
Speeding Up OMD Instantiations in Hardware

Diana Maimuţ1[0000−0002−9541−5705] and Alexandru Ştefan
Mega1,2[0000−0002−9541−1114]

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

{diana.maimut,ati}@dcti.ro
2 Politehnica University of Bucharest

Bucharest, Romania
megastefanalexandru@gmail.com

Abstract. Particular instantiations of the Offset Merkle Damgård au-
thenticated encryption scheme (OMD) represent highly secure alterna-
tives for AES-GCM. It is already a fact that OMD can be efficiently
implemented in software. Given this, in our paper we focus on speeding-
up OMD in hardware, more precisely on FPGA platforms. Thus, we
propose a new OMD instantiation based on the compression function of
BLAKE2b. Moreover, to the best of our knowledge, we present the first
FPGA implementation results for the SHA-512 instantiation of OMD
as well as the first architecture of an online authenticated encryption
system based on OMD.

Keywords: Authenticated encryption, pseudorandom function, compression
function, provable security, FPGA, hardware optimization, nonce respecting ad-
versaries.

1 Introduction

Authenticated encryption (AE) primitives ensure both message confidentiality
and authenticity. Initially, AE algorithms achieved confidentiality and integrity
by combining two distinct cryptographic primitives (one for each of the two
goals). Around two decades ago the perspective of having a unique primitive
for confidentiality and integrity started to appear. Rogaway [16] extended AE
schemes by adding a new type of input for associated data (AD) and, thus,
AEAD (authenticated encryption with associated data) was the next step. Such
a model is helpful in real world scenario in which part of the message (e.g. a
header) needs only to be authenticated. We do not recall the technical aspects
of AEAD schemes as it is outside the scope of our paper. We refer the reader
to [16,17] for a detailed description regarding the previously mentioned topic.

The Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR) started in early 2014 and finished in 2018 [1]. The Offset

Merkle-Damgård (OMD) authenticated encryption scheme [2] was one of the
CAESAR submissions. OMD is, in fact, an authenticated encryption mode of

operation for keyed compression functions. The OMD instantiations presented in
the original paper are based on the compression functions of two hash functions
which are part of the SHA-2 family: SHA-256 and SHA-512.

OMD was accepted as a valid CAESAR submission for CAESAR and, thus,
a process of public analysis from the community naturally followed. Given its
characteristics which proved to be in accordance to the CAESAR requirements
especially from the security point of view, OMD was further accepted as a second
round candidate3.

As stated in [2, 7], in the case of the original scheme’s software implemen-
tations the speed can be considerably increased due to, e.g., the performance
acceleration instructions of INTEL’s architecture processors. Thus, the imple-
mentation efficiency of the two OMD original instantiations becomes comparable
with the AES-GCM one in software.

Given that from the security point of view OMD has more secure versions
than AES-GCM and its software implementations are highly efficient, we believe
that due to the lack of a competitive hardware implementation OMD did not
make it until the third CAESAR round.

Therefore, especially in view of the diversity of secure authenticated encryp-
tion schemes we have to focus on providing practical implementations for them.

We pay particular attention to using the compression functions of SHA-512
and BLAKE2b both for a higher security level and a more hardware friendly
word dimension.

Prior Work. A rather unoptimized hardware implementation of the original
OMD scheme was submitted to CAESAR. Thus, considering the initial metrics,
OMD seemed quite unattractive as compared to AES-GCM. Later on, in 2017,
the authors of [8] presented their results regarding selected hardware implementa-
tions of CAESAR round 2 candidates. We aim at improving the previous results,
providing the reader with better hardware implementation metrics of various
OMD instantiations. The OMD implementation discussed in [8] is the primary
recommendation submitted to CAESAR, i.e. using the compression function
of SHA-256. Thus, to the best of our knowledge, we present the first FPGA
implementation results for the SHA-512 instantiation of OMD.

Motivation. Our motivation for choosing OMD among all the CAESAR sub-
missions is at least threefold. 1 OMD’s design is an exotic one. The scheme
represents the only CAESAR proposal based on a compression function. 2

When it comes to real world cryptographic applications and systems there may
perfectly be some use cases in which security requirements are way higher than
usual and the physical resources of an implementation platform are abundant.
Nevertheless, our results become meaningful either in the case of an enhanced
security context (e.g. secure government applications). 3 In [8] it is reported

3 All the withdrawn schemes are listed on the competition’s website. Almost all the
withdrawn submissions are due to attacks reported by the community. It can easily
be observed that for OMD no attack was presented.

that “OMD ends up near the bottom of Tp/A4 ratios for all CAESAR Round
Two candidates”. The explanation pointed out by the authors focuses on the
big number of rounds of SHA-256 and, thus, the limited throughput. Our results
show that we can obtain superior implementation metrics, especially considering
our new OMD instantiation with the compression function of BLAKE2b.

