You are looking at a specific version 20191205:080607 of this paper. See the latest version.

Paper 2019/1407

Incrementally Verifiable Computation via Incremental PCPs

Moni Naor and Omer Paneth and Guy N. Rothblum

Abstract

If I commission a long computation, how can I check that the result is correct without re-doing the computation myself? This is the question that efficient verifiable computation deals with. In this work, we address the issue of verifying the computation as it unfolds. That is, at any intermediate point in the computation, I would like to see a proof that the current state is correct. Ideally, these proofs should be short, non-interactive, and easy to verify. In addition, the proof at each step should be generated efficiently by updating the previous proof, without recomputing the entire proof from scratch. This notion, known as incrementally verifiable computation, was introduced by Valiant [TCC 08] about a decade ago. Existing solutions follow the approach of recursive proof composition and can be based on strong and non-falsifiable cryptographic assumptions (so-called ``knowledge assumptions''). In this work, we present a new framework for constructing incrementally verifiable computation schemes in both the publicly verifiable and designated-verifier settings. Our designated-verifier scheme is based on somewhat homomorphic encryption (which can be based on Learning with Errors) and our publicly verifiable scheme is based on the notion of zero-testable homomorphic encryption, which can be constructed from ideal multi-linear maps [Paneth and Rothblum, TCC 17]. Our framework is anchored around the new notion of a probabilistically checkable proof (PCP) with incremental local updates. An incrementally updatable PCP proves the correctness of an ongoing computation, where after each computation step, the value of every symbol can be updated locally without reading any other symbol. This update results in a new PCP for the correctness of the next step in the computation. Our primary technical contribution is constructing such an incrementally updatable PCP. We show how to combine updatable PCPs with recently suggested (ordinary) verifiable computation to obtain our results.

Metadata
Available format(s)
PDF
Publication info
A minor revision of an IACR publication in TCC 2019
Contact author(s)
omerpa @ gmail com
History
2019-12-05: received
Short URL
https://ia.cr/2019/1407
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.