
A Modern View on Forward Security∗

Colin Boyd1 and Kai Gellert2

1NTNU, Norwegian University of Science and Technology, Trondheim, Norway,
colin.boyd@ntnu.no

2University of Wuppertal, Wuppertal, Germany, kai.gellert@uni-wuppertal.de

Abstract

Forward security ensures that compromise of entities today does not impact the security
of cryptographic primitives employed in the past. Such a form of security is regarded as
increasingly important in the modern world due to the existence of adversaries with mass
storage capabilities and powerful infiltration abilities. Although the idea of forward security
has been known for over 30 years, current understanding of what it really should mean is
limited due to the prevalence of new techniques and inconsistent terminology. We survey
existing methods for achieving forward security for different cryptographic primitives and
propose new definitions and terminology aimed at a unified treatment of the notion.

1 Introduction

Providing confidentiality to sensitive data is a standard property of encryption schemes. With-
out knowledge of the decryption key, an observing adversary should not be able to decrypt any
encrypted traffic. Nowadays, in the presence of powerful nation-state adversaries that establish
Internet surveillance programs, achieving the necessary security for sensitive data has become
more challenging. Even if Internet traffic is encrypted, a resourceful adversary could collect
encrypted traffic on a massive scale and store it in dedicated data centres. Should a decryption
key be compromised at a later point in time, for example by database breaches or by application
of legislative means in various jurisdictions, the respective encrypted traffic could be decrypted
again. It is therefore evident that encryption protocols should take into account the threat from
adversaries who may practise mass-storage of encrypted data.

In order to prevent such attacks on cryptographic schemes, some key material that was
used to decrypt traffic originally must no longer be available when key compromise occurs at
a later time. One option is to delete or update the decryption key directly so that it cannot
be recovered or rolled back to an earlier version. This is the basis for what is usually known
as forward-secure encryption and achieves forward security. Another option is to make use of
a session key which is used to protect data, is deleted after use, and cannot be recovered using
other stored keys. This second option is most often known as forward secrecy in the context
of key exchange protocols. Later in this paper we will compare the different terminology and
possible alternative meanings of forward security and forward secrecy.

∗Supported by the Research Council of Norway under Project No. 248166 and the German Research Founda-
tion (DFG) under project JA 2445/2-1. An extended abstract of this work appeared in the Computer Journal.
This is the full version.

1

Forward Secrecy in Key Exchange. To illustrate the increasing importance of forward
secrecy in key exchange, it is useful to look at the case of the Transport Layer Security (TLS)
protocol (still often referred to as SSL for historical reasons). TLS is the most widely used
security protocol on the Internet and has passed through many versions. The newest version
is TLS 1.3 [47] which only allows key exchange with forward secrecy. Earlier versions, some of
which are still almost universally deployed and supported, allow two kinds of key exchange: a
version using RSA encryption [48] which does not provide forward secrecy, and a version using
Diffie–Hellman key exchange [21] which does provide forward secrecy. As recently as 20141 less
than 50% of prominent web servers even supported the option of providing forward secrecy, but
by 2019 this number had increased to more than 97% and most servers select forward secrecy
by default today.

Forward Secrecy without Interaction. Typical key exchange protocols require interaction
between the participants. This interaction plays a critical role in achieving forward secrecy.
Non-interactive protocols, in which secured data leaves the sender before any response from
the recipient, cannot apply the same techniques. Before going further we should emphasise
that there are different possible meanings of the term non-interactive used in the literature.
In particular, protocols for non-interactive key exchange (NIKE) [25] require that no messages
flow between the parties. In contrast, in this paper we use the term non-interactive to mean
that messages do not flow in both directions, thereby allowing protocols where one of the two
parties is offline during protocol execution. Some authors use the term asynchronous where we
use non-interactive.

Prominent examples of non-interactive protocols (in our sense) include electronic mail and
instant messaging, where the recipient may be offline during communication. For the case of
email, standardised end-to-end security solutions such as GPG [35] or S-MIME [45, 46], do
not provide forward secrecy. In contrast, there has been much effort in providing high security
for instant messaging; protocols such as Signal [51] do emphasise the need for forward secrecy
even for the initial messages when no interaction has yet occurred. In recent years, interest
in non-interactive protocols has increased even in Internet services where interaction could be
used, due to the desire to achieve higher efficiency and reduce delay. This interest is exemplified
by several Internet companies developing and experimenting with protocols that allow clients
to send encrypted payload data before obtaining any fresh input from the server, for example
Google’s QUIC protocol [12], Facebook’s Zero protocol [32], and the TLS 1.3 0-RTT mode [47].

A Confusing Landscape. Due to the lack of interactivity, traditional techniques to achieve
forward secrecy (elaborated in detail in the next section) cannot be used in the protocols men-
tioned above. Therefore alternative techniques have been designed, and in some cases deployed,
which do not fit the traditional view. This has led to considerable confusion about what forward
secrecy should mean, whether there are different kinds of forward secrecy, and whether forward
secrecy in key exchange is different from the meaning of forward security for key exchange or
other primitives. Due to the different possible meanings of forward secrecy, it is possible to
reach contradictory conclusions on what is possible to achieve with non-interactive protocols.
Some authors [58, 57, 10, 11, 34] state that it is impossible to achieve forward secrecy with-
out interaction while others [29, 3, 37, 56] state that fully equivalent forward secrecy has been
achieved in their non-interactive constructions.

The lack of consistent terminology is another symptom of the confusion existing in the area.
There are very many different adjectives (perfect, partial, weak, and so on) which have been

1Figures taken from the Qualys SSL Labs web page: https://www.ssllabs.com/ssl-pulse/

2

used to qualify different flavours of forward secrecy and forward security. There are instances
of different terminology used to describe the same thing, and of the same terminology used to
describe different things. In Appendix A we collect many of these terms, explain their origins,
and compare their meanings.

Our Contributions. The goal of this paper is to shed some light on competing definitions
for forward secrecy and forward security, and to propose a unified view on how to compare both
non-interactive and interactive protocols with forward security.

• We discuss and compare the different terminology and possible alternative meanings of
forward security/secrecy leading us to the conclusion to view forward security as a gener-
alisation of forward secrecy in key exchange (Sections 2, 3).

• We explain different techniques to achieve forward secrecy in non-interactive key exchange
and identify message suppression as an attack vector to bypass forward secrecy under
certain circumstances (Section 4).

• We identify different properties of forward security based on a timing parameter, differ-
entiate the different key types that can be used to achieve these properties, and show how
known types of forward-secure primitives map to the different key types. This allows a
meaningful comparison of the degree of forward security which is achieved by different
cryptographic schemes, even when they use quite different techniques (Section 5).

2 The Traditional View on Forward Secrecy

During the 1970s the academic view of authenticated key exchange (AKE) was initially estab-
lished. A seminal paper of Needham and Schroeder [41] categorised AKE protocols as either
public-key based or symmetric-key based. In either case, protocol parties each possess a long-
term key which is chosen when a user is enrolled into the system and the key remains unchanged
during the system lifetime.2 In the symmetric-key setting each user typically shares a long-term
key with a trusted server. For example, in a corporate setting an employee may be issued a
long-term key when first joining the company. In the public-key setting a long-term private key
is generated by, or on behalf of, each user and the corresponding public key may typically be
published together with a valid certificate. In this paper we focus mainly on public-key based
protocols, but will not discuss further the problem of certifying, or otherwise managing, public
keys.

