = e(f c
3

1 , f c2)αe(f c
2

1 , f2)2α·yge(f1, f2)α·y
2
g , g1, g

a
1 ,

gτ1 = f c
3

1 (fac
2

1 )yu(f c1)yg (fa1 )yuyg , g
b(w,1,h)
1 = (f c

2

1 )b(w,1,h
′)f

b(w,yg,h
′′)

1 ,

g
a·b(w,1,h)
1 = (fac

2

1 )b(w,1,h
′)(fa1 )b(w,yg,h

′′),

g
τ ·b(w,1,h)
1 = (f c

3

1 )b(w,1,h
′)(f c1)b(w,yg,h

′′)(fac
2

1 )yu·b(w,1,h
′)(fa1 )yu·b(w,yg,h

′′)}.

Because f c
2

2 is not given, B cannot explicitly generate MSK. But, we show that B still properly-
generates a privates key for x ∈ X only using f c2 in Phase I/II.

Phase I/II: To generate a normal private key for x ∈ X , B randomly selects z′ ∈ Zmkp and r ∈ Rr
where mk = |k(α, x, b(w, 1,h′); r)|. It, then, implicitly sets

z = z′ − k(αc, x, b(w, c, c · h′); r).
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z is randomly distributed due to z′. B can create normal key as follows:

K0 = f
k(αyg,x,b(w,yg,h

′′);r)
2 · (f c2)z

′

K1 = fyuz
′

2 (f c2)−yuk(α,x,b(w,1,h
′),r), K2 = f−z

′

2 (f c2)k(α,x,b(w,1,h
′),r).

K0,K1 and K2 can be calculated since f c2 is given. Also, they are properly distributed since

K0 = f
k(αyg,x,b(w,yg,h

′′);r)
2 · f cz

′

2

= f
k(αyg+αc

2,x,b(w,yg+c
2,h′′+c2h′);r)

2 · f−k(αc
2,x,b(w,c2,c2h′);r)

2 f cz
′

2 (1)

= g
k(α,x,b(w,1,h);r)
2 · f c(z

′−k(αc,x,b(w,c,c·h′),·r))
2 (2)

= g
k(α,x,b(w,1,h);r)
2 · vz2 .

The equalities (1) and (2) hold because of relaxed linearity in hidden common variables prop-
erty.

Challenge: When the adversary asks the challenge ciphertext with messages M0 and M1. B ran-
domly chooses β ∈ {0, 1} and randomly selects s1, ..., sm̃2 ∈ Zp. It sets s = d and s = (s1, ..., sm̃2).
The value of d has never been used. Therefore, setting s = d is hidden to the adversary. It creates
the challenge ciphertext as

C =Mβ · e(f c
3s

1 , fc2)αe(f c
2s

1 , f2)2α·yge(fs1 , f2)α·y
2
g ,

C0 =(f c
2

1 )c(y,b(w,1,h
′);0,s)f

c(y,b(w,yg,h
′′);0,s)

1 (f c
2d

1 )c(y,b(w,1,h
′);1,0)

· (fd1 )c(y,(b(w,yg,h
′′);1,0)

C1 =(fac
2

1 )c(y,b(w,1,h
′);0,s)T c(y,b(w,1,h

′);1,0)(fa1 )c(y,b(w,yg,h
′′);0,s)

· (fad1 )c(y,b(w,yg,h
′′);1,0)

and sets C2 = Cc
0 ·C

yu
1 . C0 and C1 can be calculated by the given instances. Also, C2 is calculable

since f c1 , f
cd
1 , f c

3

1 and f c
3d

1 are given in the instance.

If T = fac
2d

1 , the challenge ciphertext is normal and generated using KeyGen. Hence, the

algorithm has properly simulated GameReal. Otherwise, if T is a random value, we use T = fac
2d

1 f s̃1
to denote it. Then, f

c(y,b(w,1,h′);s̃,0)
1 appears in the challenge ciphertext, which is identical with

the output of SFEncrypt(M,y, PK,h′, 0) and Game0,0 has been simulated.

2

Lemma 1.2. Suppose there exists a PPT A who can distinguish G0,i−1 and G0,i for i ∈ [m̃2]
with non-negligible advantage ε where w2 is the number of random variables that the challange
ciphertext has. Then, we can build an algorithm B which breaks LW1 with the advantage ε using
A.

Proof: This lemma is almost identical with Lemma 1.1. except Challenge. B simulates Challenge
as follows:

Challenge: When the adversary asks the challenge ciphertext with messages M0 and M1. B ran-
domly chooses β ∈ {0, 1} and randomly selects s, s1, ..., si−1, si+1, ..., sm̃2

, s′, s′1, ..., s
′
i−1 ∈ Zp. It

sets s = (s1, ..., si−1, d, si+1, ..., sm̃2
) and s′i−1 = (s′1, ..., s

′
i−1, 0, ..., 0). The value of d has never

been used. Therefore, s is uniformly random to the adversary. It calculates the challenge ciphertext
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as

C =Mβ · e(f c
3s

1 , f c2)αe(f c
2s

1 , f2)2α·yge(fs1 , f2)α·y
2
g ,

C0 =(f c
2

1 )c(y,b(w,1,h
′);s,s−d·1i)(f c

2d
1 )c(y,b(w,1,h

′);0,1i)f
c(y,b(w,yg,h

′′);s,s−d·1i)
1 ,

· (fd1 )c(y,(b(w,yg,h
′′);0,1i)

C1 =(fac
2

1 )c(y,b(w,1,h
′);s,s−d·1i)T c(y,b(w,1,h

′);0,1i)(fa1 )c(y,b(w,yg,h
′′);s,s−d·1i)

· (fad1 )c(y,b(w,yg,h
′′);0,1i)f

c(y,b(w,1,h′),s′,s′i−1)

1

and sets C2 = Cc
0 · C

yu
1 where 1i is a vector of which only the ith coordinate is 1 and all other

coordinates are 0. It should be noted that s−d ·1i is equal to (s1, ..., si−1, 0, si+1, ..., sm̃2
). Hence,

it does not have d as a coordinate. Therefore, C0 and C1 can be calculated by the given instances.
Also, C2 is calculable since f c1 , f

cd
1 , fc

3

1 and f c
3d

1 are given in the instance.

• If T = fac
2d

1 , the challenge ciphertext is the normal challenge ciphertext since

C1 = (fac
2

1 )c(y,b(w,1,h
′);s,s−d·1i)f

ac2dc(y,b(w,1,h′);0,1i)
1 (fa1 )c(y,b(w,yg,h

′′);s,s−d·1i)

· (fad1 )c(y,b(w,yg,h
′′);0,1i)f

c(y,b(w,1,h′),s′,s′i−1)

1

= f
a·c(y,b(w,c2,c2h′);s,s)
1 f

a·c(y,b(w,yg,h′′);s,s)
1 f

c(y,b(w,1,h′),s′,s′i−1)

1

= f
a·c(y,b(w,c2+yg,c2h′+h′′);s,s)
1 f

c(y,b(w,1,h′),s′,s′i−1)

1

= g
a·c(y,b(w,1,h),s,s)
1 f

c(y,b(w,1,h′),s′,s′i−1)

1 (3)

• If T is random value and we let T = fac
2d

1 fγ1 ,

T c(y,b(w,1,h
′);0,1i) = f

ac2d·c(y,b(w,1,h′);0,1i)
1 f

c(y,b(w,1,h′);0,γ·1i)
1

Therefore, f
c(y,b(w,1,h′);0,γ·1i)
1 is multiplied to (3). It means that

C1 = g
a·c(y,b(w,1,h),s,s)
1 f

c(y,b(w,1,h′),s′,s′i−1)

1 f
c(y,b(w,1,h′);0,γ·1i)
1

= g
a·c(y,b(w,1,h),s,s)
1 f

c(y,b(w,1,h′),s′,s′i−1+γ1i)

1

= g
ac(y,b(w,1,h),s,s)
1 f

c(y,b(w,1,h′),s′,s′i)
1

where s′i = (s′1, ..., s
′
i−1, γ, 0, ...0).

Therefore, if T = fac
2d

1 , the challenge ciphertext is generated using SFEncrypt (M,y, PK,h′, i−
1) and Game0,i−1 has been simulated. Otherwise, the challenge ciphertext is generated using
SFEncrypt(M,y, PK,h′, i) and Game0,i has been simulated. 2

Lemma 2. Suppose there exists a PPT A who can distinguish GNk,j−1 and GNk,j for j ∈ [m2] with
non-negligible advantage ε where m2 is the size of random variables that the kth key uses. Then,
we can build an algorithm B which breaks LW2 with the advantage ε using A.

Proof: Using the given instance {f1, fd1 , fd
2

1 , f tw1 , fdtw1 , fd
2t

1 ∈ G1, f2, f
c
2 , f

d
2 , f

w
2 , T ∈ G2}, B will

simulate either GameNk,j−1 or GameNk,j using A to break LW2.

Setup: B randomly chooses α ∈ Zp, a, y′v ∈ Zp,w ∈ Zω1
p ,h

′,h′′ ∈ Zω2
p . It implicitly sets yv =

d− aw + y′v, yu = w, b = 1/d and τ = d− aw + y′v + aw = d+ y′v. It publishes a public key as

PK =: {e(g1, g2)α = e(fd1 , f
d
2 )α, g1 = fd1 ,

g
b(w,1,h)
1 = (fd1 )b(w,1,h

′)f
b(w,0,h′′)
1 , ga1 , g

a·b(w,1,h)
1 , gτ1 = fd

2

1 (fd1 )y
′
v ,
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g
τ ·b(w,1,h)
1 = (fd

2

1 )b(w,1,h
′)(fd1 )b(w,0,h

′′)(fd1 )y
′
vb(w,1,h

′)(f1)y
′
vb(w,0,h

′′)}.

Then, it sets

MSK := {g2 = fd2 , g
α
2 = (fd2 )α, g

b(w,1,h)
2 = (fd2 )b(w,1,h

′)f
b(w,0,h′′)
2 ,

v2 = fd2 (fw2 )−af
y′v
2 , u2 = fw2 , f2}.

Phase I and II: The algorithm knows all MSK. Therefore, it can create the normal keys for (> k).
For the first k− 1 key (< k), B first generates a normal key. Then, it randomly selects α′ from Zp
and creates an SF key. This is possible since B knows a, α′, x and f2.

For the kth key, it randomly selects z′ from Zmkp where mk = |k| and sets z = z′ + c ·
k(0, x, b(w, 1,h′); 1j) where 1j is a vector of which only the jth coordinate is 1 and all other
coordinates are 0. Then, it randomly chooses r′′ from Rr and sets r = r′′ − c · 1j . z and r
are randomly distributed because of z′ and r′′. It also generates r′1, ..., r

′
j−1 from Zp and sets

r′j−1 = (r′1, ..., r
′
j−1, 0, 0, 0) ∈ Rr.

K0 =(fd2 )k(α,x,b(w,1,h
′);r′′)f

k(0,x,b(w,0,h′′);r′′)
2 (f c2)−k(0,x,b(w,0,h

′′);1j)

· (fd2 (fw2 )−af
y′v
2 )z

′
T−ak(0,x,b(w,1,h

′);1j)(f c2)y
′
vk(0,x,b(w,1,h

′);·1j)

· f−ak(0,x,b(w,1,h
′);r′j−1)

2 ,

K1 =(fw2 )z
′
Tk(0,x,b(w,1,h

′);1j)f
k(0,x,b(w,1,h′);r′j−1)

2 ,

K2 =f−z
′

2 (f c2)−k(0,x,b(w,1,h
′),1j)

If T = f cw2 , then this key is a properly distributed nominally semi-function (NSF) key created
using SFKeyGen(x,MSK,h′, j − 1, 0) since

K0 = (fd2 )k(α,x,b(w,1,h
′);r′′)f

k(0,x,b(w,0,h′′);r′′)
2 (f c2)−k(0,x,b(w,0,h

′′);1j)

· (fd2 (fwa2 )−1f
y′v
2 )z

′
(f cw)−ak(0,x,b(w,1,h

′);·1j)(f c2)y
′
vk(0,x,b(w,1,h

′);·1j)

· f−ak(0,x,b(w,1,h
′);r′j−1)

2

= f
d·k(α′,x,b(w,1,h′);r′′)
2 f

d·k(0,x,b(w,1,h′);−c·1j)
2 f

k(0,x,b(w,0,h′′);r′′)
2

· fk(0,x,b(w,0,h
′′);−c·1j)

2 f
(d−wa+y′v)(z

′)
2 f

d·k(0,x,b(w,1,h′);c·1j)
2

· f−wa·k(0,x,b(w,1,h
′);c·1j)

2 f
y′v·k(0,x,b(w,1,h

′);c·1j)
2 f

−a·k(0,x,b(w,1,h′);r′j−1)

2 (4)

= f
dk(α′,x,b(w,1,h′);r)
2 f

k(0,x,b(w,0,h′′);r)
2 f

(d−wa+y′v)(z
′+k(0,x,b(w,1,h′);c·1j))

2

· f−ak(0,x,b(w,1,h
′);r′j−1)

2 (5)

= f
k(dα′,x,b(w,d,dh′+h′′);r)
2 f

(d−wa+y′v)(z
′+k(0,x,b(w,1,h′);c·1j))

2

· f−ak(0,x,b(w,1,h
′);r′j−1)

2 (6)

= g
k(α′,x,b(w,1,h);r)
2 vz2 f

−ak(0,x,b(w,1,h′);r′j−1)

2 ,

K1 = (fw2 )z
′
(f cw2 )k(0,x,b(w,1,h

′);1j)f
k(0,x,b(w,1,h′);r′j−1)

2

= (fw2 )z
′+k(0,x,b(w,1,h′);c·1j)f

k(0,x,b(w,1,h′);r′j−1)

2

= uz2f
k(0,x,b(w,1,h′);r′j−1)

2
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This implicitly sets r = r′′ − c · 1j and z = z′ + k(0, x, b(w, 1,h′); c · 1j). The second equality (4)
in above equation holds by the linearity over random values. The third equality (5) holds because
of the definition of r (= r′′ − c · 1j) and linearity over random values. The equality (6) holds due
to relaxed linearity over hidden common variables.

Otherwise, if T is a random and we let f cw+γ
2 denote T , this is also a properly distributed

(NSF) key but it was created using SFKeyGen(x,MSK,h′, j, 0) since this implicitly sets r′j =
r′j−1 + γ · 1j . It is worth noting that r′j is uniformly random because γ is randomly distributed.

Challenge: When the adversary requests the challenge ciphertext with two message M0 and M1,
B randomly selects β from {0, 1}. Then, it randomly selects s′′, s̃ ∈ Zp and s′′, s̃ ∈ Rs. Then, it
implicitly sets s = wts̃ + s′′, s′ = −d2ts̃, s′ = wts̃ + s′′ and s′ = −d2ts̃. Because of s′′, s̃, s̃ and
s′′, they are randomly distributed. B sets C = Mβ · e(fdwt1 , fd2 )αs̃e(fd1 , f

d
2 )αs

′′
and the others as

C0 = (fdwt1 )c(y,b(w,1,h
′);s̃,s̃)(fd1 )c(y,b(w,1,h

′);s′′,s′′)(fwt1 )c(y,b(w,0,h
′′);s̃,s̃)

·fc(y,b(w,0,h
′′);s′′,s′′)

1 ,

C1 = (C0)a(fd
2t

1 )−c(y,b(w,1,h
′);s̃,s̃),

C2 = (fd
2

1 )c(y,b(w,1,h
′);s′′,s′′)(fdwt1 )c(y,b(w,y

′
v,h
′′+y′vh

′);s̃,s̃)

· (fd1 )c(y,b(w,y
′
v,h
′′+y′vh

′);s′′,s′′)(fwt1 )c(y,b(w,0,y
′
vh
′′);s̃,s̃)f

c(y,b(w,0,y′vh
′′);s′′,s′′)

1 .

