
The Signal Private Group System and Anonymous

Credentials Supporting Efficient Verifiable Encryption ∗

Melissa Chase
Microsoft Research

melissac@microsoft.com

Trevor Perrin
Signal Technology Foundation

trevp@signal.org

Greg Zaverucha
Microsoft Research
gregz@microsoft.com

Draft – November 9, 2020

Abstract

In this paper we present a system for maintaining a membership list of users in
a group, designed for use in the Signal Messenger secure messaging app. The goal
is to support private groups where membership information is readily available to all
group members but hidden from the service provider or anyone outside the group. In
the proposed solution, a central server stores the group membership in the form of
encrypted entries. Members of the group authenticate to the server in a way that
reveals only that they correspond to some encrypted entry, then read and write the
encrypted entries.

Authentication in our design uses a primitive called a keyed-verification anonymous
credential (KVAC), and we construct a new KVAC scheme based on an algebraic
MAC, instantiated in a group G of prime order. The benefit of the new KVAC is
that attributes may be elements in G, whereas previous schemes could only support
attributes that were integers modulo the order of G. This enables us to encrypt group
data using an efficient Elgamal-like encryption scheme, and to prove in zero-knowledge
that the encrypted data is certified by a credential. Because encryption, authentication,
and the associated proofs of knowledge are all instantiated in G the system is efficient,
even for large groups.

1 Introduction

Secure messaging applications enable a user to send encrypted messages to one or more
recipients. A notion of groups is often supported: messages sent to a group will be delivered
to all users who are current members of the group. Typically a group is created by a user
to contain an initial set of members. These members (and the group creator) are given

∗An extended abstract of this paper appeared at CCS’2020, this is the full version.

1



privileges to add and remove other members and grant them privileges, and so on. The
result is that group membership is managed by the members.

The standard approach is to store the membership list, in plaintext, in a database
on a server. The downside to this approach is that the server has a stored repository of
associations between its users, and can easily insert malicious users into groups to receive
messages. These are serious threats for an encrypted messaging system.

The Signal messaging app [Sig19] previously introduced a private group approach where
the membership list is hidden from the server. In Signal’s system the group membership
list is maintained in a distributed fashion by each user [Mar14]. To change the membership
of a group, a user updates their local copy of the membership list, then sends this new
list to every other member via encrypted 1-to-1 messages. If some messages are lost (e.g.
the sender loses connectivity before sending all messages), or clients attempt simultaneous
updates, then members will end up with inconsistent views of membership. In an attempt
to reduce the duration of this inconsistency, Signal clients will process group updates from
users outside the membership list if the message contains a group-specific secret, but this
weakens access-control [RMS17].

To address these problems with distributed private groups, we introduce a new ap-
proach. In our new approach, group members encrypt the membership list using a shared
key and store the encrypted entries on a server. This means clients can acquire an up-to-
date view of group membership by simply querying the server, and the server can apply
access-control rules to all group updates. Using encryption in this manner introduces new
requirements:

• Anonymous authentication: When a group member wishes to add or remove another
user from the group, or fetch the membership list, the existing member must first
authenticate to the server so that the server can determine whether the member
is allowed to perform this operation. This is also true for the standard “plaintext
on server” approach, but in our system the group entry contains an encrypted user
identity (UID) rather than a plaintext UID. The group member must anonymously
authenticate by proving ownership of the encrypted UID, without the server learning
the UID.

• Deterministic encryption: It is important that each plaintext UID in a group corre-
sponds to a single encrypted UID in that group, and that an entry must not decrypt
successfully unless it is the unique deterministic encryption of the underlying UID. If
this requirement is not met, a single UID could be added to the group using different
ciphertexts. This would complicate access control and operations such as deletion.
Additionally, deterministic encryption means users can calculate the encrypted user
entry they are authenticating against without having to retrieve it from the server.

• Decryption and authentication consistency : Because encrypted entries are used in two
ways (decrypted by users to learn the group membership, and used for authentication

2



by the server), it is important for entries to decrypt successfully if and only if they
can be used for authentication.

We satisfy the anonymous authentication requirement using server-issued anonymous
credentials. In particular, we introduce a new form of keyed-verification anonymous creden-
tials, extending the construction from [CMZ14] to support efficient zero-knowledge proofs
compatible with verifiable encryption.

Given this credential scheme, the server will issue users time-limited auth credentials for
their UID. Users can then provide the server a zero-knowledge proof that they have a valid
auth credential matching an encrypted entry. Because of the zero-knowledge property, the
server receives assurance that the user possesses such an auth credential without learning
the UID certified by the credential.

We satisfy the requirements for deterministic encryption, and decryption and authen-
tication consistency, in two ways. As part of authentication, users prove to the server
that their encrypted entry is a correct deterministic encryption of some UID. As part of
decryption, users check that a ciphertext is a deterministic encryption of the decrypted
UID.

Profile keys With the above building blocks we have a rudimentary private group sys-
tem. We then build a more sophisticated system that additionally stores an encrypted
profile key for each group member. Profile keys are used in Signal to encrypt profile data
such as avatar images and profile names that provide a more user-friendly view of a user’s
identity [Lun17]. Encrypted profile data is stored on the server, but is not decryptable by
the server. Users will share their profile key (and thus their profile data) with other users
whom they trust.

To improve the Signal group experience we will store encrypted profile keys in the
group membership list alongside encrypted UIDs so that group members will see a profile-
enhanced view of the membership list, rather than simply a list of UIDs.

Storing encrypted profile keys introduces a new requirement for UID and profile key
consistency : it is important that the server only stores a pair (UID ciphertext, profile key
ciphertext) if this pair correctly decrypt to a UID and its associated profile key, even if
these ciphertexts are created by a malicious group member.

We satisfy this requirement with an additional server-issued anonymous credential.
Unlike the auth credentials discussed previously which are issued to the owners of UIDs,
these profile key credentials are issued to any user who knows another user’s profile key.
Users will register a profile key commitment with the server. This enables other users to
perform a blinded credential issuance with the server where the user proves knowledge of
the profile key matching the profile key commitment, and the server issues them a profile
key credential that certifies both a UID and profile key (this is a blinded issuance since the
server is issuing a credential for a profile key it does not know).

3



After a user (Alice) acquires a profile key credential for another user (Bob), she can
add Bob to groups by providing UID and profile key ciphertexts for Bob along with a
zero-knowledge proof that these ciphertexts encrypt values which are certified by a profile
key credential.

1.1 System Overview

We can summarize the main objects in the Signal Private Group System from the perspec-
tive of two users, Alice and Bob. Fig. 1 shows a typical interaction sequence in the system,
and more details on these objects are presented in Section 5.

• Bob generates a ProfileKey and registers his ProfileKeyCommitment with the server.

• Bob trusts Alice to view his profile data and so shares his ProfileKey with Alice by
sending her an encrypted message.1

• Alice contacts the server, without identifying herself, and uses Bob’s ProfileKey to
fetch a ProfileKeyCredential for Bob’s UID and ProfileKey.

• Alice and Bob contact the server periodically to fetch AuthCredentials for their UID.

• Alice creates a new group containing her and Bob by generating a random Group-
MasterKey and deriving GroupPublicParams from it, then registering the Group-
PublicParams with the server. Alice also uploads pairs of (UidCiphertext, Profile-
KeyCiphertext) for herself and Bob. Alice proves these ciphertexts are correct by
proving that she has an AuthCredential for her UidCiphertext, and by proving she
has a ProfileKeyCredential for each pair of ciphertexts.

• Alice sends Bob the GroupMasterKey via an encrypted message. Bob can now au-
thenticate with his AuthCredential to download the other group entries and decrypt
them using the GroupMasterKey. If Bob’s entry is authorized to add or delete mem-
bers of the group, Bob can also authenticate to the server and request it to perform
these operations.

Cryptography For efficiency and simplicity, our solution is designed to work using cryp-
tography instantiated in a group G of prime order q. Our encryption scheme is symmetric-
key, deterministic, CCA-secure, and has a property we call unique ciphertexts, meaning
that it is intractable to find two valid encryptions of the same plaintext, even with knowl-
edge of the key. Since it is a variant of Elgamal encryption in G, it has small ciphertexts
with efficient encryption and decryption. Moreover, it is compatible with the efficient

1This is an end-to-end encrypted message which we assume the secure messaging platform provides. For
details of E2E encryption in Signal, see [Sig19].

4



Figure 1: Overview of the main operations. In this sequence user A creates a group and
adds user B to it, then user B fetches the group state.

5



zero-knowledge proof system we use for credential presentation, allowing us to prove that
ciphertexts are well-formed with respect to a public commitment of the key, and that the
plaintext is an attribute from a credential.

For the latter part of the proof, we need a credential system that supports attributes
that are group elements. Previously known anonymous credentials and KVAC schemes
only support attributes from Zq. Following the approach to constructing a KVAC scheme
from [CMZ14], we first design an algebraic MAC where messages may be elements of G or
Zq. We prove our new MAC is secure in the random oracle model, assuming i) that DDH
in G is hard, and ii) that a simpler MAC, called MACGGM, from [CMZ14] is secure. Our
security analysis of our encryption scheme first defines the new properties required for the
private group system, then we prove the scheme is secure under the DDH assumption.

We then give protocols for credential (blind) issuance and presentation, to construct a
complete KVAC system satisfying the security properties defined in [CMZ14]. The resulting
credential scheme and proof protocols are efficient, and can be instantiated using well-
known non-interactive generalized Schnorr proofs of knowledge.

Security Properties The server in our system can neither decrypt group entries, nor
forge new entries. These are our main security goals.

However, the server can observe a small amount of information regarding group state,
and could perform limited modifications to this state:

• The server could observe when a particular encrypted entry performs some action,
such as fetching the membership list, or adding or deleting other encrypted entries.
Making updates not leak anything would be very expensive, e.g. clients would have to
re-encrypt and rewrite a maximum-size group state with each operation and include
a proof of correctness over the entire state.

• The server could delete ciphertexts or reinstate old ciphertexts. We believe this
system could be extended to add end-to-end integrity-protection by having clients
sign each new group state (along with an incrementing ”version” number), however
we have not tackled that in the initial system.

A malicious server could corrupt the group state by writing invalid ciphertexts, or in-
consistent UID and profile key ciphertexts. This shouldn’t provide the server any capability
beyond interrupting service to users, which the server could do more easily by simply not
responding to client queries.

A user who has acquired a group’s GroupMasterKey and then leaves the group (or is
deleted) retains the ability to collude with the server to encrypt and decrypt group entries.
In the current system a new group would have to be created, excluding the removed user(s).
An automated or more sophisticated re-keying strategy could also be added as a future
extension.

6



Assuming an honest server, it should not be possible for malicious users to forge authen-
tications, violate the server’s access control rules, or violate the consistency requirements
between decryption and authentication of UID ciphertexts, or between UID ciphertexts
and profile key ciphertexts.

2 Preliminaries and Related Work

Notation We use capital letters to denote group elements, and lower case letters to
denote integers modulo the group order. The notation x ∈R X means that x is chosen
uniformly at random from the set X.

2.1 Group Description and Hardness Assumptions

The new cryptographic primitives in this paper are designed to work in a cyclic group,
denoted G, of prime order q. We require that G has three associated functions.

1. A function HashToG : {0, 1}∗ → G that hashes strings to group elements. This should
be based on a cryptographic hash function; we will model it as a random oracle.

2. A function HashToZq : {0, 1}∗ → Zq, also based on a cryptographic hash function.

3. A function EncodeToG : {0, 1}` → G, that maps `-bit strings to elements of G in a
reversible way. The parameter ` depends on the size of G and the encoding.

For our security analysis, we will assume that the decisional Diffie-Hellman problem
(DDH) is hard in G, i.e., given (Ga, Gb, C) decide if C = Gab. This implies that the discrete
logarithm problem (DLP) is also hard in G, i.e., given Y = Gx it is hard to find x. We also
require that MACGGM is uf-cma-secure for the security of our MAC, and the only known
proofs are in the generic group model, so we inherit this assumption as well.

Unlike some credential systems, we don’t require pairings or the strong RSA assump-
tion. The CPU cost of a pairing in BLS12-381 is about 40x the time required for a scalar
multiplication in the Ristretto group we use (as described in §6). Similarly, the gap is
roughly 50x between scalar multiplication in Ristretto and RSA-3072 exponentiations. Us-
ing prime order groups also means the credential system can use the same elliptic curve as
is used for key agreement and signatures.

2.2 Keyed-Verification Anonymous Credentials (KVAC)

An anonymous credential system [Cha85, CV02, PZ13] is a set of cryptographic protocols:
A credential issuance protocol provides users with credentials that “certify” some set of
attributes. A credential presentation protocol enables the user to prove that they possess
a credential whose attributes satisfy some predicate without revealing the credential or

7



anything else about it (a zero-knowledge proof). There is a vast literature on anonymous
credentials, a good starting point on the subject is [RCE15].

Traditional anonymous credentials designs are based on public key signatures: the
credential Alice holds is a special type of signature on the attributes. When she presents
the credential to Bob, she proves (in zero-knowledge) that her credential is a valid signature
with respect to the credential issuer’s public key. The benefit of signature-based credentials
is that Alice may present her credential to anyone in possession of the issuer’s public key,
but the drawback is that known constructions are relatively expensive, being based on
the strong RSA assumption [CL03] or groups with a pairing [CL04], or if the credentials
are efficient (using prime order groups [PZ13, BL13]) they do not support multi-show
unlinkability. This means that if Alice presents her credential to Bob twice, he can link
these presentations.

With keyed-verification anonymous credentials (KVAC) [CMZ14], the issuer and verifier
are the same party (or share a key), and so the design can use a MAC in place of a signature
scheme. It is then possible to have an efficient credential system constructed in a group of
prime order, with multi-show unlinkability. In the present scenario the issuer and verifier
are the same party, so a KVAC system is a natural fit.

2.3 MACs and Algebraic MACs

Many popular MAC algorithms are constructed using symmetric-key primitives like hash
functions (e.g., HMAC [KBC97]) and block ciphers (e.g., Poly1305-AES [Ber05]). Unlike
algebraic MACs, these MACs do not have efficient zero-knowledge proofs associated to
them. We use the term algebraic MAC to mean a MAC constructed using group operations.
Dodis et al. [DKPW12] study many algebraic MACs, and Chase et al. [CMZ14] show that
certain algebraic MACs can be used to construct an efficient type of anonymous credential.

We describe a particular algebraic MAC, called MACGGM, that we use as a building
block in our new MAC scheme.

Definition 1. The MACGGM construction [DKPW12, CMZ14] is an algebraic MAC con-
structed in a group G of prime order q, with the following algorithms.

KeyGen: choose random (x0, x1) ∈ Zq2, output sk = (x0, x1).

MAC(sk,m): choose random U ∈ G, output σ = (U,Ux0+x1m).

Verify(sk, (U,U ′),m): recompute U ′′ = Ux0+x1m, output “valid” if U ′′ = U ′, and “invalid”
otherwise.

In [DKPW12] it is shown that MACGGM satisfies a weak notion of MAC security called
selective security (where the adversary must specify the message that will be forged in
advance), assuming DDH. In [CMZ14, ABS16], it is shown that MACGGM is uf-cmva secure
in the generic group model.

The security notions for algebraic MACs are the same as for traditional MACs.

8



uf-cma: unforgeability under chosen message attacks

suf-cma: strong unforgeability under chosen message attacks

suf-cmva: strong unforgeability under chosen message and verification attacks

Definition 2. For a MAC with algorithms (KeyGen,MAC, Verify), consider the following
security game between a challenger C and an attacker A.