The goal of an AKE protocol is to establish a new session key to be used to protect com-
munications in a subsequent data exchange phase. Generally the security goal is achieved if no
efficient adversary can reliably distinguish a new session key from a completely random string
chosen from the key space. It is assumed that the adversary is able to eavesdrop on all messages
sent between protocol parties and also to alter messages or fabricate new ones using any avail-
able information. A general principle is that different session keys must provide independent
protection so that compromise of one session key does not lead to compromise of any other
session key. In order to model this property we assume that the adversary has the ability to
obtain session keys from any protocol run other than the one under attack.

It is evident from these requirements that session keys must be generated in some way that
relies on randomised input from at least one of the protocol parties. Such randomness may be
used directly to specify a session key or it may be used as an input to other functions as in the

2In practice even long-term keys have a lifetime but for the sake of simplicity we ignore that.

3

Diffie–Hellman protocol described later in this section. In either case such random key material
is regarded as ephemeral because it is used only while the protocol is being run and deleted
when the protocol is complete. An adversary in possession of some party’s complete state,
particularly both long-term and ephemeral keys, is able to compute any session keys since the
adversary also sees all messages received by the party. How can we then provide any security for
devices which may be compromised? It turns out that in some cases we can retain security of
session keys if compromise happens after the session is finished. This is the idea behind forward
secrecy.

2.1 A Simple Key Transport Protocol

Consider first a simple protocol in the symmetric-key setting shown in Figure 1, run between
two parties A and B. Initially A and B already share a long-term private key KAB but, in order
to isolate different sessions, they use the protocol to set up a new session key k which is chosen
by party A and sent to party B; this technique is often known as key transport. The key k is
the ephemeral key generated by A in this protocol, and k will also be the session key. It is sent
to party B encrypted with the long-term key KAB . The field NB sent in message 1 is a random
value chosen by B and checked by B on receipt of message 2. This allows B to verify that the
session key is new, since message 2 cannot be replayed from an earlier run of the protocol.

1. B → A : NB

2. A→ B : {NB, B, k}KAB

Figure 1: ISO/IEC 11770-2 Key Establishment Mechanism 4 [31]. A protocol without forward
secrecy.

Suppose that an adversary records a protocol run and later wants to find the session key k
(and therefore recover all of the traffic protected by k). If the adversary is able to compromise
either A or B, thereby obtaining the long-term key KAB , then it is trivial for the adversary to
decrypt the recorded message 2 and obtain the session key k.

2.2 Diffie–Hellman Key Agreement

The key agreement protocol of Diffie and Hellman [21], illustrated in Figure 2, is one of oldest
constructions in public-key cryptography. Two parties A and B agree publicly on an element g
that generates a multiplicative group G. They then select random values, rA and rB respectively,
in the range between 1 and the order of G. A calculates tA = grA and B calculates tB = grB

and they exchange these values. A shared secret, ZAB = grArB can be calculated by both A
and B due to the homomorphic property of exponentiation: ZAB = trBA = trAB . Finally, a key
derivation function, KDF , will be applied to ZAB and other public inputs to obtain the session
key: k = KDF (ZAB , . . .).

The basic Diffie–Hellman protocol shown in Fig. 2 lacks authentication and is therefore
insecure against active adversaries – neither A nor B knows which party the secret ZAB is
shared with. There are different ways that long-term keys can be applied to authenticate the
Diffie–Hellman messages, for example by using digital signatures, but we avoid giving an explicit
choice here. The ephemeral secrets are the values rA and rB which will be deleted once the
session is completed. This means that an adversary who later compromises A or B (or both)
will only obtain the long-term keys used to authenticate, which are independent of the session
key. Thus the adversary will only have the ephemeral public keys, grA and grB , exchanged
during the protocol but needs to find grArB in order to learn the shared secret used to form k.

4

A B

rA
$←− Zq

tA = grA

tA−−−−−−−−→ rB
$←− Zq

tB = grB

ZAB = trAB
tB←−−−−−−−− ZAB = trBA

Figure 2: Diffie–Hellman key agreement. A protocol with forward secrecy.

This is the so-called Diffie–Hellman problem which is believed to be computationally intractable
for a well-chosen group G (at least until quantum computers become practical [50]).

2.3 Defining Forward Secrecy

We have seen that some protocols can be vulnerable to adversary compromise after sessions
are complete, while others remain secure. Those that remain secure in such a situation are said
to possess the property of forward secrecy. The concept and terminology were introduced into
the academic literature by Günther in 1989 [28].
Definition 1. An AKE protocol provides forward secrecy if compromise of long-term secrets
does not lead to compromise of session keys of previously completed sessions.

The Diffie–Hellman protocol has been used as the basis of hundreds of key exchange protocols
and is often considered as the fundamental basis for forward secrecy. It is widely deployed in
real-world protocols such as TLS, IPSec and SSH. However, we take the opportunity to note
that any public-key encryption scheme can be adapted to provide forward secrecy [43]. To do
this, party A first chooses an ephemeral public/private key pair and sends the public encryption
key to party B. B then chooses a session key and returns it to A encrypted with the ephemeral
public key. After the session is completed the ephemeral private key is deleted by A and so will
not become available to a later adversary who compromises A.

Forward secrecy was originally defined by Günther [28] in the context of identity-based
cryptography. In this context there is a master long-term key belonging to a trusted authority
(TA) which is used to generate the long-term keys of protocol entities. Here we may differentiate
between compromise of individual entity long-term keys and compromise of the TA master key,
which implicitly compromises all entities’ long-term keys. Some protocols are secure against
the former type of compromise but not the latter type [15].

We conclude this section by observing that interaction seems to play a fundamental role in
obtaining the forward secrecy property. Although the protocol of Figure 1 shows that interaction
is certainly not sufficient to provide forward secrecy, it may be difficult to see how forward secrecy
can be obtained without interaction. If a party A does not provide an ephemeral input to the
protocol then the adversary will later get all the secrets used by A and so should be able to
compute the session key in the same way as A. We will see later how this apparent impossibility
result can be overcome in non-interactive protocols.

5

3 Forward Security as Generalization

Forward secrecy for key exchange is concerned with ensuring that previously used session keys
are not revealed following compromise of participants at some later time. The name itself
carries an implication that forward secrecy is a form of data confidentiality, with the purpose
to prevent leakage of user data from some protected session. This is indeed the motivation we
have given for why forward secrecy is important. However, a session key need not be used to
provide data confidentiality; it can be used for other security services such as data integrity
and authentication, either alone or in combination with confidentiality. Although it may be less
obvious, forward secrecy can also be applied to protect against data manipulation, fabricating
the record of what happened in the past.

