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Abstract—Since their introduction over two decades ago, side-
channel attacks have presented a serious security threat. While
many ciphers’ implementations employ masking techniques to
protect against such attacks, they often leak secret information
due to unintended interactions in the hardware. We present
ROSITA, a code rewrite engine that uses a leakage emulator
which we amend to correctly emulate the micro-architecture of a
target system. We use ROSITA to automatically protect masked
implementations of AES, ChaCha, and Xoodoo. For AES and
Xoodoo, we show the absence of observable leakage at 1 000 000
traces with less than 21% penalty to the performance. For
ChaCha, which has significantly more leakage, ROSITA eliminates
over 99% of the leakage, at a performance cost of 64%.

I. INTRODUCTION

The seminal work of Kocher [55] demonstrated that in-
teractions of cryptographic implementations with their envi-
ronment can result in side channels, which leak information
on the internal state of ciphers. Since then multiple side
channels have been demonstrated, exploiting various effects,
such as timing [1, 11, 20, 21], power consumption [56],
electromagnetic (EM) emanations [22, 39, 69], shared micro-
architectural components [43, 78], and even acoustic and
photonic emanations [4, 44, 58, 73]. These side channels pose
a severe risk to the security of systems, and in particular
to cryptographic implementations, and effective side-channel
attacks have been demonstrated against block and stream
ciphers [47, 70], public-key systems, both traditional [30, 65]
and post quantum [68], cryptographic primitives implemented
in real-world devices [5, 35], and even non-cryptographic
algorithms [8].

Many approaches to protect devices have been suggested,
in particular against power and EM attacks. These range from
special logic styles that are designed to make leakage data-
independent [24, 37, 77], through noise generation to hide the
signal [64], to algorithmic changes designed to prevent certain

Table I: Results of running ROSITA to automatically fix masked
implementations of AES, ChaCha, and Xoodoo.

Cycles Leakage Points

Function Original Fixed Original Remaining

AES 1285 1479 31 0
ChaCha 1322 2162 238 1
Xoodoo 637 769 38 0

leakage [63]. In particular, masking is a common algorithmic
countermeasure in which all intermediate (secret-dependent)
values in the ciphers are combined with random masks, so
that the leakage of one or even a few values does not provide
the attacker with enough information to recover the secrets.

The protection afforded by masking is, however, only
theoretical. In practice, masked implementations often fail to
achieve the promised level of security. One of the most com-
mon reasons for leakage from masked implementations is un-
intended interactions between values in the micro-architecture.
For example, the power consumption of updating the contents
of a register may depend on a relationship between the values
prior to and after the update.

To achieve secure cryptography in the presence of side-
channel attacks, cryptographic implementations often go
through multiple cycles of leakage evaluation, e.g. as specified
in International Standard ISO/IEC 17825:2016(E) [49]. Such
a process is costly because it requires a high level of expertise
and significant manual labor, especially taking into account
state-of-the-art side-channel adversaries.

Recently, several works have experimented with tools that
provide a high resolution emulation of the power consump-
tion [81]. The results of such emulations are combined with
standard statistical tests [10] to perform leakage assessment
of software without executing it on the actual hardware [67].
Observing that these tools eliminate the hardware from the
leakage evaluation process, we ask the following question:

Can leakage emulators be used for automatic mitigation of
side channel leakage from software implementations?
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In this work, we answer this question in the affirmative (see
Table I for results), albeit with some caveats. Specifically, we
develop an automatic tool, ROSITA1, that uses an emulator
to detect leakage due to unintended interactions between
values and then rewrites the code to eliminate the leakage.
Automating leakage elimination reduces the amount of work
required to ensure adherence with the ISO 17825 standard, and
to develop secure cryptographic implementations.
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Figure 1: Leakage elimination workflow with extended ELMO
(ELMO*) and ROSITA.

To emulate leakage, we develop ELMO*, a leakage em-
ulator that uses the execution engine of the ELMO leakage
emulator [62], but improves ELMO in three different directions.
We first note that while ELMO detects leakage between consec-
utive instructions, it fails to detect leakage between instructions
that are further apart. To improve the emulation accuracy, we
first design and develop novel procedures for detecting leakage
between non-consecutive instructions and for identifying the
storage components involved in this leakage. We apply these
procedures to the Cortex M0 processor, identifying several
storage elements. We then modify ELMO to model these
elements, achieving an accurate leakage model. Second, we
modify ELMO to not only output the instruction that causes
the leakage, but also to identify the cause of the leakage. Last,
we modify the workflow in ELMO to perform on-line statistical
analysis of the generated traces to detect leakage.

In its core, ROSITA is a rule-driven code rewrite engine.
It uses the output from ELMO* to select rewrite rules and
apply them at leaky points. To eliminate leakage, we follow
the workflow in Figure 1. We repeatedly execute ELMO* to
identify code locations that leak and then invoke ROSITA to
rewrite the code. Finally, we test the code produced by ROSITA
on the physical device to assess the level of remaining leakage.

We experiment with masked implementations of three
ciphers with very different round functions: the AES block
cipher [27], the ChaCha stream cipher [12], and the Xoodoo

1Available at https://github.com/0xADE1A1DE/Rosita.

permutation [28], running up to 1 000 000 traces on each.
We use the table-lookup based masked implementation of
AES-128 by Yao et al. [87]. AES implemented with table
lookups tends to be vulnerable to cache-based timing attacks.
Recent ciphers however, mostly permutations, can be im-
plemented efficiently with only bitwise Boolean instructions
and (cyclic) shifts, e.g., Keccak-p, the permutation underlying
SHA-3, [17, 34], Ascon [33], Gimli [14] and Xoodoo [29].
They all have a nonlinear layer of algebraic degree 2 and
hence allow very efficient masking. Among those, we chose
Xoodoo[12] because it is the simplest of all and it lends itself
to efficient implementations for 32-bit architectures. Finally,
we consider ChaCha20 as a symmetric-key algorithm that is
very different than the other two as a representative of addition-
rotation-xor (ARX) ciphers.

As Table I shows, ROSITA successfully eliminates leakage
from the AES and Xoodoo implementations, at a moderate
performance impact of less than 21%. For ChaCha, ROSITA is
also successful, eliminating all but one leakage points, with a
higher performance cost of 64%.

To sum up, the contributions of this work are:

● We propose a framework for generating first-order leakage-
resilient implementations of masked ciphers by iteratively
rewriting the code at leakage points. (Section III)

● We design and implement systematic approaches for identi-
fying leakage through microarchitectural storage elements.
We use these approaches to detect multiple sources of
leakage in the Cortex M0 processor that ELMO fails to
model. We extend ELMO and augment it to model these
sources of leakage, achieving an accurate model of leakage.
We further augment ELMO to report instructions that leak
secret information and the specific cause of leakage for each.
(Section IV)

● We develop ROSITA, a code rewrite engine that uses the
output of ELMO*, our augmented ELMO, to rewrite leaking
instructions and eliminate leakage. (Section V)

● We use ROSITA to rewrite masked implementations of AES,
ChaCha, and Xoodoo. We test the code ROSITA produces
and show that ROSITA eliminates almost all the leakage at
up to 1 000 000 traces, with an acceptable performance loss.
(Section VI)

II. BACKGROUND

A. Side-Channel Attacks

When software runs on hardware, it affects the environment
it executes in. This effect can be manifested as variations in
power consumption, electromagnetic emanations, temperature,
and state of various CPU components. As these variations
correlate with the operation of the algorithm, monitoring these
variations discloses information about the internal state, and
as such provides a ‘communication’ channel that transfers
information from the software being observed to the observer.
These unintended communication channels are often known as
side channels.

