Spectral analysis of ZUC-256

Jing Yang1, Thomas Johansson1 and Alexander Maximov2

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
\{jing.yang,thomas.johansson\}@eit.lth.se
2 Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. In this paper we develop a number of generic techniques and algorithms in spectral analysis of large linear approximations for use in cryptanalysis. We apply the developed tools for cryptanalysis of ZUC-256 and give a distinguishing attack with complexity around 2^{236}. Although the attack is only 2^{20} times faster than exhaustive key search, the result indicates that ZUC-256 does not provide a source with full 256-bit entropy in the generated keystream, which would be expected from a 256-bit key. To the best of our knowledge, this is the first known academic attack on full ZUC-256 with a computational complexity that is below exhaustive key search.

Keywords: ZUC-256 · Stream Cipher · 5G Mobile System Security.

1 Introduction

ZUC is the stream cipher being used as the core of 3GPP Confidentiality and Integrity Algorithms UEA3 & UIA3 for LTE networks [ETS11a]. It was initially proposed in 2010 as the candidate of UEA3 & UIA3 for use in China. After external and public evaluation and two ZUC workshops, respectively in 2010 and 2011, it was ultimately accepted by 3GPP SA3 as a new inclusion in the LTE standards with a 128-bit security level, i.e., the secret key is 128-bit.

Like most stream ciphers, ZUC has a linear part, which is an LFSR, and a non-linear part, called the F function, to disrupt the linearity of the LFSR contribution. But different from common stream ciphers, which are often defined over binary fields $GF(2)$ or extension fields of $GF(2)$, the LFSR in ZUC is defined over a prime field $GF(p)$ with $p = 2^{31} - 1$ while the registers in F are defined over $GF(2^{32})$. There is a bit-reorganization (BR) layer between the LFSR and F serving as a connection layer to extract bits from the LFSR and transform them into F. Thus normal cryptanalysis against common stream ciphers can not be directly applied to ZUC and till now, there is no efficient cryptanalysis of ZUC.

Below are some of the attempts trying to give cryptanalysis results on ZUC.

After ZUC was proposed, some evaluation and research work were conducted to evaluate the cipher [ETS11b], [SB10], [WHN+12]. A certain weakness in the initialization phase was found in [SB10], [WHN+12] and this directly resulted in an improved version. After the adoption as the UEA3 & UIA3 standard, there were also various works trying to give some cryptanalysis, but none of them resulted in an efficient attack. A guess-and-determine attack to ZUC is proposed in [GDL13] based on half-words, i.e. 16-bit blocks, by splitting the registers in LFSR and FSM into high and low 16 bits, where some carry bits are introduced due to the splitting. It requires 6 keystream words and the complexity is $O(2^{202})$, which is much worse than exhaustive key search. In [ZFL11], a differential trail covering 24 rounds of the initialization stage was given, but this does not pose a threat since ZUC has 32 initialization rounds. [LMVH15] also showed that weak inputs do not
exist when ZUC is initialized with 32 rounds. These works all indirectly indicate that ZUC is resistant against common attacks.

In January 2018, ZUC-256 was announced as the 256-bit version of ZUC [Tea18], to satisfy the 256-bit security level requirement for 5G from 3GPP [3GP18]. Compared to ZUC-128, the structure of ZUC-256 keeps the same, while only the initialization and message authentication code generation phases are improved to match with the 256-bit security level. Subsequently, in July 2018, a workshop on ZUC-256 was held and some general cryptanalysis were presented, but no obvious weaknesses of ZUC-256 were found. To conclude, until now, there are no efficient cryptanalysis methods succeeding to reduce the claimed security levels of ZUC (128-bit or 256-bit).

In this paper, we propose a distinguishing attack on ZUC-256 with computational complexity around 2^{236}, by linearly approximating the non-linear part F and the different finite fields between the LFSR and F. The important techniques we employ to find a good linear approximation and compute the bias are called spectral tools here for cryptanalysis, using e.g., the Walsh Hadamard Transform (WHT) and the Discrete Fourier Transform (DFT). The spectral tools for cryptanalysis are widely used in linear cryptanalysis to, for example, efficiently compute the distribution or the bias of a linear approximation, since there exist fast algorithms for WHT and DFT which can reduce the computation complexity from $O(N^2)$ to $O(N \log N)$ [MJ05], [LD16]. It is also widely used to investigate the properties of Boolean functions and S-boxes, which can be considered as vectorial Boolean functions. These include properties like correlation, autocorrelation, propagation characteristics and value distributions, etc [NH07], [HN12]. We explore the use of WHT and DFT and find new results about efficiently computing the bias or correlations. Importantly, we show how a permutation or a linear masking in the time domain would affect the spectrum points in the frequency domain for widely used operations, such as \oplus, \ominus, and S-boxes. Based on that, we give a number of further results on how to choose linear maskings in the time domain by considering the behavior of noise variables in the frequency domain such that a decent approximation with a large bias can be found.

We employ the new findings in spectral analysis of ZUC-256 and use them to develop a distinguishing attack. Even though the distinguishing attack is not a very strong one, it indicates that ZUC-256 can not achieve the full 256-bit security level under this case.

The rest of this paper is organized as follows. We first give the general design and structure of ZUC-256 in Section 2 and then the spectral analysis techniques are given in Section 3. After that, we in Section 4 give a distinguishing attack on ZUC-256 using the spectral tools. Specifically, we first derive a linear approximations in Subsection 4.1; and then we show how efficiently derive the bias of the approximation in Subsection 4.2 ∼ Subsection 4.4 by using the spectral analysis and a technique called “bit-slicing technique”; and lastly we give the distinguishing attack based on the derived approximation. In Section 5, we conclude the paper.

2 Description of ZUC-256

In this section, we present a brief description of the ZUC-256 algorithm. Basically, the structure of ZUC-256 is exactly the same as that of ZUC-128, except that the length of the secret key K is changed to be 256-bit and the loading process of key and IV is changed correspondingly [Tea18]. ZUC-256 takes the 256-bit secret key K and a 128-bit public-known initial vector IV as input and produces an output sequence usually called keystream. In this paper, we use $z^{(t)}$ to denote the generated keystream block at time instance t for $t = 1, 2, \ldots$. In ZUC-256, each keystream block is a 32-bit word, so we write $z^{(t)} \in GF(2^{32})$, $t = 1, 2, \ldots$. Furthermore, each (K, IV) pair should produce a unique keystream sequence, and in practice K is usually fixed and the IV value varies to generate many different keystream sequences.
The overall schematic of the ZUC-256 algorithm is shown in Figure 1. It consists of three layers: the top layer is a linear feedback shift register (LFSR) of 16 stages; the bottom layer is a nonlinear block which is called F function; while the middle layer, called bit-reorganization (BR) layer, is a connection layer between the LFSR and F. Now we would give some details of the three layers, and for more details refer to the original design document [ETS11a].

The LFSR Layer

The LFSR part consists of 16 cells denoted $(s_0, s_1, ..., s_{15})$ each holding 31 bits and giving 496 bits in total. Every value in the cells is an element from $GF(p)$, where $p = 2^{31} - 1$ and it can be written in a binary representation as

$$x = x_0 + x_1 2 + ... + x_{30} 2^{30}.$$

Then $2^k \cdot x \mod p$ is computed as $x \ll 31 k$, where $\ll 31 k$ is the left 31-bit circular shift by k steps. This makes the implementation quite efficient. One can see that the LFSR in ZUC is operating over a prime field instead of $GF(2)$ or $GF(2^n)$ as most stream ciphers. This makes it insusceptible to common linear cryptanalysis and until now, there is no efficient cryptanalysis on ZUC. The feedback polynomial of the LFSR is given by:

$$F(x) = -x^{16} + 2^{15} x^{15} + 2^{17} x^{13} + 2^{21} x^{10} + 2^{20} x^4 + (1 + 2^8) x^0 \equiv 0 \mod p.$$

$F(x)$ is a primitive polynomial over $GF(p)$ and this ensures that the LFSR sequence is an m-sequence with period $p^{16} - 1 \approx 2^{496}$.

If we denote the LFSR state at clock t as $(s_0^{(t)}, s_1^{(t)}, ..., s_{15}^{(t)})$, then at the next clock $t + 1$, $s_i^{(t)}$ is shifted to $s_i^{(t+1)}$, i.e., $s_i^{(t)} = s_{i-1}^{(t+1)}$, for $1 \leq i \leq 15$, while $s_{15}^{(t+1)}$ is updated by:

$$s_{15}^{(t+1)} = 2^{15} s_{15}^{(t)} + 2^{17} s_{13}^{(t)} + 2^{21} s_{10}^{(t)} + 2^{20} s_4^{(t)} + (1 + 2^8) s_0^{(t)} \mod p.$$
If $s_{15}^{(t+1)} = 0$, then set $s_{15}^{(t+1)} = p$ (i.e., the representation of element 0 is the binary representation of p).