1. C uses KeyGen to generate sk. If the MAC has public parameters, C gives them to A.

2. A makes queries to C.

• MAC query: A submits m and C outputs σ = MAC(sk,m). C stores (m,σ) in a
set M .

• Verify query: A submits (σ,m) and C outputs Verify(sk, σ,m)

3. A outputs (σ∗,m∗)

We say that A wins the uf-cma game if no Verify queries are made, and m∗ is not in M . We
say that A wins the suf-cma security game if no Verify queries are made, and (m∗, σ∗) 6∈M .
We say that A wins the suf-cmva game if (m∗, σ∗) 6∈M . The MAC is uf-cma-secure if no
polynomial-time A wins the uf-cma game with probability that is non-negligible in κ (and
suf-cma, suf-cmva security are defined analogously).

A proof of the following lemma is in [BS20, Theorem 6.1]. Basically it says that for a
strongly unforgeable MAC, verification queries don’t help an attacker (when looking only
at asymptotic security).

Lemma 3. Let M be a MAC scheme. The security notions suf-cma and suf-cmva are
equivalent. If M is suf-cma secure, then it is also suf-cmva secure (and vice-versa).

2.4 Zero-Knowledge Proofs

In multiple places our constructions use zero-knowledge (ZK) proofs to prove knowledge of
discrete logarithms and of representations of elements in G. We use the notation introduced
by Camenisch and Stadler [CS97]. A non-interactive proof of knowledge π is described by:

π = PK{(x, y, . . .) : Predicates using x, y and public values}

which means that the prover is proving knowledge of (x, y, . . .) (all elements of Zq), such
that the predicates are satisfied. Predicates we will use in this paper are knowledge of
a discrete logarithm, e.g., PK{(x) : Y = Gx} for public Y and G, and knowledge of
a representation using two or more bases, e.g., PK{(x1, . . . , xn) : Y =

∏n
i=1Gi

xi}. We
also use multiple predicates, and require that they all be true, e.g., PK{(x, y) : Y =

9



Gx ∧ Z = GyHx}. Given two proofs we can combine them by merging the list of secrets
and predicates, e.g., proofs π1 = PK{(x) : Y = Gx} and π2 = PK{(x, y) : Z = GxHy}
combine to give π3 = PK{(x, y) : Y = Gx ∧ Z = GxHy}.

There are multiple ways to instantiate the proofs of knowledge we need. The Signal
implementation uses the ”generic linear” generalization of Schnorr’s protocol described in
[BS20, Ch.19], made noninteractive with the Fiat-Shamir transform [FS87].

2.5 Secure Messaging and Signal

In a secure messaging application such as Signal, users send each other encrypted mes-
sages with the aid of a server. For the purposes of this document, most details of the
Signal Protocol [Sig19] can be abstracted away, leaving a few points which are crucial for
understanding the Signal Private Group System in Section 5.

Users can contact the Signal server over a mutually-authenticated secure channel, or
over a secure channel that only authenticates the server. For simplicity, we’ll describe the
former case as an authenticated channel, and the latter case as an unauthenticated channel.
Unauthenticated channels are used when the user wishes to interact with the server without
revealing their identity, and thus will be used extensively in the protocols described here.

When users in a Signal group send encrypted messages to the group, they encrypt
and send the message to each group member, individually, with end-to-end encryption.
The server is given no explicit indication of the difference between group and non-group
encrypted messages, apart from traffic analysis.

Users are identified by a UID . Users send their profile key attached to encrypted text
messages if the recipient is trusted, which we interpret to mean either: the recipient is in
the sender’s address book; or the sender initiated the conversation; or the sender opted in
to sharing profile data with the recipient. Given a user’s UID and profile key, one can fetch
and decrypt profile data they have uploaded for themselves.

3 A New KVAC and Protocols

In this section we define our new keyed-verification anonymous credential system. We
start with the new algebraic MAC that the scheme is based on, then describe protocols for
credential issuance and presentation. Security analysis of these new primitives is given in
Section 7.

3.1 A New Algebraic MAC

Our new MAC is constructed in a group G of prime order q. A new feature that is
important for our use case is that the list of attributes may contain a mix of elements of G
(group attributes), or integers in Zq (scalar attributes), while in previous work attributes
were restricted to being chosen from Zq. When using generalized Schnorr proofs in a

10



cyclic group (the most common ZK proof system), the types of statements that can be
proven about attributes in G are limited, but we will be able to prove statements about
the plaintext encrypted by an Elgamal-like ciphertext.

Parameters Let κ be a security parameter. The number of attributes in the message
space is denoted n. We write ~x to denote a list of values. The scheme requires the following
fixed set of group elements:

G,Gw, Gw′ , Gx0 , Gx1 , Gy1 , . . . , Gyn , Gm1 , . . . , Gmn , GV

generated so that the relative discrete logarithms are unknown, e.g., Gm1 = HashToG(“m1”).

KeyGen(params) The secret key is sk := (w,w′, x0, x1, (y1, . . . , yn)), all randomly-chosen
elements of Zq. We will write W := Gw

w, and W is considered part of sk. Optionally,
compute the issuer parameters iparams (CW , I) as follows:

CW = Gw
wGw′

w′ , I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gyn

yn

The iparams are optional for basic use of the MAC, but are required when the MAC is
used in the protocols we consider, therefore we assume iparams is always present.

MAC(sk, ~M) The MAC is calculated over a collection of group attributes and scalar at-
tributes. Each attribute is represented by a group element Mi ∈ G. For a given MAC
key, each of the n attribute positions is fixed to always contain a group attribute in G, or
always encode a scalar attribute in Zq. If Mi encodes a scalar attribute then Mi = Gmi

mi .
Choose random t ∈ Zq, U ∈ G, and compute

V = WUx0+x1t

(
n∏
i=1

Mi
yi

)

Output (t, U, V ) as the MAC on ~M .

Verify(sk, ~M, (t, U, V )) Recompute V as in MAC (denote it V ′) and accept if V
?
= V ′.

Security Intuitively, for security, the component Ux0+x1t is a MACGGM tag on t, and uses
distinct random values (U, t), to prevent multiple MACs with different t from being com-
bined in a forgery. The terms using yi prevent manipulation of individual attributes. Note
also that the term W is necessary, since without it, given a MAC (t, U, V ) on (M1, . . . ,Mn),
then (t, U c, V c) is a valid MAC on (M c

1 , . . . ,M
c
n) for any c ∈ Zq. In Section 7.3 we prove

this MAC is suf-cmva secure, assuming DDH is hard in G and MACGGM is a uf-cma secure
MAC.

11



Optimizations We note that the construction can be derandomized by setting t as the
hash of the attributes, and U as a hash of t. The resulting tags would be a single group
element long.

In the context of a credential system requiring many scalar attributes, it may be
more efficient to first commit to many scalar attributes as a group attribute, e.g., C =
G1

m1 · · ·G`m`Hr, then compute the MAC over C. Then during credential presentation,
the prover can avoid having to create and send a commitment for each scalar attribute
separately (one of the performance drawbacks of [CMZ14]). In this work credentials have
at most one scalar attribute, so we did not investigate this optimization further.

3.2 Credential Issuance and Presentation

Here we describe how credentials are issued and presented. We describe issuance when
there are no blind attributes (i.e. attributes not known to the issuer), and describe blind
issuance in Section 5.10.

Credential Issuance A credential is a MAC (t, U, V ) from Section 3.1 on the attributes
Mi. The issuer proves knowledge of the secret key, and that (t, U, V ) is correct relative to
iparams = (CW , I), with the following proof of knowledge.

πI = PK{(w,w′, x0, x1, y1, . . . , yn) :

CW = Gw
wGw′

w′ ∧

I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gyn

yn
∧

V = Gw
w(Ux0)(U t)x1

(
n∏
i=1

Mi
yi

)
}

Credential Presentation To present the credential (t, U, V ) on attributes ~M , a user
creates the following proof. This proves that the user holds a valid credential, and has
knowledge of the hidden scalar attributes (for proving that hidden group attributes match
some ciphertext we will need additional predicates; see the next section).

12



1. Choose z ∈R Zq and compute (i ranges from 1 to n):

Z = Iz

Cx0 = Gx0
zU

Cx1 = Gx1
zU t

Cyi =


Gyi

zMi if i is a hidden group attribute

Gyi
zGmi

mi if i is a hidden scalar attribute

Gyi
z if i is a revealed attribute

CV = GV
zV

along with the value z0 = −zt (mod q). Let Hs denote the set of hidden scalar
attributes.

2. Compute the following proof of knowledge:

π = PK{(z, z0, {mi}i∈Hs , t) :

Z = Iz ∧
Cx1 = Cx0

tGx0
z0Gx1

z ∧

Cyi =

{
Gyi

zGmi
mi if i is a hidden scalar attribute

Gyi
z if i is a revealed attribute

}

3. Output (Cx0 , Cx1 , Cy1 , . . . , Cyn , CV , π)

4. Let H denote the set of all hidden attributes. The verifier computes

Z =
CV

(WCx0
x0Cx1

x1
∏
i∈HCyi

yi
∏
i 6∈H(CyiMi)yi)

using the secret key (W,x0, x1, y1, . . . , yn) and revealed attributes, and then verifies π.

Security The security of our new KVAC construction is analyzed in Section 7.4. We
show that the scheme has the security properties defined in [CMZ14], namely, correctness,
unforgeability, anonymity, blind issuance and key-parameter consistency.

4 Verifiable Encryption

Since our credential system supports attributes that are group elements, we can use the
Elgamal encryption scheme to create an efficient verifiable encryption scheme [CD00]. By
verifiable, we mean that we can prove properties about the plaintext in zero-knowledge.

13



Suppose we have a credential certifying a group attribute M1, and let Y = Gy be an
Elgamal public key. The encryption of M1 with Y is (E1, E2) = (Gr, Y rM1). To prove
that the plaintext is certified, we add two predicates to the credential presentation proof:

E1 = Gr ∧ Cy1/E2 = Gy1
z/Y r .

Previous verifiable encryption schemes did not allow us to efficiently encrypt group ele-
ments, and thus required more expensive techniques, such as a variant of Paillier’s encryp-
tion scheme [CS03], or groups with bilinear maps [CHK+11]. We caveat that the above
basic Elgamal scheme is not CCA secure, and we have not carefully analyzed its secu-
rity. Since it will be sufficient for our application, we focus on symmetric-key verifiable
encryption that is CCA secure.

Symmetric-key verifiable encryption with unique ciphertexts Informally, we will
need a symmetric-key encryption scheme that (i) has unique ciphertexts, meaning that for
every plaintext there is at most one ciphertext that will decrypt correctly, (ii) has public
verifiability, meaning that we can prove that a ciphertext encrypts a certified plaintext with
a key that is consistent with some public parameters, and (iii) is correct under adversarially
chosen keys, meaning that it is hard to find a key and message that cause decryption to
fail. In Section 7.2 we define these properties formally and prove our construction meets
them in the random oracle model assuming the DDH problem is hard in G.

4.1 Construction

System parameters A cyclic group G of prime order q. Recall that EncodeToG is a
function that encodes strings as group elements, that HashToG and HashToZq are
cryptographic hash functions that hash strings to elements of G and Zq (respectively).
We define a fourth function Derive : {0, 1}2κ → (Zq)2, used to derive two keys from
a master key. Derive should also be a cryptographic hash function (and our analysis
in Theorem 10 models it as a random oracle). Two group elements Ga1 and Ga2 are
chosen such that the relative discrete logs are unknown.

KeyGen(1κ) Choose the secret key k0 at random from {0, 1}2κ, and derive k = Derive(k0) =
(a1, a2) ∈ (Zq)2. We assume that honest parties will not use k that was not derived
from a k0 in this way. Compute the public parameters pk := Ga1

a1Ga2
a2 .

Enc(k,m) Compute M1 = HashToG(m) and M2 = EncodeToG(m), then

E1 = M1
a1

E2 = (E1)a2M2.

14



Dec(k,E1, E2) First compute m′ = DecodeFromG(E2/E1
a2) and M ′1 = HashToG(m′).

Then perform the following checks and return m′ if they succeed, and ⊥ otherwise.

E1
?
= (M ′1)a1

E1

?
6= 1

Prove(k, pk,E1, E2, ~C) To prove that (E1, E2) encrypts the plaintext committed in the list
of commitments ~C:

Cy1 := Gy1
zM1, and Cy2 := Gy2

zM2,

first compute the scalar z1 = −za1, then create the proof

πEnc = PK{(a2, a2, z, z1) :

pk = Ga1
a1Ga2

a2 ∧
Cy2/E2 = Gy2

z/E1
a2 ∧ //plaintext is M2

E1 = Cy1
a1Gy1

z1} //E1 is well-formed

Verify(pk, πEnc, ~C) Accept if πEnc verifies, otherwise reject.

Discussion When we use the Prove function, it will be combined with the credential
presentation proof, which creates the pair of commitments ~C (and this is why they use the
same z value). E1 plays a role similar to the synthetic initialization vector of [RS06] and
can be seen as an authentication tag on m, assuming DDH, as we prove in Lemma 11.

We also note that a more generic way to achieve CCA security is possible with an
encrypt-then-MAC construction. Since the algebraic MAC of Section 3.1 can authenticate
group elements, we can MAC the pair (E1, E2) and append the tag. This is less performant,
but has the advantage that decryption can immediately reject ciphertexts without a valid
MAC.

The Derive function in key generation serves two purposes. First, when sharing group
keys amongst themselves, group members can share a short master key, saving bandwidth.
Second, it ensures that (a1, a2) are not a degenerate value (such as all zero), that might be
used to break the correctness under the adversarially chosen keys property (Definition 9).

5 The Signal Private Group System

In Section 1.1 we provided an overview of the system. Here we review the main data
objects; spell out the high-level operations; and then describe encryption and credential
operations and objects in detail.

15



5.1 Data Objects

The user encrypts UIDs and ProfileKeys into UidCiphertexts and ProfileKeyCiphertexts,
using GroupSecretParams which are shared between users. For efficiency, and to avoid
maliciously chosen keys (as described in Section 4.1) users actually share a smaller Group-
MasterKey, and use this to derive GroupSecretParams. The GroupPublicParams for each
group are registered with the server.

Users prove correctness of these ciphertexts to the server using AuthCredentials and
ProfileKeyCredentials. An AuthCredential certifies a UID and a redemption date during
which the credential will be valid. A ProfileKeyCredential certifies a UID and ProfileKey.

There are five data objects used to acquire and present credentials which all contain
zero-knowledge proofs of knowledge: The server issues credentials using an AuthCredential-
Response or ProfileKeyCredentialResponse. The ProfileKeyCredentialResponse is sent
in response to a ProfileKeyCredentialRequest. Users present these credentials and prove
they correspond to ciphertexts via AuthCredentialPresentation and ProfileKeyCredential-
Presentation objects, which contain both the ciphertexts and proofs of knowledge.

These objects are described in more detail below.

5.2 General Data Object

UID: A 16-byte UUID (universally unique identifier) representing a user.

ServerSecretParams: A set of secret values the server uses to issue and verify creden-
tials.

ServerPublicParams: A set of public values which are derived from ServerSecret-
Params and which are known to all users.

5.3 Data Objects for Authentication

AuthCredential: A credential with attributes based on the UID and a redemption date
which specifies the day on which this credential is valid.