In 1996, Kocher [55] noted that the information acquired
through a timing side channel may reveal secret information
processed by cryptographic algorithms. Since then a significant
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effort has been dedicated to analyzing and eliminating side-
channel leakage, particularly in the context of cryptographic
implementations [9, 39, 56, 61, 69].

Protection against side-channel attacks depends on both
the channel and the attacker capabilities. The constant-time
programming style [13, 52], which avoids secret-dependent
branches and table lookups, has proven effective against at-
tacks that depend on the cryptographic operation timing or
on its effect on micro-architectural components [11, 20, 43].
However, when the leakage correlates with the data values
being processed, constant-time programming is not sufficient
to protect the implementation.

One of the main approaches to protect cryptographic im-
plementations against side channels that leak information on
data values is masking [23, 63]. In a nutshell, t-order masking
represents each internal value v using t+1 values v0, v1, . . . , vt
such that the masks v1, . . . , vt are chosen uniformly at random,
and v0 is set such that v = v0 ⊕ v1 ⊕⋯⊕ vt. Consequently the
leakage of up to t values does not disclose any information to
the attacker, and the implementation is secure in the t-probing
model [50]. In practice, due to the complexities involved in
higher-order masking, most masked implementation are first
order, where each value is represented by a mask and a masked
value.

Although theoretically secure, naive masking often fails
to provide the required protection. The main cause is that
side-channel leakage correlates not only with the values being
processed, but also with the changes in the logical values
of internal components, resulting in unintended interactions
between values in the processor. Past research has identified
two main sources of such leakage: transitional effects and
glitches.

Transitional effects are caused when the logical value of a
register or even of a long wire, such as a bus, changes from
one to zero or vice versa. Changing the value draws more
power than maintaining the value unchanged. Consequently,
when changing the value of a register, the power consumption
corresponds with the Hamming distance between the old and
new values [6].

In contrast with transitional effects, which correspond to
changes in logical values, glitches are temporary changes in
electrical signals caused by signal timing differences. Because
signals take time to propagate through the circuit, it takes
time for the logical values to stabilize during a cycle. Until
the signals stabilize, they may fluctuate between signal levels,
leaking information that does not correspond just to the logical
function computed [25, 60].

For masked implementations, unintended interactions, such
as transitional effects and glitches can be disastrous. For
example, suppose that a program that processes a secret value
v = v0 ⊕ v1 contains two consecutive instructions, where the
first instruction uses v0 and the second uses v1. Internally,
executing the first instruction would place v0 on the bus, and
executing the second instruction would change the contents of
the bus to v1. The transitional effect of changing the contents
of the bus draws power which corresponds to the Hamming
distance between v0 and v1, which is the Hamming weight of
the secret value v.

Balasch et al. [6] demonstrate that unintended interactions
due to transitions halve the number of intermediate values
the adversary needs to acquire. However, as mentioned above,
algorithms that use high-order masking are significantly more
complex in terms of resources they require, than simple first-
order masking. Moreover, Gao et al. [42] demonstrate that
glitches may further reduce the security level of masked
implementations.

Thus, the common practice, from the practitioners’ point
of view, is to use first-order masking, and to combine it with
ad-hoc countermeasures for unintended interactions. Then,
the implementation of the cryptographic software typically
undergoes leakage assessment to find code locations that leak
information. If leakage is detected, the operator applies manual
modifications to the code to eliminate the leakage, this process
repeats until no further leakage is evident.

We now turn our attention to assessing leakage in crypto-
graphic implementations.

B. Side Channel Leakage Assessment

Leakage assessment of a device is very important for
both the semiconductor and the security evaluation industries,
and has accordingly received a lot of attention in past years.
Depending on the attacker model, many attack vectors are pos-
sible and exhaustive evaluation (by trying all possible attacks)
is simply not feasible. As an alternative, a leakage evaluation
methodology called Test Vector Leakage Assessment (TVLA)
was proposed [26, 79]. The question that it answers relates
to the presence of any sort of leakage (from side channel
measurements) of the targeted implementation running on
the device of interest. TVLA does have some limitations.
Specifically, a negative answer does not mean that the device
is secure. However, the confidence level can be increased
by testing multiple times with different inputs. Similarly, a
positive result, i.e. indication of leakage, does not tell much on
the exploitability of the leakage [74]. Nevertheless, due to its
simplicity and efficacy, the TVLA method is considered useful
first diagnostics tool for side-channel leakage assessment, and
it has become the popular tool for security analysts. The core
idea of TVLA is to use Welch’s t-test [84] to differentiate
between two sets of measurements, one with fixed inputs and
the other with random inputs. If the test finds sufficiently
strong evidence that the measurements leak, this implies that
the device leaks some data-dependent information through a
side channel. The main limitation is in evaluating each point
in time independently, so the leakage from combining multiple
points is not detected. To overcome this limitation, Schneider
and Moradi [74] extend the t-test to handle multiple points. In
addition, to address leakages distributed over multiple orders
they propose the use of the χ2-test as a natural complement
to the Welch’s t-test.

As a further guideline for analysts, the International Stan-
dard ISO/IEC 17825:2016(E) [49] suggests a specific proce-
dure for assessing the security of devices. Specifically, the
procedure requires selecting two fixed inputs and performing
TVLA measurements, comparing the traces with these fixed
inputs and those of random inputs. The number of traces in
each assessment depends on the desired security level and
ranges between 10 000 for level 3 and 100 000 for level 4.
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C. Leakage Emulators

Because conducting real experiments for leakage detection
is costly, leakage emulation has been adapted as an alternative.
To the best of our knowledge, PINPAS [32], which detects
leakage in Java-based smart cards, is the first such emulator.
Since then, various other methods of emulating leakage have
been suggested. Among the most accurate use SPICE [66]
to simulate the internal circuits of a CPU down to a tran-
sistor level [3]. Its drawback is that transistor-level simulators
tend to be very slow. Alternatively, researchers have looked
at emulating at the source code level [80] and at machine
instruction level [67, 81]. In source code level emulation, the
emulator does not have any information about a specific CPU
that will be used to run the compiled machine code of a given
source code. It emulates leakage having source code as its only
input. In instruction level emulation, the emulation is based
on the machine code that will be executed on a certain CPU
or more generally a specific CPU kind. Recently, advanced
instruction level emulators have been introduced that use power
and electromagnetic traces from real experiments to make
better estimates [62, 75]. Similarly, advanced characteristics
of CPUs such as instruction pipelining have found their way
into recent leakage emulators [59].

COCO [46] suggests reformulating software testing for
leakage as a hardware verification problem. Specifically, COCO
uses a cycle-accurate simulator of masked software execution
to acquire traces of execution on a target CPU. It then
uses REBBECA [18] to verify the absence of leakage from
the underlying hardware. An advantage of the approach is
that leakage can be eliminated at both the software and the
hardware levels. However, it requires access to the full netlist
of the target processor and relies on manual tagging of masked
values.

D. Automatic Approaches to Handling Side-Channel Leakage

Due to the numerous problems and pitfalls with counter-
measures against side-channel attacks as previously discussed,
researchers developed several automated approaches for han-
dling side-channel leakage. The approaches can be grouped
into three categories, simulation-based, code analysis, and
hardware-assisted.

1) Simulation-based Approaches: Veshchikov [80] presents
the SILK simulator, which simulates a high level abstraction of
the source code of an algorithm that generates traces. Another
simulator, MAPS [59] targets the Cortex-M3 and bases its
leakage properties on the Hardware Description Language
(HDL) source code. The simulator mainly focuses on leakage
caused in the pipeline.