In the literature the distinction between the terms “forward secrecy” and “forward security”
is often blurred. Indeed it is common to find papers which use these terms interchangeably as
though their meaning is identical. Historically, forward secrecy was first used with respect to
the key exchange literature, and forward security was used with respect to other, mainly public-
key, primitives such as encryption and signatures. In this paper we take the view that forward
secrecy is the same thing as forward security for key exchange. Thus when we use the term
forward secrecy we refer only to key exchange protocols, but when we use the term forward
security (without qualification) then we are being more general and may be thinking of any
security goal.

In this section we consider asymmetric (public-key) primitives, which are more prominent
in the literature when it comes to forward security. However, notions of forward security for
symmetric-key cryptography have also been developed [6] and we will include them in our
categorisation in Section 5. We may also generalize forward security to more properties than
just confidentiality and authentication. An interesting case is the Tor protocol [22], which uses
session keys to provide unlinkability of communication circuits. A forward security goal is that
unlinkability should be preserved if nodes are compromised after the circuits are no longer in
use.

Forward security for specific security goals can be achieved using dedicated primitives. We
look at some important examples next, but first we note that when a session key is established
using a key exchange protocol with forward secrecy, the protocol automatically enables forward
security of any desired security property which relies on that session key. This is because when
the session key is deleted at the end of the session, whatever security property it was providing
can no longer be provided. For example, we can conceive of a property, which we might call
forward authenticity, preventing messages from being fabricated in an earlier communications
session, even under compromise of the participants. If the session key was used to provide
message authenticity in the session, then forward authenticity is automatically provided if the
session key is set up in a key exchange protocol with forward secrecy.

3.1 Forward-Secure Encryption

The notion of forward-secure encryption is attributed by Anderson [2] to Adam Back, who
described it on an online mailing list in 1996. Forward-secure encryption has the goal to pro-
tect confidentiality of previously encrypted messages from being revealed when an entity is
compromised later.

As proposed by Back, time is divided into intervals or epochs, so that a new private de-
cryption key is used in each epoch, and the decryption key from the previous epoch is deleted.
Of course this means that a different, or variant, public encryption key must also be used in
each epoch. It is not difficult to design forward-secure encryption schemes in the case that the
parameters of the scheme grow large quickly. Back proposed a scheme where the private key,

6

ki, used in epoch i is derived from that in the previous epoch, i− 1, via a one-way function H
computing ki = H(ki−1). The corresponding public keys can then all be published and used in
the correct epoch. This solution has fixed size private keys and ciphertexts, but the public key
size increases linearly in the number of epochs which may not be acceptable.

Since this first proposal, cryptographers have proposed new and more practical schemes.
Finding a satisfactory balance between the sizes of private keys, public keys and ciphertexts,
is the main problem in designing good forward-secure encryption schemes. Formal models and
new constructions were proposed by Canetti et al. [8, 9] who achieved schemes where each of
private keys, public keys and ciphertexts increase in size only logarithmically in the number of
epochs. Subsequently there are many more recent schemes with additional properties.

3.2 Forward-Secure Signatures

Anderson [2] seems to have been the first to suggest that authentication, in the form of digital
signatures, can also benefit from forward security. He proposed forward-secure signatures which
have the property that if the signer of a message is compromised by an adversary, then it should
not be possible for the adversary to forge a signature from an earlier time. Authentication
and confidentiality are in some senses dual concepts. Confidentiality is about protecting an
adversary from reading, while authentication is about preventing an adversary from writing.
Thus forward security for authentication should mean that an adversary who compromises a
party now, should not be able to construct a message that was (apparently) authenticated at
an earlier time.

As with forward-secure encryption, Anderson’s forward-secure signatures achieve forward
security by dividing time into epochs and updating, using a one-way transformation, the private
key in each epoch. Due to the one-way nature of the updating algorithm, when the signer gets
compromised, the signing key from the current epoch is leaked to the adversary, but signing
keys from earlier epochs cannot be recovered. For this to work, the verification process must
include as an input the epoch that a signature came from. Later, forward-secure signatures were
formalised by Bellare and Miner [4] and have since been extended to include many variants such
as group signatures [14, 52], ring signatures [49, 39], and blind signatures [13, 24].

3.3 Comparison

Forward-secure encryption and signatures share the same general goal with forward-secure key
exchange of protecting past usage against current compromise. However, there is a significant
difference in the ways that the examples in this section and the key exchange examples described
in Section 2 achieve their goals. The latter use ephemeral keys and static long-term keys,
while forward-secure encryption and signatures use epochs and evolving keys. Two significant
consequences of this difference are:

• forward-secure key exchange requires interactivity in the traditional setting, while forward-
secure encryption does not;

• with forward-secure key exchange past sessions are protected as soon as they are com-
pleted, while for forward-secure encryption, past ciphertexts are only protected if they are
in an earlier epoch.

It is interesting to consider how the argument for why interaction is required, outlined at
the end of Section 2, breaks down when considering forward-secure encryption. The difference
is that in the traditional view the long-term secret is fixed, while in forward-secure encryption
the long-term key evolves (or, equivalently, it holds state). In some deployments it may be

7

undesirable to have to update the long-term key regularly; for example, the long-term key could
be stored in a special hardware device, a hardware security module, with a limited interface
and requiring special permission to write to. However, in general there seems no reason why
the long-term key could not be updated. We now look at some more modern examples of how
to update long-term keys in alternative ways.

4 Forward Secrecy in a Non-Interactive Setting

So far we have seen that forward secrecy is a property that is increasingly desirable but has
been traditionally achieved with interactive protocols. Despite the huge advances in technology,
higher efficiency and reduced delay are still highly sought after. Furthermore there are several
prominent applications in which interaction between endpoints may not be practical. One
example is electronic mail – we cannot assume that the recipient is online at all times. Even
with interactive messaging, there is a bootstrapping problem when communicating for the first
time. A third example is when sharing encrypted files in a cloud storage scenario; the decryption
key must be shared, but recipients may not be online.

Thus there is need to achieve forward secrecy without interaction in modern communications.
This need has been recognised and two conceptually different solutions have been proposed both
in the academic literature and in real-world implementations. In this section we look at both
approaches to this problem and then discuss how the properties that they achieve differ from
using interactive protocols.

4.1 Puncturable Encryption

Puncturable encryption is a recently developed cryptographic primitive that was formally intro-
duced by Green and Miers in 2015 [27]. Interestingly, Anderson has already given an informal
description of puncturable encryption many years before [2]. Throughout the last years, sev-
eral different constructions of protocols based on (improved) puncturable encryption have been
proposed [29, 19, 18, 20, 53].

The core idea of puncturable encryption is to modify the private key of a scheme after each
decryption. To be more precise, when a ciphertext c is decrypted by computing Dec(sk , c), we
additionally replace the private key with the output of a puncture procedure sk ′ ← Punct(sk , c).
This modified private key sk ′ will not be able to decrypt ciphertext c anymore, ensuring that
c cannot be decrypted after the punctured key has been compromised. By repeatedly invoking
the puncture procedure it is possible to stepwise revoke decryption capabilities from a private
key.

Thus puncturable encryption provides a kind of forward security for public key encryption
– compromise of the recipient’s key does not compromise messages previously decrypted. Note,
however, that we only enjoy this form of protection if c is received and processed by the recipient.

