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Abstract—In the era of lightweight cryptography, designing
cryptographically good and power efficient 4x4 S-boxes is a
challenging problem. While the optimal cryptographic properties
are easy to determine, verifying the power efficiency of an S-
box is non-trivial. The conventional approach of determining
the power consumption using commercially available CAD-tools
is highly time consuming, which becomes formidable while
dealing with a large pool of S-boxes. This mandates development
of an automation that should quickly characterize the power
efficiency from the Boolean function representation of an S-
box. In this paper, we present a supervised machine learning
assisted automated framework to resolve the problem for 4x4
S-boxes, which turns out to be 14 times faster than traditional
approach. The key idea is to extrapolate the knowledge of literal
counts, AND-OR-NOT gate counts in SOP form of the underlying
Boolean functions to predict the dynamic power efficiency. The
experimental results and performance of our novel technique
depicts its superiority with high efficiency and low time overhead.
We demonstrate effectiveness of our framework by reporting a set
of power efficient optimal S-boxes from a large set of S-boxes.
We also develop a deterministic model using results obtained
from supervised learning to predict the dynamic power of an
S-box that can be used in an evolutionary algorithm to generate
cryptographically strong and low power S-boxes.

Index Terms—Power Efficiency, Optimal S-box, Dynamic
power, Machine Learning

I. INTRODUCTION

The advent of Internet-of-Things(IoT) era have resulted in
wide shift of spectrum of devices from desktops and servers
to embedded-systems, RFIDs and sensor-networks having
huge resource constraints. The heavy resource constraints on
these end devices make it impossible to run conventional
cryptographic algorithms, which lead to the development of
lightweight cryptographic algorithms and primitives. Recently,
this development of lightweight cryptographic primitives has
gained its momentum with the announcement of lightweight
cryptographic project by NIST [[1]. As S-boxes are the basic
building blocks (used to provide the non-linearity) for design-
ing block ciphers, designing cryptographically good and power
efficient S-boxes is a widely discussed problem.

A series of research work is going on to make S-boxes
power efficient using suitable architecture. In [2], Satoh et al.
proposed a low power multi-stage PPRM-based S-box archi-
tecture. In [3[], Bertoni et al. presented DSE-based (Decoder-
Switch-Encoder) architecture for low power S-box design.
This was followed by the work [4]], where the authors showed
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use of ANF representation of Boolean function to achieve an
optimized pipelining arrangement and short critical-path, low
power S-box architecture. In [5], Trichina et al. introduced
a side-channel resistant AES co-processor optimized for low
power that uses an S-box architecture introduced in [6]]. In all
of the above mentioned papers, the main focus is given on the
implementation architecture.

Another direction of research is to fix an architecture
and then report the S-boxes which are power efficient. This
approach was used in [7] where the authors aimed to report
cryptographically good, power efficient S-boxes (LUT based
architecture) from a large search space. They used a heuristic
based approach to find optimal 4 x 4 S-boxes and then for
each of the S-boxes they verified the power efficiency. As
the algorithm runs over a large space, the time required to
determine whether a S-box is power efficient or not, plays a
crucial role.

A. Determining Power Efficiency of S-boxes: The Traditional
Approach

In this subsection we discuss two generic methods that are
used for determining the power efficiency of S-boxes. The first
one is a simulation based approached and the second one being
a probabilistic one. A brief description of both the approaches
are given below. The design flow is shown in Fig[l|

SIMULATION BASED TECHNIQUE. In this technique the aver-
age power dissipation of the circuit is obtained by recording
the signal events over time, followed by tabulation and averag-
ing of event data. The flow diagram of this methodology has
been shown in Fig[l] This approach involves huge computation
resources and is time consuming. This approach was used in
[[7] to report power efficient S-boxes from a large search space.
A look-up-table (LUT) based S-box design is first synthesized
using a technology library through a commercial synthesis tool
to form gate-level-netlist and delay file. The gate-level-netlist
along with delay model and test-bench file is used to generate
a switching activity file containing details of toggle count of
every signal. This can be done via commercial simulation
tools. The activity file also contains information about the
time attributes of every node which specify time durations for
every nodes and signals at various levels. The test bench file
contains all possible combinations of signal transitions to be
given at input. The gate-level-netlist along with this generated
switching activity file is used to determine the exact power
using any commercial power estimation tool.