The challenge ciphertext is also properly distributed because

C0 = (fdwt1 )c(y,b(w,1,h
′);s̃,s̃)(fd1 )c(y,b(w,1,h

′);s′′,s′′)(fwt1 )c(y,b(w,0,h
′′);s̃,s̃)

· fc(y,b(w,0,h
′′);s′′,s′′)

1

= (fwt1 )c(y,b(w,d,dh
′);s̃,s̃)(f1)c(y,b(w,d,dh

′);s′′,s′′)(fwt1 )c(y,b(w,0,h
′′);s̃,s̃)

· fc(y,b(w,0,h
′′);s′′,s′′)

1 (7)

= f
c(y,(d,dh′);wts̃+s′′,wts̃+s′′)
1 f

c(y,(0,h′′);wts̃+s′′,wts̃+s′′)
1 (8)

= f
c(y,b(w,d,dh′+h′′);wts̃+s′′,wts̃+s′′)
1 (9)

= g
c(y,b(w,1,h);s,s)
1

C1 = (C0)a(fd
2t

1 )−c(y,b(w,1,h
′);s̃,s̃) = g

ac(y,b(w,1,h);s,s)
1 f

c(y,b(w,1,h′);s′,s′)
1

C2 = (fd
2

1 )c(y,b(w,1,h
′);s′′,s′′)(fdwt1 )c(y,b(w,y

′
v,h
′′+y′vh

′);s̃,s̃)

· (fd1 )c(y,b(w,y
′
v,h
′′+y′vh

′);s′′,s′′)(fwt1 )c(y,b(w,0,y
′
vh
′′);s̃,s̃)f

c(y,b(w,0,y′vh
′′);s′′,s′′)

1

= (fd
2

1 )c(y,b(w,1,h
′);wts̃+s′′,wts̃+s′′)(fd

2

1 )c(y,b(w,1,h
′);−wts̃,−wts̃)

· (fd1 )c(y,b(w,y
′
v,h
′′+y′vh

′);wts̃+s′′,wts̃+s′′)f
c(y,b(w,0,y′vh

′′);wts̃+s′′,wts̃+s′′)
1 (10)

= f
c(y,b(w,(d+y′v)d,d(d+y

′
v)h
′+(d+y′v)h

′′);wts̃+s′′,wts̃+s′′)
1

· (fw1 )c(y,b(w,1,h
′);−d2ts̃,−d2ts̃) (11)

= g
τ ·c(y,b(w,1,h);s,s)
1 u

c(y,b(w,1,h′);s′,s′)
1 .

The equalities of (7) and (9) hold by relaxed linearity over common variables. Also, those of (8)
and (10) hold by linearity over random values. The equalities of (11) holds due to both linearity
over random values and relaxed linearity over common variables. The last equalities in C0, C1

and C2 hold because of s′ = −d2ts̃, s′ = −d2ts̃ and the definitions of public parameters. s̃ and s̃
are randomly distributed to the adversary although they also appear in s = wts̃+s′′, s = wts̃+s′′

since their values are not revealed in those values (due to s′′ and s′′).

16



2

Lemma 3. Suppose there exists an A who can distinguish GNk,m2
and GTk,m2

with non-negligible

advantage ε for any k < q1. Then, we can build an algorithm B who can distinguish between OCos0

and OCos1 with ε using A.
Proof: Given a PPT adversary A who can distinguish GNk,m2

and GTk,m2
with a non-negligible

advantage for k < q1, we will build an algorithm B to distinguish between OCos0 and OCos1 . B
works with either OCos0 or OCos1 . Depending on the oracle B works with, it will simulate GNk,m2

and GTk,m2
with A.

Setup: When A requests the PK, B requests the initial instance the oracle, it works with then

receives {ω1, ω2, ω, g
b(w,1,1)
1 , g

b(w,1,1)
2 }. Then, it randomly creates α, a, yf , yu, yv ∈ Zp and h ∈ Zω2

p .

It sets u1 = g
yfyu
1 , f1 = g

yf
1 and τ = yv + a · yu, and publishes the public parameters:

{e(g1, g2)α, g
b(w,1,h)
1 , g

a·b(w,1,h)
1 , g

τ ·b(w,1,h)
1 }.

It sets MSK as {α, gb(w,1,h)2 , f2 = g
yf
2 , u2 = g

yfyu
2 , v2 = g

yfyv
2 }. It should be noted that all elements

of the public key and the master secret key can be computed since B knows all exponents unless
they do not contain w and b(w, 1,h) is linear in h.

Phase I: For the first k− 1 keys for Si, B generates a normal key (D1,D2,D3) using KeyGen. It
randomly creates α′i ∈ Zp and sets

D′1 = D1 · f
−ak(α′i,xi,b(w,0,0);0)
2 ,D′2 = D2 · f

k(α′i,xi,b(w,0,0);0)
2 ,D′3 = D3

f
−ak(α′i,xi,b(w,0,0);0)
2 and f

k(α′i,xi,b(w,0,0);0)
2 can be computed since it knows α′i. It sends a semi-

functional key (D′1,D
′
2,D

′
3). For the key queries after the kth key including keys in Phase II, B

sends normal keys using KeyGen. B can compute KeyGen since it knows all PK and MSK.
To create the kth key for xk, it sends k-type query for xk to the oracle it works with. After

receiving g
k(β·α′,S,b(w,1,h′);r̃)
2 from the oracle, B generates a normal key for (D1,D2,D3) using

KeyGen and sets

D′1 = D1 · (gk(β·α
′,S,b(w,1,h′);r̃)

2 )−a·yf ,D′2 = D2 · (gk(β·α
′,S,b(w,1,h′);r̃)

2 )yf ,D′3 = D3.

If the simulator works withOCos0 , B simulates SFKeyGen(xk,MSK,h′,m2, 0). Therefore, this
properly simulates GNk,m2

. If the simulator works withOCos1 , B simulates SFKeyGen(xk,MSK,h′,m2, α
′).

This properly simulates GTk,m2
.

Challenge: The adversary requests the challenge ciphertext for a message M and a predicate y. B
generates the normal ciphertext (C0,C1, C2, C3) by running Encrypt using the public key. It

sends the c-type query for y to the oracle which it works with and receives g
c(y,b(w,1,h′);s̃,s̃)
1 . B sets

C ′0 = C0,C
′
1 = C1 and

C ′2 = C2 · (gc(y,b(w,1,h
′);s̃,s̃)

1 )yf , C ′3 = C3 · (gc(y,b(w,1,h
′);s̃,s̃)

1 )yf ·yu .

It outputs the semi-functional challenge ciphertext CT ′ = (C ′0,C
′
1,C

′
2,C

′
3).

2

Lemma 4. Suppose there exists an A who can distinguish GNk,m2
and GTk,m2

with non-negligible

advantage ε and the kth key query is given after the challenge ciphertext query (k > q1). Then,
we can build an algorithm B who can distinguish between OSel0 and OSel1 with ε using A.
Proof: This proof is identical with the proof of the previous lemma except the order between
the kth query and the challenge ciphertext and the oracles that B works with. Since this lemma
simulates the selective security, the kth key is requested after the challenge ciphertext is queried.
(k > q1) The algorithm works with either OSel0 or OSel1 . If the simulator works with OSel0 , B simu-
lates SFKeyGen(xk,MSK,h′,m2, 0). Therefore, this properly simulates GNk,m2

. If the simulator
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works with OSel1 , B simulates SFKeyGen(xk,MSK,h′,m2, α
′). This properly simulates GTk,m2

.
2

Lemma 5. Suppose there exists a PPT A who can distinguish GTk,j−1 and GTk,j for j ∈ [m2] with

non-negligible advantage ε where m2 is the size of random variables that the kth key uses. Then,
we can build an algorithm B which breaks LW2 with the advantage ε using A.
Proof: The proof of this lemma is identical with that of Lemma 2 except that the kth key is
temporary semi-functional (TSF) and outputs from either SFKeyGen(x,MSK,h′, j − 1, αk) or
SFKeyGen(x,MSK,h′, j, αk) where α′k is a random value from Zp. The simulator can randomly
select α′i and use it to simulate the games. Hence, If T = f cw2 , this simulate GTk,j−1. Otherwise, if

T is a random, this simulate GTk,j . 2

Lemma 6. Suppose there exists a PPT A who can distinguish Gqt and GFinal with non-negligible
advantage ε. Then, we can build an algorithm B which breaks DBDH with the advantage ε using
A.
Proof: The proof of this lemma is providing in the supplementary material. 2

6 Instance

We introduce a Non-monotonic Ciphertext-Policy Attribute-Based Encryption (NM-CP-ABE)
with short keys and a Non-monotonic Key-Policy Attribute-Based Encryption (NM-KP-ABE) with
short ciphertexts, an unbounded NM-CP-ABE and an unbounded NM-KP-ABE as new instances
of our encodings. Particularly, we first introduce two NM-CP-ABE schemes, NM-CP-ABE with
short keys unbounded NM-KP-ABE. Then, we convert them into corresponding NM-KP-ABE
schemes using duality of ABE introduced in [8]. All our schemes are adaptively secure in prime
order groups.

6.1 Adaptively Secure Unbounded NM-CP-ABE

Assumptions for NM-CP-ABE with multi-use of attributes We define assumptions A1-
(n) and A2-(n) for our instances. Those assumptions are based on n-(A) and n-(B) assumptions
introduced in [31], respectively. We prove the security of our assumptions in the generic group
model in the supplementary material.

Assumption 4. (A1-(n)) If a group generator G and a positive integer n are given, we define the
following distribution

G = (p,G1, G2, GT , e)
R←− G, c, d, x, y, z, a1, ..., an, b1, ..., bn

R←− Zp,

g1
R←− G1, g2

R←− G2, D := {g1, g2, gc1, gc2} ∪ {g
z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2}

where

Z1 = { dc, x, y, z, (dcz)2,
∀i ∈ [n1], dczai, dcz/ai, (dc)

2zai, y/a
2
i , y

2/a2i
∀(i, j) ∈ [n1, n1], i 6= j, dczai/aj , dcyzai/a

2
j , (dcz)

2ai/aj , dcybi/b
2
j , dcyb

2
i /b

2
j

∀(i, j) ∈ [n1, n1], bi, xbi, bibj , dcy/b
2
i , dcxy/b

2
i , dcxybi/b

2
j

∀(i, j, k) ∈ [n1, n1, n1], i 6= j}, dcybibj/b2k },
Z2 = { ∀i ∈ [n1], ai, dcz/ai

∀(i, j) ∈ [n1, n1], i 6= j, yai/a
2
j , zbibj

∀(i, j) ∈ [n1, n1], bi, xbi, xzbi, zbi, bibj }.

Given the instances, distinguishing between T0 = gdyz2 and T1
R←− G2 is hard.
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Assumption 5. (A2-(n)) If a group generator G and a positive integer n are given, we define
following distribution

G = (p,G1, G2, GT , e)
R←− G, c, d, a, b1, ..., bn

R←− Zp,

g1
R←− G1, g2

R←− G2, D := {g1, g2, gc1, gc2} ∪ {g
z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2}

where

Z1 = { ∀(i, j) ∈ [n, n], dc, a, bj , dcbj , dcbibj , a
i/b2j

∀(i, j, j′) ∈ [2n, n, n], j 6= j′, aibj/b
2
j′

∀(i, j, j′) ∈ [n, n, n], j 6= j′, dcaibj/bj′ , dca
ibj/b

2
j′

∀(i, j, j′, j′′) ∈ [n, n, n, n], j 6= j′, j′ 6= j′′}, dcaibjbj′/b2j′′ },
Z2 = { ∀(i, j) ∈ [n, n], dc, ai, aibj , a

i/b2j
∀(i, j) ∈ [2n, n], i 6= n+ 1, ai/bj
∀(i, j, j′) ∈ [2n, n, n], j 6= j′, aibj/b

2
j′ }.

Given the instances, distinguishing between T0 = gda
n+1

2 and T1
R←− G2 is hard.

We define the advantage of an algorithm A in breaking A1-(n) and A2-(n) to be

Adv
{A1-(n),A2-(n)}
G,A (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

Now, We introduce Unbounded NM-CP-ABE which utilizes two selective schemes Two mode
Identity Based Broadcast Encryption (TIBBE) and NM-CP-ABE from Yamada et al. [31].

Encoding scheme for Unbounded-NM-CP-ABE Our encoding scheme for Unbounded-NM-
CP-ABE consists of the following four algorithms:

Param(κ): It sets ω1 = 1, ω2 = 7 and ω = 11. It selects α
R←− Zp, w = (η)

R←− Zp, h =

(δ, ν, ζ, yh, yw, yx, yy)
R←− Z7

p. It sets b(w, 1,h) = (η, η · yx, η · yy, δ, ν, ζ, yh, yw, yx, yy).

Enc1(S): The algorithm selects r, r0, r1, ..., rk
R←− Zp. It then selects r′1, ..., r

′
k

R←− Zp such that
r = r′1+...+r′k and sets r = (r0, r1, ..., rk, r

′
1, ..., r

′
k)† . It sets d1 = α+δr+νr0, d2 = −r0, d3 = r.

For all wi ∈ S = {w1, ..., w|S|} such that S is not an empty set. It sets

di,1 = −ζr + ri(wiyh + yw), di,2 = ri, d
′
i,1 = ηr′i(wiyx + yy), d′i,2 = ηr′i

It defines k(α, S, b(w, 1,h); r) := (d1, d2, d3, di,1, di,2, d
′
i,1, d

′
i,2 ∀i ∈ [|S|]).

Enc2(Ã): For the non-monotonic access structure Ã, there exists a monotonic access structure
Ã = NM(A) where A = (A, ρ) and A is an ` × m access matrix. The algorithm randomly

selects s, s2, ..., sm, t1, ..., t`
R←− Zp and sets s = (s2, ..., sm, t1, ..., t`) and λi = Ai · φ where

Ai is the ith row of A and φ = (s, s2, ..., sm). It sets c1 = s, c2 = νs. For all i ∈ [`], it sets
c(Ã, b(w, 1,h); s, s) := (c1, c2, ci,1, ci,2, ci,3 ∀i ∈ [`]) as follows:

ci,1 = δλi + ζti, ci,2 = −ti(xiyh + yw), ci,3 = ti if ρ(i) = xi;

ci,1 = δλi + ηyxti, ci,2 = −ti(xiyx + yy), ci,3 = ti if ρ(i) = x′i

where the attribute corresponding to the ith row of A by the mapping ρ is denoted by xi (or
x′i, if it is an negated attribute).

† r is intentionally omitted since r = r′1 + ...+ r′k.
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Pair(S, Ã): If S satisfies Ã, there exists S′ = N(S) which satisfies an access structure A = (A, ρ)
such that Ã = NM(A). We define I = {i|ρ(i) ∈ S′}. It computes µ = (µ1, ..., µ|I|) such that
µ ·AI = (1, 0, ..., 0). We set γ the index such that wγ = xi. To compute the share of i ∈ I, for
Λi∈I ∀i ∈ I, it sets

Λi = ci,1 · d3 + ci,2 · dγ,2 + ci,3 · dγ,1 = λiδr if ρ(i) = xi;

Λi = ci,1 · d3 +
∑
j∈[1,k]

(
ci,3 · d′j,1 + ci,2 · d′j,2

xi − wj

)
= λiδr if ρ(i) = x′i.

Finally, the algorithm computes c1 · d1 + c2 · d2 −
∏
i∈[I] µiΛi = αs.

Remark 2. In our scheme, w which causes non-linearity is corresponding to b in the selectvely
secure NM-CP-ABE of [31]. One may think η is redundant in the construction, but it is essential
in the security proof both in ours and [31].

We can prove the computation α hiding using Yamada et al.’s selective security proofs of Two-
mode Identity Based Broadcast Encryption (TIBBE) and NM-CP-ABE [31]. The major difference
in our proofs is that we set η which causes non-linearity independently from any information given
by the adversary. Therefore, we can include gη1 and gη2 along with g1 and g2 in the initial instance.
This causes some change in the selective proofs, but we still can use the many parts of the selective
proofs because we still can select the rest of public parameters after seeing the target predicate.
We prove computational α hiding formally in Lemmas 7 and 8. It should be noted that the other
properties trivially holds in our encodings of NM-CP-ABE.

Lemma 7 Suppose there exists a PPT adversary A who can distinguish between OCos0 (n1) and
OCos1 (n1) with non-negligible advantage ε. Then, we can build an algorithm B breaking A1-(n1)
with ε using A with an attributes set of size k ≤ n1.
Proof: The proof of this lemma is providing in the supplementary material. 2

Lemma 8. Suppose there exists an A who can distinguish between two oracles OSel0 (n2) and
OSel1 (n2) with a non-negligible advantage ε. Then, we can build B breaking A2-(n2) with ε using
A with an access matrix of size `×m where `,m ≤ n2.
Proof: The proof of this lemma is providing in the supplementary material. 2

6.2 Adaptively Secure NM-CP-ABE with short keys

We introduced an NM-CP-ABE with short keys. The co-selective security proved in Lemma 9 is
inspired by the selective NM-KP-ABE scheme of [5].

Assumptions for NM-CP-ABE with short keys We define n-DBDHE in asymmetric pairing
a for our instances. We prove the security of our assumptions in the generic group model in the
supplementary material.

Assumption 6. ((Asymmetric) n-DBDHE) If a group generator G and a positive integer n are
given, we define the following distribution

G = (p,G1, G2, GT , e)
R←− G, b, c, d, R←− Zp,

g1
R←− G1, g2

R←− G2, D := {g1, g2, gc1, gc2} ∪ {g
z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2}

where Z1 = Z2 := {dc, bi| ∀i ∈ [2n], i 6= n+ 1}.

Given the instances, it is hard to distinguish between T0 = gdb
n+1

2 and T1
R←− G2.

