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Abstract—The cloud changed the way we manage and store
data. Today, cloud storage services offer clients an infrastructure
that allows them a convenient source to store, replicate, and
secure data online. However, with these new capabilities also come
limitations, such as lack of transparency, limited decentralization,
and challenges with privacy and security. And, as the need for
more agile, private and secure data solutions continues to grow
exponentially, rethinking the current structure of cloud storage
is mission-critical for enterprises.

By leveraging and building upon blockchain’s unique at-
tributes, including immutability, security to the data element
level, distributed (no single point of failure), we have developed
a solution prototype that allows data to be reliably stored while
simultaneously being secured, with tamper-evident auditability,
via blockchain.

The result, Audita, is a flexible solution that assures data
protection and solves challenges such as scalability and privacy.
Audita works via an augmented blockchain network of partici-
pants that include storage-nodes and block-creators. In addition,
it provides an automatic and fair challenge system to assure that
data is distributed and reliably and provably stored.

While the prototype is built on Quorum, the solution frame-
work can be used with any blockchain platform. The benefit
is a system that is built to grow along with the data needs of
enterprises, while continuing to build the network via incentives
and solving for issues such as auditing and outsourcing.

Index Terms—Blockchain, Distributed systems, Proof of stor-
age

I. INTRODUCTION

A cloud storage service provides a decentralized infrastruc-
ture that allows users to store their data online. Users pay cloud
providers (such as Amazon [1] or Google [2]) to access the
service and receive benefits such as data replication, reliability,
and security. Users’ data is entirely administered by the cloud
provider, which is entrusted with selecting reliable storage
servers, maintaining data intact, and delivering it promptly
when requested. Also, decentralization in cloud storage is
often limited, which affects data replication and results in data
loss in case of natural disasters or denial of service attacks.
For example, WikiLeaks has published a highly confidential
internal document [3], showing that Amazon cloud storage
(S3) has a limited number of data centers across the world.

On the other hand, the blockchain is a technology that
is fully transparent and distributed across the world. The
blockchain is a sequence of public and immutable structured

data (called blocks) administrated by a peer-to-peer network.
It resembles the digital time-stamping system introduced by
S. Haber and W. S. Stornetta [4], which was improved one
year later by Bayer et al. in [5]. Today, blockchain is a
building block for many technologies such as Bitcoin [6] and
Ethereum [7].

Thanks to its properties, the blockchain is arguably an
ideal infrastructure for the next generation of decentralized
storage services. However, users’ data cannot be stored into
blocks because the blockchain is public and immutable, and
it does not scale. Encrypting or hashing relevant information
and storing the results on the blockchain is also nugatory.
Encryption (even if information-theoretic secure) tends to
“deteriorate” over time because keys get routinely exposed or
misused. Hashing data does not guarantee actual data storage.
Moreover, the resultant hash provides proof of existence,
which may violate privacy policies.

In this paper, we provide: 1) A detailed overview of
the state-of-the-art blockchain-based storage systems. 2) We
identify the fundamental properties that such systems must
satisfy, and we compare them based on these properties. 3)
We propose Audita, the first blockchain-based decentralized
storage system that satisfies all properties. It provides most of
the benefits of storing data on the blockchain without actually
doing it. The functionality we achieve is that as long as the
blockchain is growing and transactions are generated, users
can be reasonably confident their data is intact even if stored
off-chain. Adding a block to the blockchain triggers an audit
mechanism that implicitly verifies that a random portion of all
files stored off-chain is intact. The audit is automatic and does
not require file owners to be online or participate.

A. Our technique

We introduce a general technique to implement Audita
on top of any blockchain framework. In our system, the
blockchain is used for accountability, and data is stored off-
chain in a new category of peers, called storage-nodes, next to
the standard blockchain’s peers, referred to as block-creators.
Storage-nodes provide the storage capability to save and main-
tain users’ data, while block-creators run the protocol of the
underlying blockchain. In Audita, a user with a file F , sends a
request to a server D, called dealer. The file distribution phase
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Figure 1: High level protocol workflow.

is performed by D that gives, to each storage-node, a random
subset of file chunks.

To ensure a storage-node maintains the file subset intact
(and locally stored), we leverage the blockchain and a pub-
licly verifiable provable data possession (PDP) scheme to
implement a global interactive proof system (i.e., prover-
verifier paradigm). A block B, created by a block-creator,
will be permanently added into the chain if and only if it
is accompanied by a set of ` proofs of possession {πi}i∈[`]

(generated by ` distinct storage-nodes over a portion of stored
data). We refer the reader to Figure 1 for a view of the protocol
workflow. In more detail, the block-creator, behaving as the
verifier, challenges the storage-nodes (the provers): It contacts
a random subset of storage-nodes and asks for a proof of
possession πi (step (1)). The first ` received proofs {πi}i∈[`]

will be used as a “ticket”, that will give to the block-creator,
the possibility to propose the candidate block B to the network
(step (2)). If both block B and proofs {πi}i∈[`] are valid, then
the blockchain is extended (step (3)).

Thanks to its modularity, our technique allows us to imple-
ment Audita on any reward-based blockchain system. Rewards
are widely used in Bitcoin and Ethereum to incentivize peers to
act honestly. Audita follows the same approach. Storage-nodes
and block-creators that cooperate to extend the blockchain
will receive a reward in exchange for their work. The type
of reward in our system can be quite arbitrary and can range
from cryptocurrency-based rewards in a public blockchain to
contractual agreements in a permissioned blockchain.

B. Organization

The paper is organized as follows. Section II discusses the
main blockchain-based decentralized storage systems present
in the literature. In Section III, we give a detailed overview
of the main properties that blockchain-based decentralized
storage systems must satisfy. Section IV introduces the no-
tation and the required building blocks that we use throughout
this paper, and Section V defines the security assumptions
we make. In Section VI we introduce Audita with a detailed
discussion about its properties and requirements. Section VII
presents our implementation and the experimental results.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Some recent works have focused on how to store, in a
decentralized way, a publicly known file (e.g., the digital
content of a library) using the blockchain. Miller et al. [8]
propose Permacoin that repurposes the computational power
spent in computing the Proof of Work (PoW), currently in use
by many blockchain systems such as Bitcoin. In Permacoin,
the PoW involves two distinct elements to incentivize miners

to store a file locally. First, the PoW is computed over the
chunks of the file. This makes the computation an implicit
form of proof of possession. However, this does not give
any guarantee about the decentralization of the data: Miners
could outsource both the file chunks and the PoW computation
to a third party and jeopardize data decentralization. For
this reason, Permacoin proposes an efficient multi-use hash-
based signature scheme called floating preimage signature
scheme and forces miners to use their secret key during the
PoW. At a high level, miners are required to sign and hash
the intermediate states of the PoW recursively. In this way,
storage outsourcing results in either exposing the secret key
or decreasing the probability of generating a new valid block.
Since chunks are hashed during the computation of the PoW,
Permacoin suffers from high bandwidth consumption. Indeed,
the chunks must be sent together with the PoW solution for
verification.

Motivated by the need to decrease the bandwidth overhead
of Permacoin, Sengupta et al. [9] propose Retricoin. At a high
level, Retricoin modifies the mining protocol of Permacoin
not to involve file chunks during the computation of the PoW.
This permits to verify a candidate PoW solution without any
file chunk, decreasing the network bandwidth. Retricoin uses
the PoW as a form of commitment, i.e., it selects the file
chunk indexes that must be proven. Then, it leverages the proof
of retrievability (PoR) scheme of Shacham and Waters [10]
to prove the possession of that chunks. Retricoin maintains
Permacoin’s objective of hindering peers from outsourcing
files to third parties. While the authors state that Retricoin is
secure against outsourcing, we observe that the modification
made to the mining protocol makes it susceptible to an attack.
We refer the reader to Section III-A for more details.

Armknecht et al. [11] propose a new PoW called EWoK
(Entangled proofs of WOrk and Knowledge) that aims at in-
creasing the decentralization and replication of the blockchain
data by including the blockchain itself into the PoW. When
EWoK is in place, the blockchain is divided into shards and the
probability to compute a valid PoW solution is proportional to
the number of independent shards the pool miner stores. The
mining protocol is composed of two distinct PoW phases: The
first is a standard PoW whose objective is to reach consensus
among the pool miners on the set of transactions to include into
the block. The second one is a special PoW that is computed
over the shards so that a single solution can be expected on
average. In this way, pool miners are incentivized to store
different shards of the blockchain to maximize the probability
of solving the second PoW.

Kopp et al. design KopperCoin [12], a new storage-based
mining process that replaces the computationally expensive
PoW. In KopperCoin, a user can submit a special store trans-
action that notifies miners of the intent to store a file in the sys-
tem. Among other things, the store transaction contains the file
chunks and the public information needed to verify the proofs
of retrievability computed by the miners. Miners are free to
choose which chunks to store. The storage based mining of
KopperCoin is implemented by combining a PoR scheme and
a bitwise XOR-based metric f(x, y) = x ⊕ y. During the
mining, the current block is hashed and the nearest chunk cj
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(measured using the bitwise XOR-based metric) is selected,
i.e., j = argmink{H ⊕ k|ck set of chunks locally stored}.
Then, a miner generates a new block B (and collects the
reward) if it outputs a valid proof of retrievability for the
chunk cj and H(B) · 2|j⊕h| ≤ threshold where h is the hash
of the previous block and threshold is the mining difficulty
factor. The bitwise XOR-based measure allows miners to mine
proportionally to the storage offered. Indeed, the more chunks
a miner stores, the higher the probability is of finding a chunk
index j close to h. We note that KopperCoin suffers from
two significant drawbacks. First, it does not guarantee that a
file is entirely stored. This is because miners can select which
chunks to store. Hence, malicious miners could collude and
choose not to store a certain portion of the file. Second, the
store transaction contains the file chunks. This implies that
a copy of the file is stored on the blockchain. As discussed
in the introduction (Section I), this creates several stumbling
blocks (e.g., in relation to scalability and file deletion), and
makes KopperCoin unusable in our context.

