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Abstract

We construct new protocols for two parties to securely compute on the items in their intersection. Our
protocols make use of an untrusted third party that has no input. The use of this party allows us to construct
highly efficient protocols that are secure against a single malicious corruption.

1 Introduction

Secure multi-party computation protocols enable multiple distrusting data holders, to jointly compute on their
collected input, while revealing nothing to any party other than the output. Many of the foundational questions
about secure computation were resolved in the last century; in the last decade, a long line of research has focused
on concrete complexity, in an attempt to close the gap between the cost of computing on private data, and that of
computing in the clear. Today, a handful of companies across the world have begun selling secure computation for
a variety of applications', and Google claims to be using it in-house to perform set intersection, helping advertisers
to determine the efficacy of their ads [24].

Protocols for secure computation can be categorized according to various modeling parameters. Generally
speaking, protocols that are secure when a majority of parties are honest have much lower bandwidth requirements
than those that tolerate a malicious majority. This makes the three-party setting for secure computation especially
appealing in real deployments: users can outsource their private computation by secret sharing their input among
three servers, with a guarantee of security so long as at most one party becomes malicious. Consequently, there has
been a lot of recent advancement in making three-party [6, 27, 14, 2, 16, 26] and four-party [21] secure computation
highly efficient in the face of a single corruption. In the three-party setting, Furukawa et al. [16] require just 10
bits of communication per party for each Boolean gate, Araki et al. [1] require just 7, and in the four-party setting,
Gordon et al. [21] require just 1.5 bits of data. As a point of contrast, using garbled circuits requires sending O(k)
bits per gate in the two-party setting.

Most of the literature exploring the advantages of computing in the three-party or four-party model have
focused on generic computation. (One important exception is the work of Kamara et al. [27], which we discuss
below.) However, certain problems are important enough to warrant optimized protocols that out-perform the
generic solutions. Perhaps no single application has received as much attention as private set intersection (PSI).
In part, undoubtedly, this is because PSI is such an important application. But it is also a natural, simply stated
problem that makes for the perfect academic challenge: PSI protocols have been constructed through polynomial
interpolation [15], oblivious PRF's [29], public key encryption [9], Bloom filters [12, 37], and cuckoo hashing [35], to
name just some of the results on PSI. At one point, it was demonstrated that garbled circuits out-performed many
of these constructions in certain domains [23], but the research continued, and the fastest PSI protocols are again
custom constructions [29, 38].

While this focus on PSI is understandable, arguably it goes too far in its lack of generality. While intersection
is undoubtedly an important computation, one can easily imagine many scenarios where it is only the first step in
a broader computation. (Pinkas et al. [35] provide a nice list of such examples.) A more general application, which
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we call f(PSI), has received somewhat less attention. In this application, the users wish to compute some arbitrary
function f over the intersection, revealing f(PSI), but not the items in the intersection themselves. Motivated by
the discussion described above, we look at this problem while enlisting the help of an untrusted third party: we
assume that two parties each have large input sets, and that a third party is available to help them compute. We
allow for the malicious corruption of at most one party. Taking two further relaxations, in nearly all of our protocols
we allow the third party to learn the size of the intersection, and, although we assume an honest majority among
the three parties, we do not guarantee fairness: one of the parties might receive output and then choose to abort
the protocol before the others learn anything.

1.1 Contributions

We develop several new protocols related to private set intersection and private set union, in the three-party model.
Our protocols are of two varieties: one group of protocols relies on polynomial interpolation, and the other relies on
a mix of generic techniques, both existing and new, for 3-party computation. Protocols using interpolation require
less communication, while those from circuits require less local computation; we also construct a hybrid protocol
that leverages the advantages, and disadvantages, of both approaches. We explore these tradeoffs experimentally.

Intersection cardinality. We design three new protocols for privately computing the cardinality of the set
intersection. (Sections 3 and 4.1.) Note that this is a harder problem than PSI, since it leaks strictly less information.
These protocols serve as a building block for some of our constructions of f(PSI), though, viewing intersection
cardinality as a particular f in the f(PSI) problem, we see these results as independently interesting.

In the LAN setting, our circuit-based protocol improves on the runtime of the 2-party protocol of De Cristefaro
et al. [8] by 190-1018X, but may need 3X more bandwidth. Our polynomial-based protocol improves on their
communication cost by more than 6X, while improving the runtime by 20-26X. Our hybrid protocol improves the
runtime by 28-54X and requires 2X less bandwidth. In WAN setting, the above protocols are faster than [8] 33-84X,
20-25X, and 25-40X respectively. Compared with the generic merge-compare-add protocol implemented with [1]
in three-party setting, if the indices have length ¢ = 80 bits, our circuit-based PSI-CA is about 5X-25X faster in
LAN, 5X-14X faster in WAN, and use 5X-35X less bandwidth.

Computing functions of the intersection payload. We identify an interesting restriction of f(PSI) in which
the function f depends only on the payload data, and not on the indices themselves. This is a natural restriction
and would arise, for example, when the indices are unique record identifiers, such as social security numbers or
public keys. Interestingly, this restriction does not seem to help in the 2-party setting.

Intuitively, to compute f on the z items in the intersection, the parties need to learn which outputs from the
intersection computation should be “stitched” into the evaluation of f. Unless the outputs are obliviously shuffled,
which requires O(nlogn) secure swaps, the stitching leaks which elements are in the intersection.?

In the 3-party setting, the third party (Ps;) can help permute the input arrays such that the intersection is at
the front of the array, and is easily stitched into the circuit computing f. One of our technical contributions is a
concretely efficient protocol, requiring O(n) secure operations (and local sorting) for obliviously permuting an array
according to one party’s specified permutation (Section 4.3).

Computing functions of the intersection indices. Extending the protocols that compute a function over
the intersection payload, we also design two protocols for computing on the indices (with or without payload).
Unfortunately, these constructions are quite inefficient, and further work is required here. The more efficient
protocol requires non-black box access to a PRF. We instantiate this with AES, and implement it. Despite the size
of the AES circuit, we still estimate that this will outperform existing constructions for certain functions f, and for
payloads greater than = 160 bits.

Our second protocol makes black-box use of a two-party shared oblivious prf (2soprf). This is a PRF in which
the input can be secret shared by two parties. We instantiated this using the 2soprf proposed by Gordon et al. [20],
but found that it performed worse than the first protocol. However, we are hopeful that this instantiation can be
replaced by something more efficient, perhaps built from OT extension. We leave this to future work.

1.2 Related work

PSI with an untrusted mediator. Kamara et al. [27] proposed the same security model and constructed
very efficient PSI protocols. Our protocols also naturally cover the case of PSI, but we do not claim this as a
contribution, mainly because of their work. Their protocols are faster than our own, when we restrict to computing

20rlandi et al. [7] and Pinkas et al. [35] propose a way around this problem. We briefly discuss their approaches in Section 1.2.