Structure of the Paper. In Section 2 we introduce notations, recall the OMD
authenticated encryption scheme and shortly describe basic facts regarding the
hash functions SHA-512 and BLAKE2b. We propose a new instantiation of OMD
and provide the reader with a short discussion regarding the security of the new
instantiation in Section 3. In Section 4 we present the architecture of an online
authenticated encryption system based on OMD as well as the results of our
optimized implementations in hardware. Finally, we conclude in Section 5 and
discuss future work ideas. We recall the pseudocode of OMD in Appendix A. The
description of the compression functions of SHA-512 and BLAKE2b are given in
Appendix B. We plot specific metrics of our implementations in Appendix C.

2 Preliminaries

Notations. During the following, ‖ denotes string concatenation, ⊕ expresses
the XOR operation and the notation 0x refers to a string of x bits of zero. We
denote by x← y the assignment of the value y to the variable x.

2.1 Offset Merkle Damgård

For recalling the main technical details of OMD we follow the descriptions of
[2, 7].

From a Compression Function to a Keyed Compression Function. Let function
F ′ : {0, 1}n×{0, 1}b → {0, 1}n be a compression function. F ′ can be turned into
a keyed compression function F by using k bits of its b-bit input. More precisely,
we may define FK(H, M) = F ′(H, K‖M).

Specific Notations. Let function F : K×({0, 1}
n
×{0, 1}

m
)→ {0, 1}

n
be a keyed

compression function with K = {0, 1}
k

and m ≤ n. The encryption tag will be
denoted by Tage while the authentication tag is referred to as Taga. The final
tag is denoted by Tag. We consider the length of Tag as being τ ∈ {0, 1, · · · , n}.
Algorithms E (encryption) and D (decryption) can be called with arguments

K ∈ K, N ∈ {0, 1}
≤n−1

and A, M, C ∈ {0, 1}
∗
, where A represents an associated

data, M a message and C a ciphertext.
In the following, all OMD multiplications are performed in GF(2n) and ntz(i)

denotes the number of trailing zeros (i.e. the number of rightmost bits that are

4 Throughput to Area ratio

zero) in the binary representation of a positive integer i. Let N be the corre-
sponding notation of a nonce5. We further denote by ∆N,i,j and ∆̄i,j the masking
values used in the OMD scheme (for processing the message and, respectively,
the associated data). Let Li be a sequence of additional values and ℓmax be the
bound on the maximum number of m-bit blocks in any message that can be
encrypted or decrypted.

Remark 1. The authors of [2,7] used the technique proposed in [10] to compute
the masking values for assessing the security and efficiency requirements.

Initialization of OMD.























∆N,0,0 ← FK(N ||10n−1−|N |, 0m)
∆̄0,0 ← 0n

L∗ ← FK(0n, 0m)
L[0] ← 4L∗

L[i] ← 2L[i− 1] for i ≥ 1

Remark 2. For a more efficient implementation, the values L[i] can be pre-
processed and stored in a table for 0 ≤ i ≤ ⌈log2(ℓmax)⌉. The values L[i] can
also be computed on-the-fly for i ≥ 1 in case of memory restrictions.

Masking Sequences for Processing the Message Equation (1) and the Associated

Data Equation (2). For i ≥ 1 we have that:







∆N,i,0 ← ∆N,i−1,0 ⊕ L[ntz(i)]
∆N,i,1 ← ∆N,i,0 ⊕ 2L∗

∆N,i,2 ← ∆N,i,0 ⊕ 3L∗

(1)

{

∆̄i,0 ← ∆̄i−1,0 ⊕ L[ntz(i)] for i ≥ 1
∆̄i,1 ← ∆̄i,0 ⊕ L∗ for i ≥ 0

(2)

The OMD encryption algorithm generically instantiated with the compres-
sion function F keyed with K is presented in Figure 1. Note that for simplicity
we depicted only the case of a message whose length is a multiple of the block
length and an associated data whose length is a multiple of the input length.
The cases in which padding is needed (both for messages and AD) are tackled
in the pseudocode presented in Appendix A.

We recall the pseudocode of the four OMD sub-algorithms (i.e. Initialize

(K), HashK(A), EK(N, A, M) and DK(N, A, C)) in Appendix A.

5 number used only once

Nonces. The security proofs of OMD hold as long as the principle of non-
repeating nonces is respected (uniqueness criterion). In standard encryption ap-
plications the nonce is usually a counter sent over the communication channel
along with the authenticated and encrypted message. In practice, the nonce has
to be unique during an encryption session (i.e during the lifetime of a session
key). The nonce is needed both for encryption and decryption and can be commu-
nicated in clear between the two corresponding parties. The uniqueness criterion
is encryption related in the sense that the user wishing to transmit a message
to another user is responsible of generating suitable6 nonces.