The BR Layer

The BR layer is the connection layer between the LFSR and F. It extracts 128 bits from the LFSR and forms 4 32-bit words X_0, X_1, X_2, X_3 with the first three being fed to F and the last one xor-ed with the output of F to finally generate the keystream symbol. For a cell s_i in the LFSR, the low and high 16 bits are extracted as:

$$s_{iL} = s_i[0...15],$$
$$s_{iH} = s_i[15...30].$$

Then the X_i's are constructed as follows:

$$X_0 = s_{15H}||s_{14L},$$
$$X_1 = s_{11L}||s_{9H},$$
$$X_2 = s_{7L}||s_{5H},$$
$$X_3 = s_{2L}||s_{0H},$$

where $||$ denotes the concatenation of two 16-bit integers into a 32-bit one. Then X_0, X_1, X_2 will be sent into F to update the registers there.

The Non-linear Layer F

The nonlinear layer F has 2 internal 32-bit registers $R1$ and $R2$ updated through linear and nonlinear operations. It is a compression function taking X_0, X_1, X_2 as the input and producing one 32-bit word which would be used to generate the keystream symbol as below:

$$z^{(t)} = ((R1^{(t)} \oplus X_0) \oplus_{32} R2^{(t)}) \oplus X_3.$$

Then F is updated by:

$$T_1 = R1^{(t)} \oplus_{32} X_1,$$
$$T_2 = R2^{(t)} \oplus X_2,$$
$$R1^{(t+1)} = S \ast L_1(T_1L||T_2H),$$
$$R2^{(t+1)} = S \ast L_2(T_2L||T_1H).$$

Here S is a 32 × 32 S-box composed of 4 juxtaposed S-boxes $S = (S_0, S_1, S_0, S_1)$, where S_0 and S_1 are two different 8-to-8 S-boxes. Also, L_1, L_2 are two 32 × 32 linear transforms which are defined as follows:

$$L_1(X) = X \oplus (X \ll_{32} 2) \oplus (X \ll_{32} 10) \oplus (X \ll_{32} 18) \oplus (X \ll_{32} 24),$$
$$L_2(X) = X \oplus (X \ll_{32} 8) \oplus (X \ll_{32} 14) \oplus (X \ll_{32} 22) \oplus (X \ll_{32} 30).$$

Just like other stream ciphers, ZUC-256 uses an initialization phase before generating a keystream sequence, to fully mix the secret key and IV. During the initialization phase, the key and IV are loaded into the LFSR register and the cipher runs 32 times with the output from the F function being fed back to the LFSR instead of producing keystream symbols. After the initialization, the cipher enters the keystream mode, with the first output word from F being discarded and the following outputs forming the keystream by xoring with X_3. Since the attacks in this paper only use the keystream mode, we do not give the details of the intilization mode, but refer to the design document for the details [ETS11a], [Tea18].
3 Spectral tools for cryptanalysis

In multidimensional linear cryptanalysis one often has to deal with large distributions, and be able to find good approximations with large biases that can further be used in an attack. In this section, we give several techniques in spectral analysis which help to efficiently explore a good linear approximation and compute its bias. We will later use most of the presented techniques in cryptanalysis of ZUC-256.

Notations. Let $X^{(1)}, X^{(2)}, \ldots, X^{(t)}$ be t independent random variables taking values in an alphabet of n-bit integers, such that the total size of the alphabet is $N = 2^n$. For a random variable X, let the sequence of X_k, $k = 0, 1, \ldots, N - 1$ represent the distribution table of X, i.e., $X_k = \Pr\{X = k\}$, or a sequence of occurrence values in the time domain, e.g. X_k = the number of occurrences of $X = k$. If such a sequence of numbers would be normalized by dividing each entry by the total number of occurrence, we would talk about an empirical distribution or a type [CT12].

We will denote by $W(X)$ the N-point Walsh-Hadamard Transform (WHT) and by $F(X)$ the N-point Discrete Fourier Transform (DFT). Individual values of the transforms will be addressed by $W(X)_k$ and $F(X)_k$, for $k = 0, 1, \ldots, N - 1$. We will denote by \hat{X}_k the spectrum value of point k, i.e., $\hat{X}_k = W(X)_k$ or $\hat{X}_k = F(X)_k$, depending on the context. The values \hat{X}_k, for $k = 0, 1, \ldots, N - 1$, in the frequency domain constitute the spectrum of X.

WHT and DFT. The DFT is defined as:

$$\hat{X}_k = F(X)_k = \sum_{j=0}^{N-1} X_j \cdot e^{-\frac{2\pi}{N} kj}, \text{ for } k = 0, 1, \ldots, N - 1,$$

where $\omega_0 = e^{-\frac{2\pi}{N}}$ is a primitive N-th root of unity. Every point value $F(X)_k$ is a complex number with the real part $\text{Re}(\cdot)$ and imaginary part $\text{Im}(\cdot)$, i.e., $\hat{X}_k = \text{Re}(\hat{X}_k) + i \cdot \text{Im}(\hat{X}_k)$. WHT is a special variant of DFT and it is defined as

$$\hat{X}_k = W(X)_k = \sum_{j=0}^{N-1} X_j \cdot (-1)^{kj},$$

where $k \cdot j$ now denotes the bitwise dot product of the binary representation of the n-bit indexes k and j. I.e., one can rewrite the dot product in the vectorial binary form:

$$k \cdot t = (k_0, k_1, \ldots, k_{n-1}) \cdot (j_0, j_1, \ldots, j_{n-1})^T \mod 2,$$

where k_i, j_i are the i-th bits of the binary form of k and j, for $i = 0, 1, \ldots, n - 1$. Every $W(X)_k$ has only a real part which is an integer.

The squared spectrum density of a point k is derived by $|\hat{X}_k|^2 = \text{Re}(\hat{X}_k)^2 + \text{Im}(\hat{X}_k)^2$. The point $k = 0$ in the spectrum represents the sum of all values in the time domain for both WHT and DFT cases, i.e.,

$$|\hat{X}_0| = \sum_{j=0}^{N-1} X_j. \quad (1)$$

There are many well-known fast algorithms computing DFT or WHT in time $O(N \log N)$ and this makes the spectral transform widely used in cryptanalysis and in many other areas as well.

Convolutions. A typical operation in linear multidimensional cryptanalysis is to compute the distribution of a noise variable which is the sum (\oplus or \oplus) of other noise variables (referred to as sub-noise variables). While computing the distribution directly
in the time domain might be complicated, the complexity could be largely reduced when using DFT and WHT [MJ05] through:

\[
(X^{(1)} \boxplus X^{(2)} \oplus \ldots \oplus X^{(t)})_k = \mathcal{F}^{-1}(\mathcal{F}(X^{(1)}) \cdot \mathcal{F}(X^{(2)}) \cdot \ldots \cdot \mathcal{F}(X^{(t)}))_k,
\]

\[
(X^{(1)} \boxplus X^{(2)} \oplus \ldots \oplus X^{(t)})_k = \mathcal{W}^{-1}(\mathcal{W}(X^{(1)}) \cdot \mathcal{W}(X^{(2)}) \cdot \ldots \cdot \mathcal{W}(X^{(t)}))_k,
\]

where \(\cdot \) is the point-wise multiplication of two spectrum vectors. In particular, the overall complexity is now \(O(t \cdot N \log N) \).

3.1 Precision problems and the bias in the frequency domain

The bias of a multidimensional noise variable \(X \) is often expressed in the time domain as the Squared Euclidean Imbalance (SEI), which is also called the capacity in some papers [HN12], defined in [BJV04] as follows:

\[
\epsilon(X) = N \sum_{i=0}^{N-1} (X_i/f - 1/N)^2,
\]

where \(f = \sum_{i=0}^{N-1} X_i \) is the normalization factor, used in case that the distribution table of \(X \) is not normalized. For example, the table in the time domain for \(X \) stores the number of occurrences of each entry. If the distribution table of \(X \) is already normalized, then \(f = 1 \) as expected for the sum of all probabilities.

It is known that to distinguish a noise distribution \(X \) with the above bias \(\epsilon(X) \) from random using hypothesis testing, one needs to collect \(O(1/\epsilon(X)) \) samples from this distribution [BJV04], [HG97].

Precision problems. Assume that we want to compute the bias of the noise variable \(X \), which is the sum (\(\ominus \) or \(\boxplus \)) of \(t \) other sub-noises \(X^{(1)}, \ldots, X^{(t)} \) using the convolution formulae given in Equation 2. If the expected bias is \(\epsilon(X) \approx 2^{-p} \), then in practice we would expect that some probability values will be around \(2^{-n} \pm 2^{-p/2-n/2} \), and then a float data type should be able to maintain at least \(O(|p/2+n/2-n|) \) bits of precision for every value of \(X_k \) in the time domain, conditioned that the float data type has the exponent field (e.g., data types float and double in standard C).

For example, when \(n = 32 \) bits and we want to compute the bias \(\epsilon > 2^{-512} \) (\(p = 512 \)) then the underlying data types for float or integer values should hold at least 240 bits of precision. This forces a program to using long number arithmetics (e.g., BIGNUM, Quad, etc), which requires larger RAM and HDD storage, and expensive computation time.