PSI. Unfortunately, there is no clear way to extend their results to computing cardinality of the PSI or f(PSI).
In their protocols, the input parties use dummy elements, and duplicated inputs, to catch a cheating server that
tries to remove any records. To verify that the server is honest, they reveal the intersection and verify that all
intersecting dummy elements have been included in the output. This is perfectly fine when computing PSI but it
reveals too much when we want to compute PSI cardinality or f(PSI). We provide several new, completely different
approaches for enforcing honest behavior by the server.

PSI with computation. Recently, Orlandi et al. [7] and Pinkas et al. [34, 35] provide 2-party protocols for
computing arbitrary functions over the intersection. They both claim O(n) complexity in the semi-honest setting. To
avoid the issue we previously described, which required the output of the intersection computation to be obliviously
shuffled, in these works they instead feed all 2n values into the circuit for f, together with indicator bits that denote
whether an item was in the intersection. Depending on f, this might be a very reasonable solution: for example, if
f is a simple summation, then a linear-sized circuit can easily include exactly the right items, using 1 multiplication
for each indicator bit. However, for some functions this will result in the log n overhead that we manage to avoid.
For example, if f computes the median of the intersecting items, the best oblivious construction we know of requires
O(nlogn) gates.®> In our construction, since we only feed t = |X NY| into the circuit for f, we would need only
tlogt gates to complete the computation.

The protocol of Pinkas et al. is secure in the 2-party, semi-honest setting, while ours is secure in the 3-party
malicious setting, assuming an honest majority, so we are forced to compare apples to oranges.? In their work, they
provided experiment results for PSI cardinality threshold (PSI-CAT), which has O(n) complexity. We compare our
PSI cardinality protocols with this (with the assumption that their PSI-CA runtime would be similar to that of
PSI-CAT). Our circuit-based protocol is 4.4X-24X faster in LAN, and 3.5X-9X faster in WAN while using 3.5X-25X
less bandwidth for n = 22°, depending on the size of the intersection. We note that we can choose the most efficient
protocol for PSI-CA “on the fly” after learning the intersection size. Also, the performance of their protocol depends
on the input length. The gap will be about 2.5X wider if the input has variable length. The detailed comparison
is shown in Table 1.

On the other hand, when computing functions on the intersecting indices, the comparison depends on the
functionality and the size of the payload. For f that requires only O(n) gates, their protocol is likely much faster
than ours, due to our non-blackbox use of AES. However, if f requires O(nlogn) gates for them, and only O(tlogt)
gates for us, then on payloads of about 160 bits, we will become competitive.

Other related work. There are multiple works looking at intersection cardinality [15, 28, 8, 11]. These protocols
are secure against one malicious party in the two-party setting, however, they are very inefficient. In [8, 11], it takes
more than an hour for two parties to find the intersection cardinality for sets of size 22°. Ton et al. [25] compute
the sum of all items in the intersection. Another application that relates to f(PSI) is labeled-PSI [4], in which
a sender sends a label [; to a receiver if the item x; is in the intersection. Labeled-PSI is an efficient two-party
protocol to perform computation over the intersection in the asymmetric setting (a server has many items and a
client has few ones). However, labeled-PSI leaks the whole intersection, which we aim not to do. It also would
compare very unfavorably in the symmetric setting, where input sets are roughly the same size. Finally, their
security model is incomparable, as they are secure against a malicious receiver, but can only ensure privacy against
a malicious sender, while we assume an honest majority. Finally, a crucial idea underlying all of our protocols is
that, by revealing a deterministic encryption of the input to a third party, who can then compute the intersection
from the encrypted values. A similar approach was used in other settings for PSI [27, 22].

3We note that median is an example of a symmetric function. As Pinkas et al. [35] point out, When avoiding the oblivious shuffle
of the intersection, it is necessary that f be a symmetric function, or the output of f may leak something about the intersecting items.
While this property is necessary for claiming security, the case of median demonstrates that it might not be sufficient for claiming
efficiency.

4If we choose to model each player becoming maliciously corrupt with independent probability p, then the probability of 0 or 1
corruptions among 3 parties is strictly smaller than the probability of 0 corruptions among 2 parties, which is needed in the 2-party,
semi-honest setting. (Independence of the corruption events is not entirely necessary for this argument, but some restriction on the
corruption events is necessary.) Although this is never explicitly modeled in the literature, it does provide a nice justification, from a
security stand point, for preferring the 3-party, malicious, honest-majority assumption, over the 2-party, semi-honest assumption. Of
course, this model of corruption is not always reasonable, but it does seem to be implicitly used in many real-world deployments, where
the computing parties are operated by a single agency.



2 Definitions and Notation

2.1 Security Definitions

We prove our protocols secure in the real/ideal paradigm, in the stand-alone setting, and achieving security with
abort. Formal definitions can be found in Goldreich [18]. Furthermore, in all of our protocols, we allow P; to learn
the size of the intersection of the input sets; this is reflected in our ideal functionalities. Of course, it is possible
to achieve fairness when only one out of three parties is malicious, and revealing the intersection to Ps could be
avoided as well. However, these relaxations are important for achieving the level efficiency that we demonstrate.

2.2 Secret Sharing

We use several different secret sharing schemes in our protocols. In our constructions based on polynomial interpo-
lation (Section 3), we rely on Shamir secret sharing. In our circuit-based protocols of Section 4.1, we use additive,
2-out-of-2 sharings of field elements, and replicated secret sharing. The latter is a 2-out-of-3 secret sharing scheme
where, to share a field element x, 3 field elements are selected at random, subject to 1 + 2 + x3 = . Then, P; is
given z1 and x4, P; is given z9 and x3, and Pj is given x3 and z1. We will move back and forth between these two
sharing schemes, and we will apply them both to binary values, as well as to larger fields.

Notation: we denote [2]4,[z]? as replicated arithmetic and binary shares of z respectively, and (z)*, (z)”
2-out-of-2 additive sharings. We sometimes write [z]* = (21, 72, z3), ignoring the replication of shares.

2.3 Assumed functionalities

Our protocols are described in a hybrid world, where we assume access to several simple, trusted functionalities.
All of these have been implemented securely in our experiments. For completeness, we include detailed descriptions
of these functionalities in Appendix A. The secure protocols for these functionalities can be found in the work of
Chida et al. [5]. We summarize the functionalities here:

e Frand gives a replicated arithmetic sharing of a random element r € Z,, (Figure 13).
o Fooin gives all parties the same random element r € Z, (Figure 14).

o Finput secret-shares data owned by one of the parties as replicated arithmetic shares (Figure 17).