These two simulators only automate the generation of
traces. Hence, they are basically assist the leakage evaluation
process and speed it up.

2) Code Analysis: Barthe et al. [7] describe how to auto-
matically verify higher-order masking schemes and present a
new method based on program verification techniques. The
work of Wang and Schaumont [82] explains how formal
verification and program synthesis can be used to detect side-
channel leakage, prove the absence of such leakage and modify
software to prevent such leaks. However, both of these works

remain limited in the ways they model the hardware and actual
implementations.

Closer to ours are works that, although sacrificing general-
ity, address the problem of “fixing” the leakage from a specific
device. Papagiannopoulos and Veshchikov [67] perform an in-
depth investigation of device specific effects that violate the
independent leakage assumption (ILA) [71]. They also provide
an automated tool that can detect such violations in AVR
assembly code.

Another method to eliminate timing side channels in soft-
ware was proposed by Wu et al. [86]. Their method requires
a list with secret variables as input and produces code that
is functionally equivalent to the original code but without
timing side channels. In a recently published work Wang
et al. [83] describe a type-based method for detecting leaks in
source code. They implemented their mitigations in a compiler
and evaluated their method. Eldib and Wang [36] propose a
method to add countermeasures to source code that masks
all intermediate computation results such that all intermediate
results are statistically independent.

Agosta et al. [2] introduce a framework to automate
the application of countermeasures against Differential Power
Analysis (DPA). Their approach adds multiple versions of the
code preventing an attacker from recognizing the exact point
of leakage.

3) Hardware-Assisted Masking: Implementing masking
within the processor promises a way of avoiding unintended
interaction between masked values. Masking apply to the
processor as a whole [31, 48], or only to a part of the
instruction set [41, 54].

III. ROSITA OVERVIEW

ROSITA aims to automate the process of producing
leakage-resilient software. Specifically, we focus on reducing
the manual effort required for ensuring conformance with the
ISO 17825 standard. We assume that the underlying algorithm
employs a protection technique, such as masking. However,
unintended interactions between data, introduced in the ex-
ecution of the software, can break the independent leakage
assumption [71] and leak secret information through a physical
side channel, such as the power channel.

We consider two sources of interactions. In architectural
interaction, the program overwrites a register with a related
value, leaking information through transitional effects. Mi-
croarchitectural interactions occur due to transitional effects
and glitches within the microarchitecture. For example, when
a value of a pipeline stage register is overwritten. We do not
handle cases where the application of masking is incorrect,
either due to a programmer error or due to compiler optimiza-
tions. Similarly, we do not protect against attacks that expose
the full state of the cipher [57].

To fix unintended interactions, implementers typically go
through a manual, iterative process whereby the software is
installed on the target device, the leakage is measured, and
fixes are applied to the machine code, until the leakage is
reduced to an acceptable level for the target use case.

This process, naturally, requires a significant level of exper-
tise both in setting up and conducting the experiment to assess
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the leakage and in fixing the software to reduce the leakage.
Moreover, because the assessment requires a large number of
encryption rounds on relatively low-performing devices, and a
number of repetitions in repairing the leakage and evaluating,
the process is time consuming.

ROSITA automates this process as shown in Figure 1. To
produce leakage-resilient cryptographic software, we start with
a (masked) implementation of the cryptographic primitive. We
use cross-compilation to produce both the assembly code (if
the original code is in a high-level language) and the binary
executable for the target device. The binary executable is then
passed to a leakage emulator, in our case ELMO*, a modified
version of ELMO [62], to perform leakage assessment. This
assessment identifies the leakage and the machine instructions
that cause it. ROSITA processes the output of ELMO*, together
with the assembly code. It applies a set of rules that re-
place leaky assembly instructions with functionally-equivalent
sequences of instructions that do not leak. Afterwards, the
produced assembly program is assembled and fed back to
ELMO* and the process repeats until no further fixes can be
applied, at which time ROSITA produces a report indicating
the remaining leakage, if any. In all of our experiments,
ROSITA terminates within a small number of rounds when it
detects no further leakage. The rules that ROSITA applies are
incremental. Hence, ROSITA is guaranteed to converge within
a finite number of rounds, when all rules are applied in all
program positions.

Note that our approach makes use of a leakage emulator.
Prior static-analysis-based solutions, such as [59, 67, 80, 82,
86], rely on tags that identify the nature of values within
the program. For example, in ASCOLD [67] the programmer
needs to assign tags to values, e.g. identifying them as random
or masked. The main downside of the tagging approach is
that any mistake the programmer makes in tagging values can
be translated to missed leakage. In contrast, ROSITA applies
TVLA, using a procedure that extends ISO 17825, to the
emulated power trace. As such, ROSITA depends neither on
the programmer’s proficiency nor on specific properties of the
masking scheme to detect leakage. Subject to the accuracy of
the emulator and the strength of the statistical tools applied,
ROSITA will detect leakage in the implementation (up to the
level which the masking scheme used is meant to protect).

IV. LEAKAGE EMULATION

Due to ROSITA’s reliance on a leakage emulator, care
should be taken when selecting one. For this work we select
ELMO [62] as a basis because, unlike instruction-level emu-
lators, it is tailored to a specific processor model, while at
the same time it does not require detailed design information
to build its model. We now describe how ELMO models the
device it emulates and the leakage. We then identify limitations
for using ELMO with ROSITA and describe how we address
these and develop ELMO*.

A. The ELMO Leakage Model

Emulating the hardware at the transistor level would pro-
duce the most accurate leakage estimate. However, this is often
infeasible, both due to the complexity of such analysis and
because the hardware implementation details are not available
to the security evaluators and software developers.

Instead, leakage emulators use an abstract model of the
device and of its power consumption. The abstract model is
significantly simpler than emulating at the transistor level. At
the same time, using an abstract model reduces accuracy and
may result in missing some leakage. Thus, the leakage model
presents a trade-off between modeling cost and accuracy.

ELMO’s model of the hardware considers bit values and
changes in bit values over the Arithmetic Logic Unit (ALU)
inputs and outputs and memory instructions. Specifically, each
operand is compared to the corresponding operand of the
preceding instruction. Power consumption is modeled as linear
combinations of bit values or bit changes.

ELMO models 21 instructions that its authors claim cover
typical use in cryptography. These 21 instructions are divided
into five groups, each modeled separately. To generate the
model, power traces are collected while the processor executes
sequences of three instructions. Each trace is processed to
select a point-of-interest to be used as a representative of the
trace. ELMO then performs a linear regression on the data
collected in the traces to find the coefficients for the model.

The model itself consists of 24 main components, each
modeling a specific part of the architecture. These cover:

● A linear combination of the bit flips between each operand
of the current instruction and the corresponding operand of
the previous and the subsequent instructions.

● A linear combination of the bit values of the operands of
the current instruction.

● The instruction groups of the previous and subsequent
instructions.

ELMO provides a pre-computed model of the STM32F0302

evaluation board which features an ARM Cortex-M0 based
STM32F030R8T6 System-on-Chip (SoC).3

B. Evaluation Setup

To evaluate ELMO, we compare its output with leakage
assessment of the code on the real hardware. Our evaluation
setup is shown in Figure 2.

We evaluate ELMO with the same STM32F030 Discovery
evaluation board used in McCann et al. [62]. Following the
instructions of McCann et al., we disconnect one of the two
power inputs of the System on Chip (SoC) and attach a 330 Ω
shunt resistor to the second power input. To avoid switching
noise, we use a battery to power the evaluation board.