In the following, we show that the bias of \(X \) may be computed in the frequency domain without having to switch to the time domain, and the required precision may fit well into the standard type double in C/C++.

Theorem 1. For an \(n \)-bit random variable \(X \) with either normalized or non-normalized probability distribution \((X_0, X_1, \ldots, X_{N-1})\) and its spectrum \((\hat{X}_0, \hat{X}_1, \ldots, \hat{X}_{N-1})\), computed either in DFT or WHT, the bias \(\epsilon(X) \) can be computed in the frequency domain as the sum of the normalized squared spectrum density of each nonzero point, where the zero point, \(\hat{X}_0 \), serves as the normalization factor, i.e.,

\[
\epsilon(X) = |\hat{X}_0|^2 \sum_{i=1}^{N-1} |\hat{X}_i|^2.
\]

Proof. From Equation 1 we get that the normalization factor is \(f = |\hat{X}_0| \). The SEI expression can be written as \(\epsilon(X) = N \sum_{i=0}^{N-1} (X_i/f - U_i)^2 \), where \(U \) is the uniform distribution. According to the Parseval’s theorem, we can derive \(\epsilon(X) = N \sum_{i=0}^{N-1} |X_i/f -
\[U_i^2 = N \cdot \frac{1}{N} \sum_{i=0}^{N-1} |\mathcal{F}(X/f - U_i)|^2 = \sum_{i=0}^{N-1} |\hat{X}_i/f - \hat{U}_i|^2. \] Since \(\hat{X}_0 = f, \hat{U}_0 = 1, \) and \(\hat{U}_k = 0 \) for \(k = 1, 2, \ldots, N - 1, \) we get that \(\epsilon(X) = \sum_{i=1}^{N-1} |\hat{X}_i/f|^2, \) from which the proof follows.

Theorem 1 means that the required precision of values in the frequency domain can be as small as just a few bits, but the exponent value must be correct and preserved. In C/C++ it is therefore good enough to store spectrum of a distribution in type \texttt{double} which has 52 bits of precision and the smallest exponent it can hold is \(2^{-1023}. \) We can barely imagine cryptanalysis where the expected bias will be smaller than that, and if it will, we can always change the factor \(\hat{X}_0 \) to a larger value.

A similar technique to compute the bias in the frequency domain has been given in [BJV04], but the probability sequence in the time domain there is the probability differences to the uniform distribution, while the probability sequence here is the original probabilities of variable \(X. \) By this, we could further directly compute the bias of the sum(\(\oplus \) or \(\ominus \)) of several sub-noises in the frequency domain by combining Theorem 1 and Equation 2: the bias of the \(\ominus \)-sum of several sub-noises can be computed by

\[
\epsilon(X^{(1)} \oplus \ldots \oplus X^{(t)}) = \frac{1}{t} \sum_{k=1}^{N-1} |\mathcal{F}(X^{(1)})_k|^2 \cdot \ldots \cdot |\mathcal{F}(X^{(t)})_k|^2 = \frac{1}{t} \sum_{k=1}^{N-1} \left(\prod_{i=1}^{t} |\mathcal{F}(X^{(i)})_k| \right)^2
\]

and a similar result holds under the \(\oplus \)-sum for the WHT case. Note, if we convert each spectrum value \(\mathcal{F}(X^{(i)})_k \) to \(\log_2(|\mathcal{F}(X^{(i)})_k|^2) \) (and, similarly, for the WHT case), then arithmetics in the frequency domain, such as in Equation 4, can change from computing products to computing sums. This can give additional speed up, RAM and storage savings. Later we will show how these results help to find a good approximation.

The main observation and motivation for developing further algorithms: In linear cryptanalysis of stream ciphers where we have an FSM and an LFSR, the approach is usually to first approximate the FSM and get the noise variable \(X, \) then the LFSR contribution in the linear approximation is canceled out by combining several (say \(t \)) time instances, thus only the noise terms remain. Thus, the final noise is the \(t \)-folded noise, written as \(t \times X \) (i.e., the total noise is the sum of \(t \) independent noise variables that follow the same distribution as \(X, \)) for which the bias is \(\epsilon(t \times X). \) Normally, an attacker tries to maximize this value.

One of the important observations from Equation 4 is that if there is a peak (maximum) value \(|\hat{X}_k| \) in the spectrum of \(X \) at some nonzero position \(k, \) then that peak value will be the dominating contributor to the bias \(\epsilon(t \times X), \) as it will contribute \(|\hat{X}_k|^{2t}, \) while other points in the spectrum of \(X \) will have a much less or even negligible contribution to the total bias as \(t \) grows.

This important observation also affects the case when trying to align the spectral points from several sub-noises with different distributions to achieve a large bias. We should actually try to move the peak spectrum values of each of those sub-noises such that they are aligned at some nonzero index \(k. \) Then the product of those peak values will result in a large total bias value. This motivates us to develop further algorithms to rotate or linearly mask variables and align them at a expected or desired spectrum location \(k. \) Below are some new findings and algorithms of WHT or DFT, which help to find a good linear approximation for common operations in the nonlinear part of a stream cipher, such as \(\oplus, \ominus, \) S-boxes, etc.
3.2 Algorithms for WHT type approximations

Consider the expression
\[X = M^{(1)}X^{(1)} \oplus M^{(2)}X^{(2)} \oplus \ldots \oplus M^{(t)}X^{(t)} , \]
where distribution tables of \(X^{(i)} \)'s are known, and the attacker can freely select \(n \times n \) full-rank Boolean matrices \(M^{(i)}, i = 1 \ldots t \), we want to find a method to efficiently search for the choices of \(M^{(i)} \)'s to maximize the total bias \(\epsilon(X) \). Below we first give a theorem and then an algorithm to achieve this based on the theorem.

Theorem 2. Given a distribution table \(X \) and an \(n \times n \) full-rank Boolean matrix \(M \) we have
\[W(M \cdot X)_k = W(X)_{k \cdot M} \]

Proof. Note that \(Pr\{M \cdot X = j\} = Pr\{X = M^{-1} \cdot j\} \), then we have \(W(M \cdot X)_k = \sum_{j=0}^{N-1} X_{M^{-1} \cdot j}(-1)^{k \cdot j} \cdot \sum_{i=0}^{N-1} X_{i}(-1)^{M \cdot i} = W(X)_{k \cdot M} \).

Note that the left-side matrix multiplication \(M \cdot X \) is switched to the right-side multiplication \(k \cdot M \).

We want to maximize \(\epsilon(X) \) in Equation 5 and we know that if the spectrum values of \(X^{(i)} \)'s are aligned after linear masking of \(M^{(i)} \)'s, we could achieve the maximum bias. By “aligned” we mean that the largest spectrum densities of each \(X^{(i)} \) are at the same location, and this holds for the second largest, the third largest spectrum densities and so on. But in practice, it is unlikely to achieve such a perfect alignment. Instead, we can try to align \(n \) large spectrum densities and thus achieving a decent bias. Algorithm 1 below can be used to achieve this based on Theorem 2.

Algorithm 1 Find \(M^{(1)}, \ldots, M^{(t)} \) that maximize spectral points of \(X \) at \(n \) indexes \(K \)

Input The distribution of \(X^{(i)} \) and the index matrix \(K \), which must be an \(n \times n \) full-rank Boolean matrix where each row \(K_{i,*} \) is a binary form of the \(i \)-th spectrum index where we want the best alignment to happen.

Output The \(n \times n \) full-rank Boolean matrices \(M^{(1)}, M^{(2)}, \ldots, M^{(t)} \)

1: procedure \textsc{WHTMatrixAlign}(\(K, X^{(1)}, \ldots, X^{(t)} \))
2: \hspace{0.5cm} \textbf{for} \(q = 1, \ldots, t \) \textbf{do}
3: \hspace{1cm} Compute \(W = W(X^{(q)}) \)
4: \hspace{1cm} Let \(\lambda_1, \lambda_2, \ldots, \lambda_{N-1} \) be sorted indexes such that \(|W_{\lambda_i}| \geq |W_{\lambda_j}|, \ j < i \)
5: \hspace{1cm} Construct the \(n \times n \) Boolean matrix \(A \) in a greedy approach as follows:
6: \hspace{1cm} Set a variable \(l = 1 \) and an \(n \times n \) Boolean matrix \(A = 0 \)
7: \hspace{1cm} \textbf{for} \(i = 0, 1, \ldots, n-1 \) \textbf{do}
8: \hspace{1.5cm} \textbf{do}
9: \hspace{2cm} Set the \(i \)-th row of \(A \) as \(A_{i,*} = \lambda_l \)
10: \hspace{2cm} \(l := l + 1 \)
11: \hspace{1.5cm} \textbf{while} \(\text{rank}(A) \neq (i + 1) \)
12: \hspace{1cm} Then we want that \(K \cdot M^{(q)} = A \), from which we derive \(M^{(q)} = K^{-1} \cdot A \).