Fmult takes replicated arithmetic shares of two input values, and outputs shares of their product, up to an
addictive attack. That is, the functionality allows the adversary to specify a constant that will be added to
the product (Figure 15).

® FCheckzero gives true to the parties if they hold a replicated arithmetic share of zero, otherwise, it gives false
(Figure 16).

2.4 Authentication on additive shares

We define M AC,(z) = ax as the MAC of x, where a, z € Z,, x is the data, and « is the MAC key. Technically, this
is not a secure authentication code, since anybody can recover « after seeing a single authentication. As is standard
in MPC work, however, the MAC key and the authentications will always be secret-shared. The key is sampled by
calling Frana. The shared MAC is computed by calling Fyu; on the shared key and data, ([a]?,[2]?). Note that
we allow the MAC to be computed up to an additive attack. The adversary can add an arbitrary additive term d
to the MAC. Thus, the parties will hold shares of ax + d in stead of ax. To simplify the presentation, we use the
same notation for the MAC with additive attack: M AC, (z) = az + d.

2.5 Share Conversion

[]* — [2]B: There are scenarios that the parties are holding replicated arithmetic secret shares and they want to
compare the shares. It is more efficient for them to convert the shares to replicated binary ones and perform the
comparison with a Boolean circuit. We use an approach similar to that of Mohassel and Rindal in their ABY 3 system
to convert [z]4 — [x]® [31], though we extend their technique so that it can be used with arbitrary fields; they only
required share conversion for rings. Let [2]4 = (x1, 22, x3), Py, Py, and Ps hold (1, 22), (x2, 23), (x3, 21) respectively.
From [2]4, parties can set [21]8 = (21,0,0), [v2]® = (0,22,0), and [z3]® = (0,0, 23) without interaction. Let k be



the bit length of x;. The three parties first call k£ full adders to compute (c[i], s[i]) < FA(x1][i], x2[i], x3[i]). After
this step, they hold [c]® and [s]” and execute a ripple carry adder circuit to compute [z]? < 2[¢]® + [s]B. This is
correct as ¥y + Ty + 3 = Ef;ol 20 (x1[i] + m2[i] + x3i]) = Z;:ol 24(2c[i] + sli]) = 2c+ s. The ripple carry adder can
be replaced by a parallel prefixed adder to reduce the round complexity at the cost of O(klog k) communication (as
done in ABY3). The procedure above may leave the participants with a few overflow bits. Assume we are working
on a field Z,, the adders will output & = (x1 +x2+x3), which can take values in the range [0, 3p—3]. However, what
we need is (x mod p) € [0,p—1]. The problem can be solved by repeatedly deducting p from x until the value of x
is in the correct range. This can be done by executing the following Boolean circuit twice: x < z — (z > p)-p. The
subtraction is done by executing a ripple borrow subtractor circuit. The above is all computed in a single circuit,
and can be executed using any general-purpose 3-party computation using replicated binary sharing.

[z]B — [2]#: we also use the protocol proposed in [31] for this conversion. In summary, from [z]B = (21, 22, 23),
the parties obtain the shares [z1]4 = (z1,0,0),[z2]* = (0,22,0), [#3]* = (0,0, 23) non-interactively. For binary
values x and y, the XOR operation can be replaced by arithmetic operations as * ® y = x + y — 2xy. To compute
[21]4 @ [22]4 @ [23]", We just need to execute the above operations twice. The share conversion is secure against 1
malicious party.

[2]4 =2 (2)A: Let [2]* = (1,22, 23) be a replicated sharing of z, held by Pi, P, and Ps. P, and P, want to
convert [z]? to (z)?. They can locally set their share to 21 + x5 and z3 respectively. Note that this is only secure
in the semi-honest setting: if one of them is malicious, he can modify his share arbitrarily, and there is no longer
any replication that can be used to catch him later. The conversion between [2]4 and (z)# is needed to achieve the
efficient three-party oblivious shuffling protocol in Section 4.3.

(x)4 5 [2]*: Py and P3 hold a two-out-of-two sharing of z, and wish to create a replicated secret sharing that
includes P;. We describe a protocol that requires sending only 2 elements®, and, more importantly, prevents P;
from performing an additive attack. P, and P, agree on a random value r, and P; and P3 agree on random value r5.
Py sets his own shares to (r1,72); this prevents an additive attack, since the other parties already know these values.
P, computes x1 — ry, P computes x3 — 72, and they swap values. P sets his shares to (rg, (z2 — r2) + (21 —71)),
and Ps sets his to ((x1 —r1) — (z2 — r2),71).

VNS Share conversion up to an additive attack

Inputs: Parties Piy1 and Pii2 hold (X)*, X = {z1,...,x,}. P; does not have input.
Functionality:
e Waits for the shares from P41 and P;o.
e Waits for the additive terms D = {dx, ..., d,} from the malicious party (P41 or Pii2).
e Reconstructs X and distributes the replicated shares [X + D] to the three parties.

Figure 1: F

(x) A [x]A Ideal Functionality

3 Set Intersection Cardinality Through Polynomial Interpolation

In this section we present a protocol for intersection cardinality, through polynomial interpolation. In Section 4.1
we use circuit-based techniques from generic secure computation to give two more constructions for cardinality. In
all of our cardinality protocols, P, and P, begin by agreeing on an encryption key for a deterministic encryption
scheme. They each encrypt their data and send it to P3;, who can find the intersection by simply comparing the
ciphertexts sent by each party. (For the sake of intuition, it helps to ignore this step, and just think of Ps as
operating on cleartext data.) This is a large part of what allows us to construct efficient protocols: in the two party
setting (or in a setting where all three parties have input), we cannot entrust the intersection computation to any
one party. The main challenge that remains in our setting is to ensure that Ps is honestly reporting the size of the
intersection.

To prove that the intersection has the claimed size using polynomial interpolation, Ps plays the prover in two,
2-round interactive proofs, one providing an upper bound, and the other providing a lower bound on the size of the
intersection. The idea behind these proofs is as follows. When verifying a lower bound of z on the size of the set

5this doesn’t really impact runtime, since we have no way of distributing the cost: when executing this on n shared elements, we will
require 2 parties to each send n elements, rather than having each of the 3 parties send 2n/3. Nevertheless, the improvement has an
impact on the financial cost of running the protocol.



(A x)A Share conversion up to an additive attack

Inputs: Parties P;+1 and P42 hold <X)A, X ={z1,...,z}. P; does not have input.
Protocol:
1. P; and P;;+1 agree on a random key k1.
P; and P;;2 agree on a random key ks.
P; set his shares [x;] = (fi,(2), f, (2)).
Pi+1 computes u; = (x;)it1 — fiy (2).
Pito computes v; = () it2 — fiy (7).
Piy1 and Piy2 swap u; and v;, setting w; = u; + v;.
Pi+1 sets his shares [z;] = (fx, (1), w;).
8. P2 sets his shares [z;] = (w;, fr, (7).