The systems proposed in [13], [14], [15] adopt a different
approach. They leverage the blockchain as a broadcast channel
that allows users to publish orders (or contracts), rent storage
and, distribute their files across the network. Sia [14] leverages
a smart contract enabled blockchain to post arrangements
between users and storage-nodes. When a new arrangement is
posted, the file is sent off-chain to the corresponding storage-
node. The arrangement contains several pieces of information
such as: The Merkle root of the file, the expiration date, the
challenge rate, and the reward for each challenge. At specific
times (determined by the challenge rate), the storage-node
samples a random chunk by hashing the current blockchain
block and generates a proof of possession. The proof consists
of the chunks and the list of hashes of the file’s Merkle tree.
Proofs are submitted to the blockchain network and, if valid,
an automatic payment is triggered that compensate the storage-
node as specified in the arrangement. A major drawback of Sia
is the usage of Merkle trees. Although they allow verification
of large data, they are not meant to be used as a form of
proof of possession since a verification proof must contain
the challenged chunk (along with a logarithmic number of
hashes). This significantly increases the network bandwidth
since chunks must be sent to other peers during the verification
phase.

Protocol Labs proposes Filecoin [13] that leverages the
blockchain to implement two decentralized markets: The stor-
age market, where users submit orders to pay storage-nodes
and rent their storage, and the retrieval market, where users
submit requests to retrieve a file previously stored. Storing
and retrieving files involve matching orders between users and
storage-nodes. Files are sent off-chain to storage-nodes that
later generate a sequence of proofs of spacetime to prove files
were stored during the stipulated period. Storage-nodes are
paid using off-chain payment channels when they provide valid
proofs. File retrieval works similarly: Users submit retrieval
requests to nodes by including payments that are exercised
off-chain only when proofs of spacetime are valid or when
files have been successfully retrieved.

Blockstore [15] also employs the blockchain as a decen-

Table I: Comparison between Audita and the existing state-
of-the-art systems.  Property is satisfied. # Property is not
satisfied. G# Property is partially satisfied. Question mark ?
indicates insufficient implementation details. The highlighted
systems present the drawback of either store file chunks on the
blockchain or send them across the network for verification
purposes.

PoW-
free

Decentralized
auditing

Fair
auditing

Resilient to
outsourcing

Permacoin [8] #  #  
Retricoin [9] #  # #

EWoK [11] #  #  
KopperCoin [12]   # #

Sia [14]   G# #
Filecoin [13]   G# ?

BlockStore [15]  # G# #
Storj [16]  # G# #

Audita (Sec. VII)     

tralized storage market, in which users can rent space from
storage-nodes. It differs from [13], [14] on how the auditing
tasks are handled. Indeed, in [15], users are responsible for
their data and have to audit it by themselves or collaborate
with a third party. Namely, users repeatedly challenge storage-
nodes and ask for proofs of possession.

Storj [16] is an open-source project that aims to build a
decentralized cloud storage service. The core of the system
is composed of a class of peers, called satellites. They are
responsible for implementing a distributed hash table (DHT)
that stores all the information needed by users to upload
and download files to/from the network (e.g., storage-nodes
location, storage-nodes reputation, file metadata, etc.). Addi-
tionally, they issue payments to storage-nodes, which receive
an ERC20 Ethereum-based token, according to the service
provided, and they are responsible for data maintenance and
data replication. As in [15], auditing tasks are performed either
by the user or a third party (in this case the satellites). As in
Sia, Storj suffers from high network bandwidth overhead since
it uses Merkle trees as proofs of possession.

III. PROPERTIES

In Section III-A, we give an overview of the fundamen-
tal properties that a blockchain-based decentralized storage
system must satisfy. We make a comparison between Audita
and the existing systems (described in Section II) based on
such properties. In Section III-B, we report some additional
challenges that must be tackled before deploying such systems
in a real scenario.

A. Fundamental properties

We refer the reader to Table I for the comparison summary
between Audita and current state-of-the-art systems.

PoW-free: The current decentralized storage systems can
be divided into two distinct categories according to how they
prove the integrity of the files: PoW-based and PoW-free.
Systems such as [8], [9], [11] are PoW-based: Nodes are
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required to spend a significant amount of their computational
power to compute the PoW.1 On the other hand, [12], [14],
[13], [15], [16] do not rely on PoW at all: Nodes are only
required to generate proofs of possession. A decentralized
storage system should not make use of PoW for two main
reasons: It results in a significant waste of electricity, and it
excludes from the network nodes with limited computational
power but available storage space. Audita belongs to the PoW-
free category: A storage-node must only provide its storage
and have access to modest network connectivity to interact
with other peers. Note, however, that block-creators could still
deploy PoW as their consensus mechanism if deemed suitable.

Decentralized auditing and fairness: Data auditing is the
core of a decentralized storage system. Once users upload
their files, they expect to receive assurance that files are
stored correctly, and their integrity is preserved. The auditing
process is composed of two distinct aspects that we call
decentralization and fairness.

Decentralization refers to how the system audits (and dis-
tributes) the data. Resorting to the file owners for auditing
activities (via PDP or PoR) is not acceptable in a decentralized
scenario. Users can be offline or fail to trigger audit events.
Auditing must be decentralized and automatically performed
by the system. Blockstore [15] and Storj [16] are centralized:
The user authorizes a third party to audit its data by continually
challenging storage-nodes. On the other hand, [8], [9], [11],
[12], [14], [13] are decentralized. In particular, [8], [9], [11]
are PoW-based, and nodes challenge themselves by computing
the PoW. A similar consideration holds for KopperCoin [12]
where, instead of the PoW, nodes execute a storage-based
mining algorithm. Lastly, in [14], [13], storage-nodes regu-
larly generate proofs of possession to fulfill the agreement
established with the user.

Fairness refers to the ability to uniformly audit every part of
the file uploaded. In other words, the auditing is fair when each
file chunk has the same probability of being checked. Systems
such as [8], [9], [11], [12] are not fair under this definition.
In KopperCoin [12], storage-nodes are free to select which
chunks to store and could merely choose not to preserve some
of them. While, in [8], [9], [11], the probability of challenging
a node is proportional to its hash power since PoW is used to
prove storage integrity.

Instead, systems [14], [13], [15], [16] partially satisfy fair-
ness because file owners are in charge of selecting storage
nodes and challenge rates in advance.

Audita provides decentralized auditing that is decentralized
and fair. Storage-nodes and their respective integrity chal-
lenges are uniformly sampled by hashing the output of the
election phase that determines the block-creator.

Resilience to outsourcing: Outsourcing refers to the pos-
sibility for a node to store data within a cloud storage service
(e.g., Amazon, Google, Microsoft, etc.) to release its memory.
If several nodes outsource their data, decentralization will not
be guaranteed. A reliable decentralized storage service should
tackle this issue by hindering peers that outsource their data.
As an example, systems such as [8], [11] force peers to use

1Retricoin [9] leverages PoW to select the chunks indexes to challenge.

their local storage by including both the data and the peer’s
secret key in the PoW process. On the other hand, [14], [16],
[12], [15] do not propose any defense against outsourcing.
Filecoin [13] will block outsourcing by leveraging a proof
of spacetime and a time-bounded proof of replication, but
details about these primitives are still work in progress. Lastly,
Sengupta et al. [9] state that Retricoin is secure against
outsourcing. However, we note that file chunks are not directly
hashed during the computation of the PoW (as it is done in
Permacoin). Instead, the PoW involves only the indexes of
the chunks that are challenged. Thus, a malicious miner could
simply compute the PoW independently, and have the proof
of retrievability generated by an external server.

Audita proposes a new solution for the storage outsourcing
problem by making it financially inconvenient. A block-creator
will eventually ask and wait from storage-nodes ` proofs of
possession {πi}i∈`. A reward is only assigned to the first `
storage-nodes that provide such proofs. This consistently puts
storage-nodes in a highly competitive state. The reason is that
block-creators have the incentive to include in the winning
ticket the first ` proofs πi received to avoid any delay in
getting the reward. If a storage-node decides to outsource its
data, it will need to contact an external server to retrieve πi.
The assumption we make here is that this will cause network
delays which decreases the probability of getting the reward.
The advantage of our technique is that it does not involve
any intensive computational task from the storage-nodes’ side.
Note that a similar approach is used by Bowers et al. [17].
They show that the response time permits to verify that a
server is storing a file in a fault-tolerant manner.

B. Additional challenges

In this section we discuss about problems that must be
tackled before deploying a blockchain-based decentralized
storage system.