In the above algorithm we do not really have to sort and find all \(N-1 \) indexes of \(\lambda \), it is most likely that the inner loop will use just a bit more than \(n \) values of the first “best” \(\lambda \)'s. Thus, it is enough to only collect the best \(c \cdot n \) indexes, for some small \(c = 2, 3, 4 \), out of which the full-rank matrix \(A \) can be constructed. We note that the algorithm does not necessarily gives the best overall bias, but it guarantees that at least \(n \) points in the spectrum of \(X \) will have the largest possible peak values.
Theorem 3. Then we have:

\[k \text{ where } \frac{1}{2} \max_{i} \|B_{(S(x))}^{[k]}\|^{2} \text{ is the scalar product of two binary vectors, i.e., } k \cdot S(x) = \bigoplus_{i=0}^{n-1} k_{i} \cdot S(x)_{i}, \text{ and } 1/N \text{ is the normalization factor. Such a combination is called a component of the S-box, and for a well-chosen S-box, every component should have good cryptographic properties. We can derive the following results.}

Theorem 3. For a given S-box \(S(x) \) and a full-rank Boolean matrix \(Q \) we have

\[\mathcal{W}(S(x) \oplus Q \cdot x)_{k} = \mathcal{W}(B_{(S(x))}^{[k]})_{k} Q. \]

Proof. Let \(X \) be a non-normalized (empirical) noise distribution of the expression \((S(x) \oplus Q \cdot x) \), where every \(X_{i} \) is the number of different values of \(x \) for which \(i = S(x) \oplus Q \cdot x \). Then we have:

\[\mathcal{W}(S(x) \oplus Q \cdot x)_{k} = \frac{1}{N} \sum_{j=0}^{N-1} X_{j} \cdot (-1)^{k \cdot j} = \frac{1}{N} \sum_{x=0}^{N-1} (-1)^{k \cdot (S(x) \oplus Q \cdot x)} = \frac{1}{N} \sum_{x=0}^{N-1} B_{(S(x))}^{[k]} \cdot (-1)^{k \cdot Q \cdot x}, \]

from which the result follows, since the last term is exactly \(\mathcal{W}(B_{(S(x))}^{[k]})_{k} Q. \)

Theorem 3 can now be used to derive a matrix \(Q \) such that at least \(n \) points in the noise spectrum will have peak values (thus, making the total bias large). Basically, we first search for the \(> n \) best one-dimensional linear masks and then we build a matrix \(Q \) that contains these best peak values in the spectrum, see Algorithm 2 for details.

In Algorithm 2, the choice of the parameter \(c \) should be such that we do not need to generate final rows of \(K \) and \(A \) randomly. The algorithm does not guarantee to get the maximum possible overall bias, but it guarantees that at least the maximum possible peak value will be present in the noise spectrum, which would allow to get a fairly large bias in the end. The complexity is \(O(N^{2} \log N) \), but in practice there are usually other sub-noises that depend solely on \(k \), which can be used to select a subset of “promising” \(k \) values for actual probing of the total noise spectrum.

Other useful formulae on spectral analysis of S-boxes can be derived based on Theorem 2 and Theorem 3.
Algorithm 2 Find Q that maximizes n spectral points of $S(x) \oplus Q \cdot x$

Input The S-box $S(x)$

Output The $n \times n$ full-rank Boolean matrix Q

1: procedure WHTSBOX APPROXIMATION($S(x)$)
2: \[\text{Let } \Phi \text{ be the sorted list of maximum } c \cdot n \text{ (for some small } c \approx 4) \text{ best triples } (k, \lambda, \omega) \]
3: \[\text{sorted by the magnitude of } \omega, \text{ where } k \text{ is the index of the binary function of the S-box, } \]
4: \[\lambda \text{ denotes the index of the spectrum points and } \omega \text{ is the corresponding spectrum value.} \]
5: \[\text{If the list is full and we want to add a new triple then the last (worst) list entry is} \]
6: \[\text{removed.} \]
7: \[\text{for } k = 1, \ldots, N - 1 \text{ do} \]
8: \[\text{Compute } W = W(B_{S(x)}^{[k]}), \text{ where } B_{S(x)}^{[k]} = 1/N \cdot (-1)^{k \cdot S(x)} \]
9: \[\text{for } \lambda = 1, \ldots, N - 1 \text{ do} \]
10: \[\text{Consider the triple } (k, \lambda, \omega = |W_\lambda|). \text{ If } \omega \text{ is larger than in the worst triple} \]
11: \[\text{in } \Phi, \text{ then add } (k, \lambda, \omega = |W_\lambda|) \text{ to the list.} \]
12: \[\text{From the list } \Phi \text{ use the greedy approach to construct } n \times n \text{ full-rank Boolean} \]
13: \[\text{matrices } K \text{ and } A, \text{ similar to how it was done in Algorithm 1.} \]
14: \[\text{Set } l = 0 \]
15: \[\text{for } i = 0, 1, \ldots, n - 1 \text{ do} \]
16: \[\text{if } l = |\Phi| \text{ then} \]
17: \[\text{exit from the for-loop} \]
18: \[\text{Set the } i \text{th row of } K \text{ as } K_{i,*} = \Phi(l).k \]
19: \[\text{Set the } i \text{th row of } A \text{ as } A_{i,*} = \Phi(l).\lambda \]
20: \[\text{while } \text{rank}(K) \neq (i + 1) \text{ or } \text{rank}(A) \neq (i + 1) \]
21: \[\text{Set } Q = K^{-1}A. \]

Corollary 1. Let M, P, Q be $n \times n$ full-rank Boolean matrices, and let $S(x)$ be a bijective S-box over n-bit integers. Then

$$W(MS(Px) \oplus Qx)_{k} = W(M(S(x) \oplus M^{-1}QP^{-1}x))_{k} = W(S(x) \oplus M^{-1}QP^{-1}x)_{k,M}$$

(6)

$$= W(B_{S(x)}^{[k,M]}_{M^{-1}QP^{-1}}) = W(B_{S(x)}^{[k,M]}_{M^{-1}QP^{-1}})_{k,M}.$$ (7)

$$W(MS(Px) \oplus Qx)_{k} = W(Mx \oplus PQ^{-1}S^{-1}(x))_{k} = W(B_{S^{-1}(x)}^{[k,PQ^{-1}]})_{k,M}.$$ (8)

$$W(MS(x) \oplus Qx)_{k} = W(S(x) \oplus PQ^{-1}x)_{k,M} = W(B_{S(x)}^{[k,M]}_{M^{PQ^{-1}}})_{k,M}.$$ (9)

(10)

Theorem 4 (Linear transformation of S-boxes). Let us consider the following k-th binary function at its spectrum point $\lambda = k \cdot M$, for some full-rank Boolean matrix M, where the original S-box $S(x)$ is linearly transformed with other full-rank Boolean matrices R and Q:

$$W(B_{RS(Qx)}^{[k]}_{Qx})_{\lambda}$$

(11)

We want to find a set of the best m triples $\{(k, \lambda, \epsilon)\}$ sorted by the maximum bias ϵ. Assume we have a fast method to find best m triples $\{(k', \lambda', \epsilon')\}$ for $W(B_{S(x)}^{[k']}_{S(x)})_{\lambda'}$, instead, then that set can be converted to $\{(k, \lambda, \epsilon)\}$ as follows:

$$\{(k, \lambda, \epsilon)\} = \{(k', R^{-1}, \lambda', Q, \epsilon)\}$$
Proof. \(W(B_{RS(Qx)}^{[k]})_{\lambda} = W(RS(Qx) \oplus Mx)_k = W(RS(x) \oplus MQ^{-1}x)_k = W(B_{\{S(x)\}}^{[k,R]})_{k \cdot MQ^{-1}} \), from which the result follows.

\[\square \]

Theorem 5 (S-box as a disjoint combination). Let us consider an \(n \)-bit S-box constructed from \(t \) smaller \(n_1, n_2, \ldots, n_t \)-bit S-boxes \(S_1(x_1), S_2(x_2), \ldots, S_t(x_t) \), such that

\[S(x) = (S_1(x_1) \quad S_2(x_2) \ldots \quad S_t(x_t))^T, \]

where the \(n \)-bit input integer \(x \) is split into \(t \) \(n_i \)-bit (\(n = \sum_i n_i \)) disjoint sub-values as \(x = (x_1|x_2|\ldots|x_t) \). Let us also split indexes \(k, \lambda \) in a similar way as \(k = (k_1|k_2|\ldots|k_t) \) and \(\lambda = (\lambda_1|\lambda_2|\ldots|\lambda_t) \). Then we have the following result

\[W(B_{\{S(x)\}}^{[k]})_{\lambda} = \prod_{i=1}^{t} W(B_{\{S_i(x_i)\}}^{[k_i]})_{\lambda_i}, \]