PROBABILISTIC APPROACH. [§]] In probability-based power
estimation method a signal is viewed to be a random vari-
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able asserted with some statistical features (static probability,
transition density, etc). This technique uses a simplified de-
lay model (also called zero-delay model where same delay
is assumed for all the gates) for power estimation unlike
simulation-based approach where the exact delay is measured.
Moreover, a static probability (usually 0:5) is assigned to each
input signals, which may not be accurate. In this approach, the
S-box specification is converted into a logic form (using signal
probability or BDD model) using a logic extractor. Major
issue with signal probability model is that it cannot handle
toggle power as well as spatial and temporal co-relations (due
to presence of reconvergent fan-out at various circuit nodes).
BDD takes care of these limitations, but at the cost of speed.
In BDD, switching activity is calculated for each ordering of
the input variables. With the increase in size of inputs the
problem becomes intractable.

B. Our Contribution

Central to this work is power efficiency of S-boxes. We
have already seen in the previous subsection that existing
approaches to determine power efficiency have issues with
accuracy or speed. So, we primarily aim to devise a completely
new methodology that determines the power efficiency of a set
of S-boxes that reduces the time overhead and maintains good
accuracy. Our contributions are two folded:

In this paper, we present a supervised machine learning
assisted automated framework to classify a set of n x n
S-boxes into two classes (good and bad) based on their
power efficiency. We mainly focus on the LUT based
implementation of S-boxes with AND, OR, INVERTER
(in short A-O-I) gates. We have observed that the
switching activity of the component functions of an S-
box is mainly dependent upon the literal counts (in SOP,
factor and kernel extracted forms) and AND-OR-NOT
gate counts of the underlying Boolean functions (also

known as the component functions) corresponding to the
S-box. However, it is hard to mathematically formulate
such a relation. This motivates us to choose machine
learning based approach to predict the dynamic power
efficiency of a set of S-boxes as it is dependent on the
switching activity of it’s component functions.

We demonstrate the effectiveness of our framework by
reporting a set of power efficient S-boxes from a large
set of 4 x 4 optimal. The experimental results shows
that our tool is approximately 84% accurate for both
the classifiers. In terms of speed, our algorithm turns
out to be at least 14 times faster than the simulation
based approach in determining power efficiency by
commercially available CAD-tools.

We have also developed a deterministic model where we
try to mathematically formulate the correlation between
the actual power values and the feature values reported
from SIS. The effectiveness of this mathematical formu-
lation to predict the actual power of an S-box is verified
by another fresh pool of cryptographically good S-boxes.
The result depicts that this model predicts the power with
a very low mean relative error of 9:65%.

C. Significance of the Work

To the best of our knowledge, this is the first machine
learning based approach that predicts whether an S-box is
power efficient or not. Our algorithm requires roughly 0:874
seconds to determine power efficiency of an S-box, in an Intel
Xeon machine, operating at 2 Ghz processor speed. We have
also used the CAD-tool Synopsys Design Compiler to compute
the power of an S-box, which takes roughly 11:843 seconds in
the same machine. This depicts that our algorithm reduces the
time overhead by a factor of around 14 times. This overhead



becomes formidable when we consider a very large set of S-
boxes. For example, suppose we have a large set of 229 optimal
4 x 4 S-boxes for which we want to report the power efficient
S-boxes. In this case, our algorithm will take around 10:6 days
where as the CAD tool will require 148:5 days i.e. close to
almost 5 months time.

D. Organization

The remainder of the paper is organized as follows. In Sect.
we provide a basic overview and cryptographic properties of
S-boxes, machine learning models with performance metrics.
In Sect. [lIl| we describe our machine learning based framework
to classify set of S-boxes depending on the power efficiency.
We describe all the features that we used in feature set for
modeling. In Sect.[[V]we provide experimental results showing
the efficiency and high performance of our tool for a set of
4 x 4 optimal S-boxes. Next we propose a deterministic model
using the correlation between the actual power values and
the feature values reported from SIS in Sect. Finally, we
conclude in Sect. with interesting open problems.