We can easily transform a puncturable encryption scheme to form a puncturable key ex-
change scheme as illustrated in Figure 3. The session key, k, is simply chosen by party A,
encrypted using the puncturable encryption scheme, and sent to B. Now A does not have
to wait to send a message protected by k, but can start sending user data immediately, even
piggy-backed with the key exchange message. Note that this basic construction does not provide
any authentication to B, so in many applications we will require additional mechanisms, for
example a signature from A, in order to obtain a secure key exchange protocol.

In contrast to the fine-grained puncturing mechanism, sometimes a puncturable encryption
scheme is also equipped with a coarse-grained mechanism to revoke decryption capabilities.
This mechanism is inspired by the kind of forward-secure encryption explained in Section 3.1,

8

A B

k $←− {0, 1}∗
c $←− Enc(pkB, k)

c−−−−−−−−−−→
Enck(data)
−−−−−−−−−−→

k ← Dec(skB, c)
sk ′B ← Punct(skB, c)

Figure 3: Key exchange from puncturable encryption.

A B S
ri

$←− Zq

ti ← gri
{ti}−−−−−−−−→

pre-computation phase

online phase
i, ti←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rA
$←− Zq

tA ← grA

k ← KDF (trAi , . . .)
tA, i−−−−−−−−→

Enck(data)
−−−−−−−−→

k ← KDF (triA , . . .)
delete ri

Figure 4: Key exchange with pre-computed keys.

and similarly divides time into epochs. After a certain time has passed, the private key will be
“punctured” for an epoch that renders decryption of all messages sent in this epoch impossible.
Note that this coarse approach ensures that even lost or intercepted messages enjoy protection.

Observe that for all puncturable encryption schemes the private key changes over time (while
the public key remains static) and does not fit into the traditional model discussed in Section 2
where long-term keys remain unchanged during the system’s lifetime.

4.2 Pre-Computed Keys

Suppose that party A wants to use Diffie–Hellman key exchange and then use the resulting
session key to protect a message sent to party B. If B is not online to run the interactive
Diffie–Hellman protocol then A could instead use some pre-computed value from B which has
been sent to, and stored with, an online server S. This idea has been used in several real-world
protocols. It is illustrated in Figure 4. In the pre-computation phase B generates some number
of private/public keys pairs and stores the public keys with S. The online phase starts with
party A retrieving an unused public key of party B from S.

The pre-computed key from party B, shown as ti in Figure 4, is no longer an ephemeral key
in the sense of existing only during one protocol run. As well as being pre-computed, it is also

9

possible that ti is re-used in different protocol runs and different instances of party B. This idea
has been proposed at least as far back as 2004 for the JFK protocol [1]. In this case it may be
desirable to impose a time limit on how long the ti value should remain in use. This is what is
done in the real-world protocol QUIC [12] where the value’s lifetime may typically be two days.

In contrast, the real-world messaging protocol Signal [51], which uses pre-computed keys to
protect the first communicated message in any conversation, intends that each pre-computed
key is used only once. To allow this, the recipient B pre-computes many ti values which are
deleted after they have been used (including, more importantly, the corresponding private ri
values). However, since the number of new conversations that will be started is not predictable,
Signal has a fallback mechanism to use the last available key for many conversations until the
supply of pre-computed keys is replenished. Signal suggests keys be replenished once a week,
or once a month [40].

Regardless of whether the pre-computed keys are used once or many times, the corresponding
private keys ri will have to be stored by B for some period before the protocol run actually
takes place. This means that such keys are no longer ephemeral keys in the traditional view
from Section 2. Are such keys then long-term keys? Some authors have given them the name
medium-term keys. It is evident that such keys do not fit into the traditional model, but for sure
they cannot become available to an adversary if we are to retain the forward secrecy property.

4.3 Message Suppression Attacks

Both aforementioned approaches to achieve forward secrecy without interaction are prone to a
certain type of attack, which is not relevant in traditional key exchange models. We will call
these attacks message suppression attacks. In a message suppression attack, the adversary in-
tercepts and drops messages dedicated to the receiving party. If the adversary now compromises
the receiving party at a later point in time, the adversary is able to decrypt the intercepted
messages, seemingly breaking forward secrecy.

In puncturable encryption a compromise of the private key skB allows to decrypt intercepted
messages of the form (c,Enck(data)) if the message was never received by B and hence the
private key skB is not punctured for c. A similar attack works when using pre-computed
keys. Compromise of the private ri values allows to decrypt intercepted messages of the form
(tA, i,Enck(data)) if the message was never received by B and hence the value ri not deleted.

This attack can be mitigated if we apply a time-based mechanism to the protocol that ensures
the private values are modified or deleted after a certain time has passed. If this mechanism
is invoked after a message is suppressed but before compromise of receiver B takes place, the
attack cannot be mounted. In the case of puncturable encryption this might be a coarse-grained
transformation of the receiver’s private key that only allows decryption of messages sent in a
certain time period. For pre-computed keys this could be a lifetime associated with the private
values ri.

Is a message suppression attack realistic? We first note that in formal security models for
key exchange it is typically assumed that the adversary has complete control of the network,
and message transmissions only occur when explicitly demanded by the adversary. Such an
adversary can then easily engineer message suppression attacks. However, we also note that
most security models cannot actually capture message suppression attacks. The adversary’s
formal security goal is to choose a protocol run (called a session) at a party which has accepted
a session key k and then distinguish whether it is given k or a completely random string. But
in a message suppression attack no (relevant) session actually exists at the receiver B, so the
adversary is unable to choose it.

Green and Miers [27] explicitly mention the message suppression attack and use it as one mo-

10

tivation (the other being efficiency) to combine their fine-grained puncturable encryption scheme
with coarse-grained forward-secure encryption. However, their security notion for puncturable
encryption (IND-PUN-xxx) explicitly requires the tag(s) used for the challenge ciphertext to be
already punctured when compromise takes place. This is essentially the same for their combined
scheme security notion (IND-PFSE-xxx). Thus message suppression attacks are not covered by
their notions.

4.4 Malicious Key Exhaustion

We remark that it is possible to maliciously exhaust key material in both aforementioned ap-
proaches by flooding the receiver with initiating messages (cf. Figures 3 and 4). If the key ma-
terial is limited, this might lead to a situation where the recipient is unable to process incoming
messages. This especially affects puncturable encryption schemes where correct decryption of
messages can only be guaranteed for a polynomial number of punctures, such as the schemes
by Derler et al. [19, 18], or all schemes storing only a polynomial number of pre-computed keys.
Due to the non-interactive nature of the key exchange it is also difficult to avoid this attack;
the recipient has no means of contributing fresh input.

In the case of pre-computed keys, Signal [51] acknowledges this attack vector and stores
the last remaining pre-computed key if all others have been exhausted, sacrificing the single-
use aspect of precomputed keys. The last precomputed key is then used for all following key
exchanges until the recipient restocks its supply of pre-computed keys. Note that this approach
does affect forward security. All sessions established with the last pre-computed keys can be
compromised by an adversary until the recipient replenishes its stock of pre-computed keys.