Proof. Since all \(x_i \) are independent from each other, the combined bias at any point \(\lambda \) is the product of sub-biases at corresponding \(\lambda_i \)'s for each \(k_i \)-th binary function of the corresponding S-box \(S_i(x_i) \), which can be proved by below.

\[
\prod_{i=1}^{t} W(B_{\{S_i(x_i)\}}^{[k_i]})_{\lambda_i} = \frac{1}{N_1 \cdot N_2 \ldots N_t} \sum_{x_1=0}^{N_1-1} \ldots \sum_{x_t=0}^{N_t-1} (-1)^{k_1 S_1(x_1) \oplus \lambda_1 x_1} \cdots (-1)^{k_t S_t(x_t) \oplus \lambda_t x_t} = \frac{1}{N} \sum_{x=0}^{N-1} (-1)^{k S(x) \oplus \lambda x} = W(B_{\{S(x)\}}^{[k]})_{\lambda}. \]

\[\square \]

Theorem 4 and **Theorem 5** pave the way to compute the bias of any pair \((k, \lambda)\) in Equation 11 efficiently in time \(O(t) \), without even having to construct a large \(n \)-bit distribution of the S-box approximation (e.g., \(X = RS(Qx) \oplus Mx \)), given that \(S(x) \) is constructed from smaller S-boxes, which is a common case in cipher designs. We can simply precompute the tables of \(\{(k_i, \lambda_i, \epsilon)\} \) exhaustively, then apply the theorems to compute the bias for a large composite S-box for any pair \((k, \lambda)\). This also leads to an efficient and fast algorithm to search for the best set of triples \(\{(k, \lambda, \epsilon)\} \) in Equation 11. These findings have a direct application in the upcoming cryptanalysis of ZUC-256.

General approach of spectral cryptanalysis using WHT. With the tools and methods developed in this subsection, we can now propose a general framework for finding the best approximation, based on probing spectral indexes.

1. Derive the total noise expression based on basic approximations and S-box approximations. The noise expression may involve \(\oplus \) operations, Boolean matrices multiplications, where some of the matrices can be selected by the attacker.

2. Derive the expression for the \(k \)-th spectrum point of the total noise, using the formulae that we found earlier.

3. Convert expressions such as \(k \cdot M \), where the matrix \(M \) is selectable, to be some parameter \(\lambda \). If there are more selectable matrices then more \(\lambda \)'s can be used.

4. Probe different tuples \((k, \lambda, \ldots)\) to find the maximum peak value in the spectrum for the total noise. The search space for \(k \) may be shrunk by spectrum values of basic approximations.

5. Convert the best found tuple into the selected matrices, and compute the final multidimensional bias using the constructed matrices.
3.3 Algorithms for DFT type approximations

In this section we provide a few ideas on spectral analysis for DFT type convolutions. Although these methods were not used in the presented attack on ZUC-256, they can be quite helpful in the linear cryptanalysis for some other ciphers.

Consider the expression

\[X = c_1 X^{(1)} \oplus c_2 X^{(2)} \oplus \ldots \oplus c_t X^{(t)} \mod N, \] (12)

where the attacker can choose the constants \(c_i\), which must be odd, and \(X^{(i)}\)’s are independent random variables. We will propose the algorithm to find the best combination of the constants \(c_i\) such that the total noise \(X\) will have the best peak spectrum value.

The theorem below would help to decide how to rearrange the spectrum points in the frequency domain to achieve a larger total noise, by multiplication with a constant in the time domain, which is a linear masking.

Theorem 6. For a given distribution of \(X\) and an odd constant \(c\) we have

\[\mathcal{F}(c \cdot X)_k = \mathcal{F}(X)_{k \mod N}, \]

for any spectrum index \(k = 0, 1, \ldots, N - 1\).

Proof. \(\mathcal{F}(c \cdot X)_k = \sum_{n=0}^{N-1} x_n (e^{-i2\pi/n})^{kn} = \sum_{n=0}^{N-1} x_n (e^{-i2\pi/N})^{k \cdot c \cdot n} = \mathcal{F}(X)_{k \mod N}. \)

Corollary 2. Any spectrum value at index \(k = 2^m(1 + 2q), \) for some \(m = 0 \ldots n - 1, q = 0 \ldots 2^{n-m} - 1, \) can only be relocated to another index \(k' \) of the form \(k' = 2^m(1 + 2q'), \) for some \(q' = 0 \ldots 2^{n-m} - 1.\)

Proof. The constant \(c\) is odd and \(c = 1 + 2r, \) for some \(r. \) If \(\mathcal{F}(c \cdot X)_{k'} = \mathcal{F}(X)_k, \) we get that \(c \cdot k' \equiv k \mod N, \) and then \(k' = 2^m(1 + 2q)(1 + 2r)^{-1} \mod N. \)

Corollary 3. Any spectrum value at index \(k = 2^m(1 + 2q), \) for some \(m = 0 \ldots n - 1, q = 0 \ldots 2^{n-m} - 1, \) can be relocated to the index \(2^m \) in the spectrum by applying the constant \(c = 1 + 2q.\)

Proof. \(\mathcal{F}(c \cdot X)_{2^m} = \mathcal{F}((1 + 2q) \cdot X)_{2^m} = \mathcal{F}(X)_{2^m(1 + 2q)} = \mathcal{F}(X)_k. \)

The results above can be used to solve the problem of finding the constants \(c_i\) in Equation 12 such that the spectrum of \(X\) would contain the maximum possible peak value.

Algorithm 3 Find \(c_i\)’s that maximize the peak spectral point of \(X\) in Equation 12

Input The distributions of \(X^{(i)}\), for \(i = 1, 2, \ldots, t.\)

Output The coefficients \(c_i, \) for \(i = 1, 2, \ldots, t.\)

1. **procedure** DFTConstantsAlign(\(X^{(1)}, X^{(2)}, \ldots, X^{(t)}\))
2. Initialize a \(t \times n\) matrix \(\Psi\) with 0, each cell of which contains the pair \((c, \omega).\)
3. \(\text{for } i = 1, \ldots, t \text{ do} \)
4. \(\text{Compute } W = \mathcal{F}(X^{(i)}) \)
5. \(\text{for } m = 0, \ldots, n - 1 \text{ and } q = 0, \ldots, 2^{n-m} - 1 \text{ do} \)
6. \(\text{Set } \omega = |W_{2^m(1 + 2q)}| \)
7. \(\text{if } \omega \geq \Psi_{i,m,\omega} \text{ then set } \Psi_{i,m} = (1 + 2q, \omega) \)
8. \(\text{Set } m' = 0 \text{ and } \omega' = 0 \)
9. \(\text{for } m = 0, \ldots, n - 1 \text{ do} \)
10. \(\text{Compute } \omega = \prod_{i=1} \Psi_{i,m,\omega} \)
11. \(\text{if } \omega > \omega' \text{ then set } m' = m \text{ and } \omega' = \omega \)
12. \(\text{for } i = 1, \ldots, t \text{ do} \)
13. \(\text{Assign } c_i = \Psi_{i,m',\omega} \)
The complexity of the above algorithm is $O(t \cdot N \log N)$.

4 Linear cryptanalysis of ZUC-256

In this section, we perform a linear cryptanalysis on ZUC-256. Normally, the basic idea of linear cryptanalysis is to approximate the nonlinear operations as linear ones and further to find some linear relationships between the generated keystream symbols or between keystream symbols and the LFSR states, and thus respectively resulting into a distinguishing attack and correlation attack. In a distinguishing attack over a binary field $GF(2)$ or extension fields of $GF(2)$, the common way is to find LFSR states at several time instances (usually 3, 4 or 5) which are xor-ed to be zero such that the LFSR contribution in the linear approximation is canceled out while only the noise terms remain which would be biased. This common way, however, does not apply well to ZUC, since the LFSR states in ZUC are defined over a prime field $GF(2)^{(2^{32})}$ which is different to the extension field $GF(2^{16})$ in the F function.

In this section, we describe a more general approach where the expression that we use to cancel out the LFSR states is directly included in the noise expression, which effectively reduces the total noise, i.e., the final bias is larger. This general approach may be used in cryptanalysis of any other stream cipher where an LFSR is involved.

Below we first give our linear approximation of the full ZUC-256, including the LFSR state cancellation process. Then we describe in details how we employ the spectral techniques given in Section 3 and a technique we called “bit-slicing” to efficiently compute state cancellation process. Then we describe in details how we employ the spectral techniques given in Section 3 and a technique we called “bit-slicing” to efficiently compute the bias. Finally, we use the derived linear approximation to launch a distinguishing attack on ZUC-256.

4.1 Linear approximation

We first give the expressions for generating the keystream symbols at time instances t and $t + 1$ as follows,

$$Z^{(t)} = \{(T2^{(t)} \oplus X2^{(t)}) \boxplus ((T1^{(t)} \boxminus X1^{(t)}) \oplus X0^{(t)}) \oplus X3^{(t)}\},$$

$$Z^{(t+1)} = [SL_2(T2^{(t)}) \boxplus (SL_1(T1^{(t)}) \oplus X0^{(t+1)})] \oplus X3^{(t+1)},$$

where \boxminus is the arithmetic subtraction modulo 2^{32} and $(T1', T2') = (T1, T2) \ll 16$ is a cyclic shift 16 bits to the left.