We define the advantage of an algorithm A in breaking n-DBDHE to be

Advn−DBDHEG,A (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|
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Encoding scheme for NM-CP-ABE with short keys Our encoding scheme for NM-CP-ABE
with short keys consists of the following encoding algorithms:

Param(κ): It sets ω1 = 1, ω2 = 2N + 3 and ω = 3N + 4. It selects α
R←− Zp, w = η

R←− Zp, h =

(δ, ν, ζ, y1, ..., yN , y
′
1, ..., y

′
N )

R←− Z2N+3
p . It sets b(w, 1,h) = (δ, ν, ζ, η, y1, ..., yN , , y

′
1, ..., y

′
N , η·

y′1, ..., η · y′N ).

Enc1(S): The algorithm selects r0, r1, r2
R←− Zp and sets r = (r0, r1, r2). It sets d1 = α + δr2 +

νr0, d2 = −r0, d3 = r2. For all wi ∈ S = {w1, ..., wk} such that S is not an empty set and
k ≤ N . It sets

d4 = −ζr2 + (y1a1 + ...+ yNaN )r1, d5 = r1,

d′6 = η(y′1a1 + ...+ y′NaN )r2, d′7 = ηr2

where ai is an coefficient of zi−1 in P (z) =
∏
y∈S(z−y) for i ∈ [k+1]. It defines k(α, S, b(w, 1,h); r) :=

(d1, d2, d3, d4, d5, d
′
6, d
′
7).

Enc2(Ã): For the non-monotonic access structure Ã, there exists a monotonic access structure
Ã = NM(A) where A = (A, ρ) and A is an ` × m access matrix. The algorithm randomly

selects s, s2, ..., sm, t1, ..., t`
R←− Zp and sets s = (s2, ..., sm, t1, ..., t`) and λi = Ai · φ where

Ai is the ith row of A and φ = (s, s2, ..., sm). It sets c1 = s, c2 = νs. For all i ∈ [`], it sets
c(Ã, b(w, 1,h); s, s) := (c1, c2, ci,1, ci,2, ..., ci,N+2; ∀i ∈ [`]) as follows:

ci,1 = δλi + ζti, ci,2 = ti,

ci,3 = −(y2 − y1ρ(i))ti, ..., ci,N+1 = −(yN − y1ρ(i)N−1)ti if ρ(i) = xi;

ci,1 = δλi − ηy′1ti, ci,2 = ti,

ci,3 = −(y′2 − y′1ρ(i))ti, ..., ci,N+1 = −(y′N − y′1ρ(i)N−1)ti if ρ(i) = x′i;

where the attribute corresponding to the ith row of A by the mapping ρ is denoted by xi (or
x′i, if it is an negated attribute).

Pair(S, Ã): If S satisfies Ã, there exists S′ = N(S) which satisfies an access structure A = (A, ρ)
such that Ã = NM(A). We define I = {i|ρ(i) ∈ S′}. It computes µ = (µ1, ..., µ|I|) such that
µ ·AI = (1, 0, ..., 0). We set γ the index such that wγ = xi. To compute the share of i ∈ I, for
Λi∈I ∀i ∈ I, it computes a0, ..., aN which are the coefficient of zi in P (z). Then, it sets

Λi = ci,1 · d3 + ci,2 · d4 +Σj∈[N ]\{1}aj · ci,1+j · d5 = λiδr2 if ρ(i) = xi;

Λi = ci,1 · d3 +
ci,2 · d′6 +Σj∈[N ]\{1}aj · ci,1+j · d′7

Σj∈[N ]aj · ρ(i)j
= λiδr2 if ρ(i) = x′i.

Finally, the algorithm computes c1 · d1 + c2 · d2 −
∏
i∈[I] µiΛi = αs.

The computational α hiding of our scheme can be proved by the following two lemmas.

Lemma 9. Suppose there exists a PPT adversary A who can distinguish between ÔCos0 (n1) and
ÔCos1 (n1) with non-negligible advantage ε. Then, we can build an algorithm B breaking (Asymmet-
ric) n1 −DBDHE with ε using A with an attributes set of size k < n1 (N = n1).
Proof: The proof of this lemma is providing in the supplementary material. 2

Lemma 10. Suppose there exists an A who can distinguish between two oracles ÔSel0 (n2) and
ÔSel1 (n2) with a non-negligible advantage ε. Then, we can build B breaking A2-(n2) with ε using
A with an access matrix of size `×m where `,m ≤ n2.
Proof: The proof of this lemma is providing in the supplementary material. 2
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6.3 Duality

We introduce Unbounded NM-KP-ABE and NM-KP-ABE with short keys as a dual scheme of
our NM-CP-ABE schemes. Attrapadung and Yamada [8] showed that pair encoding schemes can
be easily converted to their dual scheme (e.g. CP-ABE to KP-ABE) when gs1 can be parsed from
gc(y,b(w,1,h);s,s). As our scheme satisfies this structural condition, our scheme also can be converted
to NM-KP-ABE schemes using their technique.

Param(κ): It runs Param of NM-CP-ABE to get b(w, 1,h) and outputs b′(w′, 1,h′) := (π, b′(w, 1,h))

where π
R←− Zp. This sets w′ = w and h′ = (π,h).

Enc1(Ã): It runs Enc2(Ã) of NM-CP-ABE to get c(Ã, b(w, 1,h); s, s) and sets d′1 = α + πs and
k′(α, Ã, b(w′, 1,h′); r′) := (d′1, c(Ã, b(w, 1,h); s, s)). It is worth noting that s can be parsed
from c. It implicitly sets r′ = (s, s).

Enc2(S): It creates s′
R←− Zp and runs Enc1(S) of NM-CP-ABE to get k(πs′, Ã, b(w, 1,h); r).

It sets c′1 = s′ and c′(S, b(w′, 1,h′); s′, s′) := (c′1,k(πs′, Ã, b(w, 1,h); r)). It implicitly sets
s′ = r.

Pair(S, Ã): Pair(S, Ã) of NM-CP-ABE outputs E such that kEc> = πss′. The algorithm com-
putes d′1 · c′1 = αs′ + πss′. Finally, the algorithm computes αs′ = d′1 · c′1 − kEc>.

We can prove the computational α hiding of our NM-KP-ABE which is invariance between
oracles ÕCosβ (n2) and ÕSelβ (n1) using the oracles of NM-CP-ABE, OCosβ (n1) and OSelβ (n2).

Lemma 11. Suppose there exists an A who can distinguish between two oracles ÕCos0 (n1) and
ÕCos1 (n1) with a non-negligible advantage ε. Then, we can build B distinguishing between OSel0 (n1)
and OSel1 (n1) with ε using A with an access matrix of size `×m where `,m ≤ n1.

Proof: To simulate ÕColβ (n1), the simulator selects s′, π′
R←− Zp. To generate the initial instance,

it requests an initial instance to OSelβ (n1). It sets b′(w′, 1,1) = (1, b(w, 1,1)). For the k-type

response, the simulate requests the c-type response to OCosβ (n1) to receive c and constructs the

response k′ := (d′1(= π′s), c). To respond c-type query, it requests the k-type response to OSelβ (n1)

to receive k. It outputs c′ := (s′, k̃) where k̃ = k(α′, Ã, b(w, 1,h); r) + k(π′s′, Ã, b(w, 0,0); 0)‡

If β = 0, it sets π = π′ and the simulator properly simulate ÕCol0 (n1). Otherwise, if β = 1, it
implicitly sets π = α′/s′ + π′. This implies d′1 = πs− α′s/s′ and this properly simulate ÕCol1 (n1)
where α = −α′s/s′ since α′ is randomly distributed to the adversary. 2
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Appendix

A Proofs of Lemmas

Lemma 6. Suppose there exists a PPT A who can distinguish Gqt and GFinal with non-negligible
advantage ε. Then, we can build an algorithm B which breaks DBDH with the advantage ε using
A.

Proof: Using a given instance {f1, fa1 , fc1 , fd1 ∈ G1, f2, f
a
2 , f

c
2 , f

d
2 ∈ G2, T ∈ GT }, B will simulate

either Gameqt or GameFinal depending on the value of T .

Setup: B runs Param to get ω1, ω2, ω and a sequence of variables and functions to set b. It
randomly selects yg, yu, yv ∈ Zp,w ∈ Zω1

p ,h ∈ Zω2
p sets α = ac, a = a, b = 1/yg and τ = yv + ayu.

B publishes the public parameters

g1 = f
yg
1 , g

b(w,1,h)
1 = f1

ygb(w,1,h), ga1 = fa1
yg , g

ab(w,1,h)
1 = fa1

ygb(w,1,h),

gτ1 = f
ygyv
1 + (fa1 )ygyu , g

τb(w,1,h)
1 = f

ygyvb(w,1,h)
1 (fa1 )ygyub(w,1,h),

e(g1, g2)α = e(fa1 , f
c
2)y

2
g

It also sets gα2 = f
acyg
2 , g2 = f

yg
2 , g

b(w,1,h)
2 = f2

ygb(w,1,h), v2 = fyv2 , u2 = fyu2 , f2. It should be noted
that B sets gα2 only implicitly since fac2 is not given. The other elements can be calculated using
f2 and fa2 given in the instance.

Phase I and II: B runs Enc1 to get a sequence of coefficient of k. For each key SKi, B randomly
selects α′′i ∈ Zp, z ∈ Zmkp and r ∈ Rs and sets α′i = ygc+ α′′i .

K0 = f
ygk(0,x,b(w,1,h);r)
2 vz2 (fa2 )k(−α

′′
i ,x,b(w,0,0);r),

K1 = f
k(α′′,x,b(w,0,0),0)
2 fyuz2 (f c2)k(yg,x,b(w,0,0),0), K2 = f−z2

This is a properly distributed key since

K0 = (fa2 )k(−α
′′
i ,x,b(w,0,0);r)f

ygk(0,x,b(w,1,h);r)
2 vz2 ,

= f
k(ygac,x,b(w,yg,ygh);r)
2 · vz2 · f

k(−ygac−aα′′i ,x,b(w,yg,ygh);0)
2 (12)

= g
k(α,x,b(w,1,h);r)
2 · vz2 · f

−ak(α′i,x,b(w,0,0);0)
2 (13)

The equality of (12) holds due to linearity over random variables. Also, the equality of (13) holds
by parameter vanishing and relaxed linearity over hidden common variables.

Challenge: When the adversary requests the challenge ciphertexts with two messages M0 and
M1. B runs Enc1 to get a sequence of coefficient of c. It randomly selects β ∈ {0, 1}, s′′ ∈ Zp,
s, s′′ ∈ Rs and h′′ ∈ Znp and sets s = d, s′ = −ygad+ as′′ and s′ = a · s′′. d appears both in s and
s′. However, s′ does not reveal the value of d because of s′′. Therefore, setting s = d is hidden to
the adversary. It calculates the challenge ciphertexts as follows:

C = M · T, C0 = f
ygc(y,b(w,1,h);s,s)
1 ,

C1 = (fa1 )c(y,b(w,1,h);s
′′,ygs+s

′′)f
c(y,b(w,0,h′′);s′′,s′′)
1 (fd1 )c(y,b(w,0,h

′′);−yg,0),

C2 = Cyv
0 C

yu
1
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This implicitly sets h′ = h + a−1h′′ (i.e. b(w, 1,h′) = b(w, 1,h) + b(w, 1, a−1h′′). Also, the
ciphertext is properly distributed since

C1 = (fa1 )c(y,b(w,1,h);s
′′,ygs+s

′′)f
c(y,b(w,0,h′′);s′′,s′′)
1 (fd1 )c(y,b(w,0,h

′′);−yg,0)

= (fa1 )c(y,b(w,1,h);ygd−ygd+s
′′,ygs+s

′′)f
c(y,b(w,0,h′′);−ygd+s′′,s′′)
1 (14)

= (fa1 )c(y,b(w,1,h);ygd,ygs)f
c(y,b(w,1,h);−ygad+as′′,as′′)
1

· fc(y,b(w,0,h
′′/a);−ygad+as′′,as′′)

1 (15)

= (ga1 )c(y,b(w,1,h);d,s)(f1)c(y,(b(w,1,h+h
′′/a);−ygad+as′′,as′′) (16)

The equalities of (14) and (15) hold by linearity over random variables. The equality of (16) holds
because of relaxed linearity over hidden common parameters. It should be noted that h′′ does not
appear anywhere else, it only used in the challenge ciphertext. Hence, h′ is randomly distributed.
If T is e(f1, f2)acd, this has simulated Gameqt properly. Otherwise, if T is a random, a randomness
will be added to M . Therefore, this has simulated GameFinal. 2

Lemma 7 Suppose there exists a PPT adversary A who can distinguish between OCos0 (n1) and
OCos1 (n1) with non-negligible advantage ε. Then, we can build an algorithm B breaking A1-(n1)
with ε using A with an attributes set of size k ≤ n1.
Proof: Given D := {g1, g2, gc1, gc2}∪{g

z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2} and Tβ where from A1-(n1). B will

Z1 = { dc, x, y, z, (dcz)2,
∀i ∈ [n1], dczai, dcz/ai, (dc)

2zai, y/a
2
i , y

2/a2i
∀(i, j) ∈ [n1, n1], i 6= j, dczai/aj , dcyzai/a

2
j , (dcz)

2ai/aj , dcybi/b
2
j , dcyb

2
i /b

2
j

∀(i, j) ∈ [n1, n1], bi, xbi, bibj , dcy/b
2
i , dcxy/b

2
i , dcxybi/b

2
j

∀(i, j, k) ∈ [n1, n1, n1], i 6= j}, dcybibj/b2k },

Z2 = { ∀i ∈ [n1], ai, dcz/ai
∀(i, j) ∈ [n1, n1], i 6= j, yai/a

2
j , zbibj

∀(i, j) ∈ [n1, n1], bi, xbi, xzbi, zbi, bibj },

simulate either OCos0 (n1) or OCos1 (n1) using A.

Initial response When A sends the initial query to B, B implicitly sets η =
∑
i∈[n1]

bi and

computes gη1 =
∏
i∈[n1]

gbi1 and gη2 =
∏
i∈[n1]

gbi2 . It outputs {g1, g2, gη1 , g
η
2}.

k-type response When A sends the k-type query for a set of attributes S∗ = (w∗1 , ..., w
∗
k) where

k ≤ n1 to B. B then randomly selects ζ̃, ν′, t′, h̃, w̃, ỹ from Zp and sets δ = dy and ζ = dc + ζ̃.
Then, it also sets

yh = h̃+
∑
i∈[k]

y/a2i , yw = w̃ +
∑
i∈[k]

(dcz/ai − w∗i y/a2i ), yx = x+
∑
i∈[k]

bi,

yy = ỹ −
∑
i∈[k]

wibi, ηyx = x
∑
i∈[n1]

bi +
∑

i,j∈[k,n1]

bibj , ηyy = ỹ
∑
i∈[n1]

bi −
∑

i,j∈[k,n1]

wibibj .

yx is properly distributed due to x which is used only for yx.

B selects r0
R←− Zp and implicitly sets r = z. Allocating z to r is hidden to A since z was used

nowhere else. To compute g
k(β·α,S∗,b(w,1,h);r)
2 , B sets

gd12 = T · gνr02 , gd22 = gr02 , gd32 = gz2 .

If T = gdyz2 , then gd12 = gδr+νr02 . Therefore, B simulates the k-type response of OCos0 (n1). If T is

random from G2 and we denote it T = gdyz2 gα2 , gd12 = gα+δr+νr02 , B simulates the k-type outputs
of OCos1 (n1).
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For all ψ ∈ [k], B computes the following:

• Compute g
dψ,1
2 and g

dψ,2
2 : For w∗ψ ∈ S∗, B randomly chooses r̂ψ and sets rψ = aψ − r̂ψ. It

computes g
dψ,1
2 and g

dψ,2
2 as follows:

g
dψ,1
2 = g

−(dc+ζ̃)z+rψ(w∗ψyh+yw)

2

= g
−dcz −ζ̃z+w∗ψh̃aψ+w

∗
ψaψ

∑
i∈[k] y/a

2
i

2

· g
aψw̃+aψ

∑
i∈[k]( dcz /ai−w

∗
i y/a

2
i )−r̂ψ(w

∗
ψyh+yw)

2

= (gz2)−ζ̃(g
aψ
2 )w

∗
ψh̃+w̃

∏
i∈[k],i6=ψ

(g
yaψ/a

2
i

2 )(w
∗
ψ−w

∗
i )

·
∏

i∈[k],i6=ψ

g
dcz/ai
2 g2

−r̂ψ(w∗ψyh+yw),

g
dψ,2
2 = g2

aψg2
−r̂ψ .

• Compute g
d′ψ,1
2 and g

d′ψ,2
2 : For w∗ψ ∈ S∗, B randomly chooses r̂′1, ..., r̂

′
k such that

∑
i∈[k] r̂

′
i = 0

and implicitly sets r′i = r̂′i + zbi/η for all i ∈ [k − 1] and r′k = r̂′k +
∑
i∈[n1]\[k−1] zbi/η. This sets∑

i∈[k] r
′
i =

∑
i∈[k] r̂

′
i +
∑
i∈[n1]

zbi/η = 0 + zη/η = z. All r′i are distributed randomly due to r̂′i.