FK FK0n . . . FK FK T age

n

∆K,N
1,0

∆K,N
2,0

∆K,N

ℓ,1

τ

T ag

〈τ〉m M1 Mℓ−1 Mℓ

M1 Mℓ

C1 Cℓ

FK
. . . FK FK

T aga

A1 Aa−1 Aa

n + m n + m n + m
m m m

n n n
∆̄0 ∆̄a−1 ∆̄a

Fig. 1. OMD in the Case of a Message whose Length is a Multiple of the Block Length
and an Associated Data whose Length is a Multiple of the Input Length.

2.2 The Hash Functions SHA-512 and BLAKE2b

The SHA-2 family of hash functions [13] is still one of the de facto standards
when it comes to hash functions. Even though SHA-3 is the latest member of
the SHA (Secure Hash Family) family of functions, SHA-2 still stands from the
security point of view.

The hash function BLAKE2 [6] is a modified version of BLAKE [6] which
is a finalist of the SHA-3 cryptographic competition. BLAKE2 was constructed
to supersede BLAKE’s efficiency (i.e. optimize it for modern applications). As
BLAKE2 is really appealing developers it has already been used in several

6 from a security perspective

projects, including the widely adopted WinRAR archiving utility and the mem-
ory hard key derivation function Argon2 (the winner of the Password Hashing
Competition [3]).

We provide the reader with technical details of sha-512 and blake2b which
are relevant for our paper in Appendix B.

3 A New OMD Instantiation. Security Aspects

As already mentioned, OMD is an authenticated encryption scheme based on
compression functions. For the purpose of our paper we selected the secondary
CAESAR recommendation of the OMD scheme to be implemented in hardware.

Moreover, we propose and analyze a new instantiation of OMD instead of the
two original ones. As stated in the previous sections, we chose the compression
function of BLAKE2b.

We further denote by sha-512 the compression function of SHA-512 and
by blake2b the compression function of BLAKE2b. Furthermore, we denote by
OMD-sha-512 and by OMD-blake2b the OMD instantiations based on the com-
pression functions of SHA-512, respectively BLAKE2b.

3.1 Security Analysis

As OMD is a nonce-based AEAD scheme, its authors aimed at achieving the
security notions for AEAD schemes as detailed in [16]. The security of the OMD
scheme as well as the security of its primary and secondary instantiations (i.e.

OMD-sha-256 and OMD-sha-512) are discussed in an extensive manner in [2,7].
It is straightforward that the security proofs still hold in the case of our proposed
instantiation, i.e. OMD-blake2b.

4 Speeding-Up OMD in Hardware. Implementation

Trade-Offs

In this section we present the architecture of an online authenticated encryp-
tion system based on specific OMD instantiations, while our main focus is on
speeding-up OMD in hardware. We start by giving the general architecture and
continue with implementation details of OMD and particular instantiations of
it in Section 4.1 (OMD-sha-512 and OMD-blake2b). In order to underline our
speed-ups, we provide the reader with comparison results between our imple-
mentations and other related works in Section 4.2.

Target FPGA Platform. The hardware implementation of the OMD scheme
was realized using register transfer-level (RTL) design methodology. We adopted
the VHDL as our preferred hardware description language (HDL) in order to
implement the necessary hardware components for the FPGA circuit design. We

opted for Virtex UltraScale+ VCU1187 which is an effective platform from the
point of view of its resources (I/O pins, QSFP28 Interfaces, high on-chip memory
density, etc.). Thus, the platform we chose is a very good option for the future
development of an online system.

All the development was done using the Xilinx Vivado Design Suite 2019.1
and it involved the following steps:

1. Designing the top view architecture of the whole system and defining the
input/output ports of the main modules;

2. Writing the VHDL code for the previous specified modules;
3. Writing simulation testbenches in order to validate the functionality of the

modules;
4. Synthesizing the design and checking for any possible errors;
5. Implementing the design;
6. Analyzing the timing requirements and the resources.

4.1 The Architecture of a Real World Authenticated Encryption

System

The design of our proposed system is composed of a Top Module (shown in
Figure 2) that contains all the components of the circuit which is described as:

– PTXT IF: this block represents the plaintext interface and it is used to
receive and send data packets in the trusted area of a network;

– Receive: transfers the data from the receive PTXT IF to the FIFO PTXT
block;

– FIFO PTXT: implements a FIFO module for plaintext packets storage; it
is also used for Clock Domain Crossing (CDC);

– PUT to ENC: reads the data from FIFO PTXT and prepare the packets
for the encryption block;

– ENCRYPT: encrypts the data using the OMD scheme depicted in Figure 3;
– GET from ENC: takes the encrypted blocks and creates the encrypted

packet which is then written in the FIFO ENC;
– FIFO ENC: implements a FIFO module for ciphertext packets storage; it

is also used for Clock Domain Crossing (CDC);
– Send: transfers the data from the FIFO ENC block to the transmit CTXT

IF;
– CTXT IF: this block represents the ciphertext interface and it is used to

receive and send data packets in the untrusted area of a network;
– KS GEN: this block is used to generate a common session key between two

communicating parties; it also computes the L and Taga values which are
used by the ENCRYPT/DECRYPT blocks;