Incentivization: In a decentralized storage service, peers
offer their local storage space to build the network storage
infrastructure. Hence, one critical aspect is how to incentivize
peers to join the network. Peers must be persuaded to provide
their storage and keep data intact. Every existing system
[8], [9], [11], [14], [16], [13], [12], [15] uses rewards to
encourage peers to participate in the storage process honestly.
In more detail, in [8], [9], [11], [12], the system automatically
generates rewards to peers that correctly store the file. As an
example, [8], [9], [11] are conceived to work with Bitcoin, and
peers receive a bitcoin coinbase transaction as their reward. A
different approach is adopted by [14], [13], [15], [16]: Users
pay nodes in exchange for their storage space. In Audita, at
each timestamp, a block-creator asks storage-nodes for proofs
of possession on their respective file chunks. A reward is
assigned only to the first ` storage-nodes that answer correctly.
The goal of Audita is to incentivize storage-nodes (1) to store
file chunks faithfully and (2) to actively provide valid proofs
of possession. Indeed, unlike other systems, Audita creates a
strong incentive for storage-nodes to compete with each other
and provide valid cryptographic proofs promptly.
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Malicious users: The incentive that a blockchain-based
storage system provides to invite nodes to participate can
become a double-edged sword. Clients and nodes can collude
to take advantage of the network. As mentioned in [13], a
malicious user can generate a large file through a program.
By sharing this program with a node, the latter can free its
storage space but still claim to be storing the file. Specifically,
let us assume that a malicious user requests to store a file F
generated in the following way:

• Choose a PRF G with key s←$ {0, 1}∗.
• Create an arbitrary long file F = {f1, . . . , fn} where
fi = Gs(i).

• Make a request to store the file F in the network.
• Collude by sharing the Gs with the nodes that are storing

the file.

If the data owner spends less money to store his file than
the rewards the storage-node gets, then their collusion will
generate significant earnings. A system that could suffer from
this problem is KopperCoin [12]. In KopperCoin a user, that
wants to store a file for a fixed period must destroy a fixed
amount of coins. The longer the period, the higher the number
of coins to destroy. On the other side, storage-nodes will earn
some new coins that are included in a coinbase transaction.
The authors do not mention any relationship between the
number of coins to destroy and the amount contained into the
coinbase transaction. Hence, KopperCoin could be susceptible
to the above attack if the amount paid by the user is lower
than the expected rewards that a storage-node can earn. On the
other hand, [8], [9], [11], [14], [16], [15] are not susceptible to
this attack. Miller et al. [8], and Sengupta et al. [9] assumes
that a trusted dealer owns the file F . Hence, the attack is
out of scope since F comes from a trusted party. A similar
argument holds for [11]: F is the Bitcoin blockchain which
is publicly verifiable, and thus implicitly trusted. Filecoin [13]
mentions that their time-bounded proof of replication and proof
of spacetime prevent the attack, but their solution is still being
worked out. Lastly, in [14], [16], [15], the amount paid by
the user is precisely the amount that the storage-nodes will
earn during the storage process. We stress that this approach
applies to most of the systems, including Audita.

Recovery: A decentralized storage system must allow
users to retrieve the file from the network. Unfortunately,
merely deploying PDP and PoR is not sufficient. These prim-
itives were designed to challenge cloud storage servers, but
cannot help if providers misbehave or simply disappear [18].
Works such as [9], [11], [14], [15] do not provide any insight
on how the file can be retrieved. Permacoin [8] assumes that
a portion of altruistic peers may return the file to the user.
However, without any incentives, the number of altruistic peers
could slowly decrease over time, making the file unretrievable.
On the other hand, [16], [13] propose two similar solutions that
rely on the same idea: Clients pay storage-nodes to retrieve
their files as an incentive. However, they do not describe
how to fairly exchange the payment with the content of the
file. Thus, in principle, the storage-node could receive the
payment and disappear from the network. The solution of Kop-
perCoin [12] involves a 2-out-of-2 multisignature. The user

and the storage-node generates a transaction which includes
a payment for the storage-node and two collaterals, one for
each of the parties. Honest parties get their collateral back; in
particular, when the user receives the file requested, then the
multisignature is used to pay the storage-node and return the
two collaterals to the respective parties.

Audita relies on similar techniques and leverages smart
contract enabled fair exchange protocols [19] to implement a
reliable file recovery mechanism.

IV. PRELIMINARIES

A. Notation

We use the notation [n] = {1, . . . , n}. Capital boldface
letters (such as X) are used to denote random variables, small
letters (such as x) to denote concrete values, calligraphic letters
(such as X ) to denote sets and serif letters (such as A) to
denote algorithms. For a string x ∈ {0, 1}∗, we use |x| to
denote its length; if X is a set, |X | is the number of elements
in X . If A is an algorithm, we use y = A(x) to denote the run
of A on input x and output y; If A is a randomized algorithm
we write A(x; r) to denote the run of A on input x and uniform
randomness r). We sometimes write y←$ A(x) to denote the
output y of the randomized algorithm A over the input x and
uniformly randomness. The min-entropy of a random variable
X is H∞(X) = − log maxx∈X Pr[X = x ], and intuitively it
measures the best chance to predict X (by a computationally
unbounded algorithm).

Negligible functions: We denote by λ ∈ N the security
parameter and we implicitly assume that every algorithm
takes as input the security parameter. A function ν : N →
[0, 1] is called negligible in the security parameter λ if it
vanishes faster than the inverse of any polynomial in λ,
i.e. ν(λ) ∈ O (1/p(λ)) for all positive polynomials p(λ).
We sometimes write negl(λ) (resp., poly (λ)) to denote an
unspecified negligible function (resp., polynomial function) in
the security parameter.

B. Blockchain Protocol

A blockchain C is a sequence of public and immutable
blocks B administrated by the network. A blockchain protocol
Π over a chain C is a tuple of four algorithms (KGen,
Elect,Create,Ver), executed by block-creators in order to
create new blocks. The key generation algorithm KGen allows
block-creators to join the network and generate their public
and secret keys. We denote with BC = {bc1, bc2, . . .} and
(pkbci , skbci), the block-creators present in the system and
their public and secret keys, respectively. At each timestamp
t, block-creators work to extend the blockchain by appending
a new block B.2 The protocol is composed of two distinct
phases: Election phase and creation phase. The election phase
starts at the beginning of each timestamp t. Each block-creator
executes Elect to reach consensus on a leader that will be
in charge of creating and appending a new block. Once the

2The new block will be cryptographically linked to its predecessor. Usually,
such link is created by including in the new block the hash of the previous
one.
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consensus is reached, Elect outputs an identification string
idstr that publicly identifies the leader bc∗ (e.g., idstr includes
the leader’s public key pkbc∗ ). Then, the creation phase starts:
bc∗ broadcasts a new block B (generated by executing Create)
and the identification string idstr over the network in order to
be verified. The blockchain is extended by appending B if and
only if both B and idstr are valid, and B has been created by
the leader bc∗ identified by the identification string idstr.

More formally, a blockchain protocol consists of the fol-
lowing four algorithms:
KGen(1λ): The randomized key generation algorithm takes

as input the security parameter and outputs a public and
secret key (pkbc, skbc).

Elect(pkbc, skbc): The randomized consensus algorithm takes
as input a public and secret key pair (pkbc, skbc) and
outputs an identification string idstr.

Create(pkbc, skbc, idstr): The randomized creation algorithm
takes as input the public and secret key pair (pkbc, skbc),
and an identification string idstr, and outputs a block B.

Ver(B, idstr): The deterministic verification algorithm takes
as input a block B and an identification string idstr, and
outputs a decision bit.

We assume that leaders act in a rational manner, broadcasting
new blocks as soon as they are ready. This is a common behav-
ior presents in most of the existing blockchains. Timestamps
have a predefined time length that is the expected average
time needed to run the protocol and produce new valid blocks.
To make the system live, any delay is automatically handled
by the network (e.g., electing another leader). Furthermore,
in blockchain systems such as Bitcoin and Ethereum, block-
creators compete to mine new blocks and earn the correspond-
ing coinbase transaction. Any voluntary delay would result in
an economic loss.

We now define the correctness. Intuitively, a blockchain
protocol Π is correct if an honest execution produces a valid
block B.

Definition 1 (Correctness of blockchain protocol). We say
that a blockchain protocol Π is correct if, for every λ ∈
N, set of block-creators BC = {bc1, bc2, . . .} with keys
{(pkbci , skbci)←$ KGen(1λ)}i∈[|BC|] we have:

Pr

[
idstr←$ Elect(pkbci , skbci),
Ver(Create(pkbc∗ , skbc∗), idstr) = 1

]
≥ 1− negl(λ) ,

where bc∗ is the elected block-creator identified by idstr.

Remark 1. Network partitioning and asynchronous commu-
nication may interfere during the election and bring block-
creators to have different consensus views, i.e., Elect algorithm
may return inconsistent identification strings idstr. This ends
in having multiple leaders that create new blocks, generating
blockchain forks. We implicitly assume that the system has a
mechanism to handle and solve forks automatically.

Remark 2. Our definition focuses on blockchain protocols
that are composed of two distinct phases: Election phase
(Elect algorithm) and creation phase (Create algorithm). An
example of systems that lie in this category are permissioned
blockchains. In a permissioned setting, block-creators could

jointly elect a leader (e.g., by running a cooperative consensus
algorithm) that will be in charge of generating a new block
B. Even the well-known permissionless blockchains Bitcoin
and Ethereum fall in this category. In these systems, the
block creation works as a form of self-election. Indeed, block-
creators are required to locally solve the PoW in order to
produce a valid block. The coinbase transaction of a newly
mined block uniquely identifies the creator. Hence, according
to our definition, the election and creation phases collapse
into a single one, i.e., the mined block can be seen as
an identification string (e.g., idstr = B), and the creation
algorithm Create is just the identity function.