Outputs: The parties output [X]*.

N o e W

Figure 2: 1I Share conversion protocol

(X)a[x]4

Fpsi-ca
Inputs: P; provides X = {x1,...,Zn}, P> provides Y = {y1,...,yn}. P3 provides no input.
Functionality:
e Waits for input X = (z1,...,2,) and Y = (y1, ..., yn) from P; and P> respectively.
e If there are duplicated items in X or Y, sends abort to all parties.

e Else, gives output | X NY| to P1, P, and Ps.

Figure 3: PSI-CA Ideal Functionality

union, P; and P, choose a random secret from a sufficiently large field, and secret share the value using a degree
(z — 1) polynomial pa(x). Then, assuming input sets of size n, they each evaluate the polynomial at every point in
their input set, and each sends the resulting n secret shares to P3. If the union is smaller than the claimed lower
bound of z > | X UY|, P; will not have enough unique values to interpolate the polynomial ps(z) and learns nothing
about p(0). In order to pass the test, P3 must choose a z such that z < |X UY|, defining an upper bound of
(2n — z) on the size of the intersection. Similar techniques have been used in previous work [36, 39, 10].

When verifying a lower bound of z on the size of the intersection (which is an upper bound on the union), we use
a similar idea with an additional twist. P, and P, again choose a random secret from a sufficiently large field, and
secret share the value using a degree z — 1 polynomial p; (z). They then encode their data such that two encodings
of x reveal a share of this polynomial, p;(x), while a single encoding of = reveals nothing. Specifically, they use
a 2-out-of-2 additive sharing of p; (), where the randomness for the sharing is derived deterministically from the
value of z: (F(k,x), F(k,z) ® pi(x)). This allows each of P; and P, to generate one of the two shares, without
knowing whether the other party will create and send the other share. P; will learn at most |X NY| shares of py,
so if he has claimed a value of z > | X NY|, he learns nothing about p; (0).

We present the full protocol for intersection cardinality in Figure 5. In Figure 4 we present the proof of union
lower bound by itself, as we will use it in Section 4.1 in our “hybrid” protocol that combines this proof with circuit-
based techniques. The reader might find it helpful to look at Figure 4 first, though the cardinality protocol of Figure
5 is self-contained. The cardinality protocol includes simultaneous proofs of the upper and lower bounds that were
just informally described. Certain checks are performed by Ps in order to prevent a selective failure attack by P;
and P,. If an element of V; or Wi is encoded incorrectly in Steps 6 or 7, this is caught by Ps in Step 12b or 12c
when P; and P, reveal the polynomial that they used. Because P; needs to learn the randomness used in Steps 6
and 7 in order to perform this check, he sends a commitment to his challenge response in Step 10, before learning
the randomness. If an element of V5 or W5 is encoded incorrectly in Steps 6 or 7, this is caught by Ps in Step 9
if the element lies in the intersection, and is caught in Step 12a if the element is in the union; in either case, P;
aborts in Step 12. Note that if the check in Step 9 were not performed, P; or P, could perform a selective failure
attack to learn whether some particular element is in the intersection: given a bad encoding in V5 or Wa, P35 would
abort if and only if the encoded element were not in the intersection.



PSI: When computing the actual intersection, rather than just the cardinality, Ps can provide the encodings of
the items in the intersection, together with a proof of the upper bound on the intersection size (or, equivalently,
the union cardinality lower bound). Clearly P53 can’t add anything to the intersection, because at least one of
P, and P, would recognize that the item was not in their input and reject. A similar comment applies when
computing set union; it suffices to prove only the lower bound on the union, since nothing can be dropped from the
union without detection. If a deterministic authenticated encryption scheme is used, there is no need for the lower
bound proof on the union. In Figure 4 we present the union cardinality lower bound by itself. After receiving the
claimed intersection and verifying the bound, the players simply verify that the claimed intersection has size that
is consistent with that proof, and that the claimed intersection is a subset of their own input. The PSI protocol is
secure with abort. It allows both parties to learn the output, in contrast to the protocols of [29, 38], which only
allow one party to receive output.® The communication cost is linear.

Union count lower bound

Inputs: Py has X = {z1,...,2n}, P> has Y = {y1,...,yn }, Ps does not have inputs.
Protocol:

1. P; and P> sample a common random key k by making a call to Fcoin.
Py sends S« {F(k,z) | x € X} to Ps.
P; sends T «+ {F(k,y) |y € Y} to Ps.
Ps verifies that all items in S and 7" are distinct, then sends 7 = |[SUT| to P1 and Ps.
Py and Ps agree on a random polynomial p of degree (7 — 1).
Py sends V «+ {p(&) | & € S} to Ps.
P, sends W« {p(y) | § € T} to Ps.
Py sets V  {(&,p(@)) | & € S} and W « {(§,p(9)) | § € T}

If3(z,9) e SxT:2=9 N p(Z) # p(y), Ps interpolates a polynomial p from 7 random values. Otherwise,
P5 interpolates a polynomial p from V' UW. He computes § < p(0).

© © N o s W

10. Ps sends a commitment of § to P, and Ps.
11. P, and P; send p to Ps.
12. Ps aborts if he receives different p or p # p. Otherwise, he decommits § to P and Ps.

13. The players compare the values received in the previous step, and abort if they differ. They also abort if
p(0) # s.
Output: All parties output 7.

Figure 4: The protocol to compute a lower bound on the union of the two input sets.

We note that a 2-round proof for the set union lower bound can be easily extracted, and used for computing set
union. We do not present it separately, in order to preserve space.

Theorem 1 Assuming (com,decom) is a computationally hiding, statistically binding commitment scheme, and
that F is a secure PRP, the protocol llpsi.ca for computing the cardinality of the set intersection (Figure 5) securely
realizes the ideal functionality Fpsi.ca with abort (Figure 3), under a single malicious corruption.

We first describe a simulator for the cases where P; is corrupt. The simulator for P, is identical, so we omit the
description and corresponding claim. Without loss of generality, we assume the malicious party outputs his entire
view in the protocol. Simulated messages appear with ¢~ ’ above them.

1. El,%g, 7: S and P; sample random PRP keys El,EQ with a call to Feoin. After receiving encrypted inputs
from Py, if there is no duplication in the set of encrypted inputs, S inverts the PRP using ki, recovering input
set X', otherwise, S aborts and outputs whatever P, outputs. Otherwise, he submits X’ to F, and receives
7=|X'NY]|. S hands 7 to P, as the message from Ps.