II. PRELIMINARIES
A. S-box Representation and Properties

In the standard cryptographic nomenclature, an n x n
substitution box (abbreviated as S-box) is a nonlinear function
from n bit to n bit: S : F)' — FJ. It can be represented

Vi < n; sj: F)' — F, are the component functions. Here,
we briefly describe some important cryptographic properties
of S-boxes.

BALANCEDNESS. We call an S-box S to be balanced if it
takes every values of FJ' same number of times.

NONLINEARITY. The nonlinearity of a Boolean function s :
FJ' — F, is defined as the minimum distance of the function
from the set of all affine functions. Extending the idea, we
define the nonlinearity of N x N S-box as the minimum of
all the distances between the set of linear combinations of
component functions of S to the set of all affine functions.
More formally, nonlinearity of an n x n-function S equals the
minimum nonlinearity of all its component functions v - S,
where v e F 5 [9]:

1
NLs =2" ' — = max |Ws(a;Vv)|;
2 az2fFy
v2F™

where

Ws(a;Vv) = (—1)VSCI*ax. g-y c FM:
xX2F]

is the Walsh-Hadamard transform of the function S and a - b
ip_the usual inner product of a;b € F3' that equals a-b =
?zl aibi.

DIFFERENTIAL UNIFORMITY. Let S be a function from FJ'
into F;" with a € FJ' and b € FJ". We define the difference
distribution table of S with respect to a and b as:

As(a;h) ={x e FJ': S(X) ®S(x®a) =b}:

The entry at position (a;b) corresponds to the cardinality of
the difference distribution table Ag(a;b) and is denoted as

s(a;b). The differential uniformity ¢ is then defined as [|10]:
max s(a;b):
a2 R
b2 F

s =

Definition 1: A 4 x 4 S-box is said to be cryptographically

optimal if it is balanced, has nonlinearity equal to 4, and
differential uniformity equal to 4 [11].
We are mainly interested in optimal S-boxes as these S-boxes
are good in terms of resisting linear and differential attacks.
While designing block ciphers, another possible choices of
S-boxes are the involutive ones.

B. Sources of Power Dissipation in CMOS

The sources of power dissipation in digital CMOS can
be broadly classified based on their dependence on circuit
topology. While static power, leakage power and short-circuit
power are completely dependent on CMOS-technology and
independent of circuit topology, dynamic power has a depen-
dence on the structure of the circuit. In this paper we mainly
concentrate on the dynamic power of CMOS circuits. The
transition rate of a circuit node is not equal to the transition
rate of clock. Statistically, the average dynamic power of a
node in a circuit is given by the following equation [[12]]:

den = on1-Few-CL 'ded;

where, Vyq is the supply voltage, C, is the node capacitance,
Tk is the clock frequency and o =i is the node transition
activity factor of the node. Combining gate transitions of every
internal nodes, the total dynamic power of the circuit is given
by the following expression:

PtOta|_X( C)f 'V2'
dyn — i i clk dd:
i=1

where N is the total number of nodes in the circuit.

C. Machine Learning and It’s Performance Metrics

There are two types of supervised machine learning frame-
works, namely classification and regression. In case of regres-
sion, a continuous value is predicted while in case of classi-
fication a class label is predicted. The quality of prediction
by an ML is evaluated by some widely known metrics. In
this subsection, we briefly revisit the popular metrics used to
evaluate ML based models. First we consider the confusion
matrix, one of the most intuitive and easiest metrics used for
finding the correctness and accuracy of classification based
models. It is a 2 x 2 matrix (with dimension “actual” and
“predicted”) having the following entries:

True Positives (TP). When the actual data and predicted
data both belongs to 1 (True).

False Positives (FP). In this case the actual class of the
data point was 0O (False), however the prediction is 1
(True).