We try to find a four-tuple of time instances t_1, t_2, t_3, t_4 such that,

$$S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} \mod p. \quad (13)$$

From each $S^{(t_j)}$, we define a 32-bit variable $X^{(t_j)}$ which is the concatenation of the low and high 16-bit part of $S^{(t_j)}$. Then one can derive the following relation for $X^{(t_j)}$'s according to Equation 13:

$$X^{(t_1)} \boxplus_{16} X^{(t_2)} = X^{(t_3)} \boxplus_{16} X^{(t_4)} \boxplus_{16} C, \quad (14)$$

where \boxplus_{16} is the 16-bit arithmetic addition, i.e., addition modulo 2^{16}, of the low and high 16-bit halves of $X^{(t_j)}$'s in parallel. Here $C = (C_L || C_H)$ is a 32-bit random carry variable from the approximation of the modulo p, and it can only take the values $C_L, C_H \in \{0, -1, +1\} \mod 2^{16}$, where the values in the low and high parts of C are independent.

Proposition 1. The distribution for C is as follows:

$$Pr\{C_L = 0\} = Pr\{C_H = 0\} \approx \frac{2}{3},$$

$$Pr\{C_L = -1\} = Pr\{C_H = -1\} \approx \frac{1}{6},$$

$$Pr\{C_L = +1\} = Pr\{C_H = +1\} \approx \frac{1}{6}.$$
Proof. Let q denotes 2^{16} for convenience. When $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)}$, we could get
$$(X_L^{(t_1)} \oplus_q X_L^{(t_2)}) + q(c_1 \oplus_q x_{H1}^{(t_1)} \oplus_q x_{H1}^{(t_2)}) = (X_L^{(t_3)} \oplus_q x_L^{(t_4)}) + q(c_2 \oplus_q x_{H1}^{(t_3)} \oplus_q x_{H1}^{(t_4)}) \mod q,$$
where $x_{H1}^{(t_1)}$ is the high 15-bit part of $S^{(t_1)}$ and c_1, c_2 are the carries from the low 16 bits to the higher part. Then we can get $X_L^{(t_1)} \oplus_q X_L^{(t_2)} = X_L^{(t_3)} \oplus_q x_L^{(t_4)} \mod q$ and in this case $C_L = 0$.

Given $S^{(t_1)}, S^{(t_2)}$ and $S^{(t_3)}$, the value of $S^{(t_4)}$ would be fixed. The number of all possible combinations of $S^{(t_1)}, S^{(t_2)}, S^{(t_3)}$ is p^3. Now consider $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} = k$ for $2 \leq k \leq 2q$, one can get that there are $(k - 1)^2$ solutions for the combinations of $S^{(t_1)}$'s when $2 \leq k \leq p + 1$, and $(2p + 1 - k)^2$ solutions when $p + 2 \leq k \leq 2p$. Then the probability of $Pr\{C_L = 0\}$ is calculated as $(1 + 2^2 + \ldots + (p - 1)^2 + p^2 + (p - 1)^2 + \ldots + 2^2 + 1)/p^3 = (2p^2 + 1)/3p^2 \approx 2/3.$

Similarly, we can get that when $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} + p$ or $S^{(t_1)} + S^{(t_2)} + p = S^{(t_3)} + S^{(t_4)}$, the C_L carries would respectively be -1 and 1, both with equal probability $1/6$.

The probability of C_H can be obtained with a similar method, by considering the carries to the 16-th bit under different combinations of the low 16-bit parts, e.g., $Pr\{C_H = 0\} = Pr\{X_{L15}^{(t_1)} + X_{L15}^{(t_2)} = X_{L15}^{(t_3)} + X_{L15}^{(t_4)}\} \approx 2/3$ in spite of the C_L value, where $X_{L15}^{(t_1)}$ is the low 15-bit part of $S^{(t_1)}$.

Then the full approximation of ZUC-256 based on Equation 13 and its approximation in Equation 14 is as follows:

$$M \sigma[Z^{(t_1)} \oplus Z^{(t_2)} \oplus Z^{(t_3)} \oplus Z^{(t_4)}] = M \sigma N_1^{(t_1)} \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} M(\sigma T_1^{(t)} \oplus \sigma T_2^{(t)}) \oplus N_2^{(t_1)} \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} [M \cdot T_1^{(t)} \oplus S_1(T_1^{(t)}) \oplus M \cdot T_2^{(t)} \oplus S_2(T_2^{(t)})],$$

where σ is the swap of the high and low 16 bits of a 32-bit argument, and M is some 32×32 full-rank Boolean matrix that we can choose, which serves as a linear masking matrix. The expressions for the noise $N_1^{(t_1)}$ (we furthermore split $N_1^{(t_1)} = N_1a^{(t_1)} \oplus N_1b^{(t_1)}$) and noise $N_2^{(t_1)}$ are as follows:

$$N_1a^{(t_1)} = [(T_2^{(t_1)} \oplus X_2^{(t_1)}) \oplus ((T_1^{(t_1)} \oplus X_1^{(t_1)}) \oplus X_0^{(t_1)})] \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} [(T_2^{(t_2)} \oplus X_2^{(t_2)}) \oplus ((T_1^{(t_2)} \oplus X_1^{(t_2)}) \oplus X_0^{(t_2)})] \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} [(T_2^{(t_3)} \oplus X_2^{(t_3)}) \oplus ((T_1^{(t_3)} \oplus X_1^{(t_3)}) \oplus X_0^{(t_3)})] \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} [(T_2^{(t_4)} \oplus (X_2^{(t_4)} \oplus_{16} X_2^{(t_2)}) \oplus_{16} X_2^{(t_3)} \oplus_{16} C2) \oplus ((T_1^{(t_4)} \oplus (X_1^{(t_4)} \oplus_{16} X_1^{(t_2)}) \oplus_{16} X_1^{(t_3)} \oplus_{16} C1)) \oplus (X_0^{(t_4)} \oplus_{16} X_0^{(t_2)} \oplus_{16} X_0^{(t_3)} \oplus_{16} C0)] \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} (T_1^{(t)} \oplus T_2^{(t)}),$$

$$N_1b^{(t_1)} = X_3^{(t_1)} \oplus X_3^{(t_2)} \oplus X_3^{(t_3)} \oplus (X_3^{(t_1)} \oplus_{16} X_3^{(t_2)} \oplus_{16} X_3^{(t_3)} \oplus_{16} C3),$$
and

\[
N2^{(t_1)} = [(SL_2(T2^{(t_1)}) \oplus (SL_1(T1^{(t_1)} \oplus X0^{(t_1+1)})) \oplus X3^{(t_1+1)}] \\
\oplus [(SL_2(T2^{(t_2)}) \oplus (SL_1(T1^{(t_2)} \oplus X0^{(t_2+1)})) \oplus X3^{(t_2+1)}] \\
\oplus [(SL_2(T2^{(t_3)}) \oplus (SL_1(T1^{(t_3)} \oplus X0^{(t_3+1)})) \oplus X3^{(t_3+1)}] \\
\oplus [(SL_2(T2^{(t_4)}) \oplus (SL_1(T1^{(t_4)} \oplus (X0^{(t_4+1)} \square_1 X0^{(t_2+1)} \\
\square_1 X0^{(t_3+1)} \square_1 C0))] \oplus (X3^{(t_4+1)} \square_1 X3^{(t_2+1)} \square_1 X3^{(t_3+1)} \square_1 C3)].
\]

In our analysis we consider noise variables \(N1^{(t_1)}\) and \(N2^{(t_1)}\) as independent. By this assumption the attacker actually loses some advantage since there is a dependency between, for example, \(T1^{(t_1)}, T2^{(t_1)}\) in \(N1^{(t_1)}\) and \(SL_1(T1^{(t_1)}), SL_2(T2^{(t_1)}\) in \(N2^{(t_1)}\). The attack can be stronger if we could take into account these dependencies, since then there will be more information in these noise distributions. However, it is practically hard to compute the bias in that scenario.

Next we want to compute the distribution and the bias of the noise terms. However, as one can note, there are many variables involved in each sub-noise expression. For example, the sub-noise \(N1a^{(t_1)}\) involves 17 32-bit variables, and 3 \(C\)-carries. In order to compute the distribution of \(N1a^{(t_1)}\), a naive loop over all combinations of the involved variables would imply the complexity \(O(2^{3\cdot2^{17}})\), which is computationally infeasible.

In the next subsections we make a recap of the bit-slicing technique and show how we adapt it to our case to compute the distributions of the above noise terms.