2. p1,p2,C1,C2: S simulates the output of Feoiyn, determining two random polynomials, p; and ps, of degree
(z—1) and (2n — z — 1) respectively. After receiving V4 and V, from P (step 6), S verifies whether P; has

60f course, in any protocol, the party receiving output can send the value to the first party, but in these protocols there is no way
to verify that the received value is correct.
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Inputs: P has X = {z1,...,zn}, P> has Y = {y1,...,yn }, Ps does not have inputs.
Protocol:

7. Py sends Wiy < {F(k2,9) ®p1(9) | § € Y} and Wa + {p2(§) | § € Y} to Ps.
8. Ps sets

Output: The players output 7.

IIpsi-ca: Polynomial-Based PSI Cardinality

P1 and P> sample random keys k1, k2 by making two calls to Fcoin..

Py sends X < {F(k1,z) |z € X} to Ps.

Py sends Y « {F(k1,y) |y € Y} to Ps.

P5 verifies that all items in )? and 3//\' are distinct, then sends 7 = |)? N ?| to P and Ps.

Py and P» jointly sample two random polynomials: p1 of degree (7 — 1) (if 7 = 0, both set p1 = 0), and p2 of
degree (2n — 7 — 1). They compute s1 + p1(0) and sz + p2(0).

Py sends Vi  {F(kz,2) | & € X} and Vo < {pa(2) | & € X} to Ps.

(a) Vi < {(&, F(ko,&)) | 2 € X},

(b) Wi« {(i, F(k2,9) ©p1 () | § € Y},
(c) Vo + {(#,p2(2)) | & € X},

(d) Wa « {(§:p2(9) | § €Y}

If 3(2,49) € X xY : & = § A pa(@) # p2(), Ps interpolates polynomials p1 and py from 7 and (2n — 7)
random values respectively. Otherwise, P3 computes: Q1 < {(a,b® ¢) | (a,b) € Vi, (a,c) € Wi} and
Q2 <+ {(a,b) | (a,b) € VoUW>} and then interpolates Q1, Q2, resulting in polynomials p; and p2 respectively.

P computes §1 < p1(0), 32 < p2(0), then sends com(31), com(S2) to both P and Ps.
P and P send ko, p1,p2 to Ps. Ps aborts if he sees that P; and P> sent him different values.
P53 aborts if:

(a) p1 # p1 or P2 # pa.

(b) Vi # {(&, F(ks,2)) | & € X}

(c) Wi # {(5, F(k2,9) @ p1(9)) | § € Y}
Otherwise, Ps decommits to §1, Sa.

The players abort if §1 # s1 or §2 # sa.

Figure 5:

Ipsr.ca: A protocol for computing the size of the intersection, using polynomial interpolation to

(simulataneously) prove both a lower and upper bound on the intersection size.



generated these sets correctly: Vi = {F(ky, F(k1,z)) | z € X'} and Vo = {po(F(k1,2)) | # € X'}. If these
have been generated correctly, S computes 57 = p1(0),52 = p2(0). Otherwise, he sets 7 = 0,55 = 0. S
computes commitments to these values: ¢; = com(s7), and ¢; = com(3S3). He hands P; the commitments as

the messages from Ps.

3. §1,82: S receives ks, p1,p2 from Py. If p; # p; for either ¢, or ko £ Eg, S sends abort to P; on behalf of P3 and
outputs the simulated messages. Otherwise, S opens the previous commitments to P;: 57 = decom(¢;) and
$9 = decom(¢z), and sends these to P.

4. § outputs the simulated messages.

Claim 1 Assuming (com,decom) is a computationally hiding commitment scheme, then, for the simulator S de-
scribed above and interacting with the functionality Fpsica on behalf of P,

{REAL g 00 a() (XY, “)}ze{o,l}*,neN = {IDBALF g 5(5) (XY, H)}ZE{O,I}*,KEN

Proof:

Case 0: First, we consider the case where P; executes the protocol honestly. Because the functionality is determin-
istic, it suffices to consider the view of the adversary in both worlds, rather than analyzing the joint-distribution of
his view with the honest output:

{REALTFPS|_CA,A(Z) (X7 Y7 H)}ZE{O,I}*,NEN = {kla k?v T,P1,P2, Com(sl)v C0m(52), S1, 52}

{IDEALFPSLCA;S(Z) (AX7 Y, K)}ze{o,l}*,neN = {kl, k‘g, ;, ﬁl,ﬁg, com(§1), com(§2), gl, gg}

The security of Feoin ensures that ki, k2, p1, and po are distributed uniformly at random, and that they are
independent from other messages. The simulation, k1, ko, p1, D2 is therefore perfect. 7 and 7 are fully determined
by the first message of P;, and the input of the honest P,. Since S correctly extracts P;’s input in Step 2 using
the PRP key, 7 and T are identically distributed. In Step 6, the two polynomials p; and ps are sampled uniformly
at random, thus s; = p;(0) and 5; = p;(0) are identically distributed. As our function is a deterministic one, the
indistinguishability between the two distributions is reduced to the indistinguishability of the commitment messages.
Thus, the joint distributions in both worlds are computationally indistinguishable when P; is honest.

Case 1: If P; sends duplicated ciphertexts in Step 4, abort happens in both the real and ideal worlds. The joint
distributions in the real and ideal worlds are {k1, ko} and {ki, k2}, respectively, and are identically distributed.

Case 2: If P; deviates in Step 6, in the ideal world, this will be detected immediately and the simulator sends
abort at Step 11 or 12, as the simulator knows the values of pi, pa, k1, k2, and X. The joint distribution in the ideal
world is {k1, k2, T, D1, D2, com(0),com(0), L}. In the real world, P; will be caught by P in Step 9 or Step 12, and P
will abort at Step 12. Note that in Step 12, Ps verifies the correctness of the messages sent to him in Steps 6 and 7
by P; and Ps, using ko, p1, and pa. The joint distribution in the real world is {k1, k2, 7, p1, P2, com(s1),com(sa), L}.
The indistinguishability of these distributions reduces to the hiding property of the commitment scheme.

Case 3: If Py deviates in Step 11 by sending the wrong ks, p1, or ps to P3. This will be detected in both the
ideal and the real worlds. The joint distributions in the ideal and real world are {k1, k2,7, com(51), com(S2), L} and
{k1, ko, T,com(s1),com(sa), L} respectively. Follow the same arguments in case 0, the two joint distributions are
computationally indistinguishable.

These cases cover all possible behaviors of Py, proving that the adversarial views are indistinguishable in the
two worlds. B

We now describe a simulator for Pj.

1. S , T: The simulator S queries F to learn the size of the intersection. It then simulates the first messages from
Py and P, by choosing random strings for each encoding, subject to the constraint that the intersection is of
appropriate size. Let the messages be two sets S and T (from P; and Ps respectively).