We use a PicoScope 6404D with a Pico Technology TA046
differential probe connected to the oscilloscope via a Langer
PA 303 preamplifier, to measure the voltage drop across the
shunt resistor as a proxy for the power consumption of the
SoC. See circuit diagram in Figure 3.

We sample every 12.8 ns, which, with a clock rate of
8 MHz, is roughly 9.77 samples per clock cycle. The samples
are 8-bit wide and our PicoScope can store up to 2 giga
samples before running out of memory.

2https://www.st.com/en/evaluation-tools/32f0308discovery.html
3ELMO also provides a model for the Cortex-M4-based STM32F4 Discov-

ery board, which we do not use in this work.
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Figure 2: Evaluation Setup.
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Figure 3: Evaluation Setup — Circuit Diagram

We use a control PC to orchestrate the experiments. The
PC controls the oscilloscope and the STM32F030 Discovery
evaluation board. It sends the software to be tested and the data
to be used to the evaluation board, and collects the trace data
from the oscilloscope. The control PC also generates all of
the randomness required for the experiments. As a source we
use /dev/urandom, which is considered cryptographically
secure. The control PC generates the random inputs for the
fixed vs. random tests. It further sends a stream of random
values to be used for masks by the evaluation board.

Each experiment collects multiple power traces from run-
ning the software on the evaluation board. The execution of
the software alternates between the fixed and the random cases.
Thus, half of the collected traces are for the fixed case and the
other half is for the random tests. Fixed and random tests are
run randomly interleaved to make sure that the internal state of
the device is non-deterministic at the start of each test [74]. To
identify the start and end of the segment that we monitor, we

use the output pins of the device to trigger the trace collection
and to mark the end of the points of interest. Later, we use
these trigger points to filter out traces with clock jitter.

To detect leakage, we employ non-specific TVLA. That is,
we check the distribution of the values at each trace point and
use the Welch t-test to check if the samples in the fixed and
in the random traces are drawn from the same distribution.
Following the common practice in the domain, we use a t-test
value above 4.5 or below −4.5 as an indication of leakage. We
validate the setup using the example from McCann et al. [62],
getting results similar to theirs. See Appendix A.

C. Storage Elements and the ELMO Model

The ELMO model of the hardware only looks at interactions
between arguments and outputs of successive instructions.
However, it overlooks interactions that span multiple cycles.
These interactions happen between instruction arguments and
values that are stored in storage elements such as registers,
memory, or latches.

To evaluate interactions overlooked by ELMO, we design
a systematic battery of small sequences of code that aim at
highlighting interactions via storage elements between instruc-
tions. An example of such code is shown in Listing 1. The
code aims to check if there is an interaction between the value
stored in Line 1 and the value used as the second argument
of the eors instruction in Line 11. The purpose of the movs
instructions between the two tested instructions is to eliminate
leakage between pipeline stages. The sequence of nine movs
instructions ensures that the str instruction is completed by
the time the eors instruction enters the pipeline.

1 str r1, [r2]
2 movs r7, r7
3 movs r7, r7
4 movs r7, r7
5 movs r7, r7
6 movs r7, r7
7 movs r7, r7
8 movs r7, r7
9 movs r7, r7

10 movs r7, r7
11 eors r3, r4

Listing 1: Evaluating interactions between the str and the
eors instructions.

For the test, we collect 10 000 power traces of running
the code segment, each run using different random values
for the data the code processes. (For example, in Listing 1
we randomize r1, r3, r4, r7, and the contents of the
memory address pointed to by r2.) For each run we also
record the Hamming distance between the two values we
investigate. (In this example, the values of r1 and r4.) We
then calculate the Pearson correlation coefficient between the
Hamming distance and the values in each point of the trace.
A high correlation coefficient indicates that the Hamming
distance between the values leaks through the power trace,
implying that the first instruction keeps the value it processes
in some storage element that interacts with the data processed
by the last instruction.
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Figure 4: Pearson correlation coefficient of interference test.

Figure 4 shows the Pearson correlation coefficients for two
code sequences. One from Listing 1, testing leakage from str
to eors, and the other testing leakage from ldr to eors.
As we can see, the code in Listing 1 show a pronounced
dip in the correlation coefficient around cycle 25, indicating
interaction between the values. Conversely, the correlation
coefficient when replacing the str with ldr remains close to
zero, indicating no leakage.

D. Dominating Instructions

The methodology we discuss in Section IV-C allows us to
find instruction pairs that interact via hidden storage within
the processor. However, each such instruction may affect
multiple storage elements. To correctly model leakage through
these elements, we need to know which instructions affect
which storage elements. Because the design details of the
processor are not public, we cannot positively identify the
storage elements used by an instruction. Instead, we search for
dominating instructions in pairs, i.e. instructions that set more
storage elements than others. For that, we use code sequences
similar to Listing 2, which checks if str dominates eors.
Specifically, we pick a pair of instructions with interacting
storage. In the test code we use two instances of the first
(Lines 1 and 9), with the second instruction separating these
two instances (Line 5). If the first instruction dominates the
second, leakage will be visible at the second instance of the
first instruction (Line 9).

1 str r1, [r2]
2 movs r7, r7
3 movs r7, r7
4 movs r7, r7
5 eors r3, r7
6 movs r7, r7
7 movs r7, r7
8 movs r7, r7
9 str r4, [r5]

Listing 2: Checking for a dominating instruction

Theoretically, it is possible to have a pair of instructions
that each only affects part of the state set by the other.
However, we did not find any such pair.

E. Findings

We run a broad range of experiments, with (1) some
focusing on architecturally known storage elements, such as
registers and memory, and (2) others aiming to find micro-
architectural storage elements by testing interactions between
pairs of instructions. We find several sources of leakage that
ELMO does not identify. We note that Gao [40] also identifies
many of the issues we find; however, their identification was
driven by the iterative tweaking of a cipher, whereas our
systematic approach is cipher-agnostic. Of the leakage we
find, the first is an architectural issue, whereas the others
are microarchitectural. Except where mentioned otherwise, we
believe that the cause of all microarchitectural leakage is
transition effects, because the leakage corresponds to a change
in the logical state. However, without access to the processor
implementation details, we cannot rule out the possibility that
the cause is glitches. When the leakage does not correspond
to a change in the logical state of the processor we assume
that the leakage is due to glitches.

1) Registers: We find that overwriting a register leaks the
(weighted) Hamming distance between the previous value and
the new value. This is a significant leakage source, because
reusing a register that contains a masked value for another
value with the same mask leaks secret information. Unlike
Papagiannopoulos and Veshchikov [67], we do not find leakage
across different registers.

2) Memory: Writing data to memory interacts with data
already stored in the same location. Hence, overwriting one
masked value with another may remove the mask, leaking the
values.

3) Instruction Pairs: We analyzed all pairs of instructions
for leakage from both arguments. The results for the second ar-
gument are summarized in Table II. We see that all instructions
set some state, and that most pairs do interact with this state.
We now discuss some of our observations about the storage
elements used.

Table II: State interactions between the second operands of
instruction pairs. Triangles point to the dominating instruction.
Circles indicate interactions on the same storage.
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4) Memory Bus: The memory bus seems to have a storage
element that stores the most recent value stored to or loaded
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from the memory. When loading from or storing to memory,
the value of the storage element is overwritten, leaking the
Hamming distance between the previous and the new value.
This leakage differs from the two described above, and happens
irrespective of the registers and the memory addresses used.
Consequently, when writing to or reading from memory, care
should be taken to only access non-secret values or values
masked with different masks. We note that the storage element
could be the contents of the addressed memory itself, where
the power leakage correlates with changing the contents of the
memory bus.