[Case 1] For ψ ∈ [k − 1], B computes and

g
d′ψ,1
2 = g

(r̂′ψ+zbψ/η)η(w
∗
ψx+w

∗
ψ

∑
i∈[k] bi+ỹ−

∑
i∈[k] w

∗
i bi)

2

= g
r̂′ψ(w

∗
ψηx+ηỹ−η

∑
i∈[k],i 6=ψ(w

∗
ψ−w

∗
i )bi)+(w∗ψxzbψ+ỹzbψ−

∑
i∈[k],i 6=ψ(w

∗
ψ−w

∗
i )zbibψ)

2

=
∏
i∈[n1]

gxbi2

r̂′ψw
∗
ψ
∏
i∈[n1]

gbi2
r̂′ψ ỹ

∏
(i,j)∈[k,n1]

i 6=ψ

g
bibj
2

−(w∗ψ−w
∗
i )
gΦ1
2 ,

g
d′ψ,2
2 = g

η(r̂′ψ+bψz/η)

2 = (
∏
i∈[n1]

gbi2
r̂′ψ ) · gzbψ2

where Φ1 = w∗ψxzbψ + ỹzbψ −
∑
i∈[k],i6=ψ(w∗ψ − w∗i )zbibψ. gΦ1

2 can be computed since g
xzbψ
2 , g

zbψ
2

and g
zbibψ
2 are given in the instance.

[Case 2] For ψ = k, B computes g
d′k,1
2 and g

d′k,2
2 as follows:

g
d′k,1
2 = g

(r̂′k+
∑
i∈[n1]\[k−1] zbi/η)(w

∗
kηx+w

∗
kη
∑
i∈[k] bi+ỹη−η

∑
i∈[k] w

∗
i bi)

2

= gΦ2
2 · g

w∗k
∑
i∈[n1]\[k−1] xzbi+ỹ

∑
i∈[n1]\[k−1] zbi−

∑
i∈[k−1],j∈[n1]\[k−1](w

∗
ψ−w

∗
i )zbibj

2

= gΦ2
2

∏
i∈[n1]\[k−1]

gxzbi2

w∗k
∏

i∈[n1]\[k−1]

gzbi2

ỹ ∏
i∈[k−1],j∈[n1]\[k−1]

g
zbibj
2

−(w∗ψ−w
∗
i )
,

g
d′k,2
2 = g

η(r̂′ψ+
∑
i∈[n1]\[k−1] bψz/η)

2 = g
ηr̂′ψ+

∑
i∈[n1]\[k−1] zbψ

2 =
∏
i∈[n1]

gbi2
r̂′ψ

∏
i∈[n1]\[k−1]

gzbi2

where Φ2 = r̂′k(w∗kηx+ ηỹ− η
∑
i∈[k−1](w

∗
k −w∗i )bi). g

Φ2
2 can be computed since gxbi2 , gbi2 and g

bibj
2

are given. Finally, it outputs g
k(β·α,S∗,b(w,1,h);r)
2 .

c-type response When A sends c-type query for Ã to B after it sent the k-type query. Since S∗

of k-type query does not satisfy Ã = NM(A), there exists S′ = N(S∗) /∈ A where A = (A, ρ)
and A is an ` × m matrix. We let Aψ is the ψth row of A. By proposition 11 in [13], B can
select a random vector θ = (θ1, ..., θm) ∈ Zmp which satisfies 〈Ai′ ,θ〉 = 0 for all i′ such that
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ρ(i′) ∈ S′ and 〈(1, 0, ...0),θ〉 = 1. It then implicitly sets φ = (s, s2, ..., sm) = c · θ+ (dy)−1µ where
µ = (0, µ2, ..., µm) is randomly selected from Zmp . This implicitly sets s = c. c was already used in

ζ, but its value was not revealed because of ζ̃ which only appears in ζ. Therefore, assigning c to s
is hidden to the adversary. The other values s2, ..., sm are randomly distributed due to µ.

To compute the c-type response g
c(Ã,b(w,1,h);s,s)
1 , it sets gc11 = (gc1) and gc21 = (gc1)ν . To compute

the other elements, it also computes g
ci′,1
1 , g

ci′,2
1 and g

ci′,3
1 for i′ ∈ [`] using one of following four

cases.

[Case 1] ρ(i′) is not a negated attribute and ρ(i′) ∈ S′ (i.e. 〈Ai′ ,θ〉 = 0).
B randomly selects ti′ ∈ Zp and computes

g
ci′,1
1 = g

〈Ai′ ,µ〉+ζti′
1 = g

〈Ai′ ,µ〉+ζ̃ti′
1 (gdc1 )ti′ ,

g
ci′,2
1 = g

−ti′ (ρ(i
′)h̃+ρ(i′)

∑
i∈[k] y/a

2
i+w̃+

∑
i∈[k](dcz/ai−w

∗
i y/a

2
i ))

1 ,

= g
−ti′ (wth̃+w̃)
1 (g

dcz/ai
1 )−ti′ (g

y/a2i
1 )−ti′ (ρ(i

′)−w∗i ).

g
ci′,3
1 = g1

ti′ .

[Case 2] ρ(i′) is not a negated attribute and ρ(i′) /∈ S′ (i.e. 〈Ai′ ,θ〉 6= 0).

B selects t̂i′
R←− Zp and sets ti′ = t̂i′ − 〈Ai′ ,θ〉y +

∑
i∈[k]

〈Ai′ ,θ〉dczai
ρ(i′)−w∗i

. Then,

g
ci′,1
1 = g

δ〈Ai′ ,φ〉+ζti′
1 = g1

〈Ai′ , θ〉dcy +〈Ai′ ,µ〉+dct̂i′− 〈Ai′ , θ〉dcy +
∑
i∈[k]

〈A
i′ ,θ〉(dc)

2zai
ρ(i′)−w∗

i
+ζ̃ti′

= g
〈Ai′ ,µ〉
1 (gdc1 )t̂i′

∏
i∈[k]

(g
(dc)2zai
1 )

〈A
i′ ,θ〉

ρ(i′)−w∗
i · (gci′,31 )ζ̃

g
ci′,2
1 = g

−(t̂i′−〈Ai′ ,θ〉y+
∑
i∈[k]

〈A
i′ ,θ〉dczai
ρ(i′)−w∗

i
)·(ρ(i′)h̃+ρ(i′)

∑
j∈[k] y/a

2
j+w̃+

∑
j∈[k](dcz/aj−w

∗
j y/a

2
j ))

1

= g
−t̂i′ (ρ(i

′)h̃+ρ(i′)
∑
j∈[k] y/a

2
j+w̃+

∑
j∈[k](dcz/aj−w

∗
j y/a

2
j ))

1

· g
〈Ai′ ,θ〉y(ρ(i

′)h̃+ρ(i′)
∑
j∈[k] y/a

2
j+w̃+

∑
j∈[k](dcz/aj−w

∗
j y/a

2
j ))

1

· g
−
∑
i∈[k]

〈A
i′ ,θ〉dczai
ρ(i′)−w∗

i
(ρ(i′)h̃+ρ(i′)

∑
j∈[k] y/a

2
j+w̃+

∑
j∈[k](dcz/aj−w

∗
j y/a

2
j ))

1

= gΦ3
1 · g

〈Ai′ ,θ〉
(
(ρ(i′)h̃+w̃)y+

∑
j∈[k](ρ(i

′)−w∗j )y
2/a2j+

∑
j∈[k]

dcyz/aj

)
1

· g

−〈Ai′ ,θ〉
(
(ρ(i′)h̃+w̃)

∑
i∈[k]

dczai
ρ(i′)−w∗

i
+
∑
i∈[k]

dczai

ρ(i′)− w∗i

∑
j∈[k]

(ρ(i
′
)− w∗j )y/a

2
j

)
1

· g
−〈Ai′ ,θ〉

(∑
i∈[k]

dczai
ρ(i′)−w∗

i

∑
j∈[k] dcz/aj

)
1

= gΦ3
1 · g

Φ4
1 ·

∏
(i,j)∈[k,k]

i 6=j

(g

dcyzai
a2
j

1 )
−〈A

i′ ,θ〉(ρ(i
′)−w∗j )

ρ(i′)−w∗
i

∏
(i,j)∈[k,k]

(g
(dcz)2ai

aj

1 )
〈A
i′ ,θ〉

ρ(i′)−w∗
i

g
ci′,3
1 = g

ti′
1 = g

t̂i′
1 (gy1 )−〈Ai′ ,θ〉

∏
i∈[k]

(gdczai1 )
〈A
i′ ,θ〉

ρ(i′)−w∗
i

where Φ3 = −t̂i′(ρ(i′)h̃+ w̃)− t̂i′
∑
j∈[k] dcz/aj − t̂i′

∑
j∈[k](ρ(i′)− w∗j )y/a2j and

Φ4 = 〈Ai′ ,θ〉
(
(ρ(i′)h̃+ w̃)y +

∑
j∈[k]

(ρ(i′)− w∗j )y2/a2j − (ρ(i′)h̃+ w̃)
∑
i∈[k]

dczai
ρ(i′)− w∗i

)
.
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Therefore, gΦ3
1 and gΦ4

1 can be computed since g1, g
dcz/aj
1 , g

y/a2j
1 , gy1 , g

y2/a2j
1 and gdczai1 are given

in the instance.

[Case 3] ρ(i′) is a negated attribute and ρ(i′) ∈ S′ (i.e. 〈Ai′ ,θ〉 = 0).

B randomly selects ti′ from Zp. We let w′ψ denote ρ(i′). Because 〈Ai′ ,θ〉 = 0, B can compute

g
ci′,1
1 = g1

〈Ai′ ,µ〉
∏
i∈[n1]

(gxbi1 )ti′
∏

(i,j)∈[k,n1]

(g
bibj
1 )ti′ ,

g
ci′,2
1 = (gx1 )ti′ (w

′
ψ+ỹ)

∏
i∈[k]

(gbi1 )(w
′
ψ−wi)ti′ , g

ci′,3
1 = g

ti′
1 .

[Case 4] ρ(i′) is a negated attribute and ρ(i′) /∈ S′ (i.e. 〈Ai′ ,θ〉 6= 0).

B randomly selects t̂i′ from Zp and implicitly sets ti′ = t̂i′ − 〈Ai′ ,θ〉dcy/b2ψ. ti′ is properly

distributed due to the random value t̂i′ . B computes

g
ci′,1
1 = g

〈Ai′ ,θ〉dcy+〈Ai′ ,µ〉+(t̂i′−〈Ai′ ,θ〉dcy/b
2
ψ)(
∑
i∈[n1] xbi+

∑
(i,j)∈[k,n1] bibj)

1

= g
〈Ai′ , θ〉dcy +〈Ai′ ,µ〉+t̂i′ (

∑
i∈[n1] xbi+

∑
(i,j)∈[k,n1] bibj)

1

· g

−〈Ai′ ,θ〉
∑
i∈[n1] dcxybi/b

2
ψ− 〈Ai′ , θ〉

∑
(i,j)∈[k,n1]

dcybibj/b
2
ψ

1

= g
〈Ai′ ,µ〉
1

∏
i∈[n1]

(gxbi1 )t̂i′
∏

(i,j)∈[k,n1]

(g
bibj
1 )t̂i′

∏
i∈[n1]

(g
dcxybi/b

2
ψ

1 )−〈Ai′ ,θ〉

∏
(i,j)∈[k,n1]
i,j 6=ψ

(g
dcybibj/b

2
ψ

1 )−〈Ai′ ,θ〉,

g
ci′,2
1 = g

(t̂i′−〈Ai′ ,θ〉dcy/b
2
ψ)(w

′
ψx+w

′
ψ

∑
i∈[k] bi+ŷ−

∑
i∈[k] wibi)

1

= g
t̂i′ (w

′
ψx+w

′
ψ

∑
i∈[k] bi+ỹ−

∑
i∈[k] wibi)−〈Ai′ ,θ〉(w

′
ψx+w

′
ψ

∑
i∈[k] bi+ỹ−

∑
i∈[k] wibi)dcy/b

2
ψ

1

= gΦ5
1 (g

dcy/b2ψ
1 )−ỹ〈Ai′ ,θ〉(g

dcxy/b2ψ
1 )〈Ai′ ,θ〉w

′
ψ

∏
i∈[k]
i 6=ψ

(g
dcybi/b

2
ψ

1 )−〈Ai′ ,θ〉(w
′
ψ−w

′
i),

g
ci′,3
1 = g

t̂i′
1 (g

dcy/b2ψ
1 )−〈Ai′ ,θ〉

where Φ5 = t̂i′(w
′
ψx+ w′ψ

∑
i∈[k] bi + ỹ −

∑
i∈[k] wibi). g

Φ5
1 can be computed using g1, gx1 and gbi1 .

Therefore, if T = gdyz2 , B simulates OCos0 (n1). If T is a random from G2, B simulates OCos1 (n1).
2

Lemma 8. Suppose there exists an A who can distinguish between two oracles OSel0 (n2) and
OSel1 (n2) with a non-negligible advantage ε. Then, we can build B breaking A2-(n2) with ε using
A with an access matrix of size `×m where `,m ≤ n2.

Proof: Given D := {g1, g2, gc1, gc2} ∪ {g
z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2} and Tβ where

from A2-(n2), B will simulate either OSel0 (n2) or OSel1 (n2) using A.

Initial response: When the adversary A requests an initial instance to B. B computes gη1 =

g
∑
i∈[n2] bi

2 and gη2 = g
∑
i∈[n2] bi

2 and outputs {g1, g2, gη1 , g
η
2}.

c-type response: When A sends the c-type query for an access policy Ã∗ = NM(A∗) where
A∗ = (A∗, ρ∗) and the access matrix A∗ is an ` × m matrix where `,m ≤ n2. We define two
sets LN = {i|i ∈ [`] ∧ ρ∗(i) = x′i} for negated attributes and LP = {i|i ∈ [`] ∩ ρ∗(i) = xi} for
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Z1 = { ∀(i, j) ∈ [n2, n2], dc, a, bj , dcbj , dcbibj , a
i/b2j

∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′, aibj/b
2
j′

∀(i, j, j′) ∈ [n2, n2, n2], j 6= j′, dcaibj/bj′ , dca
ibj/b

2
j′

∀(i, j, j′, j′′) ∈ [n2, n2, n2, n2], j 6= j′, j′ 6= j′′}, dcaibjbj′/b2j′′ },

Z2 = { ∀(i, j) ∈ [n2, n2], dc, ai, aibj , a
i/b2j

∀(i, j) ∈ [2n2, n2], i 6= n2 + 1, ai/bj
∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′, aibj/b

2
j′ }

non-negated attributes. B randomly selects h̃, w̃, x̃, ỹ, ζ̃, ν̃ from Zp and implictly sets

δ = da, ζ = ζ̃ +
∑

(j,k)∈LP×[m]

A∗j,k · ak/bj , ν = d+ ν̃,

yh = h̃+
∑

(j,k)∈LP×[m]

A∗j,ka
k/b2j , yw = w̃ −

∑
(j,k)∈LP×[m]

ρ∗(j)A∗j,ka
k/b2j ,

yx = x̃+
∑

(j,k)∈LN×[m]

A∗j,ka
k/b2j , yy = ỹ −

∑
(j,k)∈LN×[m]

ρ∗(j)A∗j,ka
k/b2j ,

Since g1, g
bj
1 , g

ak/bj
1 , g

ak/b2j
1 and g

akbi/b
2
j

1 are given in the instance, B can compute

gyh1 = gh̃1
∏

(j,k)∈LP×[m]

(g
ak/b2j
1 )A

∗
j,k , gyw1 = gw̃1

∏
(j,k)∈LP×[m]

(g
ak/b2j
1 )−ρ

∗(j)A∗j,k ,

gyx1 = gx̃1
∏

(j,k)∈LN×[m]

(g
ak/b2j
1 )A

∗
j,k , g

yy
1 = gỹ1

∏
(j,k)∈LN×[m]

(g
ak/b2j
1 )−ρ

∗(j)A∗j,k ,

gηyx1 = (
∏
i∈[n2]

gbi1 )x̃
∏

(i,j,k)∈[n2]×LN×[m]

(g
akbi/b

2
j

1 )A
∗
j,k

= (
∏
i∈[n2]

gbi1 )x̃
∏

(i,j,k)∈[n2]×LN×[m]
i 6=j

(g
akbi/b

2
j

1 )A
∗
j,k

∏
(j,k)∈LN×[m]

(g
ak/bj
1 )A

∗
j,k .