2. ‘71, 172, Wh WQ: S receives 7 from P3, who sends the value to both P, and P,. If P3 sends different values
to P and P,, S aborts and outputs the partial view. Otherwise, S chooses two random polynomials of
degree (7 — 1) and (2n — 7 — 1). Let the polynomials be p; and ps respectively. S computes s; = p1(0) and
sy = p2(0). S samples a random key ks and computes the following messages: Vi < {F(ko, &) | # € S},
Vo {p2(2) | & € §}, Wi « {F(k2,9) ®p1(9) | § € T}, and Wy {p2(9) | § € T} S hands the values to
Ps.

3. Eg,ﬁl,ﬁgz S receives two commitments from Ps: com(s;) and com(S3). S hands P5 duplicates of the key ko
and the polynomials p1, p2, simulating the messages from P, and Ps.



4. If P5 aborts, or gives wrong decommitments to com(s;) or com(sz), or $1 # s1, Or S2 # S, S submits abort
to the ideal functionality, sends L to P3 on behalf of P; and P», and outputs the simulated transcript.

Claim 2 Assuming F is a secure pseudorandom permutation, and that (com,decom) is a statistically binding com-
mitment scheme, then, for simulator S corrupting party Ps as described above, and interacting with the functionality
FPpsi-ca,

{REALpg, 0 a(2) (X, Y, ”)}ze{o 1} meN = {IDEAL]:PSICA s (XY, “)}ze{o,m,neN

Proof:
Hybridy: Real execution.
Hybrid;: Same as hybridg, except that the PRP is replaced with random encoding.
Hybrid,: Ideal execution.

It’s clear that Hybridy and Hybrid; are computationally indistinguishable by a reduction to the PRP. We
prove that Hybrid; and Hybrids are also computationally indistinguishable.

Case 0: We first consider the case where Ps executes the protocol honestly. Because the functionality is
deterministic, it suffices to consider the view of the adversary in both worlds, in place of analyzing the joint-
distribution of his view with the honest output.

{HYBRID g ao) (X YiR)} gy ey = 10 Y Ve Vo, W1, W, ka1, o}

{IDEAL £ (0 5(2) (XY, ’i)}ze{o 1} meN ={S,T, Vl;‘/2>W17W21k27p17p2}

The reader can verify by inspection that the following two distributions are identical: {Vy, Vo, W1, Wa, ko, p1, p2 |
X , f/} and {‘71, Va, Wl, WQ,EQ,@,@ | S, f} (each of the messages are distributed uniformly at random and inde-
pendent from one another).

Case 1: Assume Pj cheats in Step 4 by sending different 7 to P1 and P. Both parties immediately abort in both
worlds. The joint distributions generated in the hybrid; and ideal world are {X,Y, 1} and {S,T, L} respectively.
They are identically distributed.

Case 2: If P cheats in Step 4 by providing the same incorrect 7 to P4 and P, all parties continue up to
Step 11, and the partial views up to this point in the hybrid; and ideal world are {X,Y V1, Vo,W1,Wa.ko,p1,p2}
and {5,?,%,‘72,%1,%2,%2,171 P2} respectively. As argued in case 0, these partial views are computationally in-
distinguishable. It remains to argue about the output of the honest parties. Note that in the ideal world, the
honest parties output L, as this deviation is always detected by S, who then tells the trusted party to abort. On
the other hand, in the hybrid-world, if P3 deviates in Step 4 by sending both parties the wrong intersection size,
7 # |SNT|, he will not be able to correctly interpolate both p; and py in Step 9: if 7 < |[S N T|, P; will not be
able to recover the value of p(0), and if 7 > [S N T, he will not be able to recover the value of 7 (0). In Step
11 or Step 12, if he decides to abort, then in both worlds the joint distributions are {X % V1, Vo , Wi Wa ko p1,p2,
1} and {S T Vi Vo, W1, Wo k2 ,P1 Do, 1}; they are identically distributed If P; does not abort in Step 11 and Step
12, assuming (com,decom) is statistically binding, Ps; has at most 1/|F| chance of successfully guessing p;(0) or
p2(0), as p1(0) and p2(0) are randomly distributed in F. If P5 guesses the wrong value, the joint distributions are
identical in both worlds, as every party aborts. (Note that the probability that Ps; guesses these values correctly
when 7 # |X NY] is independent of his view.) However, if P; guesses p;(0) correctly, the joint distributions are
distinguishable: in the real world, this would go undetected, and the honest parties might output some 7 # | X NY|.
This is not possible in the ideal world, and thus the simulator S fails to simulate P3’s behavior. But, as argued
above, this happens with probability 1/|F|.

Case 3: If Ps is honest in Step 4, but deviates at any other steps, the joint distributions are computationally
indistinguishable. (Note that after Step 4, all the remains for P; to do is to interpolate the polynomials, and send
proper commitments and decommitments to their roots.)

In conclusion, the joint distributions in both worlds are computationally indistinguishable. [ |
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4 Circuit-based protocols

4.1 Circuit-based Intersection cardinality

The protocol of Section 3 has low communication cost, but requires O(n log? n) computational steps by all parties.
We present a construction using techniques from generic 3-party computation that requires more communication,
but less computation. It also allows us to compute on the payloads of the items in the intersection. Interestingly,
we also provide a hybrid protocol that offers a third point in the continuum. In this hybrid protocol, we remove
2n — 2z comparison gates from our circuit by using the proof of the union lower bound from Section 3 (Figure 4)
(We note that to prove the union lower bound, the three parties start at Step 5 in Figure 4. At this point, P; has
received {F(k,z),z € X} and {F(k,y),y € Y} from P; and P, respectively, and has sent the size of the intersection
to P, and P». In fact, a union lower bound proof with inputs as X and Y will allow a malicious party to send
F(k, z*) instead of F(k,z) where z € X or z € Y. By using the existing prp values and starting the proof at Step
5, the input consistency is guaranteed.). Both variants of our circuit-based protocol are described in Figure 8.

]:unionLB
Inputs: All parties provide ¢ and [Z]* where Z = X||Y.
Functionality:
e Wait for shares [Z]A from Pi, P», and Ps. If the shares are valid, reconstruct Z. Else, send abort.

e If the items in X are not all distinct, or the items in Y are not all distinct, send abort.

If the parties don’t agree on t, send abort.

If t <|X UY], output true to all players.
If t > | X UY], output false to all players.

Figure 6: Verify a union count lower bound

Fpsi)
Inputs: P provides X = {z1,...,z,}, P> provides Y = {y1,...,yn}. P3 provides no input.
Functionality:
e Waits for input X and Y from P; and P> respectively.
e If there are duplicated items in X or Y, sends abort to all parties.

e Else, gives output | X NY] to all parties and f(X NY) to P, and Ps.