We are interested in blockchain protocols that are unpre-
dictable. Unpredictability refers to the inability to predict the
output of the election phase, i.e., the identification string idstr.

Definition 2 (Unpredictability). A Blockchain Protocol Π is
unpredictable if H∞(X) ≥ ω(log(λ)), where X is a random
variable that represents the distribution of the identification
strings idstr (output by Elect).

Remark 3. Several blockchain systems are considered unpre-
dictable. For example, as described in Remark 2, Bitcoin’s
identification string idstr corresponds to the next candidate
block B. Each block contains several elements such as: 32
bit nonce used to randomize the output of the PoW, ECDSA
signatures, Merkle root, extra-nonce, etc. These elements have
a non-trivial amount of entropy and make hard the prediction
of the next block. We also emphasize that, in some cases, it is
straightforward to make a blockchain system unpredictable.
For example, in a blockchain that deploys a cooperative
consensus algorithm (e.g., Ripple [20]), block-creators can
jointly agree on randomness r (e.g., by using coin tossing [21]
or other multi party computation techniques) with at least
ω(log(λ)) bits of min-entropy during the consensus phase.

C. Provable Data Possession

A Provable Data Possession scheme (PDP) Π =
(KGen,Tag,GenChal,GenProof,CheckProof) allows a user
to check the integrity of a file F = {f1, . . . , fn} stored in a
remote untrusted server. The user computes the file fingerprint
(by using its public and secret key (pk, sk) generated by KGen)
that consists in tagging each file chunk fi using the tagging
algorithm Tag. Then, both the file F and the tags {τi}i∈[n] are
outsourced to the untrusted server. At any moment, the user
can issue a challenge chal (generated through the challenge
generation algorithm GenChal) to the server in order to audit
its data. We assume that the challenge generation algorithm
takes in input an integer d and an index space I ⊆ [n]
such that d ≤ |I|, and returns chal that, among other things,
includes a set of d distinct indexes Ichal sampled at random
from I. The server uses both the file and the related tags to
run GenProof and generate a proof of possession π. The latter
is sent to the user that verifies it by running the verification
algorithm CheckProof. In this work, we are interested in
publicly verifiable PDP, i.e., the verification process does not
involve the user’s secret key sk. This permits them to delegate
a third party for verification.



7

Formally, a publicly verifiable PDP scheme for a file F =
{f1, . . . , fn} is composed by the following algorithms:
KeyGen(1λ): The randomized key generation algorithm takes

as input the security parameter and outputs the public key
pk and the secret key sk.

Tag(pk, sk, fi): The randomized tagging algorithm takes as
input a public key pk, a secret key sk, and a file chunk
fi ∈ F , and outputs a tag τi.

GenChal(d, I): The randomized challenge algorithm takes as
an integer d ∈ N and an index space I ⊆ [n], and outputs
a challenge chal defined over d distinct chunk indexes
Ichal sampled at random from I

GenProof(pk, chal, {fi}i∈Ichal , {τi}i∈Ichal): The deterministic
prove algorithm takes as input a public key pk, a chal-
lenge chal defined over a set of d chunk indexes Ichal, a
set of file chunks {fi}i∈Ichal , and a set of tags {τi}i∈Ichal ,
and outputs a proof π.

CheckProof(pk, chal, π): The deterministic verification algo-
rithm takes as input a public key pk, a challenge chal,
and a proof π, and outputs a decision bit.

A PDP scheme is correct if honestly generated proofs verify
correctly.

Definition 3 (Correcteness of PDP). A PDP scheme Π =
(KGen,Tag,GenChal,GenProof,CheckProof) is correct if
∀I ⊆ [n], ∀F = {f1, . . . , fn}, ∀d ∈ N such that fi ∈ {0, 1}∗
and d ≤ |I|, we have:

Pr

[
π = GenProof(pk, chal,F , T ),
CheckProof(pk, chal, π) = 1

]
= 1,

where (pk, sk)←$ KGen(1λ), chal←$ GenChal(d, I), Ichal are
the d chunk indexes determined by chal, F = {fi}i∈Ichal , and
T = {τi←$ Tag(pk, sk, fi) ∈ Ichal, }i∈Ichal .

As for security, it must be infeasible to generate a valid proof
of possession π without knowing the file chunks specified in
the challenge.

Definition 4 (Security of PDP). A PDP scheme Π = (KGen,
Tag,GenChal,GenProof,CheckProof) is secure if, for every
file F = {f1, . . . , fn}, every index space I ⊆ [n], every d ≤
n, and every PPT adversary A, the probability that A wins the
game Gpdp

Π,F,A(λ, d, I) is negligibly close to the probability that
the challenger can extract the chunks {fi}i∈Ichal by means of
a knowledge extractor E. The game Gpdp

Π,F,A(λ, d, I) is defined
in the following way:

1) The challenger runs (pk, sk)←$ KGen(1λ) and sends pk
to the adversary A.

2) A issues oracle queries to the oracle Tag. On input fi ∈ F
the oracle returns the tag τi←$ Tag(pk, sk, fi).

3) The challenger sample a randomness r←$ {0, 1}∗ and
send it to A. The adversary is required to provide a valid
proof of possession π with respect to the challenge chal =
GenChal(d, I; r) defined over the d indexes Ichal ⊆ I.

4) The adversary outputs a proof π.
5) If CheckProof(pk, chal, π) = 1 where chal =

GenChal(d, I; r), output 1; otherwise output 0.

Remark 4. The PDP definitions used in this work differs from
the ones proposed by Ateniese et al. [22] in how the challenges

are generated. We assume the existence of a randomized
algorithm GenChal that produces challenges on a portion of
the file. This main difference affects our security definition.
Indeed, similarly to [23, Section 4], the challenger does not
directly choose chal, but it outputs the randomness r for the
challenge algorithm GenChal that will randomly sample d
chunks from the index space I. Note that every secure PDP
scheme under the definition of [22], is also secure under our
Definition 4. This is because in [22], the challenge distribution
is arbitrary.

Remark 5. PDP and PoR [10] are related primitives. The
former guarantees that the challenged chunks are correctly
stored (or known) by the server, while the latter additionally
guarantees that the entire file can be retrieved from a set of
proofs. It is possible to show that retrievability can be added to
PDP by applying an erasure code to the file F before uploading
it [24]. Thus, we implemented Audita with PDP and left the
use of erasure codes optional.

D. Signature Schemes

A signature scheme is made of the following efficient
algorithms.
KGen(1λ): The randomized key generation algorithm takes

the security parameter and outputs a public and a secret
key (pk, sk).

Sign(sk,m): The randomized signing algorithm takes as input
the secret key sk and a message m ∈ M, and produces
a signature σ.

Ver(pk,m, σ): The deterministic verification algorithm takes
as input the public key pk, a message m, and a signature
σ, and it returns a decision bit.

A signature scheme must satisfy two properties: 1) honestly
generated signatures verify correctly and, 2) it is infeasible
to compute valid signatures for new fresh messages without
knowing the respective secret key sk.

Definition 5 (Correctness of signatures). A signature scheme
Π = (KGen,Sign,Ver) with message space M is correct if
∀m ∈M,∀(pk, sk)←$ KGen(1λ) the following holds:

Pr[Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 6 (Unforgeability of signatures). A signature
scheme Π = (KGen,Sign,Ver) is existentially unforgeable
under chosen-message attacks (EUF-CMA) if for all PPT
adversaries A:

Pr
[
Geuf

Π,A(λ) = 1
]
≤ negl(λ) ,

where Geuf
Π,A(λ) is the following experiment:

1) (pk, sk)←$ KGen(1λ).
2) (m,σ)←$ ASign(sk,·)(1λ, pk)
3) If m has not been queried to oracle Sign(sk, ·), and

Ver(pk,m, σ) = 1, output 1; otherwise output 0.

V. ASSUMPTIONS

Audita allows users to store their files in a decentralized
way. For the sake of clarity, we introduce the system assuming
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the presence of a single user with a single file. Erasure code
may be pre-applied in order to add redundancy and guarantees
a user to retrieve the file even if a part of the chunks are lost or
corrupted. We assume the file size is too large (e.g., Petabytes)
to be stored by an individual node. For this reason, the file is
divided into smaller portions that are distributed to each node.
The distribution is performed by a third party D, called the
dealer. In Section VI-A we discuss how to handle multiple
files and decentralize the distribution. Additionally, we make
the following assumptions:

Rational nodes: We assume that the majority of nodes
(block-creators and storage-nodes) are rational and act in an
economically rational manner. Rewards are widely used in
several blockchain systems to incentivize honest behavior. In
both Bitcoin and Ethereum, peers earn coins for the service
provided to the network. Incentivization can also be obtained
in other ways. As an example, in a permissioned scenario, the
network is composed of authorized nodes. It is reasonable to
assume that, in this case, nodes have a contractual agreement
with an authority that must be fulfilled.

Secrecy of private keys: Each node possesses a public
and secret key (pk, sk). We assume sk is kept secret, and thus
not outsourced to an external party. In permissionless systems
such as Bitcoin or Ethereum, the node’s secret key is used
to sign transactions and spend their rewards. Hence, a node
that reveals its secret key sk would end in exposing its wallet.
On the other hand, in a permissioned setting, nodes must be
authorized and sk allows them to authenticate in the system.
Revealing sk would allow an attacker to maliciously act in its
name and breaks any existing contractual agreement.