For a negated attribute w′i, we define g
w′i
1 := gwi1 and g

w′i
2 := gwi2 where g1 ∈ G1 and g2 ∈ G2. B ran-

domly selects ŝ2, ..., ŝm from Zp and implictly sets φ = c(1, a, a2, ..., am−1) + d−1(0, ŝ2, ŝ3, ..., ŝm).
This sets s = c. Due to ŝ2, ŝ3, ..., ŝm, s does not correlate to the other values in φ. For A∗ψ where
ψ ∈ [`], B sets

λψ = 〈A∗ψ,φ〉 =
∑
i∈[m]

A∗ψ,ica
i−1 + d−1

m∑
i=2

A∗ψ,iŝi =
∑
i∈[m]

A∗ψ,ica
i−1 + d−1λ̃ψ

where λ̃ψ =
∑m
i=2A

∗
ψ,iŝi and it is known to B.

To compute g
c(Ã∗,η,(1,h);s,s)
1 for Ã∗, B computes gc11 = gc1 and gc21 = (gc1)d+ν̃ = (gdc1 )(gc1)ν̃ using

the elements in the instance. It randomly selects t̂ψ and sets tψ = −dcbψ + t̂ψ. First, it computes

g
cψ,3
1 = (g

dcbψ
1 )−1g

t̂ψ
1 . The others g

cψ,1
1 and g

cψ,2
1 can be computed as follows:
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• If ψ ∈ LP , B computes g
cψ,1
1 = g

δλψ+ζt̃ψ
1 , g

cψ,2
1 = g

t̃ψ(ρ
∗(ψ)yh+yw)

1 as follows:

g
cψ,1
1 = g

da
∑
i∈[m] A

∗
ψ,ica

i−1+da(d−1)λ̃ψ+(ζ̃+
∑

(j,k)∈LP×[m](A
∗
j,ka

k/bj))(−dcbψ+t̂ψ)
1

= g

∑
i∈[m]

A
∗
ψ,idca

i
+aλ̃ψ+ζ̃(−dcbψ+t̂ψ)

1

· g

−
∑

(j,k)∈LP×[m]

(A
∗
j,kdca

k
bψ/bj) +t̂ψ

∑
(j,k)∈LP×[m] A

∗
j,ka

k/bj

1

= g

aλ̃ψ−ζ̃dcbψ+ζ̃t̂ψ−
∑

(j,k)∈LP×[m]
j 6=ψ

(A
∗
j,kdca

k
bψ/bj) +t̂ψ

∑
(j,k)∈LP×[m] A

∗
j,ka

k/bj

1

= g
ζ̃t̂ψ
1 (ga1 )λ̃ψ (g

dcbψ
1 )−ζ̃

∏
(j,k)∈LP×[m]

j 6=ψ

(g
dcakbψ/bj
1 )−A

∗
j,k

∏
(j,k)∈LP×[m]

(g
ak/bj
1 )A

∗
j,k t̂ψ ,

g
cψ,2
1 = g

t̃ψ(ρ
∗(ψ)yh+yw)

1 = g
−dcbψ(ρ∗(ψ)yh+yw)+t̂ψ(ρ

∗(ψ)yh+yw)
1

= g

−dcbψ
(
ρ∗(ψ)h̃+ ρ

∗
(ψ)

∑
(j,k)∈LP×[m]

A
∗
j,k · a

k
/b

2
j +w̃−

∑
(j,k)∈LP×[m]

ρ
∗
(j)A

∗
j,k · a

k
/b

2
j

)
1 gΦ6

1

= g

−dcbψ
(
ρ∗(ψ)h̃+w̃−

∑
(j,k)∈LP×[m]

j 6=ψ

(ρ
∗
(ψ)− ρ∗(j))A∗j,k · a

k
/b

2
j

)
1 gΦ6

1

= (g
dcbψ
1 )−(ρ

∗(ψ)h̃+w̃)
∏

(j,k)∈LP×[m],j 6=ψ

(g
dcakbψ/b

2
j

1 )(ρ
∗(ψ)−ρ∗(j))A∗j,kgΦ6

1

where gΦ6
1 = g

t̂ψ(ρ
∗(ψ)yh+yw)

1 . gΦ6
1 can be computed using gyh1 and gyw1 .

• if ψ ∈ LN , B computes Cψ,1 = g
δλψ+tψηyx
1 as follows:

g
cψ,1
1 = g

da
∑
i∈[m] A

∗
ψ,ica

i−1+da(d−1)λ̃ψ
1

· g
(−dcbψ+t̂ψ)(x̃

∑
i∈[n2] bi+

∑
(i,k)∈[n2,m],j∈LN

i 6=j
A∗j,ka

kbi/b
2
j+
∑

(j,k)∈LN×[m] A
∗
j,ka

k/bj)

1

= g

∑
i∈[m]

A
∗
ψ,idca

i
+aλ̃ψ−x̃

∑
i∈[n2] dcbψbi

1

· g

−
∑

(i,k)∈[n2,m],j∈LN
i 6=j

A∗j,kdca
kbψbi/b

2
j−

∑
(j,k)∈LN×[m]

A
∗
j,kdca

k
bψ/bj

1 · gΦ7
1

= g
aλ̃ψ−x̃

∑
j∈[n2] dcbψbj

1

· g

−
∑

(i,k)∈[n2,m],j∈LN
i6=j

A∗j,kdca
kbψbi/b

2
j−

∑
(j,k)∈LN×[m]

j 6=ψ

A
∗
j,kdca

k
bψ/bj

1 · gΦ7
1

= (ga1 )λ̃ψ
∏
j∈[n2]

(g
dcbψbj
1 )−x̃

∏
(i,k)∈[n2,m],j∈LN ,i6=j

(g
dcakbψbi/b

2
j

1 )A
∗
j,k

·
∏

(j,k)∈LN×[m],j 6=ψ

(g
dcakbψ/bj
1 )A

∗
j,k · gΦ7

1
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where Φ7 = t̂ψηyx. B can compute gΦ7
1 using gηyx1 .

Computing g
cψ,2
1 is similar to that in the previous case. In this case, yx and yy are used instead

of yh and yw and LN replaces LP . B computes g
cψ,2
1 as follows:

g
cψ,2
1 = g

t̃ψ(ρ
∗(ψ)yx+yy)

1 = g
−(ρ∗(ψ)x̃+ỹ)dcbψ+

∑
(j,k)∈LN×[m],j 6=ψ ρ

∗(j)A∗j,k·dca
kbψ/b

2
j

1 · gΦ8
1

= (g
dcbψ
1 )−(ρ

∗(ψ)x̃+ỹ)
∏

(j,k)∈LN×[m],j 6=ψ

(g
dcakbψ/b

2
j

1 )ρ
∗(j)A∗j,k · gΦ8

1

where Φ8 = t̂ψ(ρ∗(ψ)yx + yy). gΦ8
1 can be computed using gyx1 and g

yy
1 .

k-type response: When the adversary requests the k-type response to A for S, B sets S′ = N(S).
We let A∗ψ is the ψth row of the access matrix A∗ which is given in the c-type query. By proposition
11 in [13], B can select a random vector z′ = (1, z′2, ..., z

′
m) ∈ Zmp which satisfies 〈z′, Ai′〉 = 0 for

all i′ such that ρ(i′) ∈ S′. Then, B randomly selects z1 from Zp and sets z = (z1, ..., zm) = z1z
′.

B randomly selects r̂ from Zp and sets r =
∑
i∈[m] zia

n2+1−i and r0 = cr̂−
∑
i∈[m],i6=1 zia

n2+2−i.
r0 is randomly distributed due to r̂ which are not used anywhere else. r is randomly distributed
due to z1 which was not used anywhere else.

To compute g
k(β·α,S,b(w,1,h);r)
2 for S. Firstly, B computes follows:

gd12 = T z1 · (gdc2 )r̂(gc2)ν̃r̂
∏

i∈[m],i6=1

(ga
n2+2−i

2 )−ν̃zi

If T is equal to gda
n2+1

2 , D1 is equal to gδr+νr02 and B simulates OSel0 (n2) because

gd12 = g
da(
∑
i∈[m] zia

n2+1−i)

2 g
(d+ν̃)(cr̂−

∑
i∈[m],i 6=1 zia

n2+2−i)

2

=
∏
i∈[m]

gzida
n2+2−i

2

∏
i∈[m],i6=1

(gzida
n2+2−i

2 )−1 (gdc2 )r̂(gc2)ν̃r̂ ·
∏

i∈[m],i6=1

(gzia
n2+2−i

2 )−ν̃

= (gda
n2+1

2 )z1 · (gdc2 )r̂(gc2)ν̃r̂
∏

i∈[m],i6=1

(ga
n2+2−i

2 )−ν̃zi .

If T is a random from G2 and we write it as gda
n2+1

2 gα̃2 , the randomness is added to gd12 and B
simulates OSel1 (n2). Then, it computes the others following:

gd22 = gr2 =
∏
i∈[m]

(ga
n2+1−i

2 )zi , gd32 = gr02 = (gc2)r̂
∏

i∈[m−1]

(ga
n2+1−i

2 )−zi+1 .

• Compute g
dψ,1
2 and g

dψ,2
2 : To compute g

dψ,1
2 = g

−ζr+rψ(wψyh+yw)
2 for all ψ ∈ [|S|], it computes

g−ζr2 and g
rψ(wψyh+yw)
2 , separately. First, it computes

g−ζr2 = g
−(ζ̃+

∑
(j,k)∈LP×[m] A

∗
j,k·a

k/bj)
∑
i∈[m] zia

n2+1−i

2

= g
−ζ̃
∑
i∈[m] zia

n2+1−i

2 g

−
∑

(i,j,k)∈[m]×LP×[m]
i 6=k

A∗j,kzi·a
n2+1+k−i/bj

2

· g
−
∑

(i,j)∈[m]×LP
A∗j,izi·a

n2+1/bj

2

= gΦ8
2 · g

∑
j∈LP

〈A∗j ,z〉a
n2+1/bj

2 = gΦ8
2 ·

∏
j∈LP ,j /∈S

g
〈A∗j ,z〉a

n2+1/bj
2

where Φ8 = −ζ̃
∑
i∈[m] zia

n2+1−i −
∑

(i,j,k)∈[m]×LP×[m]
i6=k

A∗j,kzi · an2+1+k−i/bj . The last equality of

the above equation holds because 〈A∗j , z〉 = 0 for all j such that ρ∗(j) ∈ S. gφ8

2 can be computed

since {gai2 ;∀i ∈ [n2]} and {ga
i/bj

2 ;∀(i, j) ∈ [2n2, n2], i 6= n2 + 1} are given in the instance.

32



Secondly, to compute g
rψ(wψyh+yw)
2 , it creates r̂ψ

R←− Zp and sets rψ = r̂ψ−
∑

(i,i′)∈[m]×LP
ρ∗(i′)/∈S

zibi′a
n2+1−i

wψ−ρ∗(i′)

where wψ 6= ρ∗(i′) due to wψ ∈ S. B computes

g
rψ(wψyh+yw)
2 = g

r̂ψ(wψyh+yw)−
∑

(i,i′)∈[m]×LP
ρ∗(i′)/∈S

zibi′a
n2+1−i

wψ−ρ∗(i′)
(h̃wψ+w̃)

2

· g
−
∑

(i,i′)∈[m]×LP
ρ∗(i′)/∈S

zibi′a
n2+1−i

wψ−ρ∗(i′)
∑

(j,k)∈LP×[m] (wψ−ρ
∗(j))A∗j,ka

k/b2j )

2

= gΦ9
2 · g

−
∑

(i,i′,j,k)∈[m]×L2
P×[m]

ρ∗(i′)/∈S

wψ−ρ
∗(j)

wψ−ρ∗(i′)
A∗j,kzia

n2+1+k−ibi′/b
2
j

2

= gΦ9
2 · g

−
∑

(i,i′,j,k)∈[m]×L2
P×[m]

ρ∗(i′)/∈S,(j 6=i′)∨(i6=k)

wψ−ρ
∗(j)

wψ−ρ∗(i′)
A∗j,kzia

n2+1+k−ibi′/b
2
j

2

· g
−
∑

(i,i′,j,k)∈[m]×L2
P×[m]

ρ∗(i′)/∈S,(j=i′)∧(i=k)

wψ−ρ
∗(j)

wψ−ρ∗(i′)
A∗j,kzia

n2+1+k−ibi′/b
2
j

2

= gΦ9
2 · g

Φ10
2 · g

−
∑
j∈LP , ρ∗(j)/∈S

〈A∗j ,z〉a
n2+1/bj

2

where Φ9 = r̂ψ(wψyh+yw)−
∑

(i,i′)∈[m]×LP
ρ∗(i′)/∈S

zibi′a
n2+1−i

wψ−ρ∗(i′) (h̃wψ+w̃) and Φ10 = −
∑

(i,i′,j,k)∈[m]×L2
P×[m]

ρ∗(i′)∈S,(j 6=i′)∨(i6=k)

wψ−ρ∗(j)
wψ−ρ∗(i′)A

∗
j,kzia

n2+1+k−ibi′/b
2
j .

Both gΦ9
2 and gΦ10

2 can be computed since gyh2 and gyw2 can be computed and {ga
ibj

2 ;∀(i, j) ∈
[n2, n2]} and {g

aibj/b
2
j′

2 ;∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′} are given in the instance.

Because g
−
∑
j∈LP , ρ∗(j)/∈S

〈A∗j ,z〉a
n2+1/bj

2 is cancelled out when g−ζr2 and g
rψ(wψyh+yw)
2 are multi-

plied, B can compute g
dψ,1
2 = g−ζr2 g

rψ(wψyh+yw)
2 and g

dψ,2
2 = g

rψ
2

g
dψ,1
2 = gΦ8

2 gΦ9
2 gΦ10

2 , g
dψ,2
2 = g

r̂ψ
2

∏
(i,i′)∈[m]×LP

ρ∗(i′)/∈S

(g
bi′a

n2+1−i

2 )
zi

wψ−ρ∗(i′) .

• Compute g
d′ψ,1
2 and g

d′ψ,2
2 : In order to compute g

d′ψ,1
2 = (g

ηwψyx+ηyy
2 )r

′
ψ and g

d′ψ,2
2 = (gη2 )r

′
ψ

such that
∑
ψ∈|S| r

′
ψ = r, B first sets g

d′ψ,1
2 ← 1G2

and g
d′ψ,2
2 ← 1G2

. Then, it updates g
d′ψ,1
2 and

g
d′ψ,2
2 by multiplying g

bπr(wψyx+yy)
2 and gbπr2 for all π ∈ [n2]. This process allows B to compute∏

π∈[n2]
g
bπr(wψyx+yy)
2 = g

ηr(wψyx+yy)
2 and

∏
π∈[n2]

gbπr2 = gηr2 . After computing these values, B
will re-randomize the values so that they are properly distributed. The following Update process
is repeated for all π = 1, ..., n2.

Update: B can compute gbπr2 because gbπr2 =
∏
i∈[m](g

an2+1−ibπ
2 )−zi and g

aibj
2 is given in the

instance. For all π ∈ [n2], it then computes

g
bπr(wψyx+yy)
2 = g

∑
i∈[m] zia

n2+1−ibπ(ρ(π)yx+yy)

2

There are three cases to compute g
bπr(wψyx+yy)
2 as follows:
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[Case 1] If π ∈ LN ∧ ρ(π) = x′ψ ∧ xψ = wψ ∈ S,

g
bπr(wψyx+yy)
2 = g

∑
i∈[m] zia

n2+1−ibπ

(
ρ(π)x̃+ỹ+ ρ(π)

∑
(j,k)∈LN×[m]

a
k
A
∗
j,k/b

2
j

)
2

· g

−
∑
i∈[m] zia

n2+1−ibπ

( ∑
(j,k)∈LN×[m]

ρ
∗
(j)A

∗
j,ka

k
/b

2
j

)
2

= gΦ11
2 · g

∑
i∈[m] zia

n2+1−ibπ
∑

(j,k)∈LN×[m]
j 6=π

(ρ(π)− ρ∗(j))A∗j,ka
k
/b

2
j

2

= gΦ11
2

∏
(i,j,k)∈[m]×LN×[m],j 6=π

(g
an2+1+k−ibπ/b

2
j

2 )(ρ(π)−ρ
∗(j))A∗j,kzi

where Φ11 =
∏
i∈[m] zia

n2+1−ibπ
(
ρ(π)x̃ + ỹ). B can compute gΦ11

2 since {ga
ibj

2 ; ∀(i, j) ∈ [n2, n2]}
is given in the instance. ak/b2π was cancelled out in the boxed terms since π ∈ LN . In the above

equation, g
an2+1/bπ
2 which is not given in the instance does not appear since j 6= π. Therefore,

g
d′π,1
2 can be computed.