AuthCredentialResponse: A message sent from the server to a user containing an
AuthCredential and a proof that this credential was constructed correctly. Since the
corresponding request is trivial, we omit it.

AuthCredentialPresentation: A message sent from a user to the server containing
a UidCiphertext, a redemption date, and the credential presentation proof πA from Sec-
tion 5.12.

16



5.4 Data Objects for Profile Keys

The data objects in this section are all related to profile keys, commitment and credentials.

ProfileKey: A 32-byte key used for symmetric-key encryption of profile data. A user
shares their ProfileKey with users they trust, but not with the server. At any point in time
a UID is associated with a single profile key. The uses of profile data are outside the scope
of this document, but two examples are a user’s screen name and profile picture.

ProfileKeyCommitment: A deterministic commitment to a ProfileKey.

ProfileKeyVersion: An identifier derived from a ProfileKey.

ProfileKeyCredential: A credential with attributes based on a UID and ProfileKey.
Note that an AuthCredential for a UID is issued only to the user who owns that UID,
whereas ProfileKeyCredentials are issued to anyone who knows the profile key for a UID.

ProfileKeyCredentialRequest: A message sent from a user to the server to request a
ProfileKeyCredential. The message contains a ProfileKeyV ersion, a proof of knowledge of
the corresponding ProfileKey, and some data to help the server perform a blinded credential
issuance.

ProfileKeyCredentialResponse: A message sent from the server to a user containing
a ProfileKeyCredential and the blind issuance proof πBI from Section 5.10.

ProfileKeyCredentialPresentation: A message sent from a user to the server con-
taining a UidCiphertext, a ProfileKeyCiphertext, and a zero-knowledge proof of knowledge
of some ProfileKeyCredential issued over the UidCiphertext and ProfileKey.

5.5 Data Objects for Groups

The data objects in this section exist for a specific group.

GroupMasterKey: A random value which the GroupSecretParams are derived from.
When a new user is added or invited to a group, the user adding them will send the new
member the group’s GroupMasterKey via an encrypted message, so the new member can
derive the GroupSecretParams. Each encrypted message sent within the group will also
contain a copy of the GroupMasterKey, in case the initial message fails to arrive. Note
that a user who has acquired a group’s GroupMasterKey and then leaves the group (or is
deleted) retains the ability to collude with a malicious server to encrypt and decrypt group

17



entries. We deem this risk acceptable for now due to the complexities in rapid and reliable
rekey of the GroupMasterKey.

GroupSecretParams: A set of secret values which group members use to encrypt and
decrypt UidCiphertexts and ProfileKeyCiphertexts, as well as construct zero-knowledge
proofs about these ciphertexts. Derived from the GroupMasterKey.

GroupPublicParams: A set of public values corresponding to the GroupSecretParams.
The GroupPublicParams are stored on the server to represent a group.

UidCiphertext: A deterministic encryption of a UID using GroupSecretParams.

ProfileKeyCiphertext: A deterministic encryption of a ProfileKey using GroupSecret-
Params.

Role: A value specifying what access privileges a user has to modify the group. For
example, a user with an administrator role may have more privileges than other users.
Discussion of specific roles is out of scope of this document. Roles are enforced by the
server, not by a cryptographic mechanism.

5.6 Operations for Credentials

GetAuthCredential

1. The user contacts the server over an authenticated channel and requests an Auth-
Credential for some redemption date.

2. If the date is in the allowed range (e.g., within next few days) the server returns an
AuthCredentialResponse for the date.

3. The user verifies the proof of knowledge in the AuthCredentialResponse and stores
an AuthCredential.

CommitToProfileKey

1. The user generates a random ProfileKey, and derives a ProfileKeyV ersion and Profile-
KeyCommitment from it.

2. The user sends the (ProfileKeyV ersion, ProfileKeyCommitment) pair over the au-
thenticated channel to the server.

3. The server stores the ProfileKeyCommitment associated with the authenticated user’s
UID and the ProfileKeyV ersion.

18



GetProfileKeyCredential
This operation provisions a user with a ProfileKeyCredential for some (UID , ProfileKey) if
and only if the user knows a ProfileKey matching the target user’s ProfileKeyCommitment.

1. The user derives a ProfileKeyV ersion from the ProfileKey, and computes a Profile-
KeyCredentialRequest from the ProfileKey.

2. The user sends the (UID , ProfileKeyV ersion, ProfileKeyCredentialRequest) over an
unauthenticated channel to the server.

3. If the server has a stored ProfileKeyCommitment for the specified UID and Profile-
KeyV ersion, the server verifies the proof of knowledge in the ProfileKeyCredential-
Request.

4. If verification succeeds the server generates a ProfileKeyCredentialResponse.

5. The user verifies the proof of knowledge in the ProfileKeyCredentialResponse, and if
verification succeeds the user stores a ProfileKeyCredential for the target UID .

5.7 Operations for Group Management

AuthAsGroupMember
This operation uses an unauthenticated channel so that the server does not learn the user’s
UID . Upon completion, the channel is authenticated to a particular UidCiphertext within
a group. This operation is used by the subsequent operations.

1. The user recomputes their UidCiphertext for the group and creates an AuthCredential-
Presentation to prove knowledge of an AuthCredential matching the UidCiphertext.

2. The user contacts the server over an unauthenticated channel and sends the Group-
PublicParams and AuthCredentialPresentation.

3. The server verifies the proof of knowledge in the AuthCredentialPresentation and that
the GroupPublicParams and UidCiphertext correspond to some user in the specified
group.

AddGroupMember

1. The user and server execute AuthAsGroupMember.

2. The user encrypts the new user’s (UID , ProfileKey) into (UidCiphertext, Profile-
KeyCiphertext) using the GroupSecretParams, then creates a ProfileKeyCredential-
Presentation for these ciphertexts and sends it to the server, along with a Role for
the new user.

3. The server verifies the ProfileKeyCredentialPresentation and checks that:

19



(a) The authenticated user’s Role allows them to add users.

(b) The UidCiphertext does not already exist in the group as a full member. If
the UidCiphertext exists in the group as an invited member (i.e., missing Pro-
fileKeyCiphertext; see AddInvitedMember below), then this operation adds the
user as a full member.

If these checks succeed, the server stores the tuple (UidCiphertext, ProfileKeyCipher-
text, Role) in the group. Otherwise the server returns an error.

CreateGroup

1. The user generates a GroupMasterKey, and uses it to derive GroupSecretParams
and GroupPublicParams.

2. The user contacts the server over an unauthenticated channel and sends the Group-
PublicParams for the new group.

3. The user performs a variant of AddGroupMember which initializes the group with one
member (the UidCiphertext from AuthAsGroupMember) and skips the Role check.

FetchGroupMembers

1. The user and server execute AuthAsGroupMember.

2. All of the (UidCiphertext, ProfileKeyCiphertext) pairs are returned for full members
as well as invited members.

DeleteGroupMember

1. The user and server execute AuthAsGroupMember.

2. The user sends the UidCiphertext of another user or themselves (the target user).

3. The server checks whether the authenticated user’s Role allows them to delete the
target user.

4. If so, the entry in the group membership is deleted.

AddInvitedGroupMember and UpdateProfileKey
These operations are variants of AddGroupMember. AddInvitedGroupMember is used when
a group member would like to add a target user to the group but doesn’t know the target’s
ProfileKey. In this case, the target user is added without a ProfileKeyCiphertext or Profile-
KeyCredentialPresentation. An invited user only becomes a full group member once their
ProfileKeyCiphertext is populated via AddGroupMember or UpdateProfileKey.

UpdateProfileKey is the same as AddGroupMember except that users are only allowed
to replace their own ProfileKeyCiphertext (to prevent the possibility of rollback attacks to
older versions of profile data).

20



5.8 System Parameters and Server Parameters

AuthCredentials and ProfileKeyCredentials use the same system parameters, but they each
use a separate issuer key and iparams.

System Parameters In addition to the parameters of the MAC scheme, the group el-
ements (Ga1 , Ga2 , Gb1 , Gb2 , Gj1 , Gj2 , Gj3) are generated so that the relative discrete loga-
rithms are unknown.

ServerSecretParams and ServerPublicParams The ServerSecretParams contains
two secret keys for the MAC scheme. The ServerPublicParams contains the corresponding
issuer parameters, denoted iparamsA (for auth credentials) and iparamsP (for profile key
credentials).

5.9 Auth Credentials

An AuthCredential has three attributes:

1. M1 := HashToG(UID),

2. M2 := EncodeToG(UID), a reversible encoding of UID ,

3. M3 := Gm3
m3 , where m3 ∈ Zq, is a “redemption date”.

An AuthCredentialResponse contains an algebraic MAC for the credential, and also
the proof of issuance πI . The user verifies this proof in the GetAuthCredential operation,
using attribute values (M1,M2) which the user derives from their own UID.

5.10 Profile Key Credentials

A ProfileKeyCredential has four attributes. The first two credential attributes encode the
UID and are the same as the AuthCredential, and the last two encode the ProfileKey:

1. M1 = HashToG(UID),

2. M2 = EncodeToG(UID),

3. M3 = HashToG(ProfileKey,UID), a hash of the profile key and UID,

4. M4 = EncodeToG(ProfileKey), an encoding of the profile key.

21



Blind Issuance Issuance of ProfileKeyCredentials differs from AuthCredentials because
the ProfileKeyCredential attribute values are not all known to the server.

Instead, the user and server will perform a blind issuance protocol, based on the same
idea as in [CMZ14]. The ProfileKeyCredentialRequest will contain an Elgamal encryption
of the blinded attributes (M3,M4) and a proof that these values match a ProfileKey-
Commitment.

A ProfileKeyCommitment commits to the values M3 and M4. Since M3 and M4 are
group elements and not scalars, we can’t simply use Pedersen’s commitment scheme. In-
stead, a ProfileKeyCommitment is the triple of values (J1, J2, J3) = (Gj1

j3M3, Gj2
j3M4,

Gj3
j3) where j3 = HashToZq(ProfileKey,UID). Note that this commitment scheme is

not perfectly hiding, but since ProfileKeys are assumed to have high min-entropy, this is
sufficient. Further, the commitment is deterministic since (M3,M4, j3) are derived from
the ProfileKey and UID , thus any user with these values can reconstruct the ProfileKey-
Commitment.

Upon receiving a ProfileKeyCredentialRequest that matches the user’s ProfileKey-
Commitment the server will use the homomorphic properties of Elgamal encryption to
create an encrypted MAC and return it to the user, along with a proof of correctness, in a
ProfileKeyCredentialResponse. The user will verify the proof and then decrypt the MAC
to recover their ProfileKeyCredential.

To generate the ProfileKeyCredentialRequest the user generates an Elgamal key pair
(y, Y = Gy), where G is a generator of G. The blind attributes (M3,M4) are encrypted as

(D1, D2) = (Gr1 , Y r1M3)

(E1, E2) = (Gr2 , Y r2M4)

for random r1 and r2. The ProfileKeyCredentialRequest contains the ciphertexts, the
public key Y , and a proof that the encrypted values match the commitment (J1, J2, J3) =
(Gj1

j3M3, Gj2
j3M4, Gj3

j3):

πBR = PK{(y, r1, r2, j3) :

Y = Gy ∧D1 = Gr1 ∧ E1 = Gr2 ∧ J3 = Gj3
j3∧

D2/J1 = Y r1/Gj1
j3∧

E2/J2 = Y r2/Gj2
j3}

To create a ProfileKeyCredentialResponse after verifying the ProfileKeyCredential-
Request the server will create a partial credential (t, U, V ′) that covers the unblinded
attributes, and encrypt V ′ with the user’s public key Y to get (R1, R2) = (Gr

′
, Y r′V ′) for

a random r′. Then the server will compute

(S1, S2) = (D1
y3E1

y4R1, D2
y3E2

y4R2) .

22



Because Elgamal encryption is homomorphic, the ciphertext (S1, S2) is an encryption of
V for a credential (t, U, V ) which covers both blinded and revealed attributes. With the
attributes (M1, . . . ,M4) as described above, (S1, S2) will be:

S1 = Gy3r1+y4r2+r′ ,

S2 = Y y3r1+y4r2+r′WUx0+tx1

4∏
i=1

Mi
yi

= Y y3r1+y4r2+r′V

The server can prove that (S1, S2) were calculated correctly by modifying the issuance
proof to be the following proof πBI :

πBI = PK{(w,w′, y1, . . . , y4, x0, x1, r
′) :

CW = Gw
wGw′

w′ ∧

I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gy4

y4
∧

S1 = D1
y3E1

y4Gr
′ ∧

S2 = D2
y3E2

y4Y r′Gw
w(Ux0)(U t)x1M1

y1M2
y2}

The server sends (S1, S2, t, U, πBI) to the user, and if πBI is valid, the user decrypts V =
S2/S1

y and outputs the credential (t, U, V ) with attributes (M1, . . . ,M4).

5.11 Verifiable Encryption of UIDs and Profile Keys

Encryption of UIDs and ProfileKeys is done with the symmetric-key scheme from Sec-
tion 4.1. Both encryption and decryption use the GroupSecretParams. The GroupSecret-
Params are (a1, a2, b1, b2) ∈ Zq4 derived from a randomly-chosen GroupMasterKey. The
GroupPublicParams are (A,B) where A = Ga1

a1Ga2
a2 and B = Gb1

b1Gb2
b2 .

Encryption of UIDs Recall that M1 = HashToG(UID) and M2 = EncodeToG(UID).
To encrypt a UID to a UidCiphertext (EA1 , EA2) calculate:

EA1 = M1
a1

EA2 = EA1
a2M2

To decrypt the UidCiphertext first compute:

M ′2 = EA2/EA1
a2

23



then decode M ′2 to get UID ′, and compute M ′1 = HashToG(UID ′). Then perform the
following checks and return UID ′ if they succeed, ⊥ otherwise:

EA1

?
6= 1

EA1

?
= (M ′1)a1

Encryption of ProfileKeys Recall that M3 = HashToG(ProfileKey,UID) and M4 =
EncodeToG(ProfileKey). To encrypt a ProfileKey as a ProfileKeyCiphertext (EB1 , EB2)
calculate:

EB1 = M3
b1

EB2 = EB1
b2M4

To decrypt the ProfileKeyCiphertext first compute:

M ′4 = EB2/EB1
b2

then decode M ′4 to get ProfileKey ′, compute M ′3 = HashToG(ProfileKey ′, UID). Then
perform the following checks and return ProfileKey′ if they succeed, ⊥ otherwise:

EB1

?
6= 1

EB1

?
= (M ′3)b1

5.12 Presenting an AuthCredential

An AuthCredentialPresentation contains a UidCiphertext, a redemption date, and a proof
of knowledge calculated as follows:

1. Recompute (EA1 , EA2) from UID and (a1, a2) as described in Section 5.11.

2. Choose z ∈R Zq and compute

Cy1 = Gy1
zM1 Cx0 = Gx0

zU

Cy2 = Gy2
zM2 Cx1 = Gx1

zU t

Cy3 = Gy3
z CV = GV

zV

along with two values in Zq: z0 = −zt and z1 = −za1.