Figure 7: f(PSI) Ideal Functionality

In the two-party setting, one naive way of computing the cardinality of the intersection is as follows. The two
parties each sort their inputs locally, and then perform a generic secure two-party computation of the following
algorithm:

e Obliviously merge the two input arrays.
e Obliviously scan the input, comparing neighbors for equality, and counting the number of duplicates.

The oblivious merge requires O(nlogn) AND gates, which we can avoid in the three-party setting. The main tool
we employ is a cheap, linear-time,” three-party protocol for sorting the input according to a permutation specified
by Ps;. We defer the description of this sub-routine until Section 4.3. The users send encodings of their inputs to
P, as in the protocol of Section 3, and P5 finds the items in the intersection. (If either party sent duplicate items,
he aborts). He then chooses a permutation on the 2n items that a) places all matching encodings in the front of
the array (preserving the duplicate values), and b) sorts the remaining encodings according to their lexicographic
ordering. Pj3 reports z = |S N T|. The three parties then perform a generic computation that

e verifies the equality of neighboring pairs for the first z = |S N T| pairs, and

"Sorting requires O(nlogn) time, of course, but we are measuring the number of secure, interactive operations, and the sorting is
done locally.
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mep: Circuit-Based PSI computations

Inputs: P has X = {z1,...,xn}, P> has Y = {y1,...,yn}, P3 does not have inputs.
For f(PST): Pp provides payload values DM = {dgl), R dS)} and P, provides D® = {ng), e ,dg)}
Protocol:

1. P; and P> sample a random PRP key k by making a call to Feoin-

2. P computes Vi = {F(k,z)|x € X} and distributes it as replicated shares among the three parties.
For f(PSI): P also distributes shares of the payloads.

3. P, computes V2 = {F(k,y)|y € Y} and distributes it as replicated shares among the three parties.
For f(PSI): P, also distributes shares of the payloads.

4. The parties open Z = V4||Va to Ps.

5. Ps verifies that all items in V; are distinct, and that all items in V5 are distinct. If this is not true, he aborts.

6. Ps fixes a permutation 7 that moves items in the intersection (Z1 = Vi N V2) to the top, placing each item
next to its duplicate, and that moves the rest (Z2) to the bottom, in sorted order. The three parties call

Fshutfle to shuflle the shares according to .
For f(PST): the payloads are shuffled along with their indices.

7. Ps sends the size of the intersection, ¢, to P; and P». P; and P» abort if they received differing values.

8. For Z1, the parties verify that there are ¢ duplicate pairs, using secure arithmetic comparisons. (The relevant
functionalities are defined in Section 2.3.)

e They make ¢ calls to Feoin to receive R = {r1,...,7:}.

e They run fCheckzem([Zf:l ri(22: — 22:-1)]), where z; € Z(1>7 and abort if the output is False.

9. Circuit-based protocol:
For Z», the parties make a call to Fj,ja_,[,;5 to convert [Z2]* to [Z2]®. They then run a sequence of 3PC
comparison circuits, verifying that the items are in sorted order. If not, they abort.
Hybrid protocol:
All parties make a call to FunionLs Wwith input ([Z]A, t). If the output is false, they abort.

10. For f(psi): For each pair of duplicates in Z1, the parties use the replicated sharings as input to a circuit for
f. The output of the circuit is [f(psi)]. Players reveal f(psi) to P and Ps.

Output:
For f(psi): Pp and P, output the result of f and ¢t = |Z1|/2. Ps outputs t = |Z1]/2.
For set cardinality: Pi, P», and Ps output |Z1|/2.

Figure 8: 'We give four protocols in this box: two for computing PSI cardinality, and and two for computing arbitrary
| on the payloads of the intersecting items. The difference in the protocol variants (in either computation) lies only
in how P; and P» verify the upper-bound on the union size: using Boolean comparisons to verify a strict ordering,
or through polynomial interpolation.
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e verifies that item ¢ is strictly greater than item i — 1, for ¢ € {22+ 2,...,2n}.

The resulting circuit requires a single batched equality check of arithmetic values for the z items in the intersec-
tion, and 2n — 2z Boolean comparison circuits. To verify the equality of z pairs, the parties need to communicate
only O(1) field elements. To verify the order for (2n — 2z) items, O(2n — 2z) bits are required. Both have linear
runtime complexity. Note that as z goes from 0 to n, the number of required circuits goes from 2n to 0.

Comparing the protocols: We provide concrete comparisons in Section 6, and give some intuition for the
trade-offs here. We compare the protocols based on the three criteria: computational complexity, communication
cost, and round complexity. In terms of computational cost, the circuit-based protocol has linear computational
complexity while the polynomial-based and hybrid ones run in O(n log2 n) time due to the polynomial interpolation
and evaluation subroutines [3]. All the three protocols have linear communication cost, in which the polynomial-
based approach requires the least bandwidth and the circuit-based approach requires the most. This is due to the
bandwidth required by the share conversion and comparison circuits. The polynomial-based protocol has the least
number of rounds while the circuit-based has the most. We note that they all have a constant number of rounds.

When the input size is small, the number of rounds dominates the total runtime, due to network latency. When
the input size is large, the circuit-based protocol performs best in LAN setting, since the network is not an issue.
In the WAN setting, the circuit-based protocol is better only when the input set size is very large (e.g. 22°), as
then the network latency is not the dominate cost. (This is demonstrated experimentally, in Table 1). Interestingly,
the parties do not need to commit to their choice of protocol until after they have learned the intersection size: all
three protocols begin the same way, with P3; determining and reporting the size on encoded values. This flexibility
allows the parties to pick the protocol that works best for them according to their available resources and network
configuration.

4.2 Computing on the payloads of intersecting indices

Our protocol for f(PSI), where f depends only on the payloads, f(PSI) = f(D) where D = {(d1,d2) | Jw €
XNY :(w,dy) € (X,DD) A (w,dz) € (X, DP)}, also appears in Figure 8. The modifications to the circuit-based
cardinality protocol are minimal, and marked in green. As before, the parties begin by agreeing on a PRP key,
k, and use it to deterministically encode their inputs: for input pair (z,d), where d is the payload and z is the
index, the party computes & = F(k,x), and then creates a replicated sharing of (#,d). The main insight is that
this sharing can be viewed as a commitment to the input values (due to the replication). With these commitments
in place, the parties can securely and consistently

1. Open the encoded indices to Ps for determining the intersection, and the sorting permutation 7.
2. Provide input to Fshuffle-

3. Use the shares as input to a three-party computation on the payloads of the indices in the intersection.

It is instructive to consider why we can only use this to compute on the payloads, and not on the indices
themselves. For P3; to determine the permutation 7, P; and P need to send encoded indices. But to compute
some function f on these values, they need to supply the plaintext indices to f. The replicated sharing no longer
gives a guarantee that the input to f is consistent with the encodings sent to P;3. We explore ways of providing this
consistency guarantee in Section 5.