[Case 2] If π ∈ LN ∧ ρ(π) = x′ψ ∧ xψ /∈ S,

g
bπr(wψyx+yy)
2 = g

∑
i∈[m] zia

n2+1−ibπ

(
wψx̃+ỹ+

∑
(j,k)∈LN×[m] (wψ−ρ

∗(j))akA∗j,k/b
2
j

)
2

= gΦ12
2 · g

∑
(i,j,k)∈[m]×LN×[m] (wψ−ρ

∗(j))A∗j,kzia
n2+1+k−ibπ/b

2
j

2

= gΦ12
2 · g

∑
(i,j,k)∈[m]×LN×[m]

(k 6=i)∨(j 6=π)
(wψ−ρ∗(j))A∗j,kzia

n2+1+k−ibπ/b
2
j

2

· g

∑
(i,j,k)∈[m]×LN×[m]

(k=i)∧(j=π)
(wψ−ρ∗(j))A∗j,kzia

n2+1+k−ibπ/b
2
j

2

= gΦ12
2 · gΦ13

2 · g
∑
i∈[m] (wψ−ρ

∗(j))A∗π,izia
n2+1/bπ

2 = gΦ12
2 · gΦ13

2

where Φ12 =
∑
i∈[m] zia

n2+1−ibπ
(
wπx̃+ ỹ) and

Φ13 =
∑

(i,j,k)∈[m]×LN×[m]
(k 6=i)∨(j 6=π)

(wψ − ρ∗(j))A∗j,kzian2+1+k−ibπ/b
2
j .

The last equality of the above equation holds since 〈A∗π, z〉 = 0 for all π such that ρ∗(π) ∈ S′ (i.e.

ρ∗(π) /∈ S). gΦ12
2 and gΦ13

2 can be computed since {ga
ibj

2 ;∀(i, j) ∈ [n2, n2]} and {g
aibj/b

2
j′

2 ;∀(i, j, j′) ∈
[2n2, n2, n2], j 6= j′} are given.

[Case 3] If π /∈ LN ,

g
bπr(wψyx+yy)
2 = g

∑
i∈[m] zia

n2+1−ibπ

(
wψx̃+ỹ+

∑
(j,k)∈LN×[m] (wψ−ρ

∗(j))akA∗j,k/b
2
j

)
2

= gΦ12
2 · g

∑
(i,j,k)∈[m]×LN×[m] (wψ−ρ

∗(j))A∗j,kzia
n2+1+k−ibπ/b

2
j

2

= gΦ12
2

∏
(i,j,k)∈[m]×LN×[m]

(g
an2+1+k−ibπ/b

2
j

2 )(wψ−ρ
∗(j))A∗j,kzi

where Φ12 is identical to that in the previous case. It should be noted that π /∈ LN . There-

fore, g
bπr
′(wiyx+yy)

2 can be calculated since all terms are given in the instance. In other words,

g
an2+1+k−i/bπ
2 which was not given in the instance does not appear in the above equation because
j ∈ LN .
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Now, it updates g
d′ψ,1
2 ← g

d′ψ,1
2 · (gk

′
π,1

2 )1/|S| and g
d′ψ,2
2 ← g

d′ψ,2
2 · (gk

′
π,2

2 )1/|S|.

Re-randomization: After the above updating process, B can derive

g
d′ψ,1
2 = (g

r(wψyx+yy)
2 )

∑
π∈[n2] bπr/|S| = (g

r(wψyx+yy)
2 )ηr/|S|,

g
d′ψ,2
2 = g

∑
π∈[n2] bπr/|S|

2 = g
ηr/|S|
2 .

This sets r′ψ = r/|S| for all ψ ∈ [|S|]. Therefore, we need to re-randomize those g
d′ψ,1
2 and g

d′ψ,2
2 . In

order to re-randomize them, we randomly select r̂′1, ..., r̂
′
|S| such that r̂′1 + ... + r̂′|S| = 0 and sets

g
d′ψ,1
2 ← g

d′ψ,1
2 · (gr(wψyx+yy)2 )r̂

′
ψ and g

d′ψ,2
2 ← g

d′ψ,2
2 · gr̂

′
ψ

2 . This implicitly sets r′ψ = r/|S|+ r̂′ψ/b. Due
to r̂′ψ, r′ψ is randomly distributed. Moreover,

∑
ψ∈[|S|] r

′
ψ = |S| · r/|S|+

∑
i∈[|S|] r̂

′
ψ/b = r. 2

Lemma 9 Suppose there exists a PPT adversary A who can distinguish between ÔCos0 (n1) and
ÔCos1 (n1) with non-negligible advantage ε. Then, we can build an algorithm B breaking (Asymmet-
ric) n1-DBDHE assumption with ε using A with an attributes set of size k < n1.
Proof: Given D := {g1, g2, gc1, gc2} ∪ {g

z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2} and Tβ from (Asymmetric)

n1-DBDHE assumption where Z1 = Z2 = {dc, b1, ..., bn1 , bn1+2, ..., b2n1}. B will simulate either
ÔCos0 (n1) or ÔCos1 (n1) using A.

Initial response When A sends the initial query to B, B randomly selects η from Zp. It outputs
{g1, g2, gη1 , g

η
2}.

k-type response When A sends the k-type query for a set of attributes S∗ = (w∗1 , ..., w
∗
k) where

k < n1 to B. B computes ai which is the coefficient of zi−1 in P (z) =
∏
y∈S∗(y − z) and set

ak+2 = ... = an1+1 = 0. It then randomly selects ζ̃, ν, {ỹi, ỹ′i;∀i ∈ [n1]} from Zp. It implicitly sets

δ = δ0 · bn1+1/c and ζ = ζ̃ −
∑
i∈n1

ai · bi. For all i ∈ [n1], it also sets

yi = ỹi + bi, y′i = ỹ′i +
∑
j∈[k]

(w∗j )i−1bn1+1−j , ηy′i = ηỹ′i + η
∑
j∈[k]

(w∗j )i−1bn1+1−j .

B selects r0
R←− Zp and sets r1 = −dc + r̃1 and r2 = dc where r̃1 is randomly generated from

Zp. Allocating dc to r2 is hidden to A since d appears nowhere else except r1. In r1, due to r̃1,
the value dc are not revealed. Hence, both r1 and r2 are properly distributed to the adversary. To

compute g
k(β·α,S∗,b(w,1,h);r)
2 , B sets

gd12 = T δ0 · gνr02 , gd22 = gr02 , gd32 = gdc2 .

If T = gdb
n1+1

2 , then gd12 = gδr2+νr02 . Therefore, B simulates the k-type response of ÔCos0 (n1). If

T is random from G2 and we denote it T = gdb
n1+1

2 gα2 , gd12 = gα+δr2+νr02 , B simulates the k-type

outputs of ÔCos1 (n1).

• Compute Using r1 = −dc+ r̃1, B computes gd42 and gd52 as follows:

gd42 = g
−ζr2+r1(y1a1+...+yn1an1 )
2

= g
−(ζ̃−

∑
i∈n1

ai·bi)dc+(−dc+r̃1)(
∑
i∈n1

ai(ỹi+b
i))

2

= g
−ζ̃dc+r̃1(

∑
i∈n1

ai(ỹi+b
i))

2

gd5 = (gdc2 )−1gr̃12 .

• Compute g
d′6
2 and g

d′7
2 : B computes g

d′6
2 and g

d′7
2 as follows:

g
d′6
2 = g

r2η(
∑
i∈[n1] aiy

′
i)

2 = g
ηdc

∑
i∈[n1] ai(ỹ

′
i+
∑
j∈[k](w

∗
j )
i−1bn1+1−j)

2 = g
ηdc

∑
i∈[n1] aiỹ

′
i

2
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g
d′7
2 = gdc2

In g
d′6
2 ,
∑

(i,j)∈[n1,k]
ai(w

∗
j )i−1bn1+1−j = 0 since w∗j ∈ S∗. Finally, it outputs g

k(β·α,S∗,b(w,1,h);r)
2 .

c-type response When A sends c-type query for Ã to B after it sent the k-type query. Since S∗

of k-type query does not satisfy Ã = NM(A), there exists S′ = N(S∗) /∈ A where A = (A, ρ)
and A is an ` × m matrix. We let Aψ is the ψth row of A. By proposition 11 in [13], B can
select a random vector θ = (θ1, ..., θm) ∈ Zmp which satisfies 〈Ai′ ,θ〉 = 0 for all i′ such that
ρ(i′) ∈ S′ and 〈(1, 0, ...0),θ〉 = 1. It then implicitly sets φ = (s, s2, ..., sm) = c · θ + (δ)−1µ where
µ = (0, µ2, ..., µm) is randomly selected from Zmp . This implicitly sets s = c. c was already used

in ζ, r1 and r2, but its value was not revealed because of ζ̃, r̃1 and d, respectively. Therefore,
assigning c to s is hidden to the adversary. The other values s2, ..., sm are randomly distributed
due to µ.

To compute the c-type response g
c(Ã,b(w,1,h);s,s)
1 , it sets gc11 = (gc1) and gc21 = (gc1)ν . To compute

the other elements, it also computes g
ci′,1
1 , g

ci′,2
1 , ...., g

ci′,N+2

1 for i′ ∈ [`] using one of following four
cases.

[Case 1] ρ(i′) is not a negated attribute and ρ(i′) ∈ S′ (i.e. 〈Ai′ ,θ〉 = 0).
For all j ∈ [N − 1], B randomly selects ti′ ∈ Zp and computes

g
ci′,1
1 = g

〈Ai′ ,µ〉+ζti′
1 = g

〈Ai′ ,µ〉+ζ̃ti′
1

∏
i∈[n1]

(gb
i

1 )aiti′ , g
ci′,2
1 = g1

ti′ ,

g
ci′,2+j
1 = g

−ti′ (ỹj+1−ρ(i′)j ỹ1+bj+1−ρ(i′)jb)
1 = g

−ti′ (ỹj+1−ρ(i′)j ỹ1)
1 gb

j+1

1 (gb1)−ρ(i
′)j

[Case 2] ρ(i′) is not a negated attribute and ρ(i′) /∈ S′ (i.e. 〈Ai′ ,θ〉 6= 0). First, B can compute
δλi = v1δ0b

n+1 + v2 with known values v1, v2 and δ0. It sets ti′ = t̃i′ − v1δ0(
∑
i∈[n1]

ρ(i′)n−ibi)/A1

where A1 = (
∑
i∈[n1]

aiρ(i′)i−1).

g
ci′,1
1 = g

v1δ0b
n1+1+v2+ζ̃t̃i′−t̃i

∑
i∈n1

biai−ζ̃v1δ0(
∑
i∈[n1] ρ(i

′)n1−ibj)/A1

1

· g
−v1δ0(

∑
i,j∈[n1]2 aiρ(i

′)n1−jbi+j)/A1)

1

= g
v2+ζ̃t̃i′+t̃i

∑
i∈n1

biai−ζ̃v1δ0(
∑
i∈[n1] ρ(i

′)n1−ibj)/A1

1

· g
−v1δ0(

∑
i,j∈[n1]2,i+j 6=n1+1 aiρ(i

′)n1−jbi+j)/A1)

1 ,

g
ci′,2
1 = g1

t̃i′
∏
i∈n1

(gb
i

1 )−v1δ0ρ(i
′)n−i/A1 ,

g
ci′,2+j
1 = g

−t̃i′ (ỹj+1−ρ(i′)j ỹ1+bj+1−ρ(i′)jb)
1

· g
v1δ0(

∑
i∈[n1] ρ(i

′)n−ibi)(ỹj+1−ρ(i′)j ỹ1+bj+1−ρ(i′)jb)/A1

1

= (g
ci′,2+j
1 )(ỹj+1−ρ(i′)j ỹ1)g

−t̃i′ (b
j+1−ρ(i′)jb)

1

· g
v1δ0(

∑
i∈[n1] ρ(i

′)n−ibi+j+1)/A1

1 g
−v1δ0(

∑
i∈[n1] ρ(i

′)n+j−ibi+1)/A1

1

= (g
ci′,2+j
1 )(ỹj+1−ρ(i′)j ỹ1)g

−t̃i′ (b
j+1−ρ(i′)jb)

1

· g
v1δ0(

∑
i∈[n1]\{n1−j}

ρ(i′)n−ibi+j+1)/A1

1 g
−v1δ0(

∑
i∈[n1−1] ρ(i

′)n1+j−ibi+1)/A1

1

[Case 3] ρ(i′) is a negated attribute and ρ(i′)′ ∈ S′ (i.e. 〈Ai′ ,θ〉 = 0).
B randomly selects ti′ from Zp. Because 〈Ai′ ,θ〉 = 0, B can compute
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g
ci′,1
1 = g1

〈Ai′ ,µ〉−ηy
′
1ti′ = g1

〈Ai′ ,µ〉−ηti′ ỹ
′
1

∏
j∈[k]

(g1
bn1+1−j)ηti′ g

ci′,2
1 = g

ti′
1

g
ci′,2+j
1 = g

−ti′ (ỹ
′
j+1−ρ(i

′)j ỹ′1)

1

∏
j′∈[k]

(gb
n1+1−j′

1 )((w
∗
j′ )

i−ρ(i′)i)

[Case 4] ρ(i′) is a negated attribute and ρ(i′)′ /∈ S′ (i.e. ρ(i′) ∈ S and 〈Ai′ ,θ〉 6= 0).

First, B can compute δλi = v1δ0b
n+1 + v2 with known values v1, v2 and δ0. It sets ti′ =

t̃i′ + v1δ0b
i′)/η.

g
ci′,1
1 = g

v1δ0b
n1+1+v2+ηỹ

′
1+η

∑
i∈[k] b

n1+1−i+ηỹ′1v1δ0b
i′/η−v1δ0

∑
i∈[k] b

n1+1−i+i′

1

= g
v2+ηỹ

′
1+η

∑
i∈[n1] b

n1+1−i+ηỹ′1v1δ0b
i′/η−v1δ0

∑
i∈[n1]\i′ b

n1+1−i+i′

1

g
ci′,2
1 = g1

t̃i′ (gb
i′

1 )v1δ0/η,

g
ci′,2+j
1 = g

−t̃i′ (ỹ
′
j+1−ρ(i

′)j ỹ′1+
∑
i∈[k](w

∗
i )
jbn1+1−i−ρ(i′)j

∑
i∈[k] b

n1+1−i)

1

· g
−v1δ0bi

′
/η)(ỹ′j+1−ρ(i

′)j ỹ′1+
∑
i∈[k](w

∗
i )
jbn1+1−i−ρ(i′)j

∑
i∈[k] b

n1+1−i)

1

= (g
ci′,2+j
1 )(ỹ

′
j+1−ρ(i

′)j ỹ′1)g
−t̃i′ (

∑
i∈[k]((w

∗
i )
j−ρ(i′)j)bn1+1−i)

1

· g
−v1δ0bi

′
(
∑
i∈[k]((w

∗
i )
j−ρ(i′)j)bn1+1−i)/η

1

= (g
ci′,2+j
1 )(ỹ

′
j+1−ρ(i

′)j ỹ′1)g
−t̃i′ (

∑
i∈[k]((w

∗
i )
j−ρ(i′)j)bn1+1−i)

1

· g
−v1δ0(

∑
i∈[k]\{i′}((w

∗
i )
j−ρ(i′)j)bn1+1−i+i′ )/η

1

Therefore, if T = gdb
n1+1

2 , B simulates ÔCos0 (n1). If T is a random from G2, B simulates
ÔCos1 (n1). 2

Lemma 10. Suppose there exists an A who can distinguish between two oracles ÔSel0 (n2) and
ÔSel1 (n2) with a non-negligible advantage ε. Then, we can build B breaking A2-(n2) with ε using
A with an access matrix of size `×m where `,m ≤ n2.

Proof: Given D := {g1, g2, gc1, gc2} ∪ {g
z1
1 , g

z2
2 |z1 ∈ Z1, z2 ∈ Z2} and Tβ where

Z1 = { ∀(i, j) ∈ [n2, n2], dc, a, bj , dcbj , dcbibj , a
i/b2j

∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′, aibj/b
2
j′

∀(i, j, j′) ∈ [n2, n2, n2], j 6= j′, dcaibj/bj′ , dca
ibj/b

2
j′

∀(i, j, j′, j′′) ∈ [n2, n2, n2, n2], j 6= j′, j′ 6= j′′}, dcaibjbj′/b2j′′ },

Z2 = { ∀(i, j) ∈ [n2, n2], dc, ai, aibj , a
i/b2j

∀(i, j) ∈ [2n2, n2], i 6= n2 + 1, ai/bj
∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′, aibj/b

2
j′ }

from A2-(n2), B will simulate either ÔSel0 (n2) or ÔSel1 (n2) using A.