– NONCE GEN: this block is used to generate nonces which are unique per
session;

7 xcvu9p-flga2104-2L-e

– DECRYPT: this block is identical to ENCRYPT, except an additional tag
verification that is done at the decryption of the message;

– the rest of the blocks complete the scheme in a symmetric manner, offering
similar functionalities as the already described ones;

We continue to focus on the main blocks of the system (ENCRYPT and
DECRYPT) which includes the OMD algorithm. The block diagram illustrated
in Figure 3 consists of modules which are further categorized as Datapath or
Controller modules. Datapath describes how the data moves through the sys-
tem at register level, leveraging the parallel nature of the FPGA circuits. The
Controller consists of a Finite State Machine (FSM) which runs sequentially
providing the decision logic of the system. In order to simplify the illustrated
design, we presented in Figure 3 only the Datapath logic.

PTXT

IF

RX

TX

Receive

FIFO
PTXT

PUT to ENC

NONCE GEN

ENCRYPT GET from ENC
FIFO
ENC

Send

Send

CTXT

IF

TX

RX

Receive

FIFO
DEC

GET to DEC DECRYPT PUT to DEC

KS GEN

FIFO
CTXT

Fig. 2. A General Architecture of an Online System Using OMD

In the case of the OMD algorithm the encryption of the current block is
dependent on the previous one (i.e. the scheme is sequential), thus we can only
use an iterative implementation. In this case, the pipelined implementation is
not feasible. The original OMD scheme is reduced to a single Fk block where
the inputs and outputs are managed by the controller in the following way:
the inputs are multiplexed with different data paths and the outputs are used to
compute the ciphertext and Tage or to be fed back into the Fk block. In Figure 3,
the Datapath is described in a simplified diagram which has the following main
parts: 1 data multiplexing modules (for changing the datapath to the inputs of
the Fk block), 2 registers (for storing temporary data) and 3 RAM memory
(for storing the computed values).

The input of the ENCRYPT block consists of:

– Message M (divided into blocks of length 512 bits);
– Secret key K (of length 512 bits);
– Nonce N (of length 256 bits which are provided by the nonce generator and

are unique per session);
– Two precomputed values L and Taga (calculated using the KS GEN block).

We chose to calculate Taga and L only once per session as they do not depend
on the message or on the nonce. This fact is reflected in the number of LUTs
and the TP/A values presented in Table 1. Thus, the values written inside the
parentheses denote the number of LUTs and the TP/A values without the need
of calculating Taga and L.

The output of the DECRYPT block consists of ciphertext C (divided into
blocks of 512 bits) and Tag (of length 512 bits).

K

MUX MSG

τ
REG MSG

0
n MUX H

M FK

H

L

RAM LCOMPUTE ∆

RAM ∆

M

REG CTXT C

REG T age

T ag

T aga

KS GEN

Fig. 3. OMD Encrypt Block Diagram.

The results of the OMD RTL implementations are described next. Implemen-
tation statistics in the Virtex UltraScale+ are shown in Table 1. We provide met-
rics regarding Throughput, Area and Throughput-to-Area (TP/A) ratio, LUTs,
LUT RAM and Frequency. Throughput is defined in terms of 109 bits/second
(Gbps) and area is defined in terms of LUTs (LookUp Tables). We also show
the number of clock cycles used to calculate the throughput for long messages.

The encryption process of OMD is splitted in three phases in the case of our
hardware implementation: 1 Setup (the initialization phase), 2 Message (the
processing time of all the n blocks of the message) and 3 Tag (the final phase
in which the tag is computed).

Metric OMD-sha-512 OMD-blake2b

Setup (CLK) 116 48
Message (CLK) 93 · n 25 · n

Tag (CLK) 91 23
Frequency (MHz) 250 125

Throughput (Gbps) 1.3 2.56
LUTs 7187 (3451) 18907 (14875)

LUT RAM 3736 (0) 3736 (296)
Throughput/Area 0.18 (0.3736) 0.125 (0.159)

Table 1. Implementation Metrics for OMD-sha-512 and OMD-blake2b.

Open Source Implementation. The VHDL source code of our OMD optimized
implementations may be found at [4].

4.2 Results Comparison

Comparison between OMD-sha-256 and OMD-sha-512. In [8] an implementation
of the primary OMD instantiation (OMD-sha-256) is discussed. Given that we
focused on efficiently implementing the secondary OMD instantiation (OMD-sha-
512) we need to abstractly scale the results of [8] for a fair comparison taking
into account the natural differences that appear because we replaced sha-256
with sha-512. Also, we note that there is a difference in terms of FPGA target
platform in the sense that the authors of [8] use a Virtex 7 FPGA platform. We
stress that our superior implementation results are not only due to the newer
FPGA platform we used, but also due to the implementation techniques we
employed. Moreover, we underline that in [8] only “long messages” (according
to the authors) are considered for computing the implementation metrics. We
believe that the notion “long message” should be clearly defined in order to
obtain accurate results. All in all, we report the next differences between the
two previously mentioned implementations:

– In terms of Throughput we obtained 1.3 Gbps as opposed to 1.071 Gbps;
– In terms of Throughput-to-Area we obtained 0.18 (0.3736) as opposed to

0.228;
– In terms of Frequency we obtained 250 MHz as opposed to 276 Mhz;
– In terms of LUTs we obtained 7187 (3451) as opposed to 4701.