5 Classifying Forward Security

Having seen various examples of forward security we now examine the fundamental similarities
and differences between different schemes and identify how we may categorise them.

5.1 Dynamic Keys

We start by observing that in any kind of forward security it is essential that keying material is
dynamic. A notion of time is inherent in defining forward security since we need to distinguish
events that are past when compromise happens in the present. An adversary who compromises
some party A is assumed to obtain the secrets of the compromised party. In order to prevent
the adversary from performing exactly the same actions as A did in the past, something must
have changed in the key material, even if it is only the deletion of generated randomness.

Note that it is possible to differentiate between different key types and define different forms
of compromise. Indeed, many formal security models in the literature do this. Key exchange
models [17] often allow adversaries (conditional) access to different oracles which reveal either
long-term keys or randomness. There are good reasons why such differentiation may be realistic;
for example, a long-term key may be stored in a secure physical device less accessible to the
adversary. In relation to the traditional view from Section 2, long-term can be generalised to
simply mean a key that can be compromised.

The strength of an adversary is determined by which type of keys it can compromise. For
example, an adversary could have the ability to compromise secret values that are only stored
in volatile memory for a short time (e.g., by mounting cold boot attacks [30]). A different
adversary could only be able to access key which are stored in physical memory for several
weeks. Of course, even adversaries able to perform both attacks could exist.

11

In any case, keys that never become available to the adversary do not influence the definition
of forward security since all security guarantees provided by the protocol are still given. Note
that an adversary that is able to predict the randomness used in the key derivation (e.g., back-
doored random number generators, or bad randomness), may be able to break forward security
by re-deriving the key without compromising any party; in general, forward security does not
protect against bad randomness.

In the following we will first consider an adversary that is not able to compromise all key
material, that is, we take a traditional path and distinguish between compromisable and non-
compromisable key material. At the end of this section we will discuss the implications of
adversaries that are able to compromise all key material.

Classes of Forward Security. From the examples we have seen, we can deduce different
categories of forward security. The categories are parametrised via a parameter τ that defines
the period in which the adversary can obtain, via compromise, the same keying material as
originally used by the parties. This period of vulnerability starts from time 0 when the key is
first defined and extends up to time τ . We identify three categories as follows:

Absolute Forward Security: τ = 0. In this case the adversary has no opportunity to recover
the keying material necessary to break security.

Delayed Forward Security: 0 < τ <∞. In this case the adversary is able to break forward
security if it is able to get access to the keying material before time τ (e.g., forward-secure
encryption).

Null Forward Security: τ →∞. In this case the adversary is able to break forward security
by compromising at any time (e.g., the protocol shown in Figure 1).

Types of Keys. The three categories lead us to three different kinds of dynamic private keys.
We identify and name them as follows:

volatile keys: which are never available to the adversary (e.g., Diffie–Hellman exponents);

windowed keys: which are available to the adversary for a finite period (e.g., keys with a
lifetime);

triggered keys: which are available to the adversary until a defined protocol event occurs
(e.g., pre-computed keys being used).

Note that traditional long-term keys are not included in these types since they are not dynamic.
A protocol using only long-term keys will always have null forward security.

It is perhaps tempting to assume that these different key types are listed in an order of merit.
The volatile keys, such as used in the Diffie–Hellman protocol, only exist while the protocol is
being run, windowed keys may exist for some time after the protocol is run, while triggered
keys exist before the protocol is run but should be deleted immediately afterwards. However, in
practice the length of time that windowed and triggered keys remain vulnerable depends on the
implementation details. In particular, windowed keys have a lifetime determined by the epoch
length which may be chosen to be long or short in different applications while triggered keys
may be stored longer than intended when a message suppression attack is launched.

We provide an overview of which class of forward security can be achieved, depending on
the used key type and whether message suppression attacks are feasible, in Table 1. The last
row in the table considers keys whose deletion can be triggered by an event, but will anyway

12

Key Type
Message Suppression Attacks

infeasible feasible

volatile absolute absolute
windowed delayed delayed
triggered absolute null
windowed + triggered absolute delayed

Table 1: The achievable category of forward security depending on the key types and whether
message suppression attacks are possible if volatile keys cannot be compromised.

be deleted at the end of some window. We have seen such keys in the description of the Green
and Miers fine-grained and coarse-grained security described in Section 4.1. In practice we can
expect that “pure” triggered keys are never used, but always have some lifetime window.

In existing security models for key exchange these key types are not differentiated in any way.
Indeed forward secrecy definitions are easily adapted to fit all of these key types by simply stating
that the adversary is prohibited from gaining access to them in any target session. This hides
the significant practical differences between them, which have been frequently acknowledged in
the literature [8, 9, 27]. These different key types can, in principle at least, be used to provide
different classes of forward-secure versions of any cryptographic primitives.

5.2 Categorising Schemes

Table 2 gives examples of schemes which apply the different categories of keys. It turns out that
for most primitives, each of the three categories of volatile, windowed and triggered keys can be
instantiated with concrete schemes already existing in the literature. This gives us confidence
that these are meaningful classes of keys. Moreover, we are not aware of schemes which claim
to provide forward security but do not use keys in one of these classes, giving us optimism that
the classification may be complete. Indeed, we suggest that any cryptographic property can
naturally have a forward-secure version, by simply stating that its security properties should
still hold when compromise happens later, where the meaning of “later” depends on the key
type. To illustrate that they can be much more general we include session resumption and
private circuit protocols as additional examples.

Asymmetric Encryption. For the case of asymmetric encryption, windowed and triggered
keys have been examined earlier in the instances of forward-secure encryption (cf. Section 3.1)
and puncturable encryption (cf. Section 4.1). It may seem that volatile keys are never needed
for encryption, but one difference between forward-secure encryption and forward-secure key
exchange is that in the former we do not require the sender (encryptor) to have a long-term or
certified public key. Thus to achieve forward-secure encryption with volatile keys the sender and
recipient can perform a Diffie–Hellman exchange with only the receiving party authenticating the
ephemeral value, and then the Diffie–Hellman shared secret is used to encrypt. This construction
has been proposed by Dodis and Fiore [23] and named interactive encryption.

Symmetric Encryption. As in the asymmetric encryption case discussed above, forward-
secure encryption with volatile keys can be achieved with an interactive encryption protocol
using the shared secret to authenticate a Diffie–Hellman key exchange, then deriving a session
key to encrypt the message. Here it is always possible for both parties to authenticate their

13

Primitive
Key Type

volatile windowed triggered

Asymmetric
encryption

Interactive
encryption [23]

Epoch-based
encryption [8, 9]

Puncturable
encryption [27]

Symmetric
encryption

Interactive
encryption [23]

Bellare–Yee
encryption [6]

Symmetric punc-
turable encryption [54]

Authenticated
key exchange

Signed
Diffie–Hellman [44]

Epoch-based
Diffie–Hellman [44]

Pre-keyed
Diffie–Hellman [51]

Digital
signatures

Forward-secure
signatures [2, 4]

Puncturable
signatures [59]

Session resumption
protocols

TLS 1.3 PSK-
(EC)DHE mode [47]

STEK rotation [38]
0-RTT session

resumption protocols [3]

Circuit construction
protocols

nTor [26] NI-OR [10] T0RTT [37]

Table 2: Example schemes in different categories.