Initial response: When the adversary A requests an initial instance to B. B computes gη1 =

g
∑
i∈[n2] bi

2 and gη2 = g
∑
i∈[n2] bi

2 and outputs {g1, g2, gη1 , g
η
2}.

c-type response: When A sends the c-type query for an access policy Ã∗ = NM(A∗) where
A∗ = (A∗, ρ∗) and the access matrix A∗ is an ` ×m matrix where `,m ≤ n2. We define two sets

37



L′ = {i|i ∈ [`]∧ ρ∗(i) = x′i} for negated attributes and L = {i|i ∈ [`]∩ ρ∗(i) = xi} for non-negated
attributes. B randomly selects h̃1, ..., h̃N , h̃′1, ..., h̃

′
N , w̃, x̃, ỹ, ζ̃, ν̃ from Zp and implictly sets

δ = da, ζ = ζ̃ +
∑

(j,k)∈L×[m]

A∗j,k · ak/bj , ν = d+ ν̃,

For all i ∈ [N ],

yi = h̃i +
∑

(j,k)∈L×[m]

ρ(j)i−1A∗j,ka
k/b2j , y

′
i = h̃′i +

∑
(j,k)∈L′×[m]

ρ(j)i−1A∗j,ka
k/b2j

Since g1, g
bj
1 , g

ak/bj
1 , g

ak/b2j
1 and g

akbi/b
2
j

1 are given in the instance, B can compute

gyi1 = gh̃i1
∏

(j,k)∈L×[m]

(g
ak/b2j
1 )ρ(j)

i−1A∗j,k , g
y′i
1 = g

h̃′i
1

∏
(j,k)∈L′×[m]

(g
ak/b2j
1 )ρ

∗(j)i−1A∗j,k ,

g
ηy′1
1 = (

∏
i∈[n2]

gbi1 )h̃
′
1

∏
(i,j,k)∈[n2]×L′×[m]

(g
akbi/b

2
j

1 )A
∗
j,k

= (
∏
i∈[n2]

gbi1 )h̃
′
i

∏
(i,j,k)∈[n2]×L′×[m]

i6=j

(g
akbi/b

2
j

1 )A
∗
j,k

∏
(j,k)∈L′×[m]

(g
ak/bj
1 )A

∗
j,k .

For a negated attribute w′i, we define g
w′i
1 := gwi1 and g

w′i
2 := gwi2 where g1 ∈ G1 and g2 ∈ G2. B ran-

domly selects ŝ2, ..., ŝm from Zp and implictly sets φ = c(1, a, a2, ..., am−1) + d−1(0, ŝ2, ŝ3, ..., ŝm).
This sets s = c. Due to ŝ2, ŝ3, ..., ŝm, s does not correlate to the other coordinates in φ. For A∗ψ
where ψ ∈ [`], B sets

λψ = 〈A∗ψ,φ〉 =
∑
i∈[m]

A∗ψ,ica
i−1 + d−1

m∑
i=2

A∗ψ,iŝi =
∑
i∈[m]

A∗ψ,ica
i−1 + d−1λ̃ψ

where λ̃ψ =
∑m
i=2A

∗
ψ,iŝi and it is known to B.

To compute g
c(Ã∗,b(w,1,h);s,s)
1 for Ã∗, B computes gc11 = gc1 and gc21 = (gc1)d+ν̃ = (gdc1 )(gc1)ν̃

using the elements in the instance.
For the ψ row of A∗ and its corresponding attribute xψ, It randomly selects t̂ψ and sets

tψ = −dcbψ + t̂ψ. It computes g
cψ,2
1 = (g

dcbψ
1 )−1g

t̂ψ
1 . The others can be computed as follows:

• If ψ ∈ L (i.e., ρ(ψ) = xψ), B computes g
cψ,1
1 and g

cψ,2+i′
1 ;∀i′ ∈ [N ] as follows:

g
cψ,1
1 = g

δλψ+ζtψ
1

= g
da
∑
i∈[m] A

∗
ψ,ica

i−1+da(d−1)λ̃ψ+(ζ̃+
∑

(j,k)∈L×[m](A
∗
j,ka

k/bj))(−dcbψ+t̂ψ)
1

= g

∑
i∈[m]

A
∗
ψ,idca

i
+aλ̃ψ+ζ̃(−dcbψ+t̂ψ)

1

· g

−
∑

(j,k)∈L×[m]

(A
∗
j,kdca

k
bψ/bj) +t̂ψ

∑
(j,k)∈L×[m] A

∗
j,ka

k/bj

1

= g

aλ̃ψ−ζ̃dcbψ+ζ̃t̂ψ−
∑

(j,k)∈L×[m]
j 6=ψ

(A
∗
j,kdca

k
bψ/bj) +t̂ψ

∑
(j,k)∈L×[m] A

∗
j,ka

k/bj

1

= g
ζ̃t̂ψ
1 (ga1 )λ̃ψ (g

dcbψ
1 )−ζ̃

∏
(j,k)∈L×[m]

j 6=ψ

(g
dcakbψ/bj
1 )−A

∗
j,k

∏
(j,k)∈L×[m]

(g
ak/bj
1 )A

∗
j,k t̂ψ ,
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g
cψ,2+i′
1 = g

−tψ(yi′+1−ρ
∗(ψ)i

′
y1)

1 = g
dcbψ(yi′+1−ρ

∗(ψ)i
′
y1)−t̂ψ(yi′+1−ρ

∗(ψ)i
′
y1)

1

= g

dcbψ

(
h̃i′+1+

∑
(j,k)∈L×[m]

ρ
∗
(j)

i′
A
∗
j,k · a

k
/b

2
j

)
1

· g

dcbψ

(
−ρ∗(ψ)i

′
h̃1− ρ

∗
(ψ)

i′ ∑
(j,k)∈L×[m]

A
∗
j,k · a

k
/b

2
j

)
1 g

Φ′1
1

= g

dcbψ

(
h̃i′+1−ρ

∗(ψ)i
′
h̃1−

∑
(j,k)∈L×[m]

j 6=ψ

(ρ
∗
(ψ)

i′ − ρ∗(j)i
′
)A
∗
j,k · a

k
/b

2
j

)
1 · gΦ

′
5

1

= (g
dcbψ
1 )h̃i′+1−ρ

∗(ψ)i
′
h̃1

∏
(j,k)∈L×[m],j 6=ψ

(g
dcakbψ/b

2
j

1 )−(ρ
∗(ψ)i

′
−ρ∗(j)i

′
)A∗j,k · gΦ

′
1

1

where g
Φ′1
1 = g

−t̂ψ(yi′+1−ρ
∗(ψ)i

′
y1)

1 . g
Φ′1
1 can be computed using g

yi′+1

1 and gy11 .

• if ψ ∈ L′, B computes g
cψ,1
1 = g

δλψ+ηy
′
1tψ

1 as follows:

g
cψ,1
1 = g

da
∑
i∈[m] A

∗
ψ,ica

i−1+da(d−1)λ̃ψ
1

· g
(−dcbψ+t̂ψ)(h̃′1

∑
i∈[n2] bi+

∑
(i,k)∈[n2,m],j∈L′

i6=j
A∗j,ka

kbi/b
2
j+
∑

(j,k)∈L′×[m] A
∗
j,ka

k/bj)

1

= g

∑
i∈[m]

A
∗
ψ,idca

i
+aλ̃ψ−h̃′1

∑
i∈[n2] dcbψbi

1

· g

−
∑

(i,k)∈[n2,m],j∈L′
i 6=j

A∗j,kdca
kbψbi/b

2
j−

∑
(j,k)∈L′×[m]

A
∗
j,kdca

k
bψ/bj

1 · gΦ
′
2

1

= g
aλ̃ψ−h̃′1

∑
j∈[n2] dcbψbj

1

· g

−
∑

(i,k)∈[n2,m],j∈L′
i 6=j

A∗j,kdca
kbψbi/b

2
j−

∑
(j,k)∈L′×[m]

j 6=ψ

A
∗
j,kdca

k
bψ/bj

1 · gΦ
′
2

1

= (ga1 )λ̃ψ
∏
j∈[n2]

(g
dcbψbj
1 )−h̃

′
1

∏
(i,k)∈[n2,m],j∈L′,i6=j

(g
dcakbψbi/b

2
j

1 )−A
∗
j,k

·
∏

(j,k)∈L′×[m],j 6=ψ

(g
dcakbψ/bj
1 )−A

∗
j,k · gΦ

′
2

1

where Φ′2 = t̂ψηyx. B can compute g
Φ′2
1 using gηyx1 .

Computing g
cψ,2
1 is similar to that in the previous case. In this case, y′i′ is used instead of yi′

and L is replaced by L′. B computes g
cψ,2
1 as follows:

g
cψ,2
1 = g

−tψ(y′i′+1
−ρ∗(ψ)i

′
y′1)

1 = g
dcbψ(y

′
i′+1
−ρ∗(ψ)i

′
y′1)−t̂ψ(y

′
i′+1
−ρ∗(ψ)i

′
y′1)

1

= (g
dcbψ
1 )h̃i′+1−ρ

∗(ψ)i
′
h̃1

∏
(j,k)∈L×[m],j 6=ψ

(g
dcakbψ/b

2
j

1 )(ρ
∗(j)i

′
−ρ∗(ψ)i

′
)A∗j,k · gΦ

′
3

1

where g
Φ′3
1 = g

−t̂ψ(y′i′+1
−ρ∗(ψ)i

′
y′1)

1 . g
Φ′3
1 can be computed using g

y′
i′+1

1 and g
y′1
1 .
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k-type response: When the adversary requests the k-type response to A for S, B sets S′ = N(S).
We let A∗ψ is the ψth row of the access matrix A∗ which is given in the c-type query. By proposition
11 in [13], B can select a random vector z′ = (1, z′2, ..., z

′
m) ∈ Zmp which satisfies 〈z′, Ai′〉 = 0 for

all i′ such that ρ(i′) ∈ S′. Then, B randomly selects z1 from Zp and sets z = (z1, ..., zm) = z1z
′.

B randomly selects r̂ from Zp and sets r0 = cr̂−
∑
i∈[m],i6=1 zia

n2+2−i and r2 =
∑
i∈[m] zia

n2+1−i.
r0 is randomly distributed due to r̂ which are not used anywhere else. r2 is also randomly dis-
tributed due to z1 which does not appear anywhere else.

To compute g
k(β·α,S,b(w,1,h);r)
2 for S. Firstly, B computes follows:

gd12 = T z1 · (gdc2 )r̂(gc2)ν̃r̂
∏

i∈[m],i6=1

(ga
n2+2−i

2 )−ν̃zi

If T is equal to gda
n2+1

2 , D1 is equal to gδr2+νr02 and B simulates ÔSel0 (n2) because

gd12 = g
da(
∑
i∈[m] zia

n2+1−i)

2 g
(d+ν̃)(cr̂−

∑
i∈[m],i 6=1 zia

n2+2−i)

2

=
∏
i∈[m]

gzida
n2+2−i

2

∏
i∈[m],i6=1

(gzida
n2+2−i

2 )−1 (gdc2 )r̂(gc2)ν̃r̂ ·
∏

i∈[m],i6=1

(gzia
n2+2−i

2 )−ν̃

= (gda
n2+1

2 )z1 · (gdc2 )r̂(gc2)ν̃r̂
∏

i∈[m],i6=1

(ga
n2+2−i

2 )−ν̃zi .

If T is a random from G2 and we write it as gda
n2+1

2 gα̃2 , the randomness is added to gd12 and B
simulates ÔSel1 (n2). Then, it computes the others following:

gd22 = gr22 =
∏
i∈[m]

(ga
n2+1−i

2 )zi , gd32 = gr02 = (gc2)r̂
∏

i∈[m−1]

(ga
n2+1−i

2 )−zi+1 .

•Compute gd42 and gd52 : gd42 = g
−ζr2+r1(a1y1+...+aNyN )
2 is decomposed to g−ζr22 and g

r1(a1y1+...+aNyN )
2 .

First, it derives g−ζr22 as follows:

g−ζr22 = g
−(ζ̃+

∑
(j,k)∈L×[m] A

∗
j,k·a

k/bj)
∑
i∈[m] zia

n2+1−i

2

= g
−ζ̃
∑
i∈[m] zia

n2+1−i

2 g

−
∑

(i,j,k)∈[m]×L×[m]
i 6=k

A∗j,kzi·a
n2+1+k−i/bj

2

· g
−
∑

(i,j)∈[m]×L A
∗
j,izi·a

n2+1/bj
2

= g
Φ′3
2 · g

∑
j∈L 〈A

∗
j ,z〉a

n2+1/bj
2 = g

Φ′3
2 ·

∏
j∈L,j /∈S

g
〈A∗j ,z〉a

n2+1/bj
2

where Φ′3 = −ζ̃
∑
i∈[m] zia

n2+1−i −
∑

(i,j,k)∈[m]×L×[m]
i 6=k

A∗j,kzi · an2+1+k−i/bj . The last equality of

the above equation holds because 〈A∗j , z〉 = 0 for all j such that ρ∗(j) ∈ S. g
φ′3
2 can be computed

since {gai2 ;∀i ∈ [n2]} and {ga
i/bj

2 ;∀(i, j) ∈ [2n2, n2], i 6= n2 + 1} are given in the instance.

Secondly, to derive g
r1(a1y1+...+aNyN )
2 , it creates r̂1

R←− Zp and sets r1 = r̂1−
∑

(i,i′)∈[m]×L
ρ∗(i′)/∈S

zibi′a
n2+1−i

P (ρ∗(i′))

where P (ρ∗(i′)) = Σy∈S(ρ∗(i′)− y). P (ρ∗(i′)) 6= 0 due to ρ∗(i′) /∈ S. B computes
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g
r1(a1y1+...+aNyN )
2

= g

r̂1(a1y1+...+aNyN )−
∑

(i,i′)∈[m]×L
ρ∗(i′)/∈S

zibi′a
n2+1−i

P (ρ∗(i′)) (a1ỹ
′
1+...+aN ỹ

′
N )

2

· g
−
∑

(i,i′)∈[m]×L
ρ∗(i′)/∈S

zibi′a
n2+1−i

P (ρ∗(i′))
∑

(j,k)∈L×[m] P (ρ∗(j))A∗j,ka
k/b2j )

2

= g
Φ′4
2 · g

−
∑

(i,i′,j,k)∈[m]×L2×[m]

ρ∗(i′)/∈S

P (ρ∗(j))
P (ρ∗(i′))A

∗
j,kzia

n2+1+k−ibi′/b
2
j

2

= g
Φ′4
2 · g

−
∑

(i,i′,j,k)∈[m]×L2×[m]

ρ∗(i′)/∈S,(j 6=i′)∨(i6=k)

P (ρ∗(j))
P (ρ∗(i′))A

∗
j,kzia

n2+1+k−ibi′/b
2
j

2

· g
−
∑

(i,i′,j,k)∈[m]×L2×[m]

ρ∗(i′)/∈S,(j=i′)∧(i=k)

P (ρ∗(j))
P (ρ∗(i′))A

∗
j,kzia

n2+1+k−ibi′/b
2
j

2

= g
Φ′4
2 · g

Φ′5
2 · g

−
∑
j∈L, ρ∗(j)/∈S〈A

∗
j ,z〉a

n2+1/bj
2

where Φ′4 = r̂1(a1y1+...+aNyN )−
∑

(i,i′)∈[m]×L
ρ∗(i′)/∈S

zibi′a
n2+1−i

P (ρ∗(i′)) (a1ỹ
′
1+...+aN ỹ

′
N ) and Φ′5 = −

∑
(i,i′,j,k)∈[m]×L2×[m]

ρ∗(i′)∈S,(j 6=i′)∨(i6=k)

P (ρ∗(j))
P (ρ∗(i′))A

∗
j,kzia

n2+1+k−ibi′/b
2
j .

Both g
Φ′4
2 and g

Φ′5
2 can be computed since gy12 , ..., gyw2 can be computed and {ga

ibj
2 ;∀(i, j) ∈ [n2, n2]}

and {g
aibj/b

2
j′

2 ;∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′} are given in the instance.

Because g
−
∑
j∈L, ρ∗(j)/∈S〈A

∗
j ,z〉a

n2+1/bj
2 is cancelled out when B computes gd42 = g−ζr22 g

r1(a1y1+...+aNyN )
2 ,

it can compute gd42 and gd52 as follows:

gd42 = g
Φ′3
2 g

Φ′4
2 g

Φ′5
2 , gd52 = g

r̂ψ
2

∏
(i,i′)∈[m]×L
ρ∗(i′)/∈S

(g
bi′a

n2+1−i

2 )
zi

P (ρ∗(i′)) .

• Compute g
d′4
2 and g

d′5
2 : In order to compute g

d′4
2 = (g

η(a1y
′
1+...+aNy

′
N )

2 )r2 and g
d′5
2 = (gη2 )r2 , B first

sets g
d′4
2 ← 1G2

and g
d′5
2 ← 1G2

. Then, it updates g
d′4
2 and g

d′5
2 by multiplying g

bπr(a1y
′
1+...+aNy

′
N )

2 and

gbπr2 for all π ∈ [n2]. This process allows B to compute
∏
π∈[n2]

g
bπr(a1y

′
1+...+aNy

′
N )

2 = g
ηr(a1y

′
1+...+aNy

′
N )

2

and
∏
π∈[n2]

gbπr2 = gηr2 .