False Negatives (FN). Here the actual class of the data
point was 1 (True) while the prediction is O (False).



True Negatives (TN). In this case both the actual claS¥e have mapped our problem to classi cation rather than

and predicted class of the data pointigFalse). regression as we are interested to report whether a set of
Now we describe the performance metrics that we will corf-boxes are power ef cient or not, rather than reporting the
sider to evaluate our algorithm. exact dynamic power of an S-box. By aligning our problem

) o ) to classi cation problem we are apparently exploiting a large
Accuracy. Accuracy in classi cation problems is the numbegg,ch space.

of correct predictions made by the model over all kinds | ot Perm(2") be the set of all permutations of

predictions made. Formally, it is de ned as fo: " 1gand , Perm(2") be a set of S-boxes
TP+ TN ] (permutations) having some properti®s To ensure good
accuracy= TP+ TN+ EP + EN ' cryptographic properties, a typical choice fér could be

Note that, accuracy is a good measure only when the tarﬁ@lt'r_nal meaning that th_e S-bo_xes must _be balancg, hlghly
variable classes in the data are nearly balanced. onll_ne_zar and have low differential unlfqrmlty. We begln_wnh

a training vectofMy4in, extract all the desirable features (listed
F1 Score. Two important measures for classi cation baseéh the next subsection) for each S-boxes corresponding to the
models are precision and recall. Precision is a measure thaining vector using the modulExtract_Feature. Then we
tells us what proportion of the S-boxes that we predictasbmpute the power class of each S-box using the module
as energy efcient, actually power efcient. On the otheiFind_Class and train the ML classier by feeding these
hand recall is a measure that tells us what proportion ffatures and power class. Now to predict the power classes
S-boxes that actually are power ef cient is detected by thedrresponding to a vector of S-boxes, termed as test vector
algorithm as being power ef cient. These two measures amg,;, we extract the features of each S-boxes and use the
clubbed together to have a single metric called F1 scoggiready trained classi er. The formal algorithm corresponding
which basically is the harmonic mean of precision and recafur framework is presented in Algorithfih 1.
Formally,

- TP TP Algorithm 1: ML-Framework for Classifying S-boxes
precision= —————; recall= : -
TP+ FP TP+ FN Input : , Perm(2"), a set of S-boxes having
2  precision recall propertyP.
F1 score= :

Output: Classi cation vectorE g of S-boxes

. ] corresponding to the test vectdfs;
Note that the use of harmonic mean ensures that if one numbegonsiructT, 4, nandTest = nNTuain |

(precision+ recal)

is really small between precision and recall, the F1 SCOLe| ot T, = (Sy:::1;S;) andTes = (Sts1:::5: S )
becomes more closer to the smaller number than the biggefor i=1- i t i=i+1 do ’
one, giving the model an appropriate score rather than just gn| po = Extract Feature(S;);

arithmetic mean. 5

Es, = Find_Class(S));

ROC Plot. In statistics, a receiver operating characteristié end

curve, i.e. ROC curve, is a graphical plot that illustrated /* Train Model */

the diagnostic ability of a binary classier system as it$ Cuan = TrainModel(Fs, ;:::;Fs,); (Es,;::1;Es,))
discrimination threshold is varied. The area under curve 8f/* Classify*/

an ROC curve represents the quality of a classier, whidh for i =t+1 i j ,ji=i+1do

ranges between 0 to 1 with higher values representing a better| Fs; = Extract_Feature(S);

classier. 12 | Es; = Predict_Class(Fs; ; Cyain);
13 end

I1l. PROPOSEDMETHODOLOGY
15 return Eegt;

In this section we provide complete details of our maching
learning based framework to evaluate and classify S-boxes
based on their dynamic power consumption. As mentioned
already, by dynamic power we basically mean dynamic power
consumption for the AOI implementation (LUT based) of aB. Feature Set Considerations
S-box.