As a conclusion, even though OMD-sha-512’s security is higher than OMD-
sha-256’s and we used a key length of 512 bits as opposed to a key length of

128 bits, our throughput supersedes the throughput reported in [8]. This is an
important feature in real world applications which need to transfer data at a
high rate. Although the parameters we used for implementing OMD-sha-512 are
at least double as compared to the ones used in [8], the TP/A, the Frequency
and the number of LUTs are way smaller than the double of the values reported
in [8]. We also have to mention the fact that even though we used more LUTs,
we utilized at most 3% of the platform’s available resources. Furthermore, the
authors of [8] do not implement a mechanism similar to ours for computing Taga

and L only once per session.

Comparison between OMD-sha-512 and OMD-blake2b. We report the next dif-
ferences between our implementations of OMD-sha-512 and OMD-blake2b:

– In terms of Setup we obtained 116 clock cycles as opposed to 48;
– In terms of Message we obtained 93 · n clock cycles as opposed to 25 · n;
– In terms of Tag we obtained 91 clock cycles as opposed 23;
– In terms of Throughput we obtained 1.3 Gbps as opposed to 2.56 Gbps;
– In terms of Throughput-to-Area we obtained 0.18 (0.3736) as opposed to

0.125 (0.159);
– In terms of Frequency we obtained 250 MHz as opposed to 125 MHz;
– In terms of LUTs we obtained 7187 (3451) as opposed to 18907 (14875).

As a conclusion, the Throughput of OMD-blake2b is higher than OMD-sha-
512 due to the following facts: 1 the blake2b compression function has only 12
rounds as opposed to sha-512 which has 80 rounds and 2 each round of both
blake2b and sha-512 compression functions takes only one clock cycle. Concern-
ing the number of LUTs we have to mention that OMD-sha-512 is a better
option for Area constrained platforms, while OMD-blake2b is a better option
for real world applications which need to transfer data at a high rate. We also
have to point out the differences between the frequency values in OMD-sha-512
(250 MHz) and OMD-blake2b (125 MHz), which are due to the more complex
structure of the blake2b compression function.

5 Conclusions and Future Work

We proposed a new OMD instantiation (OMD-blake2b) and showed how to use
it as the main cryptographic primitive of a real world authenticated encryption
system. We presented the results of our optimized implementations in hardware
and provided the reader with a security analysis of our proposed instantiation.

Future Work. After the original OMD scheme was submitted to CAESAR, dif-
ferent flavours of it were proposed in the literature: two nonce misuse-resistant
variants [14] and pure OMD (p-OMD) [15], a more efficient OMD version (i.e.

the associated data is processed almost for free). Besides inheriting all the se-
curity features of OMD, the authors claim authenticity against nonce-misusing
adversaries. Note that an important update regarding the security of p-OMD is

presented in [5]: it is shown that p-OMD does not actually achieve authenticity
against misuse-resistant adversaries. The attack is strictly specific to p-OMD
and does not invalidate its main result on nonce-respecting adversaries8. Thus,
from both the diversity and efficiency points of view, we believe that a straight-
forward future approach is to provide hardware implementation metrics for all
previously mentioned OMD variants.

Another interesting research direction would be to analyze the security of
our proposed OMD optimized implementations against physical attacks. Addi-
tionally, suitable countermeasures against such attacks are to be considered as
future work (e.g. masking techniques).

6 Acknowledgments

The authors would like to thank Traian Neacşa and George Teşeleanu for their
helpful comments.

References

1. CAESAR. https://competitions.cr.yp.to/caesar.html

2. OMDv2 CAESAR Submission. https://competitions.cr.yp.to/round2/omdv20c.pdf
3. Password Hashing Competition. https://password-hashing.net

4. Source Code. https://github.com/megastefan22/OMD
5. Ashur, T., Mennink, B.: Trivial Nonce-Misusing Attack on Pure OMD. IACR Cryp-

tology ePrint Archive (2015)
6. Aumasson, J.P., Meier, W., Phan, R., Henzen, L.: The Hash Function BLAKE.