24



3. Compute the following proof of knowledge:

πA = PK{(z,sk, z0, z1, t) :

Z = Iz ∧
Cx1 = Cx0

tGx0
z0Gx1

z ∧
A = Ga1

a1Ga2
a2 ∧

Cy2/EA2 = Gy2
z/EA1

a2 ∧ //plaintext is M2

EA1 = Cy1
a1Gy1

z1 ∧ //EA1 is well-formed

Cy3 = Gy3
z }

4. Output (Cx0 , Cx1 , Cy1 , . . . , Cy3 , CV , EA1 , EA2 , πA)

5. The server computes

Z = CV /(WCx0
x0Cx1

x1Cy1
y1Cy2

y2(Cy3Gm3
m3)y3)

using the current date m3 and the secret key (W,x0, x1, y1, . . . , y3), and then veri-
fies πA.

5.13 Presenting a ProfileKeyCredential

A ProfileKeyCredentialPresentation contains a UidCiphertext, a ProfileKeyCiphertext,
and a proof of knowledge calculated as follows:

1. Choose random z, r then compute

Cyi = Gyi
zMi for i = 1, . . . , 4 Cx0 = Gx0

zU

CV = GV
zV Cx1 = Gx1

zU t

along with three values in Zq: z0 = −zt, z1 = −za1, and z2 = −zb1.

2. Then compute the proof of knowledge

πP = PK{(sk, z, z0, z1, z2, t) :

Z = Iz∧
Cx1 = Cx0

tGx0
z0Gx1

z∧
A = Ga1

a1Ga2
a2 ∧

B = Gb1
b1Gb2

b2 ∧
Cy2/EA2 = Gy2

z/EA1
a2 ∧ //plaintext is M2

EA1 = Cy1
a1Gy1

z1 ∧ //EA1
is well-formed

Cy4/EB2 = Gy4
z/EB1

b2 ∧ //plaintext is M4

EB1 = Cy3
b1Gy3

z2 //EB1
is well-formed

}

25



and output ({Cyi}4i=1, Cx0 , Cx1 , CV , πP ).

3. The server computes

Z = CV /(WCx0
x0Cx1

x1

4∏
i=1

Cyi
yi)

using the secret key (W,x0, x1, y1, . . . , y4), and then verifies πP .

6 Implementation

This system has been implemented and is undergoing testing before being deployed to
Signal users. This implementation instantiates the cryptography as follows:

• G: For the group G we use ristretto255 [HdVLA19], a prime-order group built on
top of the (non-prime-order) Curve25519 elliptic curve [Ber06].

• HashToG: For most HashToG operations we use the HashToGroup operation defined
for Ristretto in [HdVLA19]. This operation take a 64-byte hash output and converts
each of the 32-byte halves to a field element (an integer module 2255−19). These field
elements are converted to group elements using the Ristretto version of the Elligator2
map, and then these groups elements are added together to ensure this operation is
a surjection onto the entire Ristretto group. HashToG for M4 is handled differently
for performance reasons; see next bullet.

• EncodeToG: For EncodeToG we have to contend with the fact that the “inverse”
of the Elligator map on Ristretto will return from one to eight field elements, only
one of which is the value that was originally encoded. Since our encryption scheme
MACs the plaintext before encoding (to compute the E1 value), decryption tests the
candidates and returns the correct value.

Encoding a 256-bit profile key into a single Ristretto group element is not possible,
as the Ristretto group order is less than 2256. Thus, we can’t decode the EB2 element
of a profile-key ciphertext directly into a single profile key; rather we decode it into
64 different candidates, and then test whether EB1

1/b1 == HashToG(p) for each
candidate profile key p. For efficiency, we define this HashToG operation to comprise
only a single Elligator map on 32 bytes, since having it cover the entire Ristretto
group is unnecessary.

• Zero-knowledge proofs of knowledge: The proofs of knowledge are implemented using
the ”generic linear” generalization of Schnorr’s protocol described in [BS20, Ch. 19],
made noninteractive with the Fiat-Shamir transform [FS87].

26



• Hash functions: For hashing and key-derivation within the proofs of knowledge and
elsewhere we use HMAC-SHA256 within a new “stateful hash object” construction
which provides labels for domain-separation, extensible output, and other convenient
features.

The implementation is available online under an open source license (GPL), in the form
of three libraries written in Rust:

• zkgroup: This is the main library, providing a high-level API and bindings so the
library can be used in other programming languages.

• poksho: This library implements what we call the POKSHO construction for zero-
knowledge proofs of knowledge; and the SHO/HMAC-SHA256 construction for hashing.

• curve25519-dalek: We modified the curve25519-dalek library from Henry de Va-
lence and Isis Lovecruft to add support for Elligator inverse and decoding byte strings
from Ristretto elements, as discussed above.

Table 1 lists the main objects the zkgroup library deals with, and gives their sizes
and the amount of time taken to produce (i.e., issue a credential, encrypt a ciphertext) or
consume (i.e., verify, decrypt) them on a ThinkPad X1 Carbon laptop with an Intel Core
i7-8650U processor.

The listed times cover encryption and decryption for the ciphertext objects, and ad-
ditionally cover creating and verifying proofs of knowledge for the other objects. The
presentation objects contain ciphertext objects, so the ciphertext costs in space and time
are included for AuthCredentialPresentation and ProfileKeyCredentialPresentation. For
comparison, each Ristretto group element or scalar is stored in 32 bytes. A variable-base
scalar multiplication on this computer takes around 60 microseconds, while decoding or
encoding a group element to 32 bytes, or applying the Elligator map, takes around 4 mi-
croseconds. This implementation is well-optimized for object sizes but could be further
optimized for time.

The most expensive operations are FetchGroupMembers when the number of users in
the group is large, or adding a large number of users to a group. For a group with n users,
FetchGroupMembers requires users download about 128n bytes and spend about n(0.86 +
0.18) ms to decrypt. Adding members scales linearly with the number of members added,
with 713 bytes and 2.87 ms required to produce each ProfileKeyCredentialPresentation.

The small ciphertexts are a notable feature of this system. We only need a 64-byte
ciphertext to encrypt a 16-byte UID or a 32-byte profile key. We had prototyped an
alternative using the MAC from [CMZ14] with exponential Elgamal encryption where
plaintexts are MAC’d and encrypted in 16-bit chunks (so that the discrete log computations
required for decryption are practical). The ciphertext (including a MAC) for a 16 byte
UID was 600+ bytes.

27



Object Size Time to produce Time to consume
name bytes milliseconds milliseconds

UidCiphertext 64 0.13 0.18
ProfileKeyCiphertext 64 0.13 0.86
AuthCredentialResponse 361 1.95 0.98
AuthCredentialPresentation 493 2.16 1.17
ProfileKeyCredentialRequest 329 1.48 -
ProfileKeyCredentialResponse 457 2.70 0.97
ProfileKeyCredentialPresentation 713 2.87 1.53

Table 1: Benchmarks of the main operations in the Signal Private Group System. The sizes
are in bytes and the times are in milliseconds, measured on an Intel Core i7-8650U proces-
sor. Producing a ProfileKeyCredentialResponse involves verifying a ProfileKeyCredential-
Request, so the times are combined.

7 Security Analysis

In this section we analyze the security of: the encryption scheme defined in Section 4.1, our
new algebraic MAC from Section 3.1, and the security of the keyed-verification anonymous
credential system built on top of the MAC.

We then discuss security of the system as a whole in Section 7.5 with respect to the ideal
functionality in Appendix A. In [CPZ19, Appendix B], we also sketch a simulation-based
security proof for the system.

7.1 Weak PRFs and fk

Below we give a definition of weak pseudorandom functions (wPRF) [NR95], tailored to
our setting, and define a specific wPRF which we will use in analyzing encryption and
credential security.

Definition 4. Let G be a group of prime order q. A function fk : G→ G with key k ∈ Zq
is said to be a weak pseudorandom function (wPRF), if the following two sequences (of
length polynomial in κ) are indistinguishable

(x1, fk(x1)), (x2, fk(x2)), . . .

and
(x1, r1), (x2, r2), . . .

where xi and ri are sampled from the uniform distribution on G.

Weak PRFs are useful because they are PRFs when the inputs are chosen at random.
The specific wPRF we use in our security analysis is the function fk : G → G defined as

28



fk(x) = xk. The fact that fk is a wPRF is known in the literature, and for completeness
we include a proof (similar to the one in [NPR99]).

Theorem 5. Let G be a group of prime order q, with generator g. Then the family of
functions fk : G→ G defined as f(x) = xk is a wPRF with key k ∈ Zq if the DDH problem
is hard in G.

Proof. Suppose A is an adversary that can distinguish the sequences in Definition 4 with
probability ε. We construct an algorithm B for the DDH problem that uses A as a sub-
routine. Suppose that DDH is εddh-hard in G, i.e., no polynomial time algorithm exists for
DDH that succeeds with probability better than εddh.

The DDH instance (A,B,C) is provided as input to B, who must decide whether this
triple has the form (Ga, Gb, Gab) or (Ga, Gb, Gr) for a random r (here G ∈ G is part of the
group description). B constructs a wPRF instance for A as follows:

(B,C), (Gr1 , Ar1), (Gr2 , Ar2), . . .

where ri are chosen uniformly at random in Zq. When B is given a DDH triple, the sequence
is

(Gb, Gab), (Gr1 , Gar1), (Gr2 , Gar2), . . .

which is a valid sequence of random group elements, and their images under fa. When B
is given a non-DDH triple, the sequence is

(Gb, Gr), (Gr1 , Gar1), (Gr2 , Gar2), . . . ,

By a hybrid argument, B can replace the first pair in the sequence with a random one,
and A’s success probability will differ by at most εddh. We can argue similarly that the
remaining elements in the sequence are indistinguishable from random.

7.2 Security of Encryption

In this section we define the security notions for deterministic symmetric-key encryption
with public verifiability. Unique ciphertexts (Definition 8) and correctness under adversar-
ially chosen keys (Definition 9) are new to this work, while CPA, CCA, plaintext integrity
(PI) and ciphertext integrity (CI) are direct adaptations of definitions from [BS20] to de-
terministic encryption.

We show that the encryption scheme of §4.1 is CPA secure and has ciphertext integrity,
properties that together imply CCA security and authenticated encryption [BS20, Defini-
tion 9.2]. We prove CPA-security directly. We prove CI by proving unique ciphertexts and
PI (which together imply CI).

29



Deterministic Encryption We start by showing that the encryption scheme of §4.1 is
CPA secure. Our definition uses a real-or-random experiment [BDJR97], and to model the
deterministic property, the encryption oracle can only be queried once per plaintext. By
adding the same restriction on encryption queries, we can adapt the common CCA security
definition (see, e.g., [BS20, Definition 9.5]) to the deterministic case.

Definition 6. For a deterministic symmetric key cipher with public verifiability (KeyGen,Enc,
Dec), we define CPA security by the following security game.

• The challenger generates (k, pk)← KeyGen(1κ), and a random bit b.

• The attacker is given pk and an oracle Ok(·) that outputs Enck(·) when b = 0 and
Enck(r) for uniformly random r (of the same length) when b = 1. Ok outputs ⊥ if
the input was previously queried.

• A outputs a guess bit b′ and wins if b = b′.

We say the encryption scheme is CPA-secure if A wins with probability non-negligibly
different from 1/2.

In the following proof and throughout this section, we use the shorthand H to denote
HashToG, and N to denote EncodeToG.

Theorem 7. The encryption scheme of Section 4.1 is CPA secure for deterministic en-
cryption, in the random oracle model, assuming the DDH problem is hard in G.

Proof. Let A be an attacker in the CPA game. We construct a DDH distinguisher B that
uses A as a subroutine. We proceed with a hybrid argument. Let Gi be the probability
that A outputs 1 in Game i.

Game 0 This is the real CPA game, where B is the challenger, and H is modeled as a
random oracle. The probability that A breaks CPA security of the scheme is G0.

Game 1 is the same as Game 0, but B replaces pk with a random value. We claim that
G1 − G0 ≤ εddh. Let B have a DDH triple as input, (A,B,C) = (Ga1 , Gb, Ga1b or Gz) for
a random z ∈ Zq. B chooses a2 at random and creates pk, by first programming H so
that Ga1 = B = Gb (this is possible since Ga1 is derived using H). Then B computes
pk = CGa2

a2 . On hash queries H(m), B outputs Gr for random r and stores (m, r).
To answer Enc(m) queries, B programs H (or has already) so that H(m) = Gr, then
Ar = Ga1r = H(m)a1 . B outputs (E1, E2) = (Ar, (E1)a2N(m)).

When the DDH triple is real, games G0 and G1 are identical, and when the triple is
random, pk is uniformly distributed in G. The output of Enc queries is always the same in
both games because it doesn’t depend on C. Therefore, G1 − G0 ≤ εddh.

30



Game 2 is the same as Game 1, except B replaces E1 with a random value when A makes
an Enc query. B chooses a2 at random, and acts as a wPRF attacker, for an instance where
a1 is the secret. When A queries H(m), B queries the wPRF oracle to get (U,U ′). B
programs H(m) = U , then outputs (E1, E2) = (U ′, (E1)a2N(m)). Note that since m
never repeats, U is a fresh random group element for every Enc query with overwhelming
probability. When the wPRF oracle outputs real pairs then B outputs E1 = U ′ = Ua1 =
H(m)a1 , and G2 = G1. When the wPRF output is random, then E1 is uniformly distributed
in G. Therefore B is a distinguisher for the wPRF game (and hence DDH) with probability
G2 − G1 ≤ εddh.

Game 3 is the same as 2 but now E2 is replaced with a random value. B does not
use a1, and again plays the wPRF game, this time for an instance with secret a2. When
A makes an Enc(m) query, B queries the wPRF oracle to get (U,U ′), and B outputs
(E1, E2) = (U,U ′N(m)). E1 is uniformly distributed in both games 2 and 3. For E2, when
the wPRF output is real, we have E2 = (E1)a2N(m), exactly as in Game 2, and when the
wPRF output is random, E2 is uniformly distributed. Therefore G3 − G2 ≤ εddh.

In Game 3 B no longer uses m. By a union bound

Pr[A wins the CPA game ] ≤ 3εddh

Now we formally define the unique ciphertexts property.

Definition 8. We say a symmetric-key encryption scheme (KeyGen, Enc, Dec) has unique
ciphertexts if for all polynomial-time A,

Pr[(k, c1, c2)← A(1κ) : c1 6= c2 ∧ Deck(c1) = Deck(c2) 6= ⊥]

is negligible in κ.

Next we define correctness under adversarially chosen keys. Our definition refers to the
Derive hash function from our construction, used to derive the secret key from a seed.

Definition 9. We say a symmetric-key encryption scheme (KeyGen, Enc, Dec) is correct
under adversarially chosen keys if for all polynomial-time A,

Pr[(k0,m)← A(1κ) : sk = Derive(k0) ∧ Decsk(Encsk(m)) 6= m]

is negligible in κ.

Now we prove that our encryption scheme has unique ciphertexts (Definition 8) and is
correct under adversarially chosen keys(Definition 9).

31



Theorem 10. The encryption scheme of Section 4.1 has unique ciphertexts, and is correct
under adversarially chosen keys assuming HashToG and Derive are random functions.

Proof. First we prove that the scheme has unique ciphertexts. Because decryption re-
computes E′1 from m, and this step is deterministic, for each m there is exactly one
value E1 = E′1 such that decryption will succeed. For a pair of ciphertexts (E1, E2) and
(E∗1 , E

∗
2) that decrypt successfully to the same m, then m = DecodeFromG(E2/E1

a2) =
DecodeFromG(E∗2/(E

∗
1)a2). Provided DecodeFromG is invertible then E2/E1

a2 = E∗2/(E
∗
1)a2 ,

and since E1 = E∗1 then E2 = E∗2 .
Note that this proof continues to hold if DecodeFromG returns a set of group elements,

only one of which is correct, provided that the image of DecodeFromG consists of disjoint
sets. In this case there will still be a single valid E1 for each m, a single M ′2 which decodes
to a set containing m, and thus a single valid E2.