A feature set is a set of measurable attributes or char-
acteristics that is used by the model for classication. The
A. Machine Learning Model feature extractor functiorExtract _Feature returns values

We have followed supervised learning approach to constrii&iresponding each of features for a given S-box. In our model,
a binary classi er for our problem. Given a prede ned thresh%e have considered the following features representing a S-
old powerPy,, the classi cation is done as follows: box:
S 2 Class0 (bad) if Pgyn(S) > P FEATURE 1: Ic(SOP). This feature denotes the literal count
in simplied Sum-of-Products(SOP) representation of the
S 2 Classl (good) if Pgyn(S) Pm: Boolean functions corresponding to the S-box. Recall that a



literal is a Boolean variable in its complement or normal fornkernelis Q = x; X, + X7 X2 and the kernel extracted Boolean
The switching capacitance of a circuit has a direct correlatidanction is given by:

with its literal count [13] and hence its dynamic power. S1(X1;X2;X3;X4) = X3 Q+ X1(X2 X3+ Xg)

FEATURE 2: Ic(factor). This represents the literal count of they(x1;X2; X3;X4) = X3 Q + X1(X2 X3+ X3)

SOP when expressed as parenthesized algebraic expressig(ix,; Xo;X3;X4) = X1 X3 Xz+ X1 X2 X3+ X4 (X7 X2+ X3)

The power consumption of a circuit in terms of its literal counds(X1;X2;X3;X4) = X1 (X2 Xz + X3)+ X2 X4

is given by [13] n; i, wherei" literal is occurringn; times

with switching activity ;. So, an algebraic factorization of |t js easy to see that in this representation total number of
the expression helps in reducing the number of literals, aggo input AND, OR, NOT gates ar@l, 17 and10respectively.
hence the overall switching activity. The kernel representation has less number of gates and hence

FEATURE 3: gc(kernel). This feature represents the gate coygkger switching activity as shown in Fig.2(b), where gate
of kernel-extracted representation.céibein a Boolean func- s ysed only once as compared with Fig.2(a).

tion is a product of one or more number literals. We call
a Boolean expressionube-freeif no cube can divide the
expression evenly. A Boolean express®ican be expressed
asP Q+ R, whereP, Q andR are Boolean expressions,
Q being the quotient an®R is the remainder. Acube-free
expression is calledernel of F. Factoring outkernel from

the expression reduces the total number of nodes in the overall
circuit, which in actual reduces the total switching activity of
the circuit [14]. The main advantage of extracting &atnel
from a set of Boolean expression lies in the fact that one single
copy of thekernel circuit is implemented, which results in
signi cant reduction in the number of nodes in the circuit.

Let Q = f(ly;l2;:::;1m) be an extractedernel of a set of
functionssy;:::;s; havingli;12;:::;1, asinternal nodes. So,
the output of driver gates df;;l,;:::;ly drivesi 1 lesser

gates, which reduces the switching capacitance and hence the

overall g,ynamic pOWGbWith a power saving given by [15]: Fig. 2. Circuit of s1 and s2 with and without Kernel Extraction
(i 1) jm:l ij g+ j“:l ij :nyj ), whereny and  are

the number of gates driven by nodeand switching activity

of nodex. C. Model Selection

FEATURE 4: gc(AND). This represents the number of AND | this subsection, we brie y describe the two models that

gate count in the kernel extracted representation of an S-b@ have chosen for the machine learning and justify the
FEATURE 5: gc(OR). This feature denotes the number of OBg|ection.

gate count in the kernel-extracted representation. )
FEATURE 6: gc(NOT). This represents the number of NOPPUPPORT VECTOR MACHINE (SVM). SVM [16] is a tra-

gate used in the kernel-extracted representation. ditional and very popular machine learning model. In this
Now we will take an example of & 4 S-box to demon- Model, one or more hyperplanes are constructed in a multi-
strate the above mentioned features. dimensional space based on which classication is done.