Network latency: We assume that communicating
through the network requires a significant amount of time.
If a node desires to execute a computational task as fast as it
can, it will be most likely faster if it minimizes the network
communication by computing the task locally. Outsourcing
the computation to an external party will add a significant
delay due to the multiple network hops necessary to exchange
inputs and outputs for the task. As we will describe in
the Section VI-A this is fundamental in order to incentivize
storage-nodes to locally store the file chunks and make Audita
resilient to outsourcing.

VI. AUDITA

Audita defines a new technique to add storage capabilities
to every blockchain system (Definition IV-B). The network is
composed of two types of nodes: Block-creators and storage-
nodes. Block-creators execute the standard protocol of the
underlying blockchain while storage-nodes are entitled to store
a portion of the file. Audita requires cooperation between
these two categories in order to create a new block. A block-
creator that wants to extends the blockchain with a new block
B must challenge a subset of k storage-nodes and retrieve
at least ` proofs of possession {πi}i∈[`]. For the sake of
clarity, we introduce the system assuming the presence of a
single user with a single file and the distribution of the file
chunks is performed by a third party D, called the dealer.
In Section VI-A we will discuss how to handle multiple

User

(1)

(2) (3)

(4)

Figure 2: An example of file distribution with four storage-
nodes SN = {sn1, sn2, sn3, sn4}. (1) The user, holding a
file F , executes Setup and computes the file public key
pkF̂ and the encoding F̂ . (2) The user sends the encoded
file F̂ to the dealer D. (3) D computes the file subsets
{F̂sn1 , F̂sn2 , F̂sn3 , F̂sn4} by running GetChunks. (4) D sends to
each storage-node sni the respective file subset F̂sni to store.

files, decentralize the distribution, and other technical details
required to correctly and securely instantiate the Audita in a
real scenario.

Formally, Audita is composed of eight algorithms
(BCKGen,SNKGen,Setup,GetChunks,Elect,Prove,Create,
Ver) and consists of four distinct phases: Join, distribution,
election, and block creation.

Join: As in every blockchain system, nodes are free to
join the network. They only need to generate a valid key
pair. Since there are two categories of nodes, Audita has
two distinct key generation algorithms: BCKGen generates
the block-creators’ keys while SNKGen generates the storage-
nodes’ ones. The storage-nodes’ keys are valid keys of an arbi-
trary signature scheme (e.g., the same used by the underlying
blockchain system). We denote with SN = {sn1, sn2, . . .}
and {(pksni , sksni)}i∈[|SN|], the storage-nodes present in the
system and their public and secret keys, respectively.

Distribution: The distribution phase starts with a user
that wants to store a file F = {f1, . . . , fn}. It executes Setup
that outputs an encoding F̂ = {f̂1, . . . , f̂n} of F and the
file public key pkF̂ (i.e., file identifier).3 Among other things,
the encoding F̂ contains a set of tags {τi}i∈[n], computed
by a publicly verifiable PDP scheme. The tags will allow
storage-nodes to prove the file is correctly stored. The user
publishes pkF̂ to announce its intention to store the file (see
Section VI-A for more details). Then, it sends F̂ to the dealer
D whose job is to distribute to each storage-node sn a subset
F̂sn ⊆ F̂ (computed by GetChunks) of m chunks. An example
of distribution is depicted in Figure 2.

Election: Once the distribution phase is completed, the
election phase starts. At each timestamp, block-creators try to
reach consensus on a leader bc∗. This is achieved by executing
the election algorithm Elect that outputs an identification string
idstr that identifies bc∗. Furthermore, k distinct storage-nodes
SN ∗ are elected. Each elected storage-node is invited to prove
the possession of its file portion by using the PDP scheme.

3Such encoding may include the application of an erasure code on the file
in order to add redundancy and guarantees the user to retrieve the file even
if a part of the chunks are lost or corrupted.
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(2)
(1)

(3)

(4)

(5)

Figure 3: Creation phase execution with four storage-nodes
SN = {sn1, sn2, sn3, sn4}, k = 2, and ` = 1. (1) The
network elects a leader bc∗ and a set of k storage-nodes
SN ∗ = {sn1, sn3} by running Elect. (2) The leader bc∗ sends
the identification string idstr to each storage-node sn∗i ∈ SN

∗.
(3) Each sn∗i ∈ SN

∗ executes Prove and computes the proof
π. (4) sn∗3 (the fastest storage-node) sends π to the leader bc∗.
(5) bc∗ broadcasts idstr, a new block B, and π for verification.

Creation: The leader bc∗ sends to each elected storage-
node sn∗i ∈ SN

∗ the identification string idstr to prove
that it is the leader for the current timestamp. Then, each
storage-node sn∗i ∈ SN

∗ sends back a proof of possession
πi (computed by executing Prove) with respect to a challenge
chal∗i defined over d chunk indexes Ichal∗i . The challenge chal∗i
is randomly generated by hashing the identification string
idstr and the storage-node’s public key pksn∗i . We require
the storage-node to sign πi with its secret key in order to
attest the source of the proof. The leader bc∗ broadcasts
the identification string idstr, a new block B (generated by
Create), and the first received ` proofs {πi}i∈[`]. Each node
in the network executes the verification algorithm Ver that
checks the following: i) idstr is a valid identification string
that identifies bc∗, ii) B is valid block created by bc∗, iii)
{πi}i∈[`] are valid proofs of possession generated by ` distinct
elected storage-nodes. If the verification succeeds, then the
network extends the blockchain C by appending the block B.
Figure 3 shows an example of creation phase execution.

We stress that the ` valid proofs of possession are not
included into the new block B. If the majority of block-
creators is honest, then the creation of a new block implies
that ` · d chunks have been proven correctly.

Below, we provide the formal instantiation of Audita.

Construction 1. Let BC, PDP, SS be a blockchain protocol,
a public verifiable PDP scheme, and a signature scheme,
respectively.4 Let H1,H2,H3 : {0, 1}∗ → {0, 1}∗ be three
distinct hash functions. We build Audita with parameters
(n,m, k, d, `) such that d ≤ m ≤ n and ` ≤ k ≤ |SN |
in the following way:

BCKGen(1λ): The block-creator key generation algorithm,
on input the security parameter, returns (pkbc, skbc)←$

KGenBC(1λ).
SNKGen(1λ): The storage-node key generation algorithm,

on input the security parameter, returns (pksn, sksn)←$

KGenSS(1λ).

4Audita leverages a signature scheme to generate the key pair of storage-
nodes. These keys are used to sign their proof of possessions and identify the
storage-nodes in order to receive the rewards. The signature could be identical
to the signature scheme used by the underlying blockchain.

Setup(1λ, F ): The setup algorithm, on input the security
parameter and a file F = {f1, . . . , fn}, computes (pk, sk)
←$ KeyGenPDP(1λ) and τi = TagPDP(pk, sk, fi), for
i ∈ [n]. Finally, it returns pkF̂ = pk and F̂ = {f̂i =
(fi, τi)}i∈[n].

GetChunks(pkF̂ , F̂ , pksn): The chunk distribution algorithm
takes as input the file public key pkF̂ , the encoded file
F̂ = {f̂i = (fi, τi)}i∈[n], and a storage-node public key
pksn. Then, it initiliazes Xsn = {∅}, V = {1, . . . , n},
j = 0 and it randomly samples without replacement m
file chunk indexes in the following way:5

• Until |Xsn| < m then: Increment the counter j = j+1,
compute vj = H1(pksn||j), and if vj 6∈ Xsn, then add
vj to Xsn.

Finally, it returns F̂sn = {f̂i = (fvi , τvi)}vi∈Xsn .
Elect(pkbc, skbc): The election algorithm, on input a block-

creator public key and private key pair (pkbc, skbc),
computes idstr←$ ElectBC(pkbc, skbc). Then, it initializes
SN ∗ = {∅}, V = SN , j = 0 and it randomly
samples without replacement k storage-nodes SN ∗ in the
following way:5

• Until |SN ∗| < k then: Increment the counter j = j+1,
compute vj = H2(idstr||j) and, if snvj 6∈ SN

∗, then
add snvj to SN ∗

Finally, it returns (idstr,SN ∗).
Prove(pkF̂ , pksn, sksn, idstr, F̂sn): The prove algorithm takes

as input the file public key pkF̂ , a storage-node pub-
lic and secret key (pksn, sksn), the identification string
idstr, and a subset of file chunks F̂sn = {f̂i =
(fi, τi)}i∈[m]. It generates a challenge by executing
chal∗ = GenChalPDP(d,Xsn;H3(pkF̂ ||pksn||idstr)) where
Xsn is the set of chunk indexes stored by sn (as described
in GetChunks). Let Ichal∗ ⊆ Xsn be the set of d chunk
indexes determined by chal∗. The algorithm computes
σ = SignSS(sksn, π

′) where π′ = GenProofPDP(pkF̂ ,
chal∗, {fj}j∈Ichal∗ , {τj}j∈Ichal∗ ). It returns a proof of pos-
session π = (π′, σ).

Create(pkbc, skbc, idstr): The creation algorithm, on input a
block-creator public and secret key pair (pkbc, skbc) and
an identification string idstr, runs B←$ CreateBC(pkbc,
skbc, idstr) and returns the new block B.