It is important to note that the storage element always
stores a 32-bit word. Thus, when loading or storing a byte,
the whole 4-byte aligned 32-bit word that contains the byte
is moved to the storage element. This may create memory
interaction between memory operations that seem completely
unrelated. For example, consider the code in Listing 3. In
this example we assume that memory locations 0x300 and
0x400 both contain one secret byte each, both masked with the
same mask. The code in this example performs two memory
operations, the first stores a byte into address 0x303 and the
second reads a byte from location 0x402. We note that none
of these locations contains secret data, and the data stored is
also not secret. However, the store operation loads the 32-bit
word in memory locations 0x300–0x303 into the memory bus,
and the following load operation replaces the contents with the
32-bit word in memory location 0x400–0x403. This causes an
interaction between the data in memory locations 0x300 and
0x400, leaking the Hamming distance between the data stored
in these locations.

1 movs r3, 0x303
2 movs r4, 0x402
3 movs r7, r7
4 movs r7, r7
5 movs r7, r7
6 strb r5, [r3]
7 movs r7, r7
8 movs r7, r7
9 movs r7, r7

10 ldrb r6, [r4]
11 movs r7, r7
12 movs r7, r7
13 movs r7, r7

Listing 3: Example of word interaction

A further issue in the memory bus is an interaction between
the bytes of words loaded from or stored to memory. Specifi-
cally, our analysis shows that when memory data is accessed,
consecutive bytes in the word interact with each other. Thus,
if a word contains multiple bytes that are all masked with the
same mask, loading it from or storing it to memory will leak
the Hamming distance between consecutive bytes. We note that
due to the memory bus storage element described above, the
leakage occurs even if the memory access operations access a
single byte of a 32-bit word.

5) Store Latch: We find that storing a register to memory
results in potential interactions between the value of that
register and the second argument of subsequent ALU instruc-

tions, such as eors. However, if the contents of the register
changes between the str and the ALU instruction, the second
argument of the ALU instruction interacts with the updated
value of the register rather than with its original value.

1 str r5, [r3]
2 movs r7, r7
3 movs r7, r7
4 movs r7, r7
5 movs r5, r2
6 movs r7, r7
7 movs r7, r7
8 movs r7, r7
9 eors r1, r4

Listing 4: Store latch example.

For example, in the example in Listing 4, the code stores
the value of r5 to memory (Line 1). It then updates the
value of r5, moving the contents of r2 to it (Line 5).
Finally, it calculates the exclusive-or of r1 and r4. Our
experiments show leakage in Line 9, which correlates with the
Hamming distance between the original values of r2 and r4.
Interestingly, we note that the update of the interacting register
takes one cycle to become effective. That is, removing Lines 6–
8 in Listing 4 removes the interaction between the original
values of r2 and r4, but leaves an interaction between the
original values of r5 and r4.

We believe that the processor maintains a reference to
the most recently stored register. This reference is used as
an input to a multiplexor that selects the contents of the
referenced register. Implementing the str instruction requires
two cycles [38, Figure 4.6]. In the first, the processor calculates
the store address and in the second it performs the store.
We believe that, to avoid locking the register file, in the first
cycle the processor copies the contents of the register to an
intermediate latch, from which it is retrieved in the second
cycle. We believe that a glitch on the bus causes interference
between the contents of the latch and the second argument of
subsequent instructions, explaining the leakage we observe.

F. Extending the ELMO Model

Recall (Section IV-A) that ELMO builds its model using a
linear regression from traces collected from sequences of three
instructions. To account for the effects of storage elements
we identified, we update the model to include a few more
components. We call out extension ELMO*.

Whereas the ELMO model treats each operand separately,
we also look at combinations of bits across the two operands
of the instruction. Because the first operand is typically the
destination register, correlating the two operands captures the
effect of calculating the result of the operation and overwriting
the destination register.

To capture interactions via memory and internal storage
elements, we track the contents of these elements, and add
model components that correlate with them.

In total, our model consists of 25 components. We validate
our model by repeating the test cases used for identifying the
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Figure 5: Leakage from str to eors.

storage elements. For example, Figure 5 shows the real and the
emulated leakage from running the code in Listing 1 on the
real hardware, ELMO, and in ELMO*. We see that our model
identifies the leakage that the original ELMO model misses.
We note that the leakage in ELMO* has a higher t-test value
than the actual leakage. We speculate that the reason is that
the model does not suffer from physical noise. As a result,
ELMO* requires less traces than a hardware measurement for
leakage detection.

Unlike ELMO, ELMO* not only emulates the leaked signal,
but also finds which of the components of the model is causing
the leak. We, therefore calculate the t-test value not only for the
combined emulated signal, but also to separate components of
the signal.4 Thus, for example, we keep track of the t-test value
of the part of the signal contributed by each of the instruction
operands, by interactions between the instruction result and its
operands, and by interactions between the instruction results
or operands with values previously stored to or loaded from
memory. Using this information, when ELMO* reports that an
instruction leaks, we can inspect the components and identify
the leakage cause.

V. CODE REWRITE IN ROSITA

As Section III describes, the core of ROSITA is a rewrite
engine that uses the output of the ELMO* emulator to drive
code fixes for leakage. We assume that the original code is
masked, i.e. it does not leak at the algorithm level. However,
the translation of the algorithm into machine code and the
execution of this machine code can result in unintended and
unexpected leakage. In this section, we review the causes of
leakage we identify, and describe the fixes the ROSITA applies
for each. We begin with a high-level description of ROSITA
and proceed with the details of the rewrite rules it applies.

A. ROSITA Design

ROSITA is a rewrite engine that takes the code and the
output of ELMO*, and rewrites the code to avoid leakage. To
decide which rewrite rule to apply, ROSITA relies on ELMO*
to identify the leaking component. (See Section IV-F.)

The main strategy ROSITA uses to fix the leakage is to wipe
stored state with a random mask. For that, ROSITA dedicates

4Implementation note: to reduce memory usage, we calculate the t-test
values incrementally, using Welford’s algorithm [85].

a mask register (ROSITA uses register r7), which is initialized
with a random 32-bit mask. When compiling the software, we
use the flag -ffixed-r7 to direct the compiler not to use the
mask register, ensuring that its contents are not modified except
by ROSITA. Similarly, we require assembly implementation to
not use r7.

It is important to note that all of the rewrite rules do not
eliminate values used by the program. Thus, if the implementa-
tion is not fully masked or uses incorrect randomness, ROSITA
will be unable to remove the leakage. Conversely, a success in
eliminating a leak is a demonstration that the leak originated
from unintended interaction.

B. Operand Interaction

One of the common forms of unintended interaction is
between the operands of successive instructions. Technically,
as McCann et al. [62] note, loading an operand to the bus leaks
the Hamming distance between the value previously held in the
bus and the new value. If both values use the same mask, the
Hamming distance between the masked values is the same as
that between the original values.

ROSITA identifies such leakage by checking the various t-
test values calculated for the operands and their relationship
with those of prior instructions. In the case that the leakage
is caused by such interaction, ROSITA inserts an access to the
mask register, using movs r7, r7 The instruction moves
the contents of the mask register into the mask register, and is
therefore functionally a no-op. However, because the value of
the mask register goes through the bus, the previous contents
of the bus is wiped, removing the interaction between the two
masked values.

C. Register Reuse

Due to the limited number of registers, compilers and
programmers often reuse those, e.g. when the old contents are
either consumed or stored in memory. Reusing a register rarely
removes the old contents from it. Consequently, when new
data is loaded into a register, it interacts with algorithmically
unrelated data that remains from prior uses of the register.