It is achieved by repeating the following Update process for all π ∈ [n2].

Update: First, B can compute gbπr2 because gbπr2 =
∏
i∈[m](g

an2+1−ibπ
2 )−zi and g

aibj
2 is given in

the instance.
There are three cases to compute g

bπr(wψyx+yy)
2 as follows:

[Case 1] If π ∈ L′ ∧ ρ(π) = x′ψ ∧ xψ = wψ ∈ S,

g
bπr(a1y

′
1+...+aNy

′
N )

2

= g
(
∑
i∈[m] zia

n2+1−ibπ)(
∑
i∈[N] aiỹ

′
i)

2

· g

(
∑
i∈[m] zia

n2+1−ibπ)(
∑

(i,j,k)∈[N]×L′×[m]

aiρ(j)
i
a
k
A
∗
j,k/b

2
j )

2

= g
Φ′6
2 · g

(
∑
i∈[m] zia

n2+1−ibπ)
∑

(i,j,k)∈[N]×L′×[m]
j 6=π

aiρ(j)
i
A
∗
j,ka

k
/b

2
j

2

= g
Φ′6
2

∏
(i,i′,j,k)∈[m]×[N ]×L′×[m],j 6=π

(g
an2+1+k−ibπ/b

2
j

2 )ai′ρ(j)
i′A∗j,kzi
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where Φ′6 = (
∑
i∈[m] zia

n2+1−ibπ)·(
∑
i∈[N ] aiỹ

′
i). B can compute g

Φ′6
2 since {ga

ibj
2 ; ∀(i, j) ∈ [n2, n2]}

is given in the instance. ak/b2π was cancelled out in the boxed terms since
∑

(i,k)∈[N ]×[m] aiρ(π)iA∗π,ka
k/b2π =

0. In the above equation, g
an2+1/bπ
2 which is not given in the instance does not appear since j 6= π.

Therefore, g
d′π,1
2 can be computed.

[Case 2] If π ∈ L′ ∧ ρ(π) = x′ψ ∧ xψ /∈ S,

g
bπr(a1y

′
1+...+aNy

′
N )

2

= g
(
∑
i∈[m] zia

n2+1−ibπ)(
∑
i∈[N] aiỹ

′
i)

2

· g

(
∑
i∈[m] zia

n2+1−ibπ)(
∑

(i,j,k)∈[N]×L′×[m]

aiρ(j)
i
a
k
A
∗
j,k/b

2
j )

2

= g
Φ′6
2 · g

∑
(i,i′,j,k)∈[m]×[N ]×L′×[m]

(k 6=i)∨(j 6=π)
ai′ρ(j)

i′A∗j,kzia
n2+1+k−ibπ/b

2
j

2

· g

∑
(i,i′,j,k)∈[m]×[N ]×L′×[m]

(k=i)∧(j=π)
ai′ρ(j)

i′A∗j,kzia
n2+1+k−ibπ/b

2
j

2

= g
Φ′6
2 · g

Φ′7
2 · g

∑
i,i′∈[m]×([N]) ai′ρ(π)

i′A∗π,izia
n2+1/bπ

2 (17)

= g
Φ′6
2 · g

Φ′7
2

where Φ′7 =
∑

(i,i′,j,k)∈[m]×[N ]×L′×[m]
(k 6=i)∨(j 6=π)

ai′ρ(j)i
′
A∗j,kzia

n2+1+k−ibπ/b
2
j . The equality of (17) holds

since 〈A∗π, z〉 = 0 for all π such that ρ∗(π) ∈ S′ (i.e. ρ∗(π) /∈ S). g
Φ′7
2 can be computed since

{g
aibj/b

2
j′

2 ;∀(i, j, j′) ∈ [2n2, n2, n2], j 6= j′} are given.

[Case 3] If π /∈ L′,

g
bπr(a1y

′
1+...+aNy

′
N )

2

= g
(
∑
i∈[m] zia

n2+1−ibπ)(
∑
i∈[N] aiỹ

′
i)

2

· g

(
∑
i∈[m] zia

n2+1−ibπ)(
∑

(i,j,k)∈[N]×L′×[m]

aiρ(j)
i
a
k
A
∗
j,k/b

2
j )

2

= g
Φ′6
2 · g

∑
(i,i′,j,k)∈[m]×[N]×L′×[m] ai′ρ(j)

i′A∗j,kzia
n2+1+k−ibπ/b

2
j

2

= g
Φ′6
2

∏
(i,i′,j,k)∈[m]×[N ]×L′×[m]

(g
an2+1+k−ibπ/b

2
j

2 )ai′ρ(j)
i′A∗j,kzi .

It should be noted that g
an2+1+k−i/bπ
2 which was not given in the instance does not appear in the

above equation because j ∈ L′.

Now, it updates g
d′ψ,1
2 ← g

d′ψ,1
2 · (gk

′
π,1

2 )1/|S| and g
d′ψ,2
2 ← g

d′ψ,2
2 · (gk

′
π,2

2 )1/|S|.
2

B Generic Security of Assumptions

We will prove our assumptions are secure in the generic group model. Our assumptions are based
on n-(A), n-(B) assumptions of [31]. However, in our assumptions, the indistinguishable element
is in G2. Hence, proving the generic security of our assumptions is more complicated than proving
n-(A), n-(B) assumptions which have the indistinguishable element in GT .
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B.1 Converting Assumptions

We prove the security of assumptions in a generic way instead of providing separate proofs for
each assumption. Our proof is inspired by [22], but we use the assumptions of selective security
for the generalized proof. First, we formalize both assumptions. We then show that an assumption
of which the indistinguishable element is in G2 can be created and proved from an assumption
which is used to prove selective security such as n-(A), n-(B) assumptions.

We describe our notation. We set h = (h1, ..., h`) ∈ Z`p and let hi|x denote (h1, ..., hi−1, x, hi+1, ..., h`)
in which the ith coordinate of h is replaced by x and the other coordinates are unchanged. We
define z(h) to be the set of ratio monomials which are outputs of rational functions of h. We also
define v(h) to be a rational function outputting a monomial and there exists i ∈ [`] such that
v(hi|x) = x · v(hi|1). Using z and v, we define the following two assumptions:

AssumptionSel(z, v, `) If a group generator G, we define following distribution

G = (p,G,GT , e)
R←− G, g

R←− G, h
R←− Z`p

Z = {g} ∪ {gz|z ∈ z(h)}, T0 = e(g, g)v(h), T1
R←− GT

We define the advantage of A in breaking this assumption to be:

AdvSelG,A(λ) := |Pr[A(Z, T0 = 1]− Pr[A(D,T1) = 1]|.

We say that G satisfies an algorithm A breaks AssumptionSel(z, v) if AdvSelG,A(λ) is a negligible
function of λ for any PPT.

AssumptionAsymSF (z1, z2, v, `) If a group generator G, we define following distribution

G = (p,G1, G2, GT , e)
R←− G, f1

R←− G1, f2
R←− G2, c, d, h1, ..., hi−1, hi+1, ..., h`

R←− Zp

Z1 = {f1, fc1} ∪ {f
z1
1 |z1 ∈ z1(hi|dc)} and Z2 = {f2, fc2} ∪ {f

z2
2 |z2 ∈ z2(hi|dc)}

T0 = f
v(hi|d)
2 , T1

R←− G2

where e is an asymmetric pairing such that e : G1 ×G2 → GT .
We define the advantage of A in breaking this assumption to be:

AdvSF,AsymG,A (λ) := |Pr[A(Z, T0 = 1]− Pr[A(D,T1) = 1]|.

We say that G satisfies an algorithm A breaks AssumptionSF (z, v) if AdvSFG,A(λ) is a negligible
function of λ for any PPT.

For h ∈ Z`p, we let Z1 and Z2 denote {1, c}∪{z1|z1 ∈ z1(hi|dc)} and {1, c}∪{z2|z2 ∈ z2(hi|dc)},
respectively. Then, we define E(Z1,Z2) be {xy|(x, y) ∈ Z1 × Z2}, the set of all possible pairwise
products between Z1 and Z2. Therefore, E(Z1,Z2) represents all exponents of elements in an
asymmetric pairing can be obtained by {f1, f2, f c1 , f c2} ∪ {f

z1
1 , fz22 |z1 ∈ z1(hi|dc), z2 ∈ z2(hi|dc)}.

Proposition 1. If Assumptionsel(z, v, `) holds, AssumptionAsymSF (z1, z2, v, `) also holds for all
rational functions z1 and z2 such that z1(h), z2(h) ⊆ z(h) for all h ∈ Z`p.
Proof: To prove the proposition, we first prove the following claim:

Claim: For each function M ∈ Z1, the product M ·v(hi|d) is not in E(Z1,Z2)∪v(hi|d) ·(Z1 \{M})
where v(hi|d) · (Z1 \ {M}) is the set formed by multipying v(hi|d) to all elements in Z1 \ {M}.

It is obvious that M · v(hi|d) cannot be in v(hi|d)(Z1 \ {M}). Therefore, we will show that
M · v(hi|d) for all M ∈ Z1 is also not in E(Z1,Z2). First, we can compute E(Z1,Z2) as follows:

{1, c, c2} ∪ c · z1(hi|dc) ∪ c · z2(hi|dc) ∪ {z1 · z2|(z1, z2) ∈ z1(hi|dc)× z2(hi|dc)}

Since all elements of Z1, Z2 and v(hi|d) are a ratio of monomials, all elements of E(Z1,Z2) ∪
v(hi|d) · (Z1 \ {M}) are also a ratio of monomials. Therefore, M · v(hi|d) is also a monomial and
we will show that it is not in E(Z1,Z2) ∪ v(hi|d)(Z1 \ {M}). Because M ∈ Z1, M · v(hi|d) is in
(v(hi|d) · Z1). Then, we compute v(hi|d) · (Z1):

v(hi|d) · Z1 := {v(hi|d), c · v(hi|d), v(hi|d) · z1|z1 ∈ z1(hi|dc)}.
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Case 1: M · v(hi|d) is in {v(hi|d), v(hi|d) · z1|z1 ∈ z1(hi|dc)}.
For all monomials in E(Z1,Z2), the degree of d is less than the degree of c because d is
always accompanied by c and c−1 is not in Z1 and Z2. It means that, if M · v(hi|d) is in
{v(hi|d), v(hi|d) · z1(hi|dc)}, it cannot have a common element with E(Z1,Z2) because M ·
v(hi|d) is a polynomial of which the degree of d is larger than the degree of c.

Case 2: M · v(hi|d) = c · v(hi|d) (i.e. M is equal to c).
By the definition of function v, c · v(hi|d) is equal to dc · v(hi|1), and v(hi|1) dose not contain
any of d and c. Hence, it is not in {1, c, c2} since they do not include d, obviously. dc · v(hi|1)
is not in c · z1(hi|dc) or c · z2(hi|dc) since the degree of c is larger than the degree of d for all
elements of c ·z1(hi|dc) and c ·z2(hi|dc). Moreover, dc · v(hi|1) which is equal to v(hi|dc) is not
in {z1(hi|dc)} · {z2(hi|dc)} since the AssumptionSel(z, v) holds. In detail, AssumptionSel(z, v)
implies that dc · v(hi|1) = v(hi|dc) is not in {1, z(hi|dc)} · {1, z(hi|dc)} which is equal to
{1, z(hi|dc)} ∪ ({z(hi|dc)} · {z(hi|dc)}). Since z1, z2 ⊆ z, {z1(hi|dc)} · {z2(hi|dc)} is also a
subset of {z(hi|dc)} · {z(hi|dc)}.

By the above claim, if we take any element from Z1 of AssumptionAsymSF (z1, z1, v) and compute
pairing with Tβ ∈ G2, there do not exist any pairing computations possible to compare the result
with to distinguish whether β is 0 or 1 in the generic group models. {e(a, b);∀a, b ∈ Z1 × Z2} ∩
{e(a, T ); ∀a ∈ Z1} = ∅

Therefore, AssumptionAsymSF (z1, z1, v) holds. 2

B.2 The Generic Security of Assumptions A1-(n) and A2-(n)

Using Proposition 1, we can prove the security of our assumptions in the generic group model. In
detail, our assumptions can be proved using n-(A) and n-(B) assumptions of [31]. If we set n-(A)

and n-(B) assumptions as AssumptionSel(z, v, `) and ours as AssumptionAsymSF (z1, z2, v, `). The
security is proved directly by Proposition 1.

Lemma A. A1-(n) is secure in the generic group model.
Proof: To prove this assumption, we first define a new assumption which can be used as Assumptionsel(z, v, `)
of Proposition 1. such that Z1, Z2 ∈ z(h1|dc) and v(h1|d) = dyz where h = (s, x, y, z, a1, ..., an, b1, ..., bn) ∈
Z2n+4
p (i.e. ` = 2n + 4) and Z1 and Z2 are the sets appearing in A1-(n). By setting z(h1|dc) =

Z1 ∪ Z2, we can define Assumptionsel(z, v, `) as follows:

Assumptionsel(z, v, `). If a group generator G and a positive integer n is given, we define following
distribution

G = (p,G,GT , e)
R←− G, g

R←− G, h = (d, c, x, y, z, a1, ..., an, b1, ..., bn)
R←− Z`p

D := {g} ∪ {gz|z ∈ z(h)}

where z(h) = {s, x, y, z, (sz)2, ai, szai, sz/ai, (s)2zai, y/a2i , y2/a2i ∀i ∈ [n],

aiszai/aj , yai/a
2
j , syzai/a

2
j , (sz)

2ai/aj ∀(i, j) ∈ [n, n], i 6= j,

bi, xbi, xzbi, zbi, bibj , sy/b
2
i , sxy/b

2
i , sxybi/b

2
j ∀(i, j) ∈ [n, n],

zbibj , sybi/b
2
j , sybibj/b

2
k, syb

2
i /b

2
j ∀(i, j, k) ∈ [n, n, n], i 6= j}

T0 = e(g, g)syz and T1
R←− GT

We define the advantage of an algorithm A in breaking Assumptionsel(z, v, `) to be

Advn,selG,A (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

Claim: Assumptionsel(z, v, `) is secure in the generic group model.
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Proof of the claim: This claim is trivially holds by n-(A) Assumption of [31]. Compared to n-(A)
Assumption, our assumption has only additional elements where x is appears in D and there is
no element x−1. This means that all possible pairing computations with newly added elements in
our assumption must have x in their exponents. However, x does not appear T0. Hence, if n-(A)
Assumption is secure in the generic group model, n-(A) Assumption is also secure in the generic
group model. 2

If we define AssumptionAsymSF (z1, z2, v) of Proposition 1 by setting z1(h1|dc) = Z1, z2(h1|dc) =
Z2, v(h1|d) = dyz and ` = 2n + 4. This is possible because z1(h), z2(h) ∈ z(h) and z(h1|dc) =

Z1 ∪Z2. Then, AssumptionAsymSF (z1, z2, v) is identical with A1-(n). Therefore, A1-(n) is secure in
the generic group model by Proposition 1. 2

Lemma B. A2-(n) is secure in the generic group model.
Proof: We use the n-(B) Assumption of [31] to prove the security of A2-(n). From the n-(B)
Assumption, we can set ` = n+ 2, v(h) = san+1 and

z(h) := {s, ai, bj , sbj , sbibj , aibj , ai/b2j ∀(i, j) ∈ [n, n]

ai/bj ∀(i, j) ∈ [2n, n], i 6= n+ 1

aibj/b
2
j′ ∀(i, j, j′) ∈ [2n, n, n], j 6= j′

saibj/bj′ , sa
ibj/b

2
j′ ∀(i, j, j′) ∈ [n, n, n], j 6= j′

saibjb
′
j/b

2
j′′ ∀(i, j, j′, j′′) ∈ [n, n, n, n], j 6= j′, j′ 6= j′′},

where h = (s, a, b1, ..., bn). Since v(h1|d) = dan+1 = d · v(h1|1) where h1|d := (d, a, b1, ..., bn), we
can set the n-(B) Assumption as Assumptionsel(z, v, `).

To show the our A2-(n) is a corresponding conversion of Assumptionsel(z, v, `) which can be

denoted as AssumptionAsymSF (z1, z2, v). First, we set h1|dc := (dc, a, b1, ..., bn) . Then, we define
z1(h1|dc) := Z1 and z2(h1|dc) := Z2 where Z1 and Z2 are the sets appearing in A2-(n). Since both

z1(h1|dc) and z2(h1|dc) are subsets of z(h1|dc), our A2-(n) is identical to AssumptionAsymSF (z1, z2, v).
It means that A2-(n) is also secure in the generic group model by Proposition 1 because the n-(B)
Assumption is secure in the generic group model. 2

Lemma C. (Asymmetric) n-DBDHE is secure in the generic group model.
Proof: Because n-DBDHE assumption [10] is secure in symmetric pairing, our (Asymmetric) n-
DBDHE is also secure by Proposition 1. 2

45