Ver(pkF̂ , {pksni}i∈[`], {πi}i∈[`], idstr, B): The algorithm
takes as input the file public key pkF̂ , a set of storage-
node public key {pksni}i∈[`], a set of proof of possession
{πi = (π′i, σi)}i∈[`], an identification string idstr, and a
block B. The algorithm proceeds in the following way:
• Compute SN ∗ as done by the Elect algorithm. If

there exists a pksni that belongs to a storage-node
sni such that sni 6∈ SN ∗, then return 0. Oth-
erwise, for every i ∈ [`], compute the challenge
chal∗i = GenChalPDP(d,Xsni ;H3(pkF̂ ||pksni ||idstr)),
b2i = VerSS(pksni , π

′
i, σi), and b1i = CheckProofPDP(

pkF̂ , chal
∗
i , π
′
i), where Xsni is the set of chunk indexes

stored by sni (computed as in GetChunks algorithm).

5Other randomized algorithms can be used to sample without replacement,
e.g., reservoir sampling [25].
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Finally, if 1 = VerBC(idstr, B) and b1i = b2i = 1 for every
i ∈ [`], the algorithm returns 1; otherwise, it returns 0.

Audita inherits from the PDP scheme the same security
guarantee, i.e., every time the chain is extended then a set of
` storage-nodes have provided ` valid proofs of possession.
At high level, Theorem 1 means that the ` storage-nodes,
that have produced the valid proof of possessions, know the
corresponding challenged chunks (either because they store
the chunks or they know how to recompute them).Below we
establish the result, and the proof appears in appendix A.

Theorem 1. Let t be a timestamp in which the blockchain has
been extended. Let F = {f1, . . . , fn} and SN ∗ an arbitrary
file and the elected storage-nodes at timestamp t, respectively.
If PDP is secure (Def. 4), then Audita guarantees (in the
random oracle model) that there exists a set of ` storage-
nodes {sni}i∈[`] ⊆ SN ∗ such that each sn∗i has generated
a proof of possession πi with probability negligibly close to
the probability that the user can extract the challenged d file
chunks {fj}j∈Ichal∗

i
by means of a knowledge extractor E,

where Ichal∗i are the indexes contained in the challenge chal∗i
of storage-nodes sn∗i .

A. Technical details of Audita

Publishing the parameters: Audita relies on two public
parameters that the entire network must know: 1) An ordered
list SN that contains the storage-nodes present in the system
and, 2) the public key pkF̂ of the file. The ordered list SN
is essential in order to check that the proofs of possession
{πi}i∈[`] come only from elected storage-nodes sn∗i ∈ SN

∗.
On the other hand, pkF̂ is needed to validate the proofs
{πi}i∈[`]. Audita introduces two types of transactions and
leverages the blockchain to publish SN and pkF̂ . The first,
called join transaction Tjoin, allows storage-nodes to join the
network and publish their public keys. All the transactions
recorded on the blockchain compose the ordered list SN . The
second is called store transaction Tstore and allows the user to
publish the file public key pkF̂ .

Financial model: In order to block denial of service at-
tacks, Audita charges the user to pay storage fees proportional
to the time the file is stored. Suppose the user intends to store
the file for t consecutive timestamps, then it must include
tα coins in the store transaction Tstore. These coins will be
gradually delivered to the fastest storage-nodes of the next t
timestamps, i.e., for each timestamp, the leader includes into
its proposed block ` transactions {Tsn∗i

}i∈[`], each of which
transfers α

` coins from Tstore to one of the fastest ` storage-
nodes. We stress that the payment can also be delivered in
other ways. For example, in a permissioned setting, storage-
nodes can have some kind of off-chain contracts.

This financial model makes Audita resilient against out-
sourcing. To extend the blockchain, leaders are required to
broadcast ` proofs of possession along with the new block B.
For this reason, a rational leader, that intends to broadcast a
new block as fast it can (see Section IV-B), will wait only
for the first ` incoming proofs. This incentivizes storage-
nodes to keep their data locally stored. Indeed, outsourcing

a significant portion of data to a third party will end in an
economic loss. This is because the proof generation will re-
quire communication through the network making the storage-
node significantly slower than the others (see the security
assumptions in Section V). Moreover, note that storage-nodes
can not predict in advance which will be the challenged chunk
indexes since they are computed by hashing the identification
string idstr that has a non-trivial amount of entropy (Def. 2).
We stress that Audita is outsourcing free only if `

k is small
enough. The higher the value (e.g., `

k ≈ 1), the lower the
storage-node competition: A large portion of storage-nodes
may decide to outsource the data since a high number of proofs
are required during the creation phase. On the other hand, the
lower the value (e.g., `

k ≈ 0), the higher the competition: The
leader will collect only a limited number of proofs. Any delay
significantly decreases the probability of getting the reward.
Lastly, by requiring users to pay storage-nodes, Audita makes
any collusion strategy worthless. Indeed, even if the user and
a set of storage-nodes collude, their expected reward will be
negative. This discourages any collusion and mitigates attacks
such that the one described in Section III-B.

To deploy this financial model, the block must be created
after receiving the proofs of possession, i.e., Create is executed
after the election algorithm Elect. Unfortunately, this is not
the case of the existing systems Bitcoin and Ethereum. As
described in Remark 2, in these systems, the creation of
the block is a form of self-selection (i.e., Elect and Create
collapse into a single algorithm). This does not permit the
leaders to include the transaction {Tsn∗i

}i∈[`] into the new
block since it would require to recompute the PoW. To
overcome this problem, in this kind of systems, storage-nodes
are paid in the next timestamp. Before proposing the block
to the network, the leader must add into the transaction pool
{Tsn∗i

}i∈[`] that pay the fastest ` storage-nodes {sn∗i }. After
that, it broadcasts the block B along with the proofs {πi}i∈[`],
generated by {sn∗i }i∈[`]. The network will accept the block
B by additionally checking that the transaction pool contains
{Tsn∗i

}i∈[`].
Recovering the file: As discussed in III-B, a malicious

storage-node sn may choose to not return the stored file portion
F̂sn. This problem can be solved by adopting the solution
proposed by KopperCoin [12]. The user and the storage-
node sn create a 2-out-of-2 multisignature transaction T that
includes three amounts: a payment α, a two collaterals β (the
client one) and γ (the storage-node one). The collaterals β
and γ are a form of warranty to encourage the parties to act
honestly. Once the user receives F̂sn from the storage-node
sn, they unlock T by signing a new transaction T′ that returns
the collaterals to the respective parties and α is paid to sn.
We stress that in smart contract enabled blockchains, other
solutions such as fair exchange protocols [19] can be used.

Multiple files: Audita can be easily extended in order
to store c files {F̂i}i∈[c] (with public keys {pkF̂i

}i∈[c]) of c
different users. For each file F̂i, the dealer distributes to each
storage-node sn a portion F̂ isn of F̂i composed of m chunks.
As before, the portion F̂ isn for a storage-node sn is computed
by running GetChunks with input (pkF̂i

, F̂i, pksn). During
the creation phase, each elected storage-node sn∗i ∈ SN

∗ is



11

now required to provide to the leader c different proofs of
possession {πi,j}j∈[c], one for each of the stored file portion
F̂ jsn∗i

. Lastly, a new block is accepted by the network only if it
is accompanied by ` · c PDP proofs {πi,j}i∈[`],j∈[c] computed
by ` elected storage-nodes. Note that when multiple files are
stored, the memory and computational power required to join
the network increase proportional to the number of files stored.
Indeed, each storage-node needs to store c·m chunks and must
compute c independent proofs. To decrease these requirements,
the parameters m, d, ` can be tuned in the following way:
• m (the number of chunks to store for each file) can be

reduced (e.g., m′ = m
c ) in order to decrease the amount

of free space required to join the network.
• d (the number challenged chunks determined by chal) can

be reduced to speed up the proof generation.
• When d decreases, the system checks the integrity of a

smaller portion of the files. This can be counterbalanced
by using the parallelism that Audita provides: By increas-
ing ` (the number of proofs of possession required to
propose a new block) it is possible to check the integrity
of bigger portions of the files leveraging the proofs of
possession of different storage-nodes. In Section VII we
will show the performance of Audita with different values
`.
Files sizes: The sum of the sizes of files stored by

Audita must be large enough that it can not be stored by an
individual storage-node (see Section V). A malicious storage-
node, that stores all the files chunks, may sybil multiple
identities and increase its chance to be elected. If the sybil
attack is performed an infinitely large number of times, the
probability will tend to 1. This will guarantee the malicious
node to get the reward at each timestamp and, at the same
time, will disincentivize other storage-nodes to participate,
decreasing the decentralization (and the security) of Audita.
We stress that such assumption is reasonable to be true when
the system is deployed on large scale.

Decentralized dealer: The dealer is just responsible for
distributing the files across the network, allowing the user to
go offline. Hence, it can be easily decentralized by replicating
the dealer on multiple servers. Alternatively, it is possible to
leverage a smart contract based blockchain to implement the
dealer with a smart contract.

New storage-nodes: A storage-node could join the system
after the file distribution has been completed. The (decentral-
ized) dealer will serve these new storage-nodes by sending
them the chunks to store. We stress that the dealer does not
need to keep the file locally stored, indeed, it can simply
retrieve the chunks from the storage-nodes already in the
system. Lastly, we emphasize that a storage-node could refuse
to send the requested chunks back since a new node in the
system decreases its chance to be elected. To punish and
disincentivize this behavior, the dealer marks the malicious
node as faulty and excludes it from the system.