Now for correctness under adversarially chosen keys. We argue that no efficient A can
output (k0,m) such that k = Derive(k0) and Deck(Enck(m)) = m′ 6= m. By definition Enck
succeeds for any k and m in range, therefore Enc always outputs some (E1, E2), where
E2 = Ea21 N(m). Dec computes N(m) = E2/E

a2
1 , so N(m) must be the same. When N(m)

is the same, Dec can only fail if E1 = H(m)a1 = 1, which occurs with negligible probability
since H and Derive are random functions.

The next lemma establishes that E1 = H(m)a1 , is a MAC on m, since our plaintext
integrity proof will depend on this fact.

Lemma 11. The function F : Zq×{0, 1}∗ → G, defined Fa1(m) := H(m)a1 is an suf-cma-
secure MAC (with key a1) if H is a random oracle, and the DDH problem is hard in G.
The public parameters for the MAC include pk = Ga1

a1Ga2
a2.

Proof. We show that Fa1(m) := H(m)a1 is a PRF, assuming H is a random oracle and
that DDH is hard in G. Then since Fa1(m) is a deterministic PRF, it is an suf-cmva-
secure MAC (where verification just recomputes the MAC from the key and message and
compares it to the received MAC). Let A be a PRF adversary for Fa1(m), we define an
algorithm B that is a DDH distinguisher using A as a subroutine. Let Game 0 be the real
PRF security game, where B acts as challenger to A. Let Game 1 be identical to Game
0, but pk is replaced with a random value. This transition is the same as Game 0 to 1 in
the CPA security proof (§7); by the same argument, Games 0 and 1 are indistinguishable
if DDH is hard in G.

In Game 2, B acts as an adversary for the wPRF instance fa1 , and no longer chooses
a1. When A makes a hash query H(m), B queries the wPRF oracle, to get the pair U,U ′,
and sets H(m) = U , and stores σm := U ′ as the MAC on m. When A makes a PRF query
on a message m, B queries H(m) if m has not already been queried, then returns σm to
A. When A outputs 0 or 1 (indicating real or random), B outputs the same for the wPRF
instance.

32



When the wPRF instance is real, B’s output is σm = U ′ = Ua1 = H(m)a1 (since H(m)
was defined as U), identical to Game 0. But when the wPRF instance is random, B outputs
a random value. Therefore, A’s success probability in Game 2 is bounded by εddh.

As with the definition of CPA security, we specialize the definitions of ciphertext in-
tegrity and plaintext integrity to our setting, since these will be used in our analysis of
CCA security (Theorem 13).

Definition 12. (PI and CI security) For a deterministic symmetric key cipher with public
verifiability (KeyGen,Enc,Dec), define the following game.

• The challenger generates (k, pk)← KeyGen(1κ), and sends pk to the adversary A.

• A makes several encryption queries, submitting distinct messages mi. The challenger
computes ci = Enc(k,mi) and returns ci to A.

• Eventually A outputs a candidate ciphertext c∗.

We say that A wins the ciphertext integrity game if c∗ 6= ci for any i, and Dec(k, ci) 6= ⊥.
We say that A wins the plaintext integrity game if Dec(k, c∗) = m∗ and m∗ 6= mi for any i.
The encryption scheme is CI secure (or PI secure) if A wins the ciphertext integrity (or
plaintext integrity) game with negligible probability.

Theorem 13. The encryption scheme of Section 4.1 is CCA secure in the random oracle
model, assuming the DDH problem is hard in G.

Proof. First note that the unique ciphertexts property combined with PI implies CI. Then,
if an encryption scheme is both CI and CPA secure, then it is also CCA secure [BS20,
§9.2.3]. We’ve proven CPA security in Theorem 7 and unique ciphertexts in Theorem 10,
what remains is to prove that the scheme has PI.

Our proof will use the fact that E1 is a MAC on the plaintext, namely that H(m)a1

is a MAC on m with key a1 (as shown in Lemma 11). Since E1 is recomputed during
decryption, a successful PI attacker must compute a valid MAC on the plaintext.

Now consider the PI security game, where B is the challenger and A is an adversary.
B will choose a and act as an attacker in the uf-cma security game for the MAC H(m)a1 .
To compute the public key, B gets the MAC σt from its MAC oracle, where t is the string
used to derive Ga1 . Then B computes pk = Ga2

a2σt.
B initializes A with pk and must answer A’s hash and encrypt queries. B forwards A’s

hash queries to it’s own hash oracle, and relays the output to A. When A makes an encrypt
query for plaintext m, B queries the MAC oracle to get σm := H(m)a1 , then computes
E1 = σm and E2 = (E1)a2m, and outputs (E1, E2) to A. When A outputs a ciphertext
(E∗1 , E

∗
2), then B partially decrypts m∗ = E∗2/(E

∗
1)a2 and outputs E∗1 as a MAC on m∗.

We now argue that if A wins the PI game, B is a successful forger. If A wins the PI
game, then the winning conditions of the game ensure that

33



1. B never queried m∗ to its MAC oracle (since A did not query m∗ in an encryption
query), and

2. (E∗1 , E
∗
2) decrypts correctly.

Since decryption re-computes E∗1 from m∗ and the secret key, it must be that E∗1 =
H(m∗)a1 , and so B’s output is a valid MAC on m∗.

7.3 Security of our New MAC

In this section we analyze the security of our new MAC.

Theorem 14. The MAC defined in Section 3.1 is suf-cmva secure in the random oracle
model, assuming the DDH problem is hard in G, and that the MACGGM construction is
uf-cma secure.

Proof. Using Lemma 3, we can ignore verification queries and prove that the MAC is
suf-cma secure.

We consider three possible types of forgeries, and show that each can occur with at
most negligible probability. Recall that the forged MAC on message M∗ consists of three
values (t∗, U∗, V ∗), and let Mi and (ti, Ui, Vi) be the message used and MACs resulting
from the adversary’s MAC oracle queries. In Type 1 forgeries, t∗ 6= ti for any i. In Type 2
forgeries, there exists a previous query i such that t∗ = ti, but M∗ 6= Mi. (Note that since
t is chosen freshly at random for each MAC produced by the oracle, there will be at most
one such i.) Finally, in Type 3 forgeries, there exists a previous query i such that t∗ = ti
and M∗ = Mi, but U∗ 6= Ui. Note that since V ∗ is fully defined by M∗, U∗, t∗, this covers
all possible forgeries in the suf-cma game. Let A be an attacker who plays the suf-cma
security game.

Type 1 (t∗ was not output by the MAC oracle) Suppose that there is an attacker A
that can produce a Type 1 forgery in the suf-cma game with non-negligible probability.
In this case, A’s forgery uses a new tag value t∗, i.e., one that has not been output by in
response to a MAC query from A.

We construct an algorithm B that uses A as a subroutine. B will be a uf-cma forger for
MACGGM. B plays the uf-cma security game for MACGGM with a challenger, who provides a
MAC oracle. First B generates part of the MAC key and the issuer parameters. B chooses
(w, y1, . . . , yn) at random and computes CW . Then B chooses a random z and queries
MACGGM(z) to get a MAC (U,U ′). Since U ′ = Ux0+x1z = Ux0Ux1z, when the random
oracle used to generate parameters is programmed to output Gx0 = U and Gx1 = U z, B
can create I = GV /(Gy1

y1 . . . Gyn
ynGx0

x0Gx1
x1) as I = GV /(Gy1

y1 . . . Gyn
ynU ′). Now B

initializes A with the issuer parameters.

34



For MAC queries, B computes M̃ =
∏n
j=1Mj

yj . B chooses a random t, queries

MACGGM(t) to get (U,U ′) and computes the MAC as (t, U, V = WU ′M̃). Since U ′ =
Ux0+x1t, this MAC is computed correctly.

WhenA outputs a forgery, B can compute (U∗, V ∗/M̃W ), and output this as a MACGGM

forgery on the message t∗. If t∗ was never output in a MAC created by B it was never
queried to the MACGGM oracle, and is therefore a valid MACGGM forgery, if σ∗ is a valid
MAC and a Type 1 forgery.

Type 2 or Type 3 (t∗ was output by the MAC oracle) Suppose that there is an attacker
A that can produce a Type 2 or Type 3 forgery in the suf-cma game with non-negligible
probability. We argue that this will allow us to construct a reduction B to break DDH. We
proceed via a series of games:

Game 0 This is the real suf-cma game, with the modification that the adversary wins if
the forgery is valid and is of Type 2 or Type 3. By assumption A produces a Type 2 or
Type 3 forgery with non-negligible probability ε.

Game 1 This game proceeds as the suf-cma game with the following exception: the game
first chooses a random i∗ ∈ 1 . . . Q, where Q is the maximum number of queries that A
can make, and the adversary wins only if t∗ = ti∗ . The adversary will win this game with
probability at least ε/Q.

Game 2 This game proceeds as in Game 1 with the following exceptions: First, the
issuer parameters are chosen at random. Then, on the i∗th query that A makes to its
MAC oracle, the game will respond by running the MAC algorithm. For all other MAC
oracle queries, the game will return three random values (t, U, V ) in the appropriate groups.
The adversary wins if the MAC verifies and t∗ = ti∗ but either ~M or U is new. Suppose
that the adversary’s success probability in Game 2 is non-negligibly lower than in Game 1.
In this case we build an algorithm B that breaks DDH.

Let (R,X1, Z) be a DDH instance in G, that B will useA to answer. We use the notation
(Gr, Gx1 , Grx1) for a real DDH triple, and replace Grx1 with Gz when Z is random. The
base G ∈ G is assumed to be different from the parameters used by the MAC scheme.
B no longer chooses x0, x1 in the secret key. Instead B chooses random d, ti∗ ∈ Zq. The

value of x1 is fixed by X1 in the DDH instance, and the value x0 used by B when creating
MACs will be implicitly defined as x0 = d− x1t

∗.
To create I in the issuer parameters without (x0, x1), B first programs the random oracle

so that Gx1 is derived as RaGb for a random a, b. Then B computes the term Gx1
x1 as

ZaXb
1. Similarly, for the term Gx0

x0 , B programs the random oracle to derive Gx0 = Ra
′
Gb
′

for a random a′, b′. Then B computes Gx0
x0 = ((Ra

′
Gb
′
)d(Za

′
Xb′

1 )−t
∗
. Finally B chooses

35



CW at random; since this is a perfectly hiding commitment the distribution is identical to
that in the real parameters.

For MAC query i∗, B chooses random ai∗ , bi∗ and outputs the MAC

(t∗, Rai∗Gbi∗ ,W (Rai∗Gbi∗ )dM̃) (1)

and for the other query i 6= i∗ B chooses random ai, bi, t and outputs

(t, RaiGbi ,W (RaiGbi)d(ZaiXbi
1 )t−t

∗
M̃) (2)

Note that (1) is a special case of (2), since when t = t∗ part of (2) cancels out.
By the definition of d, the MAC in (1) is valid and distributed identically to the output of

the MAC algorithm. When Z = Grx1 , it can be checked that (2) is also valid and distributed
identically to the output of the MAC algorithm, as are the issuer parameters. When Z
is random, ZaXb

1 is random and independent of RaGb, so (2) consists of 3 independent
random values. Similarly in this case I is random as well.

When A outputs a forgery (M∗, t∗, U∗, V ∗), by assumption it will use a tag output by
B, and if the tag is not t∗ output in query i∗, B aborts. If the tag is t∗, B computes M̃ from
M∗, uses ~yi and checks whether V ∗/(U∗)d = M̃W . If the comparison fails, the forgery is
invalid, and B outputs “random” to the DDH instance, if it succeeds, B outputs “DDH
tuple”. So if A’s forgery probability changes between games 0 and 1, B’s DDH advantage
changes by the same amount. Thus games 1 and 2 are indistinguishable assuming DDH is
hard in G.

Success probability in Game 2 Now we argue that A’s forgery probability in Game
2 is negligible. First consider a Type 2 forgery. Note that a forgery on a new message
~M ′ must have M̃ ′ =

∏n
j=0M

′
j
yj . If ~M ′ = G

~m′ , the logarithm of M̃ ′W to the base G is
y1m

′
1 + . . .+ ynm

′
n +w (mod q). Note that this is a pairwise independent function [BS20]

of m′1, . . . ,m
′
n. Since A has only received one value using ~y and w (in the response to the

i∗th MAC query), the adversary can produce this value with probability at most 1/q.
Next, we consider a Type 3 forgery. Let d = x0 + x1t

∗. Then the one MAC that B has
output using the secret key has V = M̃Gw+ud and the forgery has V ∗ = M̃Gw+u∗d, where
u, u∗ are the discrete logs of U and U∗ from the i∗th query and the forgery respectively.
Again, note that this is a pairwise independent function of u, and since A only has one
MAC using w, d, the adversary has only negligible probability of producing the right value
for u∗.

7.4 Credential Security

Referring to the definition in [CMZ14], a keyed-verification anonymous credential scheme
has the following protocols: CredKeygen, BlindIssue, BlindObtain, Show, ShowVerify. The

36



key generation, (non-blind) issuance, and show protocols are described in Section 3, and
the blind issuance protocol is described in Section 5.10

The following security properties are formally defined in [CMZ14]. In this section we
review them briefly and argue that a similar analysis applies here.

Correctness The first part of correctness (that credentials always verify) follows from
correctness of the MAC. Correctness of the second part (that Show always succeeds for
valid credentials), follows from the correctness of the zero-knowledge proof system, and the
equation Z = Iz. Using a 4-attribute example where (M1,M2,M3) are hidden and M4 is
revealed, when Z is computed honestly, we have

Z =
CV

Cy1
y1Cy2

y2Cy3
y3(M4Cy4)y4WCx0

x0Cx1
x1

=
V GV

z

(M1Gy1
z)y1 · · · (M4Gy4

z)y4W (UGx0
z)x0(U tGx1

z)x1

=
V GV

z

(M1
y1 · · ·M4

y4WUx0+tx1)G1
zy1 · · ·G4

zy4Gx1
zx1Gx0

zx0

=
GV

z

Gy1
zy1 · · ·Gy4zy4Gx0zx0Gx1zx1

= Iz

and it can be checked similarly that this also holds with more than four attributes.

Unforgeability Intuitively, credential unforgeability means that an adversary cannot
create a valid proof for a statement not satisfied by the credentials they have been is-
sued. This follows from the unforgeability of the MAC (proven in Section 7.3), and the
extractability of the proof system.

If the adversary outputs a proof based on a MAC with attributes that were not output
by Issue, then we can extract a forgery for the MAC scheme.

For example, referring the to the proof of knowledge used for authentication in Sec-
tion 5.12, note that from a successful prover we can extract (z, sk), then use these to
compute (t, U, V ), which is a valid MAC on the attributes (M1,M2,m3) since it satisfies
the verification equation (assured by the proof statement Z = Iz). If the MAC was created
by the issuer, authentication should succeed. If not, and the MAC is new, it is a forgery
and the MAC scheme is broken.

Anonymity This requires that the proofs output when presenting a credential reveal only
the statement being proven. Below we sketch a proof that the authentication proof is zero-
knowledge, and this proof includes the statements common to any credential presentation.