Diffie–Hellman ephemeral key using the shared key, but for encryption it is necessary only that
the recipient authenticates.

Bellare and Yee [6] construct a key-evolving symmetric encryption scheme by updating the
key in each epoch using what they call a forward-secure pseudorandom bit generator. This
achieves windowed forward secrecy. We note, in passing, that the same authors also define
and instantiate windowed forward-secure message authentication. A notion of symmetric key
puncturable encryption has been defined by Sun et al. [54] which provides triggered forward-
secure symmetric encryption.

Authenticated Key Exchange. When we think of forward security for key exchange, we
typically first think of interactive Diffie–Hellman which uses volatile keys. Key exchange
from puncturable encryption, explained in Section 4.1, and key exchange with pre-computed
keys, explained in Section 4.2, both achieve forward-secure key exchange with triggered keys.
Pointcheval and Sanders [44] give a construction for windowed key exchange for non-interactive
key exchange, but this same construction could be adapted to provide windowed authenticated
key exchange.

Digital Signatures. Forward security for signatures is easier to achieve than for encryption
and key exchange in the sense that the signer can update the dynamic keying material without
needing to wait to receive anything from the verifier. Because of this, signatures with windowed
keys can be simply adapted so that they update the relevant dynamic keys immediately upon
signing any message, so that the keys become triggered. In addition, and for the same reason,
suppression attacks are not relevant for forward-secure signatures so that the right-hand column
in Table 1 does not apply to signatures. Thus using triggered keys for signatures always gives
absolute forward security. Puncturable signatures, the analogue of puncturable encryption
using triggered keys, have also found uses [59]. There does not seem any obvious way to achieve
signatures with volatile keys and, to our knowledge, no such primitive has been proposed in the
literature.

14

Session Resumption Protocols. Another interesting case related to key exchange is that
of session resumption protocols. In such protocols a client wants to resume a previous session
with a server using a shared (authenticated) secret, which has been established in a previous
session. A widely used session resumption protocol is, for example, the pre-shared key (PSK)
mode in TLS 1.3 [47]. Since session resumption is always tied to a previously established secret,
we need to carefully evaluate whether forward security is actually achieved.

Similar to key exchange we are able to achieve forward security with volatile keys when
executing an additional Diffie–Hellman key exchange, and switching to the Diffie–Hellman key,
after resumption has taken place. This idea is deployed in the PSK-EC(DHE) mode in TLS
1.3. Note, that this approach requires interactivity and does not ensure forward security for any
messages solely protected under the pre-shared secret if the pre-shared secret gets compromised.

Alternatively, a concept known as STEK rotation can be deployed. In this case the server
maintains a dedicated symmetric key, sometimes called session ticket encryption key (STEK),
which is used to encrypt the shared secret. The ciphertext c = Enc(stek , secret) is stored at
the client while the server is able to delete both c and secret . In order to resume the session,
the client simply sends c back to the server. Forward security with windowed keys is achieved
if the STEK is replaced regularly; for example, Cloudflare deploys this approach and rotates
their keys roughly once a day [38].

Recent work by Aviram et al. [3] shows that it is also possible to achieve forward security
for session resumption with triggered keys. They utilise so-called puncturable pseudorandom
functions. The main idea is to compute session keys by evaluating a pseudorandom function.
Once the session key is computed, the pseudorandom function’s instantiation will be altered in
such a way that recomputation of the session key is impossible.

Circuit Construction Protocols. Circuit construction protocols are anonymity-providing
multi-party protocols executed between an initiator and several servers. The initiator picks a
subset (typically three) of available servers and establishes a session key with each server such
that it is oblivious to an observing adversary which servers have been picked by the initiator.
The established keys can then be used in a so-called routing protocol to communicate in a
secure and anonymous way. Defining security for circuit construction protocols is not trivial,
and hence we will only give a brief intuition of forward security and refer the reader to literature
that addresses circuit construction protocols otherwise [10, 37, 26].

The notion of forward security for circuit construction protocols is much more complex
compared to the notion of key exchange. Besides providing key indistinguishability (as known
from standard key exchange), forward security also captures a notion of anonymity preservation.
To be more precise, the compromise of multiple servers should not endanger the initiator’s
anonymity in any way. This property is sometimes termed cryptographic unlinkability – as
long as circuit construction includes one honest server, an adversary should not be able to link
connections, even if all servers get compromised after the session is closed.

Currently, the nTor [26] protocol is the most widely adopted protocol for circuit construction.
It performs several executions of the Diffie–Hellman protocol between multiple parties and
achieves forward security with volatile keys. In order to reduce latency, Catalano et al. [10] have
proposed a non-interactive circuit construction protocol based on forward-secure encryption
that achieves forward security with windowed keys. Recently, Lauer et al. [37] proposed a non-
interactive circuit construction protocol utilising puncturable encryption, achieving forward
security with triggered keys.

15

Key Type
Message Suppression Attacks

infeasible feasible

volatile delayed* delayed*
windowed delayed** delayed**
triggered delayed* null
windowed + triggered delayed* delayed**

Table 3: The achievable category of forward security depending on the key types and whether
message suppression attacks are possible if any secret value can be compromised. * with τ =
session length; ** with τ = max{window, session length}.

5.3 Stronger Adversaries

In the previous paragraphs we have assumed that it is possible to implement protocols using
volatile keys which are never available to the adversary. This may be realistic, for example
when the only way for an adversary to compromise a party is by enforcing a legal order and
even a cooperating party is unable to extract keys from volatile memory. In this paragraph we
discuss the implications of an adversary who can obtain any key that exists. To be more precise,
we now assume that an adversary is even able to compromise volatile keys as well as retrieve
keys that only exist in volatile memory. This induces the following changes in comparison with
Table 1.

Any protocol that uses volatile keys provides forward security only after the session has
expired, hence only achieving delayed forward security. Similarly, triggered keys cannot achieve
absolute forward security as they need to be kept in volatile storage until the session terminates,
making them vulnerable to compromise as well. Instead triggered keys are only able to provide
delayed forward security after the session has expired. Table 3 shows the achievable level of
forward security for each key type.

6 Conclusion

Our goal in this paper has been to put forward security and forward secrecy into a modern
context. We have tried to show that they are related by proposing that forward secrecy is
the same as forward security for key exchange, even though not all authors agree on this.
Furthermore, we have shown how the concept of forward secrecy can be generalised to many
other cryptographic primitives. We also identified different categories of forward security and
have shown which of them are achieved in several schemes using a variety of techniques.

We have pointed out that our different forward security concepts have not been captured in
existing formal security models. It may be interesting to try to do this and show formally that
certain primitives have the same, or different, levels of forward security.

Post-compromise security [16] is in some sense the dual concept of forward security, since it
is concerned with obtaining security for the future in the face of compromise of parties now. It
could be interesting to consider whether our categories of forward security have analogues for
post-compromise security which could perhaps be incorporated into a unified model.