VII. IMPLEMENTATION AND EVALUATION

We implemented a prototype to validate and demonstrate the
technical feasibility of Audita. We implemented the system

HTTP	client

RESTFull	API

Web3.js

LogicPDP	WrapperMSG	System

Node.js

LedgerSmart	ContractsQuorum

Figure 4: High level architecture.

as a decentralized application via smart contract logic [7].
Smart contracts allow us to build a functioning system without
modifying the consensus mechanism and the block structure of
a forked blockchain. The choice to implement a decentralized
application is justified by two main reasons: a pragmatic and a
technical one. The pragmatic one is related to the opportunity
to reduce the complexity of the implementation while proving
the functioning of the protocol. The technical one is to be
able to demonstrate that Audita can be built on a smart
contract enabled blockchain without touching the core protocol
of the platform. Naturally, as already described, Audita can
be implemented by modifying the protocol of an existing
blockchain.

The client architecture (depicted in Figure 4) is structured
with two main building blocks: a smart contract enabled
blockchain and a server component. The blockchain platform
selected for our implementation is the Ethereum-based dis-
tributed ledger protocol Quorum [26]. The version of Quorum
used in our implementation is the 2.1.1, the geth version used
is 1.73, the consensus mechanism configured in our system is
RAFT [27] and the smart contracts are written in Solidity
0.4.19. The server component is implemented in Node.Js
8.12.0 and has 5 main building blocks:
• A RESTFull API Layer for HTTPS client interactions;
• A PDP Wrapper connected to the PDP subroutine;
• A messaging system for off-chain communication;
• Web3.js (1.0.0-beta.36 with a custom patch to overcome

some limitation on WebSocket Handling);
• Participants logic libraries to implement specific logic for

each of the different roles, i.e., dealer, block-creator, and
storage-node.

The PDP subroutine implements the publicly verifiable PDP
scheme of Ateniese et al. [22], and it is based on an existing
implementation called libpdp [28]. We modified the libpdp
library to implement the variant of the primitive that offers
public verifiability. The server component is the core logic of
the different roles, and it is responsible for computing/generate
proofs of possession using the library. Additionally, it allows
off-chain communication to send/receive proofs as well as the
chunks to store. In our implementation, the dealer (resp. the
leader bc∗ of a fixed timestamp) executes a dedicated smart
contract to compute the chunk indexes a storage-node must
store (resp. to compute the storage-nodes SN ∗ elected in a
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Figure 5: Percentage of the file proven over time.
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Figure 6: Number of timestamps needed to prove 90% of the
1 Petabyte file (composed of n = 68 719 476 736 chunks). The
Y-axis (timestamps number) follows a logarithmic scale.

particular timestamp).6 This makes the blockchain a public
record enabling public auditing and transparency about the
file distribution and the storage-node elections.

For the sake of efficiency, in our implementation, the
election phase is simulated by an external party called oracle.
The oracle beats the time for the network by communicating
the start of new timestamps. A new timestamp starts when the
oracle executes the election phase, implemented by a smart
contract, that on input a random seed s, selects the leader
bc∗. The leader will then use the same seed s to compute
the elected storage-nodes SN ∗ and the challenge chal.7 We
stress that the oracle has been introduced only to reduce the
complexity of the implementation. The hash function used in
our implementation is SHA-3.

Experimental setup: We deployed 7 Quorum nodes as
docker containers using Quorum Maker [29]. The host ma-
chine is an Amazon t3.2xlarge EC2 machine (8 vCPUs and
32GB of RAM), running Ubuntu Xenial 16.04 amd64. There-
fore, the ledger is only replicated 7 times. The participants
of the Audita network do not have their own copy of the
ledger. The Audita network has been deployed with a set
of 10 Amazon m5.12xlarge EC2 machines (48 cCPUs and
192 GB of RAM), running Ubuntu Xenial 16.04 amd64. Each

6The smart contract only computes the chunk indexes. The real chunks are
sent off-chain.

7According to the syntax provided in Section IV-B, the identification string
idstr of our implementation corresponds to the tuple (pkbc∗ , s).

virtual machine runs 100 storage-nodes, 2 block-creators and 2
dealers as dockers containers. One of the 10 virtual machines
runs the oracle, as a docker container, that elects the leader at
each timestamp. Overall, the Audita network is composed of:
1000 storage-nodes, 20 block-creators, 10 dealers, 1 oracle.

To optimize the duration of the file-sharing process on our
experiments, we used the docker bind mount process [30]
instead of the originally implemented HTTP protocol. Each
storage-node container is bound to a folder on the host
machine where the dealer copies the right chunks. This allows
a dealer to successfully send the appropriate chunks to the right
storage-nodes (hosted on the same machine) without going
through the HTTP protocol.

Experimental results: We performed an experimental test
and a simulation to evaluate the storage guarantees that Audita
provides with respect to a single file. The results are identical
even when the system stores multiple files. The execution time
of the protocol heavily depends on the PDP scheme used and
the underlying blockchain (block creation time, number of
storage-nodes, etc.).

We started with a performance test with a minimal in-
stantiation of the system (small file and limited number of
storage-nodes). We measured the relation between the number
of timestamps and the percentage of the file that is being
processed. In more detail, we executed our test by considering
the following parameters: 1GB file composed by n = 65 536
chunks (chunk size 16KB), number of chunks to store by
storage-node m = 12 500 (≈ 19% of the entire file), number
of proofs per timestamp ` = 1, number of elected storage-
nodes per timestamp k = 10. Based on these parameters, we
ran three experiments with different values of d (number of
chunks proven by each proof of possession): 100, 500, and
1000 (approximately 0.15%, 0.8%, and 1.6% of the file).

Figure 5 shows the results. As we can see, the parameter d
has a significant impact on the percentage of the file chunks
proven to be stored. For high d, the percentage of distinct
file chunks proven grows logarithmically. For d = 1000
(i.e., each proof of possession is computed on 1.6% of the
total number of chunks), approximately 150 timestamps are
sufficient to guarantee that 90% of the file is stored correctly.
If the timestamps are 10 minutes long (e.g., Bitcoin), d = 1000
guarantees that the 90% of the file is correctly stored only in
1 day of protocol execution. Additionally, our results allow us
to determine the type of erasure code to use according to the
user’s preferences. For example, a (0.9 · n)-out-of-n erasure
code guarantees the retrievability of the file in 1 day while a
(n/2)-out-of-n erasure code reduces the wait time to only 8
hours.8

Based on the results above, we ran a simulation to evaluate
the performance of a large instantiation of Audita (large file
and several storage-nodes). The simulation aims to show the
impact of the parameter ` (number of proofs accepted at
each timestamp). In more detail, we deployed 1 Petabyte file
composed of approximately 68 billion chunks (parameter n)
distributed among 1 million storage-nodes, each of which en-

8For d = 1000, n/2 chunks are proven in approximately 50 timestamps
(e.g., 8 hours if each timestamp is 10 minutes long).
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titled to store m = 655 360 (10GB) chunks. This time, at each
timestamp, k = 400 000 storage-nodes are challenged on 1024
(16MB), 8000 (125MB), 16 000 (250MB), 32 000 (500MB),
48 000 (750MB), and 65 536 (1GB) chunks (parameter d).
We ran the simulation with different values of ` (i.e., 1000,
10 000, 50 000, 100 000, 200 000) and we report the number
of timestamps needed to prove 90% of the file.

Figure 6 shows the results. By increasing `, we can reduce
the number of timestamps needed to prove a fixed percentage
of the file (in this case, 90%). For example, for d = 8000
(125MB) and ` = 1000, 90% is reached after 19 314 times-
tamps. Instead, for higher values such as ` = 10 000 and
` = 50 000, the number of timestamps drops to 2208 and
442, respectively. Moreover, note that the timestamps and the
parameter ` are linearly correlated. As an example, between
` = 1000 and the next order of magnitude ` = 10 000, the
numbers of timestamps (19 314 and 2208, respectively) differ
approximately by the same order.

As already discussed in Section VI-A, d and ` can be tuned
to distribute the proof generation overhead among multiple
storage-nodes while maintaining (or increasing) the system
performance. Furthermore, the tuning can be adaptively per-
formed by the Audita network (using a similar approach used
by Bitcoin to change the PoW difficulty adaptively) according
to the network status, e.g., the number of storage-nodes, block
creation, and proofs generation time, etc.).

Success probability of a malicious storage-node: A ma-
licious storage-node may erase t chunks and still being able
to compute a valid proof with a certain probability. Naturally,
this probability depends on the number of stored chunks m,
the number of deleted chunks t, and the number of chunks
challenged d. Ateniese et al. [22] shows that a malicious
storage-node fails to compute a valid proof with a probability
p that is:

1−
(
m− t
m

)d
≤ p ≤ 1−

(
m− d+ 1− t
m− d+ 1

)d
.

If we set t to be a percentage of m, a malicious storage-node
fails (with high probability) if it is challenged on a constant
number of chunks d. In particular, if t = 1% of m, then
challenging d = 460 and d = 300 chunks permits to achieve
p of at least 99% and 95%. We refer the reader to [22] for
more details.