Papagiannopoulos and Veshchikov [67] note that if the
old contents and the new contents are both masked using the
same mask value, the difference between the masked contents,
i.e. their exclusive or, is the same as the difference between
the unmasked contents. Consequently, when a register is used
consecutively for two values with the same mask, it leaks the
difference between the values.

To identify this form of leakage, ROSITA checks the t-test
value of overwriting register value. Once identified, ROSITA
wipes the old contents of the register by copying the contents
of the mask register to the destination register of the leaking
instruction, as Papagiannopoulos and Veshchikov [67] suggest.
For example, suppose that the instruction movs r3, r4
leaks because both r3 and r4 contain values masked with
the same mask. To eliminate the leak, ROSITA inserts movs
r3, r7 before the leaking instruction.
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D. Rotation Operations

Rotation operations show interaction between the value pre
and post rotation. When a single masked value is rotated, this
interaction is unlikely to leak secret data because the mask
hides the contents. However, when rotating a word comprised
of multiple masked values that all use the same mask, the
result of the rotation may align the masked values, effectively
nullifying the mask, leaking the difference of the unmasked
values.

We propose two approaches to remove this leakage. As an
example, suppose that we would like to rotate the register r2,
whose value is a concatenation of four masked bytes: (b1 ⊕
m)∣∣(b2⊕m)∣∣(b3⊕m)∣∣(b4⊕m). Rotation of r2 by a multiple
of 8 bits would result in leakage of information on the value
of the bi’s. For example, assuming r3 contains the value 8,
the instruction ror r2, r3 would set the value of r2 to
(b2 ⊕m)∣∣(b3 ⊕m)∣∣(b4 ⊕m)∣∣(b1 ⊕m), and the interaction
between the original and the rotated values of r2 would leak
the Hamming weight of (b1⊕b2)∣∣(b2⊕b3)∣∣(b3⊕b4)∣∣(b4⊕b1).
Word Mask. A straightforward approach for preventing such
leakage is to mask the word with our mask register (r7), rotate
both the word and the mask register and then use the rotated
mask to unmask the word. Thus, instead of rotating r2, we
rotate r2⊕ r7. As an example, Figure 6 shows how ROSITA
fixes a rors r2, r3 instruction that ELMO* indicates is
leaking.

rors r2, r3 eors r2, r7
rors r2, r3
rors r7, r3
eors r2, r7

Figure 6: Masking rotation operations. The leaking ror oper-
ation on the left is replaced with a masking sequence on the
right.

We note that this sequence modifies the contents of our
mask register. However, this has no effect on the functionality
because the mask register is assumed to be random and there
is no long-term dependency on its exact contents.

Partial Rotations. An alternative approach is to combine
multiple shifts to avoid rotations of multiples of the data size.
For example, a rotation by 8 bits can be replaced with a
rotation by 3 bits followed by a rotation by 5 bits.

ROSITA employs the word mask approach both because it
is more general, i.e. does not depend on the size of the rotation,
and because it already has the mask register, which it uses for
the other fixes.

E. Memory Operations

As discussed in Section IV-E, there are several effects that
can cause interactions between values used in memory opera-
tions. These include a storage element in the memory bus that
remembers recently accessed memory value and consequently
leaks the Hamming distance between the remembered value
and the current one on memory access operations, interaction
between loaded and stored values and the previous contents

they overwrite, and an interaction between bytes in stored
words.

When ELMO* indicates that a load instruction leaks due
to interaction with the memory bus storage element, ROSITA
wipes the contents of the bus by pushing the mask register
to the stack and popping from the stack to the destination
register of the load instruction. Figure 7 shows an example
of an ldr instruction (left) that leaks through interaction of
the loaded value with a previously loaded value. To fix this,
ROSITA inserts a push and a pop instructions before the
load, yielding the code fragment in the right. Popping the
mask to the destination of the load instruction also protects
against leakage through interaction with the previous value of
the destination register.

ldr r2, [r3] push r7
pop r2
ldr r2, [r3]

Figure 7: A leaking load instruction (left) and the fixed
sequence (right).

Due to the more intricate potential interactions, the picture
with store instructions is a bit more complex. To overcome
interactions with the previous value used on the memory bus
and to address possible interactions with the previous contents
of memory, ROSITA first stores the mask register into the
destination location and then performs the required store (See
Figure 8).

str r2, [r3] str r7, [r3]
str r2, [r3]

Figure 8: A leaking store instruction (left) and the fixed
sequence (right).

When byte interaction within the stored data leaks, ROSITA
stores one byte at a time. In such a case, care should be
taken to ensure that these bytes and the operations required
for their storage do not create unintended interactions, leading
to a relatively long code segment in Figure 14 in Appendix B.
While this rewrite rule eliminates the leakage, the performance
cost of using it is significant. As such, it may be better to avoid
stores of words that contain multiple values masked with the
same mask. Changing the logic of the cipher is outside the
scope of ROSITA.

VI. EVALUATION

We evaluate ROSITA with masked implementations of
three cryptographic primitives. AES [27] is one of the most
commonly used ciphers, having been an international standard
since 2001. We use the byte-masked implementation of AES-
128 by Yao et al. [87].5 To perform the SHIFTROWS operation
of AES, which permutes bytes in the data being encrypted,
the implementation uses byte loads and stores. Following the
suggestion of Gao [40], we use different masks for each row to
avoid leakage through interactions between bytes in memory
words.

5https://github.com/Secure-Embedded-Systems/Masked-AES-
Implementation/tree/master/Byte-Masked-AES
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(b) Xoodoo original implementation.
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(c) ChaCha original implementation.
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(d) AES fixed with ROSITA.
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(e) Xoodoo fixed with ROSITA.
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(f) ChaCha fixed with ROSITA.

Figure 9: Fixed vs. random tests for the three cipher (one fixed input, 1M traces).

Efficient software AES implementations on CPUs (without
dedicated AES instruction) use table lookups, which makes
them vulnerable to cache-based attacks. As an example of
a modern primitive, the second cipher we use is the crypto-
graphic permutation Xoodoo. Xoodoo was proposed recently
by Daemen et al. in [28] for use in authenticated encryption
modes [29]. The optimized and non-masked implementation
of Xoodoo we took from [16] and we implemented the 2-
share boolean masking scheme of the non-linear layer χ as
in Bertoni et al. [15] ourselves. Implementing the 2-share
boolean masking of the linear layer was trivial. In contrast
to what Bertoni et al. [15] mention, we initialize the state with
fresh randomness for each trace to keep it consistent with the
implementation of AES, even though this is not required.

The third cipher we consider is ChaCha as a prominent ex-
ample of an ARX cipher. ChaCha is very efficient in software
and widely used in TLS implementations. The challenge is to
mask it at low cost and the best result for ARM Cortex-M3
and Cortex-M4 processors was recently published by Jungk et
al. [51]. We use their implementation in our experiments.

A. Fixing Leakage

We first show ROSITA’s success in fixing the leakage it
detects. Figure 9a shows the results of a non-specific fixed
vs. random experiments with 1 000 000 traces of executing
the first round of the AES implementation. The figure shows
leakage (t-value above the threshold of 4.5) around cycles 500–
550, which correspond to the AES SHIFTROWS operation. As
Figure 9d shows, ROSITA detects the leaks and fixes them.
This fix does not, however, come for free. The first round
now takes 1 479 cycles, compared with 1 285 for the original
implementation—a slowdown of 15%. Figures 9b and 9e
show similar results for ChaCha and Xoodoo with 61% (1322
vs. 2122 cycles) and 18% (637 vs. 753 cycles) slowdowns
respectively.