References

[1] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, Angelos D.
Keromytis, and Omer Reingold. Just fast keying: Key agreement in a hostile internet.

16

ACM Trans. Inf. Syst. Secur., 7(2):242–273, 2004.

[2] Ross Anderson. Two remarks on public key cryptology. Technical report, University
of Cambridge, Computer Laboratory, 2002. https://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-549.pdf.

[3] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols and efficient
forward security for TLS 1.3 0-RTT. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part II, volume 11477 of LNCS, pages 117–150, Darmstadt, Germany,
May 19–23 2019. Springer, Heidelberg, Germany.

[4] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448, Santa Barbara, CA,
USA, August 15–19 1999. Springer, Heidelberg, Germany.

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[6] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In Marc
Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 1–18, San Francisco, CA, USA,
April 13–17 2003. Springer, Heidelberg, Germany.

[7] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-
Hellman key exchange under standard assumptions. In Lars R. Knudsen, editor, EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 321–336, Amsterdam, The Netherlands,
April 28 – May 2 2002. Springer, Heidelberg, Germany.

[8] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271,
Warsaw, Poland, May 4–8 2003. Springer, Heidelberg, Germany.

[9] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. Journal of Cryptology, 20(3):265–294, July 2007.

[10] Dario Catalano, Mario Di Raimondo, Dario Fiore, Rosario Gennaro, and Orazio Puglisi.
Fully non-interactive onion routing with forward secrecy. Int. J. Inf. Secur., 12(1):33–47,
February 2013.

[11] Dario Catalano, Dario Fiore, and Rosario Gennaro. Certificateless onion routing. In Ehab
Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 2009, pages 151–160,
Chicago, Illinois, USA, November 9–13 2009. ACM Press.

[12] Wan-Teh Chang and Adam Langley. QUIC crypto, 2014. https://docs.google.com/

document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g.

[13] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203, Santa Barbara, CA,
USA, 1982. Plenum Press, New York, USA.

[14] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 257–265, Brighton, UK, April 8–11 1991.
Springer, Heidelberg, Germany.

17

[15] Liqun Chen and Caroline Kudla. Identity based authenticated key agreement protocols
from pairings. In 16th IEEE Computer Security Foundations Workshop (CSFW-16), pages
219–233. IEEE Computer Society, 2003.

[16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security.
In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal,
June 27 - July 1, 2016, pages 164–178. IEEE Computer Society, 2016.

[17] Cas Cremers. Examining indistinguishability-based security models for key exchange pro-
tocols: the case of CK, CK-HMQV, and eCK. In Bruce S. N. Cheung, Lucas Chi Kwong
Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS 11, pages 80–91, Hong
Kong, China, March 22–24 2011. ACM Press.

[18] David Derler, Kai Gellert, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom
filter encryption and applications to efficient forward-secret 0-RTT key exchange. Cryptol-
ogy ePrint Archive, Report 2018/199, 2018. https://eprint.iacr.org/2018/199.

[19] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom filter en-
cryption and applications to efficient forward-secret 0-RTT key exchange. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 425–455, Tel Aviv, Israel, April 29 – May 3 2018. Springer, Heidelberg, Germany.

[20] David Derler, Sebastian Ramacher, Daniel Slamanig, and Christoph Striecks. I want to
forget: Fine-grained encryption with full forward secrecy in the distributed setting. Cryp-
tology ePrint Archive, Report 2019/912, 2019. https://eprint.iacr.org/2019/912.

[21] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976.

[22] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume
13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[23] Yevgeniy Dodis and Dario Fiore. Interactive encryption and message authentication. In
Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages
494–513, Amalfi, Italy, September 3–5 2014. Springer, Heidelberg, Germany.

[24] Dang Nguyen Duc, Jung Hee Cheon, and Kwangjo Kim. A forward-secure blind signa-
ture scheme based on the strong RSA assumption. In Sihan Qing, Dieter Gollmann, and
Jianying Zhou, editors, ICICS 03, volume 2836 of LNCS, pages 11–21, Huhehaote, China,
October 10–13 2003. Springer, Heidelberg, Germany.

[25] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-
interactive key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013,
volume 7778 of LNCS, pages 254–271, Nara, Japan, February 26 – March 1 2013. Springer,
Heidelberg, Germany.

[26] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-way authenti-
cation in key exchange protocols. Designs, Codes and Cryptography, 67, 02 2012.

[27] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from punc-
turable encryption. In 2015 IEEE Symposium on Security and Privacy, pages 305–320,
San Jose, CA, USA, May 17–21 2015. IEEE Computer Society Press.

18

[28] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages
29–37, Houthalen, Belgium, April 10–13 1990. Springer, Heidelberg, Germany.

[29] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key exchange with
full forward secrecy. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 519–548, Paris, France, April 30 –
May 4 2017. Springer, Heidelberg, Germany.

[30] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In Paul C. van Oorschot, editor,
USENIX Security 2008, pages 45–60, San Jose, CA, USA, July 28 – August 1 2008. USENIX
Association.

[31] ISO. IT security techniques – key management – part 2: Mechanisms using symmetric
techniques, January 2018. https://www.iso.org/standard/73207.html.

[32] Subodh Iyengar and Kyle Nekritz. Building zero protocol for fast, secure mobile con-
nections, 2017. https://code.fb.com/android/building-zero-protocol-for-fast-

secure-mobile-connections/.

[33] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-round protocols for two-party
authenticated key exchange. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors,
ACNS 04, volume 3089 of LNCS, pages 220–232, Yellow Mountain, China, June 8–11 2004.
Springer, Heidelberg, Germany.

[34] Aniket Kate, Greg M. Zaverucha, and Ian Goldberg. Pairing-based onion routing with
improved forward secrecy. ACM Trans. Inf. Syst. Secur., 13(4):29:1–29:32, December 2010.

[35] Werner Koch. The GNU privacy guard. https://gnupg.org/.

[36] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566, Santa Barbara, CA,
USA, August 14–18 2005. Springer, Heidelberg, Germany.

[37] Sebastian Lauer, Kai Gellert, Robert Merget, Tobias Handirk, and Jrg Schwenk. T0RTT:
Non-interactive immediate forward-secret single-pass circuit construction. Proceedings on
Privacy Enhancing Technologies, 2020(2):336–357, 2020.

[38] Zi Lin. TLS Session Resumption: Full-speed and Secure, 2015. https://blog.

cloudflare.com/tls-session-resumption-full-speed-and-secure/.

[39] Joseph K Liu and Duncan S Wong. Solutions to key exposure problem in ring signature.
IJ Network Security, 6(2):170–180, 2008.

[40] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol, 2016. https:

//signal.org/docs/specifications/x3dh/.

[41] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the Association for Computing Machinery,
21(21):993–999, December 1978.

19

[42] Lasse Øverlier and Paul F. Syverson. Improving efficiency and simplicity of tor circuit es-
tablishment and hidden services. In Nikita Borisov and Philippe Golle, editors, PET 2007,
volume 4776 of LNCS, pages 134–152, Ottawa, Canada, June 20–22 2007. Springer, Hei-
delberg, Germany.