To show that the proof of Section 5.12 is zero-knowledge, we first need to show that the
commitments are hiding (which is nontrivial since they all share the same random value
z). Note that in the random oracle model, the bases Gyi are a random set, that are then

37



input to the wPRF fz, so Gyi
z is a PRF output under the DDH assumption. Therefore,

the commitments (Cy1 , . . . , Cy4 , Cx0 , Cx1 , CV ) are hiding, and they can be simulated with
random group elements. Since the ciphertext (EA1 , EA2) is CPA secure, it can also be
simulated with random values, and since the proof πA is zero-knowledge, a simulator exists
to simulate it.

Blind Issuance This property requires that blind issuance be a secure two-party proto-
col, between the user, who has the blind attributes as private input, and the issuer, who has
the issuer secret key as private input. Our blind issuance protocol based on homomorphic
Elgamal encryption is unchanged from [CMZ14], and security follows from CPA security of
Elgamal (implied by DDH) and the privacy and extractability of the zero-knowledge proof
system. Note that non-blind issuance is the special case where no attributes are hidden.

Key-parameter consistency This property ensures that an issuer cannot use different
secret keys with different users, in order to link an instance of BlindIssue with an instance
of Show.

We consider two cases, starting with the key consistency of (w,w′). From an issuer that
creates two proofs πI with different (w,w′), we can extract two openings to the Pedersen
commitment CW = GW

wGW ′
w′ , breaking the binding property. Given such a malicious

issuer, we can construct an algorithm for the DLP in G. Given a DLP instance Y = Gx,
set GW = Y and GW ′ = Gr1 . Then given two distinct openings of the commitment CW ,
and knowledge of r1, we can solve for x.

Now consider the secrets used in the I value of iparams. Similarly, the product
Gy1

y1 . . . Gyn
ynGx0

x0Gx1
x1 is a binding commitment under the DLP assumption in G, and

by the same argument no malicious issuer can prove knowledge of distinct openings if the
DLP is hard in G.

7.5 System Security

When considering the security and privacy properties of the system as a whole, there
are no existing definitions in the literature we can leverage. In Appendix A, we give a
definition of a secure private group system as an ideal functionality. The functionality,
denoted F , is a trusted party that implements the system, and interacts with users and
the server. Specifying F in this way concisely defines the behavior our protocol aims to
achieve, including any leakage or misbehaviors that may be possible when the server or
users are malicious.

In terms of security, when the server is honest we must ensure the privacy of honest
users against attacks by malicious users, for example, groups of honest users should have
privacy from malicious users.

When the server is malicious, denoted S∗, there are two cases, depending on whether a
group contains a malicious user. If so, then between the malicious user and S∗ they know

38



all secrets (ServerSecretParams and GroupSecretParams) for that group, and can learn
all group members and modify the group arbitrarily; no security is possible. The more
interesting case is when the malicious server manages the state for a group where all users
are honest. Here S∗ can deviate from the protocol in many ways (e.g., delete members from
a group, reject requests to add a new user, etc.) but none of these deviations should violate
privacy. Informally: the group should remain confidential if all members are honest. Some
amount of integrity is possible as well: since S∗ does not know the group key, it cannot
add arbitrary users to a group.

Appendix A then provides a sketch of a simulation-based security proof, to provide
some assurance that our design implements F securely, and to motivate some of the security
properties we require from our new encryption and credentials.

8 Additional Related Work

Structure preserving signatures [AFG+16] are similar to our new MAC in the sense that
it’s possible to sign group elements. However, known constructions require a group with a
pairing, making them significantly more expensive than our MAC.

Bellare et al. [BPR14] also study deterministic symmetric-key encryption with unique
ciphertexts, in the context of preventing malicious implementations of ciphers from leaking
information in the context of internet protocols. Our definition of unique ciphertexts
matches theirs, but our constructions are algebraic, and are therefore quite different.

There are alternative constructions of algebraic MACs[ZYHW16, BBDT16, CDDH19],
inspired by pairing-based signatures, with BB-MAC being most common (derived from
Boneh-Boyen signatures). BB-MAC also works in a cyclic group G, and requires that the
strong Diffie-Hellman problem be hard in G. While BB-MAC (and SDH-based variants)
may be more efficient in terms of the number of group operations, the comparison does
account for the larger groups required to provide concrete security [BG04, Che06, JY09].

For example, Zhang et al. [ZYHW16] design a system using BB-MAC for anonymous
password-based authentication in the context of TLS. While the implementation claims
to target 128-bit security, is uses the elliptic curve nistp256r1 [oST13], which does not
provide 128 bits of security for the SDH assumption [BG04, Che06, JY09]. The target
128-bit security could be achieved by moving up to the nistp384r1 curve, which has 1.5x
larger group elements and significantly higher computational costs (e.g., the nistp256r1
implementation in OpenSSL 1.1.1 is about 18x faster than the nistp384r1 implementation).
The choice of concrete parameters in [CDDH19] has similar issues. Since using SDH-based
MACs would require using a different, larger curve than what is currently deployed in
Signal, our design consciously avoids SDH-based MACs.

Barki et al. observe that if BB-MAC is instantiated in a group with a pairing, then the
MAC can become a public-key signature scheme if the verifier uses parings. Pointcheval
and Sanders [PS16] do the same for MACGGM. The drawback of enabling public verification

39



is that groups with a pairing are generally less efficient than the fastest cyclic groups from
elliptic curves.

Concrete performance comparisons of KVAC systems based on these MACs to the
new system we present here are difficult, since they do not allow group elements as at-
tributes, and so do not support our encryption scheme. We did experiment with MACGGM

from [CMZ14], where we had to divide plaintexts into small scalars (e.g., 16 bits), in or-
der to encrypt them using an exponential Elgamal variant, that required solving small
discrete logs during decryption. For example, instead of encoding a 16-byte UUID into a
single 32-byte group element, giving a 64-byte ciphertext, our prototype had eight group
elements, and 288-byte ciphertexts. Decryption, credential issuance and presentation were
also significantly slower.

Group signatures [Cv91] and ring signatures [RST01] allow users to form a group, such
that any member can anonymously create a signature that verifies with a group public key.
Using group signatures would allow a user to authenticate as a group member, without
revealing which ciphertext encrypts their UID (though this would prevent the server from
easily implementing access control). However, group signatures are based on relatively
expensive public-key signatures, and are often more complex than our proposal. Further,
we do not require the notion of a group manager, who can de-anonymize signers.

There is a growing list of systems that use credentials based on algebraic MACs
for authentication. There are designs for privacy-preserving federated identity manage-
ment [IHD16], anonymous payment channels [GM17], electronic voting [ABBT16], private
e-cash [BBD+16], censorship resistance [LdV17] and smart card authentication [CDDH19].
The NEXTLEAP project [Hal17] considers building a fully decentralized PKI for use with
the Signal protocol, while our approach increases centralization while maintaining privacy.

9 Future Work

The private group system has been implemented, and deployment is underway. Here we
discuss possible improvements to the security analysis, or extensions.

Some aspects of our work could benefit from formal methods. For instance, the encryp-
tion and MAC schemes may be within reach of automated analysis in the generic group
model, as in [ABS16].

In the security analysis of our new MAC, we assume that MACGGM is uf-cma secure,
which is only known to be true in the generic group model. Ongoing work is developing
a new proof of Theorem 14 assuming instead that DDH is hard in G (also in the random
oracle model). To make the proof work, each MAC must have one of the attributes be a
random group element. Thus for a small decrease in performance, the GGM assumption
can be replaced with the weaker DDH assumption.

While we define security of the system as a whole in a formal way with an ideal func-
tionality, our security proof is informal, being only a sketch. Making this proof rigorous is

40



another possible improvement.
Further analysis on encoding data into group elements, and analysis of our encryp-

tion scheme in the deterministic authenticated encryption framework of [RS06], might be
productive.

Our security analysis that our system satisfies the private groups functionality defined
by the ideal functionality in the case of malicious servers also requires the generic group
model assumption, in order to allow a type of selective opening property of the encryption.
Future work could investigate this issue with the goal of removing this assumption.

In Section 1.1 we noted some security properties that might be strengthened.

Acknowledgements We extend our thanks to Dan Boneh, Isis Lovecruft, Henry de
Valence, Bas Westerbaan, Bram Westerbaan, Jan Camenisch, and the Signal team for
helpful discussions. We also thank Cathie Yun for help with the sequence diagram.

References

[ABBT16] Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré. Remote
electronic voting can be efficient, verifiable and coercion-resistant. In Jeremy
Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner,
and Kurt Rohloff, editors, FC 2016 Workshops, volume 9604 of LNCS, pages
224–232. Springer, Heidelberg, February 2016.

[ABS16] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Automated un-
bounded analysis of cryptographic constructions in the generic group model.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 822–851. Springer, Heidelberg, May
2016.

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Structure-preserving signatures and commitments to group
elements. Journal of Cryptology, 29(2):363–421, April 2016.

[BBD+16] Amira Barki, Solenn Brunet, Nicolas Desmoulins, Sébastien Gambs, Säıd
Gharout, and Jacques Traoré. Private eCash in practice (short paper). In
Jens Grossklags and Bart Preneel, editors, FC 2016, volume 9603 of LNCS,
pages 99–109. Springer, Heidelberg, February 2016.

[BBDT16] Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré. Im-
proved algebraic MACs and practical keyed-verification anonymous creden-
tials. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume
10532 of LNCS, pages 360–380. Springer, Heidelberg, August 2016.

41



[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In 38th FOCS, pages 394–403.
IEEE Computer Society Press, October 1997.

[Ber05] Daniel J. Bernstein. The poly1305-AES message-authentication code. In Henri
Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS,
pages 32–49. Springer, Heidelberg, February 2005.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 207–228. Springer, Heidelberg, April 2006.

[BG04] Daniel R. L. Brown and Robert P. Gallant. The static Diffie-Hellman problem.
Cryptology ePrint Archive, Report 2004/306, 2004. http://eprint.iacr.

org/2004/306.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 1087–1098. ACM Press, November 2013.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19.
Springer, Heidelberg, August 2014.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography,
2020. Available online https://crypto.stanford.edu/~dabo/cryptobook/.

[CD00] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption,
and their applications to separable group signatures and signature sharing
schemes. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS, pages 331–345. Springer, Heidelberg, December 2000.

[CDDH19] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-
verification anonymous credentials on standard smart cards. Proceedings of
ICT Systems Security and Privacy Protection, 34th IFIP International Con-
ference, 2019.

[Cha85] David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[Che06] Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
1–11. Springer, Heidelberg, May / June 2006.

42

http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2004/306
https://crypto.stanford.edu/~dabo/cryptobook/


[CHK+11] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and
Vincent Naessens. Structure preserving CCA secure encryption and applica-
tions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 89–106. Springer, Heidelberg, December 2011.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, ed-
itors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer, Heidelberg,
September 2003.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and
keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM Press, November
2014.

[CPZ19] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private group
system and anonymous credentials supporting efficient verifiable encryption.
Cryptology ePrint Archive, Report 2019/1416, 2019. https://eprint.iacr.
org/2019/1416.

[CS97] J. Camenisch and M. Stadler. Proof systems for general statements about
discrete logarithms. Technical Report TR 260, Institute for Theoretical Com-
puter Science, ETH Zürich, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryp-
tion of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Hei-
delberg, April 1991.

[CV02] Jan Camenisch and Els Van Herreweghen. Design and implementation of the
idemix anonymous credential system. In Vijayalakshmi Atluri, editor, ACM
CCS 2002, pages 21–30. ACM Press, November 2002.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message
authentication, revisited. In David Pointcheval and Thomas Johansson, ed-
itors, EUROCRYPT 2012, volume 7237 of LNCS, pages 355–374. Springer,
Heidelberg, April 2012.

43

https://eprint.iacr.org/2019/1416
https://eprint.iacr.org/2019/1416


[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, Au-
gust 1987.

[GM17] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decen-
tralized currencies. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 473–489. ACM Press, Oc-
tober / November 2017.

[Hal17] Harry Halpin. NEXTLEAP: decentralizing identity with privacy for secure
messaging. In Proceedings of the 12th International Conference on Availability,
Reliability and Security (ARES’17),, pages 92:1–92:10. ACM, 2017.

[HdVLA19] Mike Hamburg, Henry de Valence, Isis Lovecruft, and Tony Arcieri. The
Ristretto group, 2019. https://ristretto.group/.

[IHD16] Marios Isaakidis, Harry Halpin, and George Danezis. Unlimitid: Privacy-
preserving federated identity management using algebraic macs. In Proceedings
of the 2016 ACM on Workshop on Privacy in the Electronic Society, WPES
16, page 139142, 2016.

[JY09] David Jao and Kayo Yoshida. Boneh-Boyen signatures and the strong Diffie-
Hellman problem. In Hovav Shacham and Brent Waters, editors, PAIRING
2009, volume 5671 of LNCS, pages 1–16. Springer, Heidelberg, August 2009.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for
message authentication. IETF Internet Request for Comments 2104, February
1997.

[LdV17] Isis Agora Lovecruft and Henry de Valence. HYPHAE: Social secret sharing,
2017. https://patternsinthevoid.net/hyphae/hyphae.pdf.

[Lun17] Joshua Lund. Encrypted profiles for Signal now in public beta, September
2017. https://signal.org/blog/signal-profiles-beta/.

[Mar14] Moxie Marlinspike. Private group messaging, May 2014. https://signal.

org/blog/private-groups/.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 327–346. Springer, Heidelberg, May 1999.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the
parallel construction of pseudo-random functions. In 36th FOCS, pages 170–
181. IEEE Computer Society Press, October 1995.

44

https://ristretto.group/
https://patternsinthevoid.net/hyphae/hyphae.pdf
https://signal.org/blog/signal-profiles-beta/
https://signal.org/blog/private-groups/
https://signal.org/blog/private-groups/


[oST13] National Institute of Standards and Technology. Federal information process-
ing standards publication: Digital signature standard (DSS), July 2013. FIPS
PUB 186-4.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126.
Springer, Heidelberg, February / March 2016.

[PZ13] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1.1 (revi-
sion 2), 2013. Available online: www.microsoft.com/uprove.

[RCE15] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri (Editors). Attribute-
based credentials for trust, identity in the information society. Springer, 2015.
https://doi.org/10.1007/978-3-319-14439-9.

[RMS17] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: How
group chats weaken the security of instant messengers signal, WhatsApp,
and threema. Cryptology ePrint Archive, Report 2017/713, 2017. http:

//eprint.iacr.org/2017/713.

[RS06] Phillip Rogaway and Thomas Shrimpton. Deterministic authenticated-
encryption: A provable-security treatment of the key-wrap problem. Cryp-
tology ePrint Archive, Report 2006/221, 2006. http://eprint.iacr.org/

2006/221.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565.
Springer, Heidelberg, December 2001.

[Sig19] Signal. Technical information (specifications and software libraries), 2019.
https://www.signal.org/docs/.

[ZYHW16] Zhenfeng Zhang, Kang Yang, Xuexian Hu, and Yuchen Wang. Practical anony-
mous password authentication and TLS with anonymous client authentication.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1179–1191. ACM
Press, October 2016.

A Ideal Functionality for a Private Group System

In this section we give a definition of a secure private group system as an ideal functionality.
The functionality, denoted F , is a trusted party that implements the system, and interacts
with both honest and malicious users (the attacker) and either an honest or malicious
server.