Springer (2014)
7. Cogliani, S., Maimuţ, D., Naccache, D., Portella do Canto, R., Reyhanitabar, R.,

Vaudenay, S., Vizár, D.: OMD: A Compression Function Mode of Operation for
Authenticated Encryption. In: Selected Areas in Cryptography - SAC’14. Lecture
Notes in Computer Science, vol. 8781, pp. 112–128. Springer (2014)

8. Diehl, W., Gaj, K.: RTL Implementations and FPGA
Benchmarking of Selected CAESAR Round Two Authen-
ticated Ciphers. Microprocessors and Microsystems (2017),
https://www.sciencedirect.com/science/article/abs/pii/S0141933117300352

9. Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing Hardware Performance of
Fourteen Round Two SHA-3 Candidates Using FPGAs. IACR Cryptology ePrint
Archive (2010), http://eprint.iacr.org/2010/445

10. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: FSE 2011. Lecture Notes in Computer Science, vol. 6733, pp. 306–327.
Springer (2011)

11. Maimuţ, D.: Authentication and Encryption Protocols: Design, Attacks and Algo-
rithmic Tools. Ph.D. thesis, École normale supérieure (2015)

12. Maimuţ, D., Reyhanitabar, R.: Authenticated Encryption: Toward Next-
Generation Algorithms. IEEE Security & Privacy 12(2), 70–72 (2014)

8 Moreover, the attack does not apply to the OMD CAESAR submission and to the
misuse-resistant variants of [14].

https://competitions.cr.yp.to/caesar.html
https://password-hashing.net
https://www.sciencedirect.com/science/article/abs/pii/S0141933117300352
http://eprint.iacr.org/2010/445

13. National Institute of Standards and Technology: FIPS PUB 180-4: Secure Hash
Standard. NIST (aug 2015)

14. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Misuse-Resistant Variants of the OMD
Authenticated Encryption Mode. In: Provable Security - ProvSec’14. Lecture Notes
in Computer Science, vol. 8782, pp. 55–70. Springer (2014)

15. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Boosting OMD for Almost Free Au-
thentication of Associated Data. In: Fast Software Encryption - FSE’15. Lecture
Notes in Computer Science, vol. 9054, pp. 411–427. Springer (2015)

16. Rogaway, P.: Authenticated-encryption with associated-data. In: CCS’02. pp. 98–
107. ACM (2002)

17. Rogaway, P.: Nonce-Based Symmetric Encryption. In: FSE’04. Lecture Notes in
Computer Science, vol. 3017, pp. 348–359. Springer (2004)

A OMD Pseudocode

Algorithm 1: Initialize (K)

1 L∗ ← FK(0n, 0m)

2 L[0]← 4.L∗ ⊲ 2.(2.L∗), doubling in GF(2n)

3 for i← 1 to ⌈log2(ℓmax)⌉ do

4 L[i] = 2.L[i− 1] ⊲ doubling in GF(2n)
5 end

6 return

Algorithm 2: HashK(A)

1 b← n + m

2 A1||A2|| · · · ||Aℓ−1||Aℓ
b
← A, where |Ai| = b for 1 ≤ i ≤ ℓ− 1 and |Aℓ| ≤ b

3 Taga ← 0n

4 ∆← 0n

5 for i← 1 to ℓ− 1 do

6 ∆← ∆⊕ L[ntz(i)]

7 Left← Ai[b− 1, · · · , m]

8 Right← Ai[m− 1, · · · , 0]

9 Taga ← Taga ⊕ FK(Left⊕∆, Right)
10 end

11 if |Aℓ| = b then

12 ∆← ∆⊕ L[ntz(ℓ)]

13 Left← Aℓ[b− 1, · · · , m]

14 Right← Aℓ[m− 1, · · · , 0]

15 Taga ← Taga ⊕ FK(Left⊕∆, Right)
16 end

17 else

18 ∆← ∆⊕ L∗

19 Left← Aℓ||10b−|Aℓ|−1[b− 1, · · · , m]

20 Right← Aℓ||10b−|Aℓ|−1[m− 1, · · · , 0]

21 Taga ← Taga ⊕ FK(Left⊕∆, Right)
22 end

23 return Taga

Algorithm 3: EK(N, A, M)

1 if |N | > n− 1 then

2 return

3 end

4 ⊥ M1||M2|| · · · ||Mℓ−1||Mℓ
m
←M , where |Mi| = m for 1 ≤ i ≤ ℓ− 1 and

|Mℓ| ≤ m

5 ∆← FK(N ||10n−1−|N|, 0m) ⊲ initialize ∆N,0,0

6 H ← 0n

7 ∆← ∆⊕ L[0] ⊲ compute ∆N,1,0

8 H ← FK(H ⊕∆, 〈τ〉
m

)

9 for i← 1 to ℓ− 1 do

10 Ci ← H ⊕Mi

11 ∆← ∆⊕ L[ntz(i + 1)]

12 H ← FK(H ⊕∆, Mi)
13 end

14 Cℓ ← H ⊕Mℓ if |Mℓ| = m then

15 ∆← ∆⊕ 2.L∗

16 Tage ← FK(H ⊕∆, Mℓ)
17 end

18 else

19 if |Mℓ| 6= 0 then

20 ∆← ∆⊕ 3.L∗

21 Tage ← FK(H ⊕∆, Mℓ||10m−|Mℓ|−1)
22 end

23 end

24 else

25 Tage ← H
26 end

27 Taga ← HashK(A)

28 Tag← (Tage ⊕ Taga)[n− 1, · · · , n− τ]

29 C ← C1||C2|| · · · ||Cℓ||Tag return C

Algorithm 4: DK(N, A,C)