[43] DongGook Park, Colin Boyd, and Sang-Jae Moon. Forward secrecy and its application
to future mobile communications security. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000, volume 1751 of LNCS, pages 433–445, Melbourne, Victoria, Australia, Jan-
uary 18–20 2000. Springer, Heidelberg, Germany.

[44] David Pointcheval and Olivier Sanders. Forward secure non-interactive key exchange. In
Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages
21–39, Amalfi, Italy, September 3–5 2014. Springer, Heidelberg, Germany.

[45] Blake Ramsdell. Secure/multipurpose internet mail extensions (S/MIME) version 3.1 cer-
tificate handling, July 2004. RFC3850.

[46] Blake Ramsdell. Secure/multipurpose internet mail extensions (S/MIME) version 3.1 mes-
sage specification, July 2004. RFC3851.

[47] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, IETF,
August 2018.

[48] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for Comput-
ing Machinery, 21(2):120–126, 1978.

[49] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565, Gold Coast, Australia,
December 9–13 2001. Springer, Heidelberg, Germany.

[50] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.

[51] Signal Messenger. Signal messenger website, 2019. https://signal.org/.

[52] Dawn Xiaodong Song. Practical forward secure group signature schemes. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 225–234, Philadelphia,
PA, USA, November 5–8 2001. ACM Press.

[53] Shi-Feng Sun, Amin Sakzad, Ron Steinfeld, Joseph Liu, and Dawu Gu. Public-key punc-
turable encryption: Modular and compact constructions. PKC 2020, 2020. To appear.

[54] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and
Surya Nepal. Practical backward-secure searchable encryption from symmetric puncturable
encryption. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 763–780, Toronto, ON, Canada, October 15–19 2018. ACM
Press.

[55] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg,
and Matthew Smith. SoK: Secure messaging. In 2015 IEEE Symposium on Security and
Privacy, pages 232–249, San Jose, CA, USA, May 17–21 2015. IEEE Computer Society
Press.

20

[56] Jianghong Wei, Xiaofeng Chen, Jianfeng Wang, Xuexian Hu, and Jianfeng Ma. Forward-
secure puncturable identity-based encryption for securing cloud emails. In Kazue Sako,
Steve Schneider, and Peter Y. A. Ryan, editors, Computer Security – ESORICS 2019,
volume 11736 of LNCS, pages 134–150, Luxembourg, September 23–27 2019. Springer
International Publishing.

[57] Nico Williams. [TLS] 0-RTT security considerations (was OPTLS), 2014. https:

//mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE.

[58] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. Privacy, discovery, and authen-
tication for the internet of things. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K.
Katsikas, and Catherine A. Meadows, editors, ESORICS 2016, Part II, volume 9879 of
LNCS, pages 301–319, Heraklion, Greece, September 26–30 2016. Springer, Heidelberg,
Germany.

[59] Mark Zhandry. How to avoid obfuscation using witness PRFs. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 421–448, Tel Aviv,
Israel, January 10–13 2016. Springer, Heidelberg, Germany.

A Glossary of Terms

In this section we provide a description of terms that have been used in literature to describe
aspects of forward security.

Asynchronous Forward Security/Secrecy: Rather than describing a particular property,
these terms have been used to refer to forward security/secrecy in asynchronous commu-
nications [55]. This is the same concept as what we have called non-interactive protocols
throughout this paper.

Eventual Forward Secrecy: This term is used in the context of circuit construction protocols
and was coined by Øverlier and Syverson [42]. They define that eventual forward secrecy
is achieved if forward secrecy is achieved a certain time period after the circuit has been
closed. We remark that the term “secrecy” might be confusing in this context as circuit
construction protocols typically demand more security guarantees such as maintaining the
privacy of a circuit. Hence, we believe that “eventual forward security” captures the same
notion if forward security is seen as a generalisation of forward secrecy (cf. Section 3).
Furthermore, the definition aligns with our category of “delayed forward security” (cf.
Section 5).

Full Forward Secrecy: This term was used by Günther et al. [29] informally as a means to
emphasise their claim that their proposed scheme, using puncturable encryption, does not
suffer any deficiency in comparison with other forms of forward secrecy. Thus it is simply
a synonym for forward secrecy.

Immediate Forward Secrecy: This term is used in the context of circuit construction pro-
tocols and was coined by Øverlier and Syverson [42]. They define that immediate forward
secrecy is achieved if forward secrecy is achieved immediately after the circuit has been
closed. We remark that the term “secrecy” might be confusing in this context as circuit
construction protocols typically demand more security guarantees such as maintaining the
privacy of a circuit. Hence, we believe that “immediate forward security” captures the
same notion if forward security is seen as a generalisation of forward secrecy (cf. Section 3).

21

Furthermore, the definition aligns with our category of “absolute forward security” (cf.
Section 5).

Non-Interactive Forward Security/Secrecy: This term was first used by Adam Back in
an online posting (see discussion in Section 3.1). Like the term “asynchronous forward
secrecy”, this is a general concept, rather than a formal definition, in the same way that we
have referred to non-interactive protocols throughout this paper. Although Back used the
term “non-interactive forward secrecy”, several later authors use “non-interactive forward
security” as a synonym.

Partial Forward Security/Secrecy: When defining adversary capabilities we have implic-
itly assumed that any relevant party can be compromised after the target protocol session
has completed. Some protocols can remain secure if the adversary is restricted to only
compromising a subset of protocol parties, and such protocols are said to provide partial
forward secrecy [43]. As a simple example, suppose we change the basic Diffie–Hellman
protocol (Figure 2) so that one party, say A, uses a long-term public/private key pair
instead of an ephemeral key pair. Then compromise of A will reveal the shared secret,
while compromise of B, who continues to use an ephemeral key, will not. In this paper we
have not considered partial forward secrecy, but the concept can be applied to many of
the examples and definitions we have considered. Several authors used the term “partial
forward security” as a synonym.

Perfect Forward Secrecy: This was the original term used by Günther in the first definition
of forward secrecy [28] and many authors continue to use this term3. However, in common
with other authors we prefer to drop the qualifier “perfect” on the grounds that it is
redundant and potentially misleading due to the connotation with “perfect secrecy”. The
latter implies unconditional security which is usually not achieved with protocols providing
forward secrecy.

Weak Forward Secrecy: This notion, first discussed by Bellare et al. [5], is achieved by a
protocol if the adversary is disallowed from taking an active role in the target session.
As pointed out by Krawczyk [36], this property is often achieved by two-message key
exchange protocols even if a stronger notion is missing. This has been misinterpreted by
many researchers to mean that no two-message protocol can achieve forward secrecy, but
this is false [33].

Strong Forward Secrecy: The first usage of this term [7] seems to have been a form of
forward secrecy where the adversary, upon compromise of a party, obtains not only long-
term keys but also internal memory of the party. This meaning has been prominent in
analysis of group key exchange and is similar to our stronger adversaries discussed at the
end of Section 5. This term has also been used by some authors as a synonym for forward
secrecy, to differentiate it from weak forward secrecy.

3Although Günther was writing in the context of identity-based encryption, the same terminology has contin-
ued to be used in the literature in the ordinary public key setting.

22