45

www.microsoft.com/uprove
https://doi.org/10.1007/978-3-319-14439-9
http://eprint.iacr.org/2017/713
http://eprint.iacr.org/2017/713
http://eprint.iacr.org/2006/221
http://eprint.iacr.org/2006/221
https://www.signal.org/docs/


Note that all (honest) protocols are initiated by a user, and their UID (denoted uid) is
sent to F . The ideal functionality then shares information with a (potentially) malicious
server S∗, and allows S∗ to decide whether to deviate from the protocol, e.g., S∗ may reject
valid requests, or return incorrect information.

The definition of F has two cases, depending on whether the server is honest. In
Fig. 2 we describe F when the server, denoted S, is honest. In this case we know that
the honest server will try to correctly manage the groups, and our main goal is to ensure
that malicious users cannot cause the server to perform an unauthorized group operation,
corrupt the state of honest groups (those which have no corrupt members), or learn about
the operations and membership of honest groups.

When the server is malicious, denoted S∗, we describe F in Fig. 3. Here there are
again two cases, depending on whether the relevant group contains a malicious user. If so,
then between the malicious user and S∗ they know all secrets (credential issuer secret keys
and group secret key) for that group, and can learn all group members and their profile
keys (since the group was created), and modify the group arbitrarily. This case is rather
trivial from the perspective of a security definition, since no security is possible. The more
interesting case is when S∗ manages the state for a group where all users are honest. Here
S∗ can deviate from the protocol in many ways (e.g., delete members from a group, reject
requests to add a new user, etc.) but none of these deviations should allow, e.g., S∗ to
learn members of the group. Informally, the group should remain confidential if all users
in it are honest. Some amount of integrity is possible as well, since S∗ does not know the
group key, it cannot add arbitrary users to a group.

By comparing Figs. 2 and 3 we can see how S∗ can deviate from the honest server
behavior, depending on whether the group is corrupted. S∗ can also abort a protocol at
any time, and we do not explicitly include this in our description. For groups that are
not corrupted, at any point S∗ can re-add a previous invitation in the group, or re-add a
previously removed user to the group, by ignoring the delete step in DeleteGroupMember.
When FetchGroupMembers is called for an honest group, S∗ can choose to return or omit
any of the members that have ever been in the group regardless of whether they have since
been removed with any profile key they have used with that group. S∗ can also commit
to an arbitrary profile key for any user, since profile key commitments are stored on the
server, and could be replaced with commitments to arbitrary profile keys. This operation
is modeled with the special function CommitToAdvProfileKey, only used by a malicious
server.

Setup and notation State in F is maintained in hash tables. Setup initializes tables
TU and TG. Table TU is a table of users in the system, a row TU [uid ] has TU [uid ].Times
a set of times at which uid can authenticate, and TU [uid ].ProfileKeys, a set of profile
keys currently associated with uid , and TU [uid ].corrupt , a flag that indicates whether uid
is a corrupt user. TG is a table of groups in the system, a row TG[gid] contains a set
of members indexed by UID {TG[gid][uid1], . . . , TG[gid][uidn]}, each with a profile key

46



TG[gid][uid ].ProfileKey that is currently in use, and a list of all profile keys they have used
in this group, TG[gid][uid ].ProfileKeyHistory. Groups also have a list of all current and
past members, TG[gid].UIDHistory. The flag TG[gid].corrupt indicates whether the group
contains a corrupted user. The corrupt flags default to 1 (corrupted), since S∗ may create
groups without interacting with F . The function index() returns the position of an element
in a list, or ⊥ if the element is not in the list. Authentication credentials are valid for a
time period, denoted t, and when requesting credentials users may request a set of times,
denoted T .

Comments on the honest server case The function AuthAsMember is used as a
subroutine by F in other functions, and not exposed to users. In AuthAsMember, a
user with UID uid authenticates as a member of the group with GID gid . We also define
AuthAsInvitedMember as the same except the check that the profile key is not ⊥ is omitted.
The lines ensure AuthAsMember(. . . ) return an error if AuthAsMember fails (similarly
for AuthAsInvitedMember).

Honest users call CommitToProfileKey to register a new random profile key with F .
This models the fact that honest users choose random profile keys. Malicious users may
commit to (or update) an arbitrary profile key using CommitToAdvProfileKey. The func-
tion UpdateProfileKey allows a user to update their own profile key in a specific group, or
allows an invited member to set their profile key.

A user uid , who is a member of the group gid , can add another user uid ′ with Ad-
dGroupMember. Note that this will overwrite an invitation, should one exist, for uid ′.

Comments on the malicious server case Note that we do not allow S∗ to add ar-
bitrary K ′, to model model issuing bad profile credentials, since S∗ can maintain it’s own
data structure, and behave as if K ′ ∈ ProfileKeys.

When the user is honest, S∗ only learns that GetProfileCredential was called, and can
decide whether to issue the credential.

47



GetAuthCred(T ) from uid

if TU [uid] is not defined

return Error: invalid user

Query S to ensure T valid for uid

if T is invalid for uid

return Error: invalid time(s)

Append T to TU [uid ].Times

return 1

CommitToProfileKey(t) from uid

if t 6∈ TU [uid ].Times

return Error: Authentication failure

Create new random K

Add K to TU [uid ].ProfileKeys

return K

GetProfileCredential(uid,K)

if K ∈ TU [uid].ProfileKeys

return 1

return 0

AuthAsMember(gid , t) from uid

if TG[gid ] not defined

return Error: gid doesn’t exist

if TG[gid ][uid ].ProfileKey = ⊥
return Error: user invited, not added

if TG[gid ][uid ] not defined

return Error: User not in group

if t 6∈ TU [uid].Times

return Error: Invalid timestamp

return 1

FetchGroupMembers(gid , t) from uid

ensure AuthAsMember(gid , t, uid)

return TG[gid ]

// Here TG[gid ] is the list of all users and

// their profile keys in gid , without history

DeleteGroupMember(gid , uid ′, t) from uid

ensure AuthAsMember(gid , t, uid)

if TG[gid ][uid ′] not defined

return Error: no such user

Delete TG[gid ][uid ′]

return 1

DeleteGroup(gid , t) from uid

ensure AuthAsMember(gid , t, uid)

Delete TG[gid ]

return 1

CreateGroup(gid,K, t) from uid

if TG[gid] is defined

return Error: group exists

if K 6∈ TU [uid ].ProfileKeys

return Error: invalid profile key

if t 6∈ TU [uid ].Times

return Error: expired credential

Set TG[gid ][uid ].ProfileKey = K

Append K to TG[gid ][uid ].ProfileKeyHistory

Append uid to TG[gid ].UIDHistory

if TU [uid ].corrupt

Set TG[gid ].corrupt

InviteToGroup(uid ′, gid , t) from uid

ensure AuthAsMember(gid , t, uid)

if uid ′ ∈ TG[gid ]

return Error: user already in gid

Append (uid ′,⊥) to TG[gid ]

Append uid ′ to TG[gid ].UIDHistory

if TU [uid ′].corrupt

Set TG[gid ].corrupt

return 1

AddGroupMember(gid , uid ′,K, t) from uid

ensure AuthAsMember(gid , t, uid)

if TG[gid ][uid ′].ProfileKey 6= ⊥
return Error: user exists in gid

if K 6∈ TU [uid ′].ProfileKeys

return Error: Invalid profile key

Set TG[gid ][uid ].ProfileKey = K

Append K to TG[gid ][uid ].ProfileKeyHistory

if TU [uid ′].corrupt

Set TG[gid ].corrupt

return 1

UpdateProfileKey(gid ,K, t) from uid

ensure AuthAsMember(gid , t, uid) or

AuthAsInvitedMember(gid , t, uid)

if K 6∈ TU [uid ].ProfileKeys

return Error: Invalid profile key

TG[gid ][uid ].ProfileKey = K

return 1

Figure 2: Ideal functionality for a private group system, for the case when the server
S is honest. The function CommitToAdvProfileKey is defined in Fig. 3.

48



GetAuthCred(T ) from uid

Send (uid, T ) to S∗

CommitToProfileKey() from uid

if TU [uid ] not defined

return Error: Invalid user

Create new random K

Add K to TU [uid ].ProfileKeys

return K

UpdateProfileKey(gid ,K, t) from uid

if TG[gid ].corrupt

Send (gid , t, uid ,K) to S∗

else

Send (gid , t, index(TG[gid ][uid ]) to S∗

GetProfileCredential(uid,K)

if TU [uid ].corrupt

Ignore this request

else

Send index of K to S∗

AuthAsMember(gid , t) from uid

if TG[gid ].corrupt

Send (gid , t, uid) to S∗

else

Send gid , t, index(TG[gid ][uid ]) to S∗

FetchGroupMembers(gid , t) from uid

if TG[gid ].corrupt

Send (gid , t, uid) to S∗

else

S∗ can return “no such group”

Send (gid, t, index(TG[gid ][uid ]) to S∗

S∗ specifies a list of indices (i, j), F only

sends UIDs at index i from TG[gid ].UIDHistory,

with the corresponding profile keys with

index j from TG[gid ][uid ].ProfileKeyHistory

CreateGroup(gid,K, t) from uid

Send (gid , t) to S∗

if TU [uid ].corrupt

Ignore this request

Set TG[gid ].corrupt = 0

InviteToGroup(uid ′, gid , t) from uid

if TU [uid ′].corrupt , set TG[gid ].corrupt = 1

if TG[gid ].corrupt

Send (gid , t, uid , uid ′, TG[gid ]) to S∗

else

Send (gid , t, index(TG[gid ][uid ])) to S∗

Send index(TG[gid ][uid ′]) to S∗

AddGroupMember(gid , uid ′,K, t) from uid

if TU [uid ′].corrupt then set TG[gid ].corrupt = 1

if TG[gid ].corrupt

Send (gid , t, uid , uid ′,K, TG[gid ]) to S∗

else

Send (gid , t, index(TG[gid ][uid ]) to S∗

Send index(TG[gid ][uid ′]) to S∗

DeleteGroupMember(gid , uid ′, t) from uid

if TG[gid ].corrupt

Send (gid , t, uid , uid ′, TG[gid ]) to S∗

else

Send to S∗ :

(gid , t, index(TG[gid ][uid ]), index(TG[gid ][uid ′]))

DeleteGroup(gid , t) from uid

if TG[gid ].corrupt

Send (gid , t, uid) to S∗

else

Send (gid , t, index(TG[gid ][uid ]) to S∗

TG[gid ] is not deleted

CommitToAdvProfileKey(K ′, uid) from S∗

if TU [uid ].corrupt

Append K ′ to T [uid ].ProfileKeys

Figure 3: Ideal functionality for a private group system, for the case when the server
S∗ is malicious. We omit places where S∗ may direct F to abort, or to return arbitrary
information to uid . S∗ is always notified which type of call is being made.

49



B Security Argument

In this section we sketch a security argument for the private groups system as a whole.
The security argument is in the random oracle model, and has two main cases, depending
on whether the server is honest.

B.1 Honest server

We first consider the case when the server is honest, and some of the users are malicious.
We’ll group the malicious users as a single adversary A. Security should be maintained for
the honest users, and the malicious users should learn no more than they would from the
same interactions with F .

We describe a simulator S that interacts with F and A, simulating the real proto-
col for A. The system is secure if A’s view when interacting with S is computationally
indistinguishable from his view when executing the real protocol.

We describe each of the server operations, and describe how S implements them. We
write uidA to denote the user ID of a user controlled by A.

S setup Generate the ServerSecretParams and ServerPublicParams for issuing creden-
tials. Initialize storage for profile key commitments, to store a hash and profile commitment
for each user, and a list of users created by A. S also initializes storage for groups, and
will store for each group the gid , the group public key, and a list of ciphertexts (one for
each member). S chooses a random profile key Kbad that will be used as a placeholder,
when the adversary uses an invalid profile key commitment. Since profile keys are assumed
to be large, and Kbad is only used between S and F , never in the simulated real proto-
cols between A and S, Kbad will only collide with another profile key in the system with
negligible probability. S initializes random oracles for all hash functions in the system.

Create User from uidA S sends ServerPublicParams to uidA. For simplicity we assume
all UIDs are unique. S stores uidA in the list of UIDs created by A.

GetAuthCred(T ) from uidA S calls GetAuthCred(T ) as uidA to F , if F responds 0,
S aborts otherwise S replies with a set of credentials, one for each time in T .

Since S is behaving exactly as the honest server would in this function, A’s view is
identical to the real world.

CommitToAdvProfileKey(c) from uidA S starts by checking whether the commit-
ment c = (J1, J2, J3) is well-formed. Note that S can “decrypt” the commitment by gener-
ating the system parameters Gj1 and Gj2 as Gj3

s2 and Gj3
s3 for random (s2, s3), since the

commitment is an Elgamal encryption. Since all parameters are derived from a random
oracle, S can program it accordingly. Decryption yields the pair (M3,M4), and S can test

50



whether the commitment is well-formed by computing ProfileKey = DecodeFromG(M4),
and checking whether M3 = HashToG(ProfileKey,UID).

If c is correct, S sets K = ProfileKey, and sets K = Kbad otherwise. Then S sends to F :
CommitToAdvProfileKey(K) from uidA. S stores (uidA, H(c)) in its list of commitments.

In subsequent operations, S will ensure that Kbad is never returned to A; when issuing
profile key credentials, the invalid (M3,M4) from the profile key commitment are used, and
when A fetches group members, the ciphertexts he has uploaded are cached and returned.
The value Kbad is only used between S and F .

GetProfileCredential(uid , ProfileKeyV ersion) from uidA This message is received
from a user uidA controlled by A.

If S does not have a commitment recorded for uidA, or if the profile key version does
not match, then S fails. From the ProfileKeyV ersion, S can invert the hash (using the RO
query history) to recover the commitment c (as described in CommitToAdvProfileKey),
and from c recover the profile key K ′. If c is invalid, S sets K ′ = Kbad.
S sends to F : GetProfileCredential(uid ,K ′) as uidA. If F responds 0, fail, otherwise

S executes BlindIssue with uidA, and enforces the condition that K ′ is consistent with c.
Even if c is not well-formed, it is a commitment to some pair (M3,M4), and security of
BlindIssue ensures that the profile credential is issued only on these attributes.

Here A’s interaction with S is indistinguishable from an honest server, because A gets
a profile credential only on keys that have been previously committed (or invalid keys, if
that is the case), and because S executes blind issuance as the honest server would.

CreateGroup(gid , t) from A S receives gid , GroupPublicParams, an AuthCredential-
Presentation and ProfileKeyCredentialPresentation for A. Since in the real protocol the
channel is unauthenticated, S does not get the uid . S verifies the proofs and fails if any are
invalid. From the authentication proof, S extracts the UID of the user creating the group,
uid∗, and their associated profile key K∗, and the group secret key sk. If decryption of
the profile key would fail because (M3,M4) is invalid, S sets K∗ = Kbad. If uid∗ was not
created by A, then S fails, denote this event E1. Then S sends “CreateGroup(K∗, gid , t)
from uid∗” to F , and fails if F returns zero (denote this event E2), otherwise S stores sk
and the ciphertexts in its storage for gid .
S’s behavior might diverge from the honest server if E1 or E2 occur. If E1 occurs, A

has created an authentication credential for an honest user, breaking unforgeability of the
credential system. Event E2 occurs if t is not a valid time, gid exists or K∗ is invalid
for uid∗. The first two are the same between S and the honest server, and for the third,
unforgeability and security of BlindIssue of profile key credentials ensures that any K∗ that
S uses will have previously been sent to F for uid∗ in a call to CommitToAdvProfileKey.