To determine the trend of leakage, we perform the fixed
vs. random test on the hardware with a varying number of
traces. Figure 10 shows the results for both the original and the

fixed implementations. The horizontal axis shows the number
of traces used for the fixed vs. random test, and the vertical
is the maximum absolute value of the t-test for each of the
implementations. As we can see, the original implementations
show increasing leakage, significant leakage is visible even
with as little as 1 000 traces, and the confidence increases as
traces are added. Our fixed implementations show significantly
less leakage up to 1 000 000 traces. To remove the remaining
leakage, we need to use more than one input. We discuss this
issue next.
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Figure 10: t-test value trend.

B. Multiple Fixed Inputs

One of the known limitations of TVLA is that it may
miss some leakage if used with only one input [76]. Thus,
common operating procedures require running multiple fixed
vs. random tests, each with a different fixed input. For example,
the ISO 17825 standard requires two fixed inputs. To test the
impact of multiple fixed inputs, we perform multiple fixed
vs. random tests, each with a different randomly chosen fixed
input. To combine the results of multiple experiments, we use
the largest absolute t-value calculated for a sample point as a
representative for leakage at that point. Thus, if any of the fixed
vs. random tests indicates leakage at a point, the combined
result will also indicate leakage there. The top row of Figure 11
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(a) One fixed input – before ROSITA.
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(b) Five fixed inputs – before ROSITA.
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(c) 100 fixed inputs – before ROSITA.
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(d) One fixed input – after ROSITA.
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(e) Five fixed inputs – after ROSITA.
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(f) 100 fixed inputs – after ROSITA.

Figure 11: t-test of masked AES implementation before and after ROSITA, varying the number of fixed vs. random pairs.
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Figure 12: Average number of leaks per fixed inputs.

shows the combined results from 1, 5, and 100 fixed inputs
for AES. As we can observe, when we increase the number
of fixed points, the number of locations that show leakage
increases. Figures 15 and 16 in Appendix C show the results
for Xoodoo and ChaCha.

Running ROSITA with these inputs allows us to fix most
of these leakages. Repeating the experiment with the code that
ROSITA produces and the same fixed inputs we get the t-test
values in the bottom rows of the figures. We can observe that
ROSITA fixes the leakage, at a cost to the performance. Also,
when there is higher leakage points, it is required to have more
fixed inputs to cover all of them. For ChaCha, 100 fixed inputs
were not enough to cover all leakage points as the final result
shows 1 leaky point. Table III compares the performance of the
code before and after running ROSITA, showing a maximum
overhead of 64% for ChaCha.

Table III: Encryption length (cycles) after fixing with ROSITA
with varying number of fixed inputs.

cipher Original 1 Fixed 5 Fixed 100 Fixed

AES 1 285 1 464 1 475 1 479
ChaCha 1 322 2 066 2 114 2 162
Xoodoo 637 735 765 769

The number of leakage points identified depends on the
fixed inputs chosen for the fixed vs. random test. To better
understand the relationship, we want to find out how many
leakage points we expect to find for a given number of fixed
vs. random inputs. Figure 12 shows this for AES, ChaCha

and Xoodoo. For a given number of inputs, the plots display
the average number of leakage points that ELMO* discovers
over 10 selections of inputs. The figure also displays the 95%
confidence interval. We see that 10 fixed inputs are enough
to find 93% of the leakage points in AES, 92% in ChaCha
and 99% in Xoodoo. When we compare the identified leakage
points against the ground truth, we find that many of the
discovered leakage points are false positives, explaining the
discrepancy between the figures and Table I. To verify that we
discover all of the real leakage points, we use ROSITA with
100 fixed inputs to fix AES and Xoodoo. We then use the
produced code on the hardware with a new set of 100 fixed
inputs. We found no evidence for leakage with either AES or
Xoodoo but for ChaCha we found one leaky point that had a
t-test value of 5.2.

We note that ROSITA’s success in eliminating leakage
demonstrates that the original programs are, indeed, first-order
secure, at least semantically. As we mention in Section V-A,
the rewrite rules can only fix leakage that stems from unin-
tended interactions.

C. Performance

The performance bottleneck for ROSITA is running ELMO*
to generate the simulated traces. We can collect 10 000 traces
of AES in 26 seconds, ChaCha in 45 and Xoodoo in 21. In
comparison, the code rewrite phase of ROSITA takes around
0.1 seconds.

Collecting the same number of 1-round traces from the
hardware takes 117 seconds for AES, 220 for ChaCha and
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147 for Xoodoo. The collection of traces for Xoodoo from
the hardware is slower than for AES because we provide
fresh shares for every trace as mentioned above. Hence, the
communication dominates the execution time. Thus, ELMO*
is 4.5–7 times faster than the real hardware.

We note that the task of collecting traces is ridiculously
parallelizable. Hence, on a typical desktop, we can collect
traces eight times faster, and with an investment of $1 000
we can double the rate again. In contrast, to parallelize trace
collection from the hardware, we would need to replicate the
setup, at a cost of over $10 000 per node. Thus, the effective
speed of ROSITA is about two order of magnitude faster than
the hardware.

VII. LIMITATIONS AND FUTURE WORK

Possibly the main limitation of ROSITA is that, while we
have found no evidence for leakage, there is no guarantee that
it fixes all leakage. There two main reasons for that:

● Methodology: While popular and standardized, non-specific
fixed vs. random tests are not a panacea for leakage. Leakage
they detect is not necessarily exploitable and the absence of
detection does not necessarily mean that no leakage exists.
In particular, the method only detects first-order leakage.
We note, however, that this does not detract from ROSITA
achieving its aim of assisting in assessing compliance with
the standard.

● Model Limitations: ROSITA relies on ELMO* which is
only a model of the hardware. Gaps between the model and
the real hardware, both in terms of capturing the hardware
behavior and in terms of accuracy of the model can result in
missed leakage. Moreover, hardware behavior may change
over time, e.g. due to a microcode update [72]. For these
reasons we recommend that operators do not rely solely
on ROSITA. It can be used to achieve a high degree of
assurance, and is likely to automate a significant part of
the work required for compliance, but testing with the real
hardware is essential.

A further limitation of ROSITA, which, like others, stem
from the ELMO* model is its suitability for other processors.
ELMO* uses a very simple model of the processor. It is suitable
for small, in-order, cacheless microcontrollers, such as the
Cortex-M0, AVR processors such as the ATMEGA328p, or
small RISC-V processors. However, the model is unlikely to
be suitable for more advanced processors. Nonetheless, we
believe that the ROSITA is important, because these microcon-
trollers it targets are extremely popular in embedded devices,
where they often implement cryptographic functionalities. At
the same time, there is very little control of the physical
environment of such devices, allowing the attacker unfettered
access and enabling the type of attacks we defend against. We
leave porting ELMO* and ROSITA to other microcontrollers to
future work.

Another direction to which ROSITA could be extended
is using other statistical tests. While the ISO 17825 does
not require them, tests such as mutual information [45] and
χ2 [53], have been proven useful as statistical distinguishers.
Moreover, extending ROSITA to support second- and higher-
order attacks would allow supporting more secure implemen-
tations. It may also be possible to extend ROSITA to use

correlation power analysis (CPA) [19]. This would, however,
require the operator to provide ROSITA with possible values
to search for correlation. It is not clear that this can be done
in a generic fashion.