1 if |N | > n− 1 or |C| < τ then

2 return ⊥
3 end

4 C1||C2|| · · · ||Cℓ−1||Cℓ||Tag
m
← C, where |Ci| = m for 1 ≤ i ≤ ℓ− 1, |Cℓ| ≤ m

and |Tag| = τ

5 ∆← FK(N ||10n−1−|N|, 0m) ⊲ initialize ∆N,0,0

6 H ← 0n

7 ∆← ∆⊕ L[0] ⊲ compute ∆N,1,0

8 H ← FK(H ⊕∆, 〈τ〉
m

)

9 for i← 1 to ℓ− 1 do

10 Mi ← H ⊕ Ci

11 ∆← ∆⊕ L[ntz(i + 1)]

12 H ← FK(H ⊕∆, Mi)
13 end

14 Mℓ ← H ⊕ Cℓ

15 if |Cℓ| = m then

16 ∆← ∆⊕ 2.L∗

17 Tage ← FK(H ⊕∆, Mℓ)
18 end

19 else

20 if |Cℓ| 6= 0 then

21 ∆← ∆⊕ 3.L∗

22 Tage ← FK(H ⊕∆, Mℓ||10m−|Mℓ|−1)
23 end

24 end

25 else

26 Tage ← H
27 end

28 Taga ← HashK(A)

29 Tag′ ← (Tage ⊕ Taga)[n− 1, · · · , n− τ]

30 if Tag′ = Tag then

31 return M ←M1||M2|| · · · ||Mℓ

32 end

33 else

34 return ⊥
35 end

B The sha-512 and blake2b Compression Functions

B.1 Preliminaries

In the following, by “word” we mean a group of w = 64 bits. Namely, in sha-512 each
word is a 64-bit string.

ROTRn(x) and SHRn(x): Let x be a w-bit word and n an integer with 0 ≤ n < w.
The rotate right (circular right shift) operation is defined by ROT Rn(x) = (x ≫
n) ∨ (x≪ w − n). The right shift operation is defined by SHRn(x) = (x≫ n).

Choice and Majority Functions. The choice function and majority function (also
called the median operator) functions can be defined as follows:

Ch :

∣

∣

∣

∣

{0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y)⊕ (¬x ∧ z)

Maj :

∣

∣

∣

∣

{0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

B.2 The sha-512 Compression Function

Sigma Functions. The functions Σ
{512}
0 and Σ

{512}
1 are defined as follows:

Σ
{512}
0

∣

∣

∣

∣

{0, 1}64 −→ {0, 1}64

x 7−→ ROT R28(x)⊕ROT R34(x)⊕ROT R39(x)

Σ
{512}
1

∣

∣

∣

∣

{0, 1}64 −→ {0, 1}64

x 7−→ ROT R14(x)⊕ROT R18(x)⊕ROT R41(x)

The σ
{512}
0 and σ

{512}
1 functions are defined as follows:

σ
{512}
0

∣

∣

∣

∣

{0, 1}64 −→ {0, 1}64

x 7−→ ROT R1(x)⊕ROT R8(x)⊕ SHR7(x)

σ
{512}
0

∣

∣

∣

∣

{0, 1}64 −→ {0, 1}64

x 7−→ SHR19(x)⊕ SHR61(x)⊕ SHR6(x)

The Process. The sha-512 compression function is defined as:

sha− 512

∣

∣

∣

∣

{0, 1}512 × {0, 1}1024 −→ {0, 1}512

H, M 7−→ D

Let M be the 1024-bit message input and H the 512-bit hash input (chaining
input). These two inputs are represented respectively by an array of 16 64-bit words
M0‖ · · · ‖M15, and an array of 8 64-bit words H0‖ · · · ‖H7. The 512-bit output value C
is also represented as an array of 8 64-bit words D0‖ · · · ‖D7.

Let H be the 512-bit hash input (chaining input) and M be the 1024-bit message

input. These two inputs are represented respectively by an array of 8 64-bit words
H0‖ · · · ‖H7 (see Table 2) and an array of 16 64-bit words M0‖ · · · ‖M15. The 512-bit
output value D is also represented as an array of 8 64-bit words D0‖ · · · ‖D7.

H0 = 6a09e667f3bcc908

H1 = bb67ae8584caa73b

H2 = 3c6ef372fe94f82b

H3 = a54ff53a5f1d36f1

H4 = 510e527fade682d1

H5 = 9b05688c2b3e6c1f

H6 = 1f83d9abfb41bd6b

H7 = 5be0cd19137e2179

Table 2. sha-512 Initial Values

During the process of compression, a sequence of 80 constant 64-bit words K
{512}
0 ,

..., K
{512}
79 is used. These 64-bit words represent the first 64 bits of the fractional parts

of the cube roots of the first 80 prime numbers. In hex, these constant words are given
in Table 3 (from left to right).