51



AddGroupMember(gid , t) from A S’s behavior here is similar to CreateGroup. Af-
ter verifying the proofs, that gid exists, and authenticating the caller by comparing the
ciphertext (the entire EA1 , EA2 , EB1 , EB2) to the list of ciphertexts stored for this group, S
decrypts the ciphertext to recover uid∗ and K∗, and sets K∗ = Kbad if appropriate. Then
S calls AddGroupMember(gid , uid∗,K∗, t) as uid∗. If F returns 0, S fails and otherwise S
stores the ciphertext for the new user in its storage for gid .

If the AddGroupMember call to F fails because the user already exists, S behaves
exactly as the honest server would. It will not fail because t is invalid, by the unforgeability
of the auth credential (unless A is using an expired credential, in which case S fails as the
honest server would). Unforgeability of the profile key credential and security of BlindIssue
ensure that the profile key is valid or Kbad and is registered with F .

Authentication by comparing the ciphertext to the stored value is sound because the
ciphertext is bound to a valid user that A created by the security of the authentication
credentials, and correct because the encryption is deterministic and has unique ciphertexts,
and

In the simulation, S relies on F to ensure that users are not added twice to the group.
In the real world, this is ensured because encryption is deterministic and has unique ci-
phertexts, by comparing two ciphertexts the server can tell whether they encrypt the same
UID. So S is consistent with the honest server in this regard as well.

FetchGroupMembers(gid , t) from A S receives (EA1 , EA2) and the AuthCredential-
Presentation. If the proofs are valid, and gid exists, and (EA1 , EA2) is in S’s list of
ciphertexts for gid , authentication succeeds. S can use the group secret key to decrypt
the UID. Decryption succeeds if the proofs are valid, and because the encryption is correct
under adversarially chosen keys. If the UID, denoted uidA was not created by A, then S
fails, denote this event E1.
S makes the call to F : FetchGroupMembers(gid , t) as uidA. If F returns 0 then S fails,

denote this event E2. Otherwise S receives a list (uid1,K1), . . . , (uidn,Kn). Now S must
create a list of ciphertexts to return to A. For UIDs that A created, return the cached
ciphertext, and for honest users, create the ciphertext using the group secret key. Note
that the cached ciphertexts contain any invalid profile keys A may have used, and for these
F returns Kbad to S, which S does not send to A. By the unique ciphertexts property, the
ciphertexts for honest users that S re-creates are identical to those created in the honest
execution of the real system.

UpdateProfileKey(gid , t) from A As in FetchGroupMembers, S can recover the UID,
uidA from the ciphertext, and authenticate uidA as a belonging to the group as the real
server would (but ignoring the profile key ciphertext if uidA is an invited member of
the group). By decrypting the profile key ciphertext, S can determine whether the pro-
file key K for uidA is valid, and sets K = Kbad if K is invalid. Then S calls to F :

52



UpdateProfileKey(gid ,K, t) as uidA.
F can fail is if K is not registered as a profile key for uidA. Security of the profile

credential ensures that A only has a credential for a K that was called to GetProfileKey-
Credential, which in turn registers a key with F . If K is valid, then it has been sent to F ,
otherwise F has Kbad, so S’s call to F will succeed with overwhelming probability.

Other functions The remaining functions are similar to the ones above; InviteToGroup
and DeleteGroupMember are similar to AddGroupMember, and DeleteGroup is simple once
the caller has authenticated to the group (which is done in, e.g., FetchGroupMembers).

53



B.2 Malicious server

Our definition implies a form of selective opening security from the underlying encryption.
In particular, we need that if the adversary is first given encryptions under a variety of
different keys, and then allowed to request some of the decryption keys, the remaining
ciphertexts remain secure. This is because the malicious server can first see the ciphertexts
stored for each group, and then choose which groups to try to attack (either by corrupting
existing members or convincing them to add a malicious user), we require that the other
groups remain secure.

We could alternatively define a weaker version of our functionality which would require
the adversary to declare when he creates a group whether it will ever have malicious users.
In that case the properties defined in section 7.2 would be sufficient. Here though we will
focus on the stronger definition.

More formally, the selective opening property we need is as follows:

Definition 15. For a encryption scheme with algorithms (KeyGen,Enc Dec), consider the
following two experiments between a challenger C, a simulator S and an attacker A.

Real Experiment:

1. A makes queries to C.

• New key query: for query i, C generates new (k(i), pk(i)) ← KeyGen(1κ). It
sends pk(i) to A and stores k(i).

• Encrypt query: A submits index i and message m(i,j) and C outputs c(i,j) =
Enc(k(i),m(i,j)).

• Corrupt Key query: A submits index i and receives k(i).

2. A outputs a bit b.

Simulated Experiment:

1. A makes queries to C.

• New key query: C calls S to obtain (pk(i))← KeyGen(1κ). It sends pk(i) to
A.

• Encrypt query: A submits index i an message m(i,j). C stores m(i,j) and
send i to S to obtain c(i,j), which it returns to A.

• Corrupt Key query: A submits index i. C sends all the messages encrypted
under this key, i.e. m(i,1),m(i,n) for some maximum n to S, and receives
k(i) which it sends to A.

2. A outputs a bit b.

We say that the scheme satisfies selective opening if for every A there exists a simulator
S such that A’s probability of producing 1 in both games differs by at most a negligible
function.

54



This property is impossible in the standard model by an information theoretic argu-
ment: there are more possible sets of plaintexts than there are decryption keys, so there
must be a noticeable fraction of plaintexts for which the simulator cannot provide an ap-
propriate decryption key. However, we can show that our encryption scheme satisfies this
definition in the generic group model.

Theorem 16. The encryption scheme defined in Section Section 4.1 satisfies Definition
15 in the generic group model when HashToG is modeled as a random oracle.

Proof. (sketch) In the real experiment the adversary interacts with a group oracle which
maintains a table of pairs (d, h), where the first element is the discrete log of an element
w.r.t. a fixed base g, and the second is the label by which the adversary refers to this
element. The adversary can provide 2 handles h1, h2, and request the oracle perform the
group operation. The oracle will look up the associated discrete logs and return the handle
associated with d1 + d2 (or create a new one if this does not yet exist). The adversary
can also query the random oracle: on a new input, the random oracle chooses a random
discrete log d, and returns the associated handle (or a fresh handle if this is a new element).

We then consider the experiment where the discrete logs corresponding to random
secrets chosen by the selective opening challenger (i.e. encryption secret keys) are replaced
by formal variables, and the oracle maintains a table of (polynomial, handle) pairs, where
the first terms are polynomials in those variables. When a group operation is performed,
the oracle computes the sum of the associated polynomials, and if that polynomial occurs
already in the table it returns the associated handle. Otherwise it generates a new handle
to associate with the new polynomial. When the adversary calls the RO on a new element,
the oracle picks a new formal variable to assign to the output, and returns a new handle.

This will be identical to the previous experiment except when the random secrets chosen
by the challenger cause two polynomials that are not formally identical to evaluate to the
same value, or when the random oracle chooses an output that matches to the evaluation
of a polynomial. In our scheme, all of our polynomials are of degree at most 3 (the
highest degree term is Ma1a2

1 that occurs in E2), so the probability of this happening if the
adversary makes L group element or RO queries is at most

(
L
2

)
3/q, where q is the groups

order, which is negligible since the adversary is polynomial time and q ≈ 22κ.
Finally, we consider the ideal experiment. Our simulator will be have as follows: When

the adversary requests new public parameters, instead of choosing the associated formal
variables for the associated secret key, the simulator will choose a formal variable pki for the
parameters and an associated handle which it will return. When the adversary requests
a new ciphertext encrypted under parameters pi, the simulator will choose new formal

variables ctxt
(i,j)
1 , ctxt

(i,j)
2 and an associated handle to return. Finally, when the adversary

provides messages (mi,1, . . .mi,n), the simulator will look up the associated random oracle
outputs r(i,1), . . . r(i,n) (or generate them if they do not exist), choose formal variables

a
(i)
1 , a

(i)
2 associated with ski, replace pki with a

(i)
1 x1+a

(i)
2 x2, where x1, x2 are the discrete logs

55



of Ga1 , Ga2 respectively, and replace each pair ctxt
(i,j)
1 , ctxt

(i,j)
2 with r(i,j)a

(i)
1 , r(i,j)a

(i)
1 a

(i)
2 +

m(i,j), where m(i,j) is the formal variable associated with the discrete log of m(i,j).
This will produce a different view to the adversary than the previous experiment only

if, when each pki, ci, j is replaced with the associated value in all polynomials, some of the
resulting polynomials become identical. However, note that this cannot happen because
the polynomials we use to replace pki, ci, j have no monomials in common with one another
or with the random oracle responses, which are the only other formal variables.

Thus, the adversary’s probability of producing 1 differs by at most
(
L
2

)
3/q between the

real and simulated games, where L is the number of oracle queries the adversary makes,
and q is the group order.

Now we are ready to consider the case when the server and some of the users are
malicious. We’ll group the malicious users and server as a single adversary A. Security
should be maintained for the honest users, and the malicious users should learn no more
than they would from the same interactions with F .

We describe a simulator S that interacts with F and A, simulating the real proto-
col for A. The system is secure if A’s view when interacting with S is computationally
indistinguishable from his view when executing the real protocol.

We describe each of the server operations, and describe how S implements them. We
write uidA to denote the user ID of a user controlled by A.

S setup S initializes storage for groups, and will store for each group the gid , the group
secret key, and a list of ciphertexts, in a table LG. It will also store a list of fake profile
keys it has used on behalf of honest users Lprofile. S initializes random oracles for all hash
functions in the system.

Create User S sends ServerPublicParams to uidA. For simplicity we assume all UIDs
are unique. S stores uidA in the list of UIDs created by A.

GetAuthCred The simulator receives (uid , T ) from the GetAuthCred interface of F (i.e.
an honest user is requesting an AuthCredential): it will forward (uid , T ) to the malicious
server as part of an honest request for an authentication token. If the credential issuance
succeeds for each time in T , it will send 1 to the ideal functionality.

CommitToProfileKey S receives uid from the CommitToProfileKey interface of F (i.e.
an honest user is committing to a profile key). It will choose a random key K and send
the commitment to K and store K in Lprofile[uid ].

GetProfileCredential If the simulator receives (K, uid) from the GetProfileCredential
interface of F (i.e. an honest user is requesting a profile key credential for a malicious

56



uid): S will form a profile key credential commitment to K and honestly execute the
GetProfileCredential protocol with A.

If the simulator receives (i, uid) from the GetProfileCredential interface of F (i.e. an
honest user is requesting a profile key credential for an honest uid): It will retrieve the ith
key from from Lprofile[uid ]. Then it will simulate the blind issuance protocol.

CreateGroup If the simulator receives (gid) from the CreateGroup interface of F (i.e.
an honest user is requesting to create a group): S will generate a new simulated public key
and a simulated encryption under that public key using the selective opening simulator.
It will send this ciphertext along with a simulated credential proof. It will then store the
ciphertext in LG[gid ].ctxts.

AddGroupMember If the simulator receives (gid , t, uid , uid ′,K, TG[gid ]) from the Ad-
dGroupMember interface of F (i.e. an honest user wants to add a user to a corrupt
group): If this is the first such message for this group (i.e. this is the first corrupt user
added to the group). S will call the selective opening simulator to open all of the cipher-
texts in LG[gid ].ctxts to the values revealed by TG[gid ] and store the resulting secret key
as LG[gid ].sk. It will then look up the encryptions of uid ′,K and uid . It will send these
ciphertexts along with a simulated zero knowledge proof of authentication credential w.r.t.
the encryption of uid and a simulated zero knowledge proof of a profile key credential for
uid ′,K.

Otherwise: S will lookup LG[gid ].sk, the encryption key for this group, and encrypt
uid ′,K and uid . It will send these ciphertexts along with a simulated zero knowledge proof
of authentication credential w.r.t. the encryption of uid and a simulated zero knowledge
proof of a profile key credential for uid ′,K.

If the simulator receives (gid , t, i) from the AddGroupMember interface of F (i.e. an
honest user wants to add a user to a non-corrupt group): S will look up the ciphertext
LG[gid ].ctxts[i]. It will also simulate a profile key and uid encryptions under the key
corresponding to gid using the selective opening simulator. It will send these ciphertexts
along with a simulated zero knowledge proof of authentication credential w.r.t the first
ciphertext and and a zero knowledge proof of profile key credential for the second ciphertext.

FetchGroupMembers If the simulator receives (gid , TG[gid ], t, uid) from the Fetch-
GroupMembers interface of F (i.e. an honest user wants to retrieve the membership list for
a corrupt group): Encrypt uid , and send A the ciphertext and a simulated AuthCredential
proof along with a request for the membership list of gid . When A returns the list of
ciphertexts, decrypt them and send the resulting list of (uid ,K) pairs to F .

If the simulator receives (gid , t, i) from the FetchGroupMembers interface of F (i.e. an
honest user wants to retrieve the membership list for an uncorrupted group): lookup the
ciphertext LG[gid ].ctxts[i] and send that to A along with a simulated auth credential proof

57



and a request for the membership list of gid . When A returns a list of ciphertexts, look
up the associated positions in LG[gid ].ctxts and send them to F , ignoring any ciphertexts
that do not occur in the table.

Other functions The remaining functions are similar to the ones above; InviteToGroup
and UpdateProfileKey and DeleteGroupMember are similar to AddGroupMember, and
DeleteGroup is simple once the caller has authenticated to the group (which is done in,
e.g., FetchGroupMembers).

Showing the real and ideal experiments are indistinguishable. Here we sketch
the sequence of experiments we can use to argue security:

1. Real Experiment

2. Replace all presentation proofs with the simulated versions. This is indistinguishable
by anonymity of the credential system.

3. Abort if, for an uncorrupted group, the ciphertexts sent by the adversarial server
in FetchGroupMembers and decrypted correctly by honest users is not a subset of
the ciphertexts uploaded by the group members. The abort happens with negligible
probability by CCA security of the encryption.

4. Switch to using the selective opening simulator to generate ciphertexts and public
keys, and only generating secret keys when a group is corrupted. This is indistin-
guishable by our selective opening security.

5. Simulate the blind issuance protocol. This is indistinguishable by security of blind
issuance.

6. Switch the K’s in the commitments uploaded by honest users in CommitToProfileKey
and GetProfileCredential to a new random K ′ different from what is used in the rest
of the experiment. This is indistinguishable by hiding of the commitment

7. Ideal Experiment

58


	Introduction
	System Overview

	Preliminaries and Related Work
	Group Description and Hardness Assumptions
	Keyed-Verification Anonymous Credentials (KVAC)
	MACs and Algebraic MACs
	Zero-Knowledge Proofs
	Secure Messaging and Signal

	A New KVAC and Protocols
	A New Algebraic MAC
	Credential Issuance and Presentation

	Verifiable Encryption
	Construction

	The Signal Private Group System
	Data Objects
	General Data Object
	Data Objects for Authentication
	Data Objects for Profile Keys
	Data Objects for Groups
	Operations for Credentials
	Operations for Group Management
	System Parameters and Server Parameters
	Auth Credentials
	Profile Key Credentials
	Verifiable Encryption of UIDs and Profile Keys
	Presenting an AuthCredential
	Presenting a ProfileKeyCredential

	Implementation
	Security Analysis
	Weak PRFs and fk
	Security of Encryption
	Security of our New MAC
	Credential Security
	System Security

	Additional Related Work
	Future Work
	Ideal Functionality for a Private Group System
	Security Argument
	Honest server
	Malicious server