Communication complexity: The communication com-
plexity that Audita adds to the underlying blockchain protocol
depends on the PDP scheme used (the output of the Prove
algorithm consists in a signature σ of size λ, and a PDP proof
π′). The publicly verifiable scheme in [22] produces proofs
of size O(log(d) + |f |+ v + |N |) where |f | is the chunk bit
length, |N | is the size of the RSA modulo, and v is the output
length of a PRF. It is reasonable to assume |f | � log(d),
|f | � |N |, |f | � v, hence the proof size (and thus the
additional communication complexity) is mainly determined
by |f |. However, the results shown in Figure 5 and Figure 6
depend on the chunk size (|f | = 16KB in our experiments).
Therefore, a small |f | would make the communication efficient
but decrease the storage guarantees of Audita. We observe
that it is possible to keep the same guarantees by tuning the

parameters d and |f |. To be concrete, if we reduce the chunk
size from 16KB to 1KB (16 times smaller), it is enough to set
d to 16 · d to achieve the same performance while lowering
the communication complexity of the protocol by a factor of
16 (note that the proof size scales logarithmically in d).

VIII. CONCLUSIONS

In this work, we presented Audita, a blockchain-based de-
centralized storage system that redefines the current structure
of the widely used cloud storage services. Audita can be built
on top of several blockchain systems and uses an augmented
network of participants that include storage-nodes and block-
creators.

We identified the properties that a decentralized storage
system must satisfy, and we provided a detailed comparison
between the current state-of-the-art systems and Audita. We
formally defined Audita and we evaluated its security guaran-
tees. In addition, we demonstrated the technical feasibility of
Audita by implementing a prototype based on the distributed
ledger Quorum, and we evaluated its performance.
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APPENDIX A
PROOF OF THEOREM 1

Let t, SN ∗, F = {f1, . . . , fn} be a timestamp in which
the blockchain is extended, the set of k elected storage-nodes
for that timestamp, and an arbitrary file, respectively. By
contradiction, assume that for every set of ` storage-nodes
{sn∗i }i∈[`] ⊆ SN ∗ there exists at least one storage-node
s̃ni ∈ {sn∗i }i∈[`] that generates a valid proof of possession
π with a probability non-negligibly close δ to the probability
that the user can extract {fj}j∈Ichal∗

i
by means of a knowledge

extractor E. Then, we build an attacker A for Gpdp
PDP,F,A. A has

three random oracles H1,H2,H3 : {0, 1}∗ → {0, 1}∗ under its
control, and it acts as both the user and dealer for Audita. We
additionally assume that A can see the messages exchanged
between the block-creators and storage-nodes.9 Through its
entire execution, A answers to the queries for the oracles
H1,H2 in the following way:

H1: Upon input x = (p̂ksn), if (p̂ksn, y) ∈ L1 then return y.
Otherwise, select a random y′←$ {0, 1}∗, add the tuple
(p̂ksn, y

′) to L1, and return y′.

9For example, it can join the network without interfering the protocol.

H2: Upon input x = (̂idstr), if (̂idstr, y) ∈ L2 then return y.
Otherwise, select a random y′←$ {0, 1}∗, add the tuple
(̂idstr, y′) to L2, and return y′.

We build A in the following way:

1) Sample a random storage-node snj ∈ SN and compute
the set of chunks indexes Xsnj that snj is entitled to store
(as described in GetChunks, Construction 1).

2) Start the game Gpdp
PDP,F,A(1λ, d,Xsnj ).

3) Receive pk∗ from the challenger.
4) For each fi ∈ F , send fi to the oracle Tag, and receive

the tag τi.
5) Set pk∗ = pkF̂ and F̂ = {f̂i = (fi, τi)}i∈[n].
6) Eventually, receive the randomness r∗ from the chal-

lenger. At this point, A programs the random oracle H3

in the following way:
H3: Without loss of generality, assume that there are
q = poly (λ) queries xi = (pkF̂ ||pksnj || ) (i.e.,
queries with prefix pkF̂ ||pksn). We denote with Q =
{x1, . . . , xq} such queries. A flips a bit b←$ {0, 1}:
If b = 0, it selects a random index l ∈ [q], sets
H3(xl) = r∗, and answers randomly to all other
queries.10 Otherwise (i.e, b = 1), it answers with
H3(xi) = yi where yi←$ {0, 1}∗ to each query xi.

7) The adversary starts the Audita protocol by publish-
ing pkF̂ and sending to each storage-node sn ∈
SN , with public key pksn, the file portion F̂sn =
GetChunks(pkF̂ , F̂ , pksn).

8) Wait until round t. Eventually, a leader bc∗ and a set of k
storage-nodes SN ∗ will be elected. The leader sends its
identification string idstr to each sn∗i ∈ SN

∗. A finishes
to program the random oracle H3 in the following way:
If b = 1, it sets H3(pkF̂ ||pksnj ||idstr) = r∗; Otherwise,
it sets H3(pkF̂ ||pksnj ||idstr) = y where y←$ {0, 1}∗.

9) Eventually, each storage-node sn∗i ∈ SN
∗ will output

a proof of possession πi = (π′i, σi). A checks the
following: if [(b = 0 ∧ xl 6= (pkF̂ ||pksnj ||idstr)) ∨ (b =
1∧(pkF̂ ||pksnj ||idstr) ∈ Q)]; If yes, A aborts. Otherwise,
it samples a random proof of possession (π̂′, σ̂) = π̂
generated by a storage-node ŝn ∈ SN ∗ and sends π̂′ to
the challenger.

We start by analyzing the probability of abortion. Let
Eabort, E1, E2 be the event that A aborts, (b = 0 ∧ xl 6=
(pkF̂ ||pksnj ||idstr)), and (b = 1 ∧ (pkF̂ ||pksnj ||idstr) ∈ Q),
respectively. We can write Pr[¬Eabort] = 1 − Pr[Eabort] and
Pr[Eabort] = Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2]. Assuming that

10A builds a list L3 to answer consistently to the H3 queries.
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Pr[(pkF̂ ||pksnj ||idstr) ∈ Q] = p1 we have:

Pr[E1] = Pr[b = 0] · Pr[xl 6= (pkF̂ ||pksnj ||idstr)] =

=
1

2

(
Pr[xl 6= (pkF̂ ||pksnj ||idstr)|(pkF̂ ||pksnj ||idstr) ∈ Q]

· Pr[(pkF̂ ||pksnj ||idstr) ∈ Q]

+ Pr[xl 6= (pkF̂ ||pksnj ||idstr)|idstr 6∈ Q]

· Pr[idstr 6∈ Q]

)
=

1

2
[(1− 1/q) · p1 + (1− p1)] =

1

2
(1− p1/q)

and Pr[E2] = Pr[b = 1] · Pr[(pkF̂ ||pksnj ||idstr) ∈ Q] = p1
2 .

This allows to conclude that the probability of abortion is:

Pr[Eabort] ≤ Pr[E1] + Pr[E2] =
1

2
(1− p1/q) +

p1

2

=
1

2
(1− p1

q
+ p1) =

1

2
(1 + p1(1− 1/q))

≤ 1

2
(1 + 1 · (1− 1/q)) = 1− 1

2q

Thus, the probability of that A does not abort is Pr[¬Eabort] ≥
1
2q . Moreover, by contradiction we know that for every
set of of ` storage-nodes {sn∗i }i∈[`] ⊆ SN ∗ there ex-
ists at least one storage-node s̃ni ∈ {sn∗i }i∈[`] that gen-
erates a valid proof of possession π with a probability
non-negligibly close δ to the probability that the user can
extract the challenged chunks by means of a knowledge
extractor E. Hence, A wins the PDP game if and only if
snj = s̃ni = ŝn and VerPDP(pk∗, chal, π̂′) = 1 where
chal = GenChalPDP(d,Xsnj ; r∗). We calculate Pr[snj = s̃ni =
ŝn] = Pr[ŝn = s̃ni] · Pr[ŝn = snj ] in the following way:

Pr[ŝn = s̃ni] · Pr[ŝn = snj ] ≥
1

k
Pr[ŝn = snj ]

=
1

k

(
Pr[ŝn = snj |snj ∈ SN ∗] · Pr[snj ∈ SN ∗]

+ Pr[ŝn = snj |snj /∈ SN ∗] · Pr[snj /∈ SN ∗]
)

=
1

k

(
Pr[ŝn = snj |snj ∈ SN ∗] · (1− Pr[snj /∈ SN ∗]

)
=

1

k

(
1

|SN ∗|
·
(

1− |SN | − 1

|SN |
· . . . · |SN | − k

|SN | − k + 1

))
=

1

k2

(
1− |SN | − k

|SN |

)
=

1

k2
· k

|SN |
=

1

k · |SN |
,

where we used the fact that the set of k elected storage-nodes
SN ∗ is randomly computed by hashing the unpredictable
identification string idstr.

Conditioned on ¬Eabort ∧ (snj = s̃ni = ŝn) and
since at timestamp t the blockchain is extended, we have
VerPDP(pk∗, chal∗j , π

′
j) = 1 where the challenge chal∗j is

computed in the following way:

chal∗j = GenChalPDP(d, ;H3(pkF̂ ||pksnj ||idstr))
= GenChalPDP(d, ;H3(pk∗||pksnj ||idstr))
= GenChalPDP(d,Xsnj ; r∗).

Hence, π′j = π̂′ is a valid proof of possession for the
game Gpdp

PDP,F,A(1λ, d,Xsnj ) with probability greater than δ ·
1
2q ·

1
k·|SN| where |SN | and k are positive constants.11 This

concludes the proof.

11The total number of storage-nodes |SN | and k are independent from the
security parameter λ.