4.2 Recap on the bit-slicing technique from [MJ05]

Let an \(n\)-bit noise variable \(N\) be expressed in terms of several \(n\)-bit uniformly distributed independent variables, using any combination of bitwise Boolean functions and arithmetical addition \(\oplus\) and subtraction \(\square\) modulo \(2^n\). The distribution of such a noise expression, referred to as a pseudo-linear function in [MJ05], can be efficiently derived through the so-called “bit-slicing” technique in complexity \(O(k \cdot 2^n + k^2 n \cdot 2^{n/2})\), for some (usually small) \(k\).

The general idea behind the technique is that if we know the set of distributions for \((n-1)\)-bit truncated inputs for each possible outcome vector of the sub-carries’ values for arithmetical sub-expressions, then we can easily extend these distributions to the \(n\)-bit truncated distributions with a new vector of output sub-carries’ values. Then, the algorithm may be viewed as a Markov chain where the nodes are viewed as a vector of probabilities for each combination of sub-carries, and some transition matrices are used to go from the \((n-1)\)-th state to the \(n\)-th state.

Example. Let us explain the technique on a small example. Let \(n = 32\) bits and the noise \(N\) is expressed in terms of random variables \(A, B, C\):

\[
N = \left(\begin{array}{c} \{(A \oplus B \square C) \oplus (A \oplus C) \} \square B \end{array} \right).
\]

For each \(n\)-bit value \(X\) with \((x_{n-1}\ldots x_1 x_0)\) as its binary form, we will compute the number of combinations of \(A, B, C\) such that the value of \(N\) is equal to \(X\).

Carries and the state. Here we have 3 arithmetical parts: two inner and one outer. We express the carries using a carrier vector denoted \((c_1, c_2, c_3)\), where \(c_1 \in \{-1, 0, +1\}, c_2 \in \{0, 1\}, c_3 \in \{-1, 0\}\). At each bit position \(i, 0 \leq i \leq n - 1\), we would
have the input carrier vector coming from the first \(i - 1 \) bits, \((c_1, c_2, c_3)\), and the output carrier vector \((c_{1_{out}}, c_{2_{out}}, c_{3_{out}})\) going to the \((i + 1)\)-th bit position. Introduce a mapping \(\tau \) function as: \(\tau(c_1, c_2, c_3) = ((c_1 + 1) \cdot 2 + c_2) \cdot 2 + (c_3 + 1) \in \{0, \ldots, 11\} \), that maps each value of the carrier vector to a unique integer index. Thus, at every step \(i \), we will have a column vector \(V^t \) of length \(k = 12 \), each entry of which corresponds to a certain combination of output carries \((c_{1_{out}}, c_{2_{out}}, c_{3_{out}})\), and the value are respectively the numbers of combinations of the \(i \)-bit truncated variables \(A, B, C \) such that the first \(i \) bits of \(N \) are equal to the first \(i \) bits of \(X \). The initial vector is \(V^0 = (0, \ldots, 0, 1) \) in the index \(\tau(c_1 = 0, c_2 = 0, c_3 = 0) = 0, \ldots, 0)T \).

Transition matrices. We will construct two \(k \times k \) \((12 \times 12)\) transition matrices \(M_0, M_1 \) for every bit position \(i \) when the \(i \)-bit value being 0 and 1, such that the vector \(V^{i+1} \) is derived by \(V^{i+1} = M_x \cdot V^i \). When the \(i \)-th bit of \(X \), \(x_i \), is 0, we apply \(M_0 \); otherwise \(M_1 \). These two matrices are constructed as follows: initialize \(M_0 \) and \(M_1 \) with zeros; loop through all possible choices of the \(i \)-th bits of \(A, B, C \in \{0, 1\}^3 \) and all possible values of \((c_{1_{in}}, c_{2_{in}}, c_{3_{in}})\); then for each combination we compute the resulting bit \(r \in \{0, 1\} \) using the noise expression and the vector of output carries \((c_{1_{out}}, c_{2_{out}}, c_{3_{out}})\), and increase the corresponding matrix cell by 1 as \(\text{inc}(M_{r|\tau(c_{1_{out}}, c_{2_{out}}, c_{3_{out}})}(1)\] | \[\tau(c_{1_{in}}, c_{2_{in}}, c_{3_{in}}))) \) at the same time. Note, the inner output carries \(c_{1_{out}} \) and \(c_{2_{out}} \) should not be summed up in the outer output carry \(c_{3_{out}} \), but only the resulting 1-bit value of inner sums should go to the outer expression.

The general formulae can now be derived as follows:

\[
\Pr(N = (x_{n-1}, \ldots, x_0)) = \frac{1}{2^{t-n}} \cdot \prod_{i=n/2}^{n-1} M_{x_i} \cdot \prod_{i=0}^{n/2-1} M_{x_i} \cdot V^0, \quad (16)
\]

where \(t \) is the number of involved random variables, in our example \(t = 3 \), and \(1/2^{t-n} \) is the normalization factor for the distribution. The left-side row vector \((1, 1, \ldots, 1)\) due to the last carries are truncated by modulo \(2^n \) operation and thus all combinations should be summed up to the result.

Precomputed vectors. We intentionally split Equation 16 into two parts, since it shows that the computation of \(\Pr(N = X) \) for all values of \(X \in \{0, 1, \ldots, 2^n - 1\} \) can be speeded up by precomputing vectors for all possible values of the high and low halves of \(X \), independently. The whole precomputation takes time \(O(n \cdot 2^{n/2} \cdot k^2) \). Then the probability \(\Pr(N = X) \) is a simple scalar product, computed in time \(O(k) \) as:

\[
\Pr(N = (x_{n-1}, \ldots, x_0)) = \frac{1}{2^{t-n}} \cdot H([x_{n-1}, \ldots, x_{n/2}]) \cdot L([x_{n/2-1}, \ldots, x_0]).
\]

4.3 Bit-slicing technique adaptation to compute \(N1a, N1b \) and \(N2 \)

In this section we will describe in more details how we adapt the bit-slicing technique in order to compute the “heaviest” noise \(N1a \). The remaining noises are computationally less demanding and can be derived with a similar adaptation techniques.

A direct application of the bit-slicing technique to compute \(N1a \), given in Equation 15, is complicated due to: (1) we have \(\Sigma_{16} \) adders that stop some of the sub-carrys to propagate between the 15-th and 16-th bits; and (2) we have the \(C \)-carries that can have 3 values at the 0-th and 16-th bits.

The first problem is resolved by introducing two special transition matrices \(M^{(15)}_r \) (for \(r = 0, 1 \)) which are only applied to the bit 15. In these matrices, all output sub-carrys would not propagate to the next bit 16 and are forced to be 0.

The second problem is solved by introducing another two special transition matrices \(M^{(0)}_r \) (for \(r = 0, 1 \)) that are only applied to the bits 0 and 16. These special matrices take
into account C-values that are added to the 0-th and 16-th bits. The important fact here is that all input sub-carries at bit positions where C's are involved are always 0, and this makes it possible to keep the sub-carry values in the expressions like $(X3(t_1) \oplus_{16} X3(t_2) \oplus_{16} X3^{15,3} \oplus_{16} C3)$ in the smaller range $[-1, +1]$, since C-value $\in [-1, +1]$ only appears at the first bit under the 16-bit addition/subtraction where input carries are zeroes, and in the next bits $C = 0$. Thus, to construct $M_r(0)$'s, we do the following: loop through the 1-bit random variables involved in the noise expression; loop through sub-carries that propagate over 32 bits; do not loop through the carries that are involved in 16-bit propagations; and loop through $C \in \{-1, 0, +1\}$ values. Then, instead of increasing the corresponding entry of $M_r(0)$ by 1, we actually add the product of the probabilities of all involved C-values.

Transition matrices for the remaining bits (except the bits 0, 15, 16) are constructed as usual, but C-values are all 0.

Additional adaptation is done in the part of L/H precomputed tables of vectors. We know that the low and high precomputations meet in the middle at the bits 15 and 16, where all sub-carries in \oplus_{16} adders vanish to 0. This makes it possible to shrink the size of the vectors and only leave the states with sub-carries that propagate over the full 32-bit of the noise expression.

Complexity. For $N1a$ we have the following situation: 17 32-bit variables ($T1$ and $T2$ in 4 time instances and $X0, X1, X2$ in 3 time instances); 8 carries that propagate over 32 bits in $(0, 1)$ and $(-1, 0)$; 3 carries that propagate over 16 bits in the range $[-1, +1]$. Thus we get the dimension of all involved transition matrices by $k = 2^8 \cdot 3^2$, i.e., the matrices are of size $2^{12.8} \times 2^{12.8}$. If each entry of a matrix is of C-type double (8 bytes), then one transition matrix occupies around 362Mb of RAM.

The precomputation phase to compute low (L) and high (H) vectors has time complexity around $O(2^{12.8} \cdot 32 \cdot 2^{16}) = O(2^{46.6})$. The size of the stored L/H vectors were dramatically reduced from the vector lengths $k = 2^{12.8}$ down to the lengths $k' = 2^8$, since there are only 8 binary-valued sub-carries that propagate between the bits 15 and 16, while other carries were “truncated” by applying the matrix $M_r^{(15)}$.