) Construction of the hyperplanes are done by maximizing it's

A CONCRETEEXAMPLE. Let S be a4 4 optimal S-boX istance from the nearest data point on either side of the
given in . Corresponding component functioss; 62;S3;54)  plane. These distances are known as support vectors, which are
of S are given as follows: maximized to obtain the best accuracy. This model provides
S1(X1;X2;X3;X4) = X1 X2 X3+ X1 X2 X3+ X1 Xz X3+ X1 X4 very good accuracy if a linear separation is obtained. This
S2(X1;X2;X3;X4) = X1 X2 X3+ X1 X2 X3+ X1 X2 X3+ X1 X4 model uses a subset of support vectors in decision making
S3(le X2, X3EX4) = X3 X3 Xa* Xy X X3+ X1 X2 Xa* X3 Xa' process, which makes it fast and memory ef cient.
S4(X1’X,2’X3’X4) = X1 Xz Xat Xz Xat Xy Xs. RANDOM FOREST (RF). Random Forest [17] is a type of

Now in factor form this can be expressed as: ensemblenethod where multiple decision trees are combined
S1(X11X27 X351 X4) = X1 Xz X3+ X3 (Xj X3+ X2 X3+ﬁ) to form an effective and very powerful model. A single
S2(X1;X2; X3; Xa) = X1 X2 X3 +7X17(X2 X3+ Xz Xg+ Xa)  decision tree has tendency to overt on the training data,
S3(X1;X2;X3;Xa) = X1 X3 Xa+ X1 X2 X3+ X4 (X1 X2+ X3)  \yhere the model gets perfectly trained by the training data, but
S4(X1;X2iX3;X4) = X1 (X2 Xg+ X3)+ Xz X4 unable to generalize on new or test dataset. In RF, a label is

From the above two representations, it is easy to see tiygédicted by taking majority vote from all decision trees used
the literal counts in SOP form and factor form a@and34  tg construct the model. As this model combines decisions from
respectively. multiple decision tree, chances of over- tting of data becomes

Now we consider the kernel-extracted representation of thegligible, increasing the accuracy of the model. This model
Boolean functions. In our example, the maximum commanins very effectively on very large number of data points.



IV. APPLICATION TO4 X 4 OPTIMAL S-BOX

In this section we apply our tool to report all the power
ef cient S-boxes from a set o 4 optimal S-boxes. We rst
describe the complete set-up, brie y discuss tuning parameters
corresponding to both the classi ers used and nally show the
high performance and ef ciency of the tool.

A. Setup

In order to evaluate our proposed methodology we started
with a list of 10000cryptographically strong S-boxes having
differential uniformity and non-linearity ofl obtained using
genetic algorithm. We used tournament method of size 3 as (a) Feature Importance Graph for RF Model
selection method for our genetic algorithm. To extract features
of every S-box we usedequential Interactive System(SIS)
[18] version1:3 and Espressd19] version2:3. We have syn-
thesized every S-box using Synopsys Design Compiler version
J-2014.09-SP1 to report their dynamic power. In the synthesis
process we have forced the synthesis tool to use standard
cell library (180nm) consisting of only 2-input AND, OR,
and NOT gate and used TSL18FS120 cell library from Tower
Semiconductor Ltd. The standard cell library is characterized
using Silicon Smart Software (Version: 2008.02-SP1p1) char-
acterized under Fast-Fast process(P), 1.98V voltage(V) and
-40 degree C temperature(T). Finally, to build our ML model
and data analysis we us&tikit-Learn[20] ML tool version
v0.19. Before feeding our data into the ML-tool vpeo led (b) Feature Importance Graph for SVM Model
the data such that it contains equal number of good and bad .
S-boxes based on some pre-de ned threshold dynamic povt\)/ﬁ . 3. Feature Importance Graph for 4 Optimal S-boxes
In our case, we have chos@B0W power value as threshold.
So our dataset contairf)00 S-boxes having dynamic poweraccuracy AND F1 ScorRE The accuracy and F1 score
value less tharl30W (called as good S-boxes) a00 optained in our experiment is shown in Table I. The results
S-boxes having power more tha80W (called as bad S- gepict that our classi er models perform reasonably well to
boxes). predict the power ef ciency of a set of S-boxes.