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

Table 3. sha-512 Constants

We further provide the reader with the description of the sha-512 compression
function. The addition (+) is performed modulo 264.

1. Preparing the message schedule, {Wt}:

Wt =

{

Mt, 0 ≤ t ≤ 15
σ

{512}
1 (Wt−2) + Wt−7 + σ

{512}
0 (Wt−15) + Wt−16, 16 ≤ t ≤ 79

2. Initialize the eight working variables, a, b, c, d, e, f, g and h with the hash input
value H:

a = H0 b = H1 c = H2 d = H3

e = H4 f = H5 g = H6 h = H7

3. For t = 0 to 79, do:
{
T1 = h + Σ

{512}
1 (e) + Ch(e, f, g) + K

{512}
t + Wt

T2 = Σ
{512}
0 (a) + Maj(a, b, c)

h = g g = f f = e e = d + T1

d = c c = b b = a a = T1 + T2

}

4. Computing the 512-bit output (hash) value C = C0 · · ·C7 as:
C0 = a + H0 C1 = b + H1 C2 = c + H2 C3 = d + H3

C4 = e + H4 C5 = f + H5 C6 = g + H6 C7 = h + H7

B.3 The blake2b Compression Function

The initial values H of blake2b was chosen precisely as the ones for SHA-512 (given in
Table 2). These values “were obtained by taking the first sixty-four bits of the fractional
parts of the square roots of the first eight prime numbers”, according to [13].

Thus, the compression function blake2b takes as input:
H = H0‖H1‖ . . . ‖H7 (of length 512 bits)
M = M0‖M1‖ . . . ‖M7 (of length 1024 bits)
T = T0‖T1 (of length 128 bits)
F = F0‖F1 (of length 128 bits)







ν0 ν1 ν2 ν3

ν4 ν5 ν6 ν7

ν8 ν9 ν10 ν11

ν12 ν13 ν14 ν15






:=







h0 h1 h2 h3

h4 h5 h6 h7

H0 H1 H2 H3

T0 ⊕H4 T1 ⊕H5 F0 ⊕H6 F1 ⊕H7







σ0 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
σ1 : [14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3]
σ2 : [11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4]
σ3 : [7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8]
σ4 : [9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13]
σ5 : [2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9]
σ6 : [12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11]
σ7 : [13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10]
σ8 : [6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5]
σ9 : [10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]

Table 4. Permutations of blake2b

Let the round permutations σr be in accordance with Table 4, where r = 0, 9.
Note that for rounds r ≥ 10 the permutation used is σr mod 10. The core function G of
blake2b is defined as follows:

a := a + b + mσr(2i) d := ROT R32(d⊕a) c := c + d b := ROT R24(b⊕ c)
a := a + b + mσr(2i+1) d := ROT R16(d⊕a) c := c + d b := ROT R63(b⊕ c)

C Explicit Performance Metrics

The main performance metrics which are used in our work are throughput, area and
throughput to area ratio (Tp/A). They are presented in Figures 4 to 6 in comparison
with the block size of a message (which is represented on the x axis in all plots).
The block size n goes from 64 bytes to 9600 bytes (we chose these values in order to
meet the requirements of an online system). Both OMD-sha-512 and OMD-blake2b
instantiations are taken into consideration.

All formulas used to generate the plots are based on the metrics described in Table 1.
We recall that, during the following, 1 Setup represents the number of clock cycles
necessary in the initialization phase, 2 Message refers to the number of clock cycles
necessary to process a message composed of n blocks, 3 Tag represents the number
of clock cycles necessary to calculate T ag and 4 Frequency refers to the frequency of
the FPGA circuit.

In Figure 4 we use latency as the parameter represented by the y axis. We computed
latency by the following formula:

Latency = CLK · (Setup + n ·Message + Tag) · 1/Frequency.

We computed the throughput by applying the following formula:

Throughput =
n · 64 · 8 · Frequency

CLK · (Setup + n ·Message + Tag)
.

The computation of Tp/A is straightforward.

1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192 9,200
0

10

20

30

40

50

Block Size (bytes)

L
a
te

n
cy

(u
s)

OMD-sha-512
OMD-blake2b

Fig. 4. Latency vs. Block Size

1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192 9,200
0

0.5

1

1.5

2

2.5

Block Size (bytes)

T
h

ro
u

g
h

p
u

t
(G

bp
s)

OMD-sha-512
OMD-blake2b

Fig. 5. Throughput vs. Block Size

1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192 9,200
0

5 · 10−2

0.1

0.15

0.2

Block Size (bytes)

T
h

ro
u

g
h

p
u

t
to

A
re

a
R

a
ti

o
(T

p
/A

)

OMD-sha-512
OMD-blake2b

Fig. 6. Throughput to Area Ratio (Tp/A) vs. Block Size

	Speeding Up OMD Instantiations in Hardware