The total time complexity to construct the noise $N1a$ is, therefore, $O(2^{46.6} + 2^{32} \cdot 2^8)$. We compute $N1b$ and $N2$ with a similar adapted bit-slicing technique, but the time complexity there is a lot smaller.

4.4 Spectral analysis to find the matrix M

With the methods presented in Section 3, the spectral analysis becomes rather simple for the ZUC-256 case, and we below give necessary expressions to perform that. Let us recall that the expression for the total noise is:

$$N_{tot}^{(t_1)} = M \sigma N1^{(t_1)} \oplus N2^{(t_1)} \oplus \bigoplus_{t \in \{t_1, \ldots, t_4\}} \left[SL_1(T1^{(t)}) \oplus M \cdot T1^{(t)} \oplus SL_2(T2^{(t)}) \oplus M \cdot T2^{(t)} \right].$$

The spectrum expression at some point k can thus be derived as follows.

$$W(N_{tot}^{(t_1)})_k = W(M \sigma N1)_k \cdot W(N2)_k \cdot W(SL_1(x) \oplus Mx)_k \cdot W(SL_2(x) \oplus Mx)_k$$

$$= W(\sigma N1)_\lambda \cdot W(N2)_k \cdot W(B^{[k]}_{(SL_1(x))})_\lambda \cdot W(B^{[k]}_{(SL_2(x))})_\lambda,$$

where $\lambda = k \cdot M$.

Our strategy for the spectral analysis is as follows. We select $\approx 2^{24.78}$ “promising” spectrum points for λ where $|W(\sigma N1)_\lambda|^2 > 2^{-150}$, and select $\approx 2^{18}$ “promising” spectrum points for k where $|W(N2)_k|^2 > 2^{-80}$. Then we tried all combinations of the selected (k, λ) and computed the total spectrum value. For the computation of spectrum points for S-boxes (e.g., for $W(B^{[k]}_{(SL_1(x))})_\lambda$), we utilized Theorem 4 and Theorem 5, so that we
did not have to construct the full 32-bit distributions of the S-box approximations, but exploring a spectrum point in time $O(1)$. The total complexity of the analysis is $\approx O(2^{236})$.

We then collected the best pairs \{ (k, λ) \} in terms of the largest peak spectrum values, and constructed two full-rank 32×32 Boolean matrices K and A from the indices (k, λ) with the greedy approach given in Algorithm 2. Then the matrix M was derived as $M = K^{-1} \cdot A$.

Results. We only used 7 pairs from the result of the spectrum analysis (due to many other pairs did not give us full-rank matrices K and A), and the remaining 25 rows of K, A were randomly generated. Thereafter, we tested that matrix M in the full approximation and got the total bias:

$$\epsilon(N_{tot}^{(t)}) \approx 2^{-236.380623}.$$

The 32×32 binary matrix M is given below as a vector of 32-bit integers, where the bit $M_{i,j}$, for $0 \leq i, j \leq 31$, is extracted as $M_{i,j} = \lfloor M[i]/2^j \rfloor \mod 2$, and in standard C it is then $M_{i,j} = (M[i]>>j) \& 1$.

```c
uint32_t M[32] =
{ 0x26dad00b, 0x5de94454, 0x3bdfdb0d, 0x1423c42f, 0xc4f35585, 0x1f22e504,
  0xebeb07cc1e, 0x3633b301, 0x6f23b103, 0x994d8fb8, 0xfba4f0dc, 0x462d2a69,
  0x373306ed, 0xccc8fe9c, 0x994d8fb8, 0xfba4f0dc, 0x462d2a69, 0x373306ed,
  0xfba4f0dc, 0x462d2a69, 0x373306ed, 0x912adb7d, 0x6a058e9e, 0x22133144,
  0xb5593a85, 0xe929b9b6, 0xc09c9676, 0x99db94fc, 0x442f1154, 0x17994e1f,
  0x08d2662e, 0xcc8fe9c, 0x994d8fb8, 0xfba4f0dc, 0x462d2a69, 0x373306ed,
  0x91282e11, 0x9b82d788 };```

### 4.5 A distinguishing attack to ZUC-256

In a distinguishing attack, an adversary aims to find some linear relationships between the generated keystream symbols by canceling the LFSR contribution in the linear approximation, thus being able to distinguish the keystream sequence from random.

In Subsection 4.1, we have shown that if we could find four time instances $t_1, t_2, t_3, t_4$ such that $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} \mod p$, then we can build the keystream samples $M \sigma[Z^{(t_1)} \oplus Z^{(t_2)} \oplus Z^{(t_3)} \oplus Z^{(t_4)}] + [Z^{(t_1+1)} \oplus Z^{(t_2+1)} \oplus Z^{(t_3+1)} \oplus Z^{(t_4+1)}]$ to be biased with a bias of $2^{-236.38}$. By collecting around $O(2^{236.38})$ such samples, we could distinguish this sample sequence from random, thus resulting into a distinguishing attack.

The remaining problem is how we can find such a time instance tuple $t_1, t_2, t_3, t_4$ satisfying the requirement, i.e., $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} \mod p$. It can be solved by the algorithm in [LJ14] which is used to find a weight 4 multiple of the feedback polynomial. But here we should find a weight 4 multiple with two coefficients being 1 and the other two being -1. Let us first figure out how far we should run the cipher, i.e., the degree of the multiple, to find such a tuple. Let $q$ be the expected degree. If we consider all $t \leq q$, we could create $\binom{q}{4}$ different combinations of $S^{(t_1)} + S^{(t_2)} = S^{(t_3)} + S^{(t_4)} \mod p$ when we fix one time instance. Since there are $2^{196}$ possible such combinations, we can expect that we need to go to the length such that $\binom{q}{4} \approx 2^{196}$, resulting in $q \approx 2^{167}$. We use the algorithm in [LJ14][YJM19] to find the time instance tuple, but note that at the last step, instead of keeping $x_1^i + x_2^j + x_3^k + x_4^l = 0 \mod P(x)$, we should keep $x_1^i + x_2^j - x_3^k - x_4^l = 0 \mod P(x)$. The algorithm requires computational complexity of $q$ and similar storage. For our case, the complexity is $2^{167}$. The algorithm to find the time instance tuple can be found in Appendix A.

Thus we succeed to have a distinguishing attack on ZUC-256 for which we need to run the cipher to around $2^{236}$ and collect around $2^{236}$ samples.
5 Conclusions

In this paper, we give a number of spectral tools for linear cryptanalysis and further apply them to ZUC-256 resulting in a distinguishing attack on ZUC-256 faster than exhaustive key search.

We explored how a linear masking in the time domain would affect the spectrum points in the frequency domain under some commonly used operations in cryptography, such as ⊕, ⊞, and S-boxes, in both WHT and DFT types. We also gave a number of results and algorithms about how to find a good linear masking in the time domain by aligning the spectrum points in the frequency domain.

For the distinguishing attack, we first derive a linear approximation of the non-linear part $F$ and the transformation from $\mathbb{GF}(p)$ field in LFSR to $\mathbb{GF}(2^{32})$ in $F$. We then employ the spectral tools and adapt the bit-slicing technique to compute the bias of the approximation efficiently. The linear approximation is then used to launch a distinguishing attack by finding a weight 4 multiple of the generating polynomial to cancel out the contribution from the LFSR. The distinguishing attack requires data complexity $O(2^{236})$ and storage complexity $O(2^{167})$. It indicates that ZUC-256 does not provide a source with full 256-bit entropy in the generated keystream, as would be expected from a 256-bit key.

References


A The algorithm to find a multiple of $P(x)$

Algorithm 4 Finding a multiple of $P(x)$ with weight 4 and two nonzero coefficients being 1 and the other two being -1

**Input** Polynomial $P(x)$, a small integer $b$

**Output** A polynomial multiple $K(x) = P(x)Q(x)$ of weight 4 and expected degree $2^d$ with two of the nonzero coefficients being 1 and the other two being -1

1. From $P(x)$, create all residues $x^{i_1}$ mod $P(x)$, for $0 \leq i_1 < 2^{d+b}$ and put $(x^{i_1} \mod P(x), i_1)$ in a list $L_1$. Sort $L_1$ according to the residue value of each entry.

2. Create all residues $x^{i_1} + x^{i_2}$ mod $P(x)$ such that $\phi(x^{i_1} + x^{i_2} \mod P(x)) = 0$, for $0 \leq i_1 < i_2 < 2^{d+b}$ and put in a list $L_2$. Here $\phi()$ means the $d$ least significant bits. This is done by merging the sorted list $L_1$ by itself and keeping only residues $\phi(x^{i_1} + x^{i_2} \mod P(x)) = 0$. The list $L_2$ is sorted according to the residue value.

3. In the final step we merge the sorted list $L_2$ with itself to create a list $L$, keeping only residues $x^{i_1} + x^{i_2} - x^{i_3} - x^{i_4} = 0 \mod P(x)$, i.e., $x^{i_1} + x^{i_2} = x^{i_3} + x^{i_4} \mod P(x)$. 

---