VIII. CONCLUSIONS

Since their introduction over two decades ago, physical
side-channel attacks have presented a serious security threat,
particularly to small computational devices that need to main-
tain secrets under the physical control of the adversary. To
protect against such attacks, many ciphers’ implementations
employ masking techniques that combine intermediate values
with randomly selected masks. As a consequence, due to
the mask being uniformly distributed, leakage of a masked
value does not reveal information to the adversary. While
proven secure against certain attacks, in practice masked im-
plementations often leak secret information due to unintended
interactions between masked values involving hardware they
are loaded and stored to. To fix these leaks, the common
practice is to repeatedly “tweak the code until it stops leaking”.

In this work, we have set out to explore if leakage
emulators can be used for the automatic elimination of side
channel leakage from software implementations. To achieve
this, we have created a code rewrite engine called ROSITA
and combined it with the extended leakage emulator ELMO*:

● ROSITA incorporates rules to mitigate leakage arising from
operand interactions, register reuse, rotation operations, and
memory operations.

● ELMO has undergone a major upgrade to ELMO* for two
reasons: firstly, it had to be able to tell ROSITA the cause
of the leakage, and secondly, we have added support by
including the values that instructions store in various micro-
architectural storage elements, which hold state that can leak
information.

In our proof-of-concept, we used ROSITA with ELMO*
to automatically protect masked implementations of AES,
Xoodoo and ChaCha. Our experiments using the actual hard-
ware show the absence of exploitable leakage at only a 64%
penalty to the performance, which is the worst case i.e.
ChaCha. As ChaCha is the most complex cipher of the three to
mask (in terms of the overhead in performance and resources)
this is also reflected in the penalty in the tools’ performance.
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[73] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert, “Sim-
ple photonic emission analysis of AES,” J. Cryptographic Engineering,
vol. 3, no. 1, pp. 3–15, 2013.

[74] T. Schneider and A. Moradi, “Leakage assessment methodology - a clear
roadmap for side-channel evaluations,” in CHES, 2015, pp. 495–513.

[75] N. Sehatbakhsh, B. B. Yilmaz, A. G. Zajic, and M. Prvulovic, “EMSim:
A microarchitecture-level simulation tool for modeling electromagnetic
side-channel signals,” in HPCA, 2020, pp. 71–85.

[76] F.-X. Standaert, “How (not) to use Welch’s t-test in side-channel security
evaluations,” in COSADE, 2018, pp. 65–79.

[77] K. Tiri and I. Verbauwhede, “A digital design flow for secure integrated
circuits,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 25, no. 7, pp. 1197–1208, 2006.

[78] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on AES,
and countermeasures,” J. Cryptology, vol. 23, no. 1, pp. 37–71, 2010.

[79] M. Tunstall and G. Goodwill, “Applying TVLA to public key crypto-
graphic algorithms,” IACR Cryptology ePrint Archive report 2016/513,
2016.

[80] N. Veshchikov, “SILK: high level of abstraction leakage simulator for
side channel analysis,” in PPREW@ACSAC, 2014, pp. 3:1–3:11.

[81] N. Veshchikov and S. Guilley, “Use of simulators for side-channel
analysis,” in EuroS&P, 2017, pp. 51–59.

[82] C. Wang and P. Schaumont, “Security by compilation: An automated
approach to comprehensive side-channel resistance,” SIGLOG News,
vol. 4, no. 2, pp. 76–89, 2017.

[83] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during
compilation,” in ESEC/SIGSOFT FSE, 2019, pp. 590–601.

[84] B. L. Welch, “The generalization of ‘Student’s’ problem when several
different population varlances are involved,” Biometrika, vol. 34, no. 1–2,
pp. 28–35, Jan. 1947.

[85] B. P. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[86] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in ISSTA, 2018, pp. 15–26.

[87] Y. Yao, M. Yang, C. Patrick, B. Yuce, and P. Schaumont, “Fault-
assisted side-channel analysis of masked implementations,” in 2018
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2018, pp. 57–64.

15



APPENDIX A
VALIDATING THE SETUP

To validate our setup, we reproduce the results of McCann
et al. [62]. Specifically, we perform a fixed vs. random test
on the code in Listing 5, which contains an implementation
of one of the steps in the AES encryption known as the
SHIFTROWS operation. Specifically, register r1 points to the
16 bytes that represent the state of the AES encryption.
SHIFTROWS performs a fixed permutation of these bytes. The
implementation loads three four-byte words and uses the rors
instruction to rotate the bytes, before storing them back to the
state.

ldr r4, [ r1, #4 ]
rors r4, r5
str r4, [ r1, #4 ]
ldr r4, [ r1, #8 ]
rors r4, r6
str r4, [ r1, #8 ]
ldr r4, [ r1, #12 ]
rors r4, r3
str r4, [ r1, #12 ]

Listing 5: SHIFTROWS from McCann et al. [62]

For the fixed vs. random test we collect 2500 traces where
the state contains fixed data masked with the same mask value
and 2500 traces where the state consists of random values
masked with the same mask. A random value for the mask
is chosen for each trace. We compare the distribution of the
power reading in each sample point between the fixed and
the random traces, and calculate the Welch t-test to check
the likelihood that the two distributions are the same. As
mentioned before, following common practice in side-channel
analysis, we consider the distributions different enough to
indicate leakage if the absolute value of the t-test value is
above 4.5.

Figure 13a shows the result of the fixed vs. random test.
The horizontal axis shows the time and the vertical axis
shows the t-test value. We indicate instruction boundaries with
vertical bars, and the t-test threshold of ±4.5 with horizontal
red lines. Comparing the figure to the results of running ELMO
on the same code, shown in Figure 13b, we see that ELMO
produces a fairly accurate simulation of the leakage.

In particular, our figure resembles Figure 5 of McCann
et al. [62], with only minor differences that reflect the different
test environment.

APPENDIX B
ELIMINATING BYTE INTERACTION IN STORES

Figure 14 shows an example of the rewrite rule for elimi-
nating interactions in byte stores. The code uses two registers
chosen to not conflict with the store, r0 and r6 in the example
in Figure 14. The first is used for selecting the byte to store,
while the second is used for the byte. ROSITA uses two stores
for each byte to avoid interactions on the memory bus or in
the DRAM.

APPENDIX C
ADDITIONAL FIGURES
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(a) Real traces in STM32F030.
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(b) Simulated traces from ELMO.

Figure 13: Fixed vs. random of the AES SHIFTROWS opera-
tion.

str r2, [r3] push {r6}
push {r0}
movs r0, #0xff
movs r6, r2
ands r7, r7
ands r6, r0
lsls r0, #0
strb r0, [r3, #0]
strb r6, [r3, #0]
movs r6, r7
movs r6, r2
movs r0, #0xff
lsls r0, #8
ands r7, r7
ands r6, r0
lsrs r0, #8
lsrs r6, #8
strb r0, [r3, #1]
strb r6, [r3, #1]
.
.
.
pop {r0}
pop {r6}

Figure 14: Addressing byte interaction in stores. A leaking
store instruction (left) and part of the fixed sequence (right).
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(a) One fixed input – before ROSITA.
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(b) Five fixed inputs – before ROSITA.
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(c) 100 fixed inputs – before ROSITA.
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(d) One fixed input – after ROSITA.
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(e) Five fixed inputs – after ROSITA.
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(f) 100 fixed inputs – after ROSITA.

Figure 15: t-test of masked Xoodoo implementation before and after ROSITA, varying the number of fixed vs. random pairs.
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(b) Five fixed inputs – before ROSITA.
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(c) 100 fixed inputs – before ROSITA.
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(d) One fixed input – after ROSITA.
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(e) Five fixed inputs – after ROSITA.
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(f) 100 fixed inputs – after ROSITA.

Figure 16: t-test of masked ChaCha implementation before and after ROSITA, varying the number of fixed vs. random pairs.
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