B. Performance [ Classier | TN [ FP [ FN [ TP [ Accuracy | F1 Score]
RF 1296 | 197 | 274 | 1233 84.3% 0.846
SVM 1310 | 203 | 296 | 1191 83.4% 0.840

TABLE |
PERFORMANCERESULT FOR4 4 OPTIMAL S-BOXES

In this subsection we show the effectiveness of our topl
in classifying the power ef ciency of the S-boxes. For that
we measure the classi cation accuracy, F1 score and area of
ROC curves corresponding to both RF and SVM classi er. The
training and validation sets are chosen randomly from a set of

10000 labeled Samp|es, with their sizes in raffo: 3. The ROC AREA UNDER THE CURVE. We have also provided the
sample set consists G000 power ef cient and5000 power ROC curves for both the classi er. From Fig 5, we see that
in-ef cient S-boxes in order to achieve an unbiased traininghe area under curve (AUC) for RF and SVM are 0.92 and

FEATURE |IMPORTANCE ASSESSMENT We have shown the 0.89 respectively, showing goodness of the classi er.

results of the feature importance assessment in Fig. 3. The YIn order to verify the robustness of the learning, we ran
axis represents the features (as mentioned in ) and the X-g&@&h of our experiments several times. The average accuracy,
represents importance of each feature scaled to an intefvalScore and area of ROC curves for RRB#2%, 0:841 and

of [0,1]. It is interesting to observe that all the features afé92 respectively. For SVM the values a83:1%, 0:836 and
required (importance value for each of them is greater @)an0:89 respectively.

during the classi cation.

LEARNING CURVES. The learning curve conventionally de-C. Ef ciency

picts improvement in performance as we increase the numbegy experiment take€t3:7 minutes of running time to

of training examples. Learning curves corresponding to OHfedict the power classes 8000 S-boxes. So, on an average
experiment using RF and SVM are depicted in Fig. 4. The reghy aigorithm requires roughl@:874 seconds to predict the
line signi_es _the training score while the green line signi eSower class for each S-boxes. On the other hand, we have
cross-validation score. run the CAD-tool SynopsyDesign Compilerto compute

i
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the power of an S-box. To evaluate each S-box, the Design
Compiler takes approximately 11:843 seconds of running time
in a machine with Intel Xeon at @ 2 Ghz processor speed.
This shows that our algorithm reduces the time overhead by
a factor of around 14 times.

V. TOWARDS A DETERMINISTIC MODEL TO PREDICT
POWER

In this section first we develop a relation between the actual
power values and the feature values reported from SIS, and

then using correlation we will verify the nature of relationship
and develop a deterministic model connecting the the two.

A. Relation between Predicted Dynamic Power and Feature
Values

As pointed out earlier that power consumption of a circuit
in terms of its literal count is given by [13] Xn; ;, where
it literal is occurring n; times with switching activity ; and
kernel extraction reduces the switching capacitance and hence
the overgh dynamic powes with a power saving given by [15]:
(i—1):C jLy 4+ j=; 1jiij), where Ny and  x are
the number of gates driven by node X and switching activity
of node X. Taking this relation into account, we develop the
following relation between predicted power value X and the
feature values as:

X = n*0c(NOT) + A *gc(AND)

+ o0*gc(OR) + f *Ic(FACTOR);

where N, A, o are the switching activity corresponding
to the NOT, AND, OR gates respectively. By definition, we
have N =05, A =025and o = 0:75. We use ¢ to
denote the switching activity of a literal and we assume it to
be equally likely with 0:5 probability.

B. Correlation between Predicted and Reported Dynamic
Power

In this section we will study the correlation between the
reported dynamic power and predicted power values obtained
using the equation introduced in sectionV-A. We begin with
4000 S-boxes and continue to increase the number until the
correlation becomes static. As shown in Fig.6, the correlation
become static around 16 000 to 20 000. So, we consider a set of
20000 cryptographically strong S-boxes and the result of the
correlation graph is shown in Fig.7. We observed a constant

Correlation vs. #8oxes
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Fig. 6. Correlation vs. Number of S-boxes
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