Theorem 2 The protocols of Figure 8 for computing PSI cardinality securely realize the ideal functionality Fpsi.ca
(Figure 3) with abort, under a single malicious corruption. The variants for computing on the payloads of the
intersecting items securely realize the ideal functionality Fepsy) (Figure 7).

We begin by simulating P; in both f(PSI) protocols, and argue that the protocol remains secure when Pj is
malicious.

1. k: S samples k uniformly at random and sends it to P;.

2. S extracts the input (X, D’M) of Py from the shares sent to P, and Ps. If there are any inconsistencies, or if
Pj sends any duplicates, S sets abort = 1. Otherwise, S sends the input to the ideal functionality, and receives
f(D),and t = | X'NY|. We note that D = {(dy,ds)|Fw € X'NY : (w,d;) € (X', D’D)A(w,ds) € (X, DP)}.

3. [Va],[D®)] : S sends random field elements to simulate the input shares of P.
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4. If Py sends incorrect shares during the opening of Z in Step 4, S sends abort to the functionality, outputs the
partial view of P;, and terminates.

5. [Z], [Z] : If P; sends incorrect shares as input to Fshuffie, S sends abort to the functionality, outputs the
partial view of P, and terminates. Otherwise, S sends random field elements to simulate the output of
Fshuffle-

6. t : S sends the value received from the ideal functionality, t= | X NY| to P;. If P, reports a different value
while verifying ¢ with P,, S sends abort to the functionality, outputs the partial view of P;, and terminates.

7. E,gl : § simulates the outputs of Fioi, using random bits. If P; submits { # Zle ri[(z2; — 22i-1)] to

FCheckZero, S sends 51 = false to P, sends abort to the functionality, outputs the partial view of P, and
terminates. Otherwise, he returns b; = true as the output of FoheckZzero-

8. Circuit-based protocol: S simulates the output of the share conversion, [Z3]* — [Z2]Z, by sending random
Boolean values for the replicated shares. If P; submits correct shares to the computations of the comparison
circuits, § simulates the output by sending by = true.

Hybrid protocol: 53: If P, sends incorrect shares to FunionLs, S simulates the output of FinionLe by sending
abort to P;. Otherwise, S sends bs = true.

—_~—

9. For f(PSI), f(psi): If Py alters his shares [D] before sending them to the functionality that compute the
circuit f(psi), S aborts and outputs the partial view. Else, S hands P; f(psi) (obtained from the ideal
functionality).

Claim 3 For the simulator S corrupting party Py as described above, and interacting with the functionality Frpsi),

{HYBRIDWCb’A(Z) ((X, DMy (v,D?), m)} = {IDEAL]:f(ps/_)ys(z) ((X, DW) (v,DP), m)}

2€{0,1}*,keN 2€{0,1}*,keN

Proof:
Case 0: First, we consider the case where P; executes the protocol honestly. In this case, the joint distributions in
the hybrid and in the ideal worlds are:

For circuit-based protocol:
{HYBRID‘Ich,A(Z)((Xv Du))? (v, D(2))a H)}ZE{O,I}*,REN = {k, [Va], [D(Q)]a [W(D(l)”D@))]v [Z1], [Z2), ¢, R, b1, [ZQ]Bv

b, 01, 02, 03} L _ _ _ _ _
{IDEALF;(pSi),S(z)((Xv D(l))v (Yv D(2))v K‘)}ZG{OJ}*J&EN = {ka [VQ]v [D(Z)]v [W(D(l)HD(Q))]’ [Zl}v [Z2]v t~7

by, 01, 02, 03}

) gly [22]37

N

For hybrid protocol:
{HYBRIDchyA(Z)((Xv D(2))7 (Y, D(2))’ ﬁ)}zG{O,l}*,RGN = {kv [VQ]a [D(2)]7 [W(D(l)HD(Q))]v [Zl]a [ZQL t, R, by, bs, o1,
02, 03}
~ iIDEALF;(psi),S(Z)((Xv D(l))7 (Y7D(2))a H)}ZE{O,l}*,KEN = {ka [‘/2}7 [D(2)]’ [W(D(l)HD(l))L [Zl]a [ZQL ta R7 b17 bS; 517
02, 03} ~ ~ _
As k, k ,R, R, and the shares are sampled uniformly at random and independently from one another, t and ¢
are identical (S can extract P;’s input), b; = b; = true, and the outputs are identical, the joint distributions in both
worlds are identically distributed.

Case 1: Now we consider the case where P; deviates from the protocol. It is easy to verify that if P; deviates at
any points prior to Step 8, abort happens in both worlds and the partial views are identically distributed. If P;
does not deviate from the protocol before Step 8, the partial views up to Step 8 in the hybrid and ideal worlds are
{k, [Va], [D®], [x(DD||[DM)], [Z1], [Z2], t} and {k, [Va], [DP], [x(DD||DM)], [Z1], [Za], t} respectively. These
partial views are distributed uniformly at random and independent from the rest of the joint distributions, thus,
we can omit these partial views in the following analysis.

From Step 8 to Step 10, the only way that P; can cheat is to submit the wrong shares to one of the following
functionalities: FcneckZeros Fz]4— (25, the 3PC comparison circuit (or FunionLB, depending on which is being used),
or the 3PC circuit to compute f(psi). In the ideal world, S detects the cheating right away and aborts. In the
hybrid world, the same thing happens, except for the case of Fcheckzero, Where abort happens with the probability
of 1 — 1/|F|. Thus, the joint distributions in both world are statistically close if P; deviates at one of these steps.

In conclusion, the joint distributions in both worlds are computationally indistinguishable. [ |

We now present the simulation of Ps.

14



1. [V4],[DD], [Va], [D®@)] : S queries the ideal functionality and receives t = |X NY|. S chooses 2n — t random
strings from the domain of the PRP, without replacement. He duplicates the first ¢ strings and create two
sets, V1, Vo, each with one copy of the duplicated items, and (n — t) other items. He randomly shuffles V;,
creates random replicated sharings of these elements, and sends shares to Ps, on behalf of P; and P,. He also

sends P3 random strings to simulate the data shares [D(1)], [D(?)] that P3 receives from P; and P.
2. Z: S simulates the opening of A by sending the missing share of each value on behalf of both P, and Ps.

3. [7(2)], [x(DW||D@)]: S receives 7 from P, and uses 7 to shuffle Z, computing 7(%). S simulates the output
of Fshufle by creating new replicated shares of 71'(2 ); shares are random strings. S sends P3 random strings as
shares [7(DM]|D®)]. S then observes the message ¢ Py sends to P and P in Step 7, indicating the supposed
intersection size. If Ps sends different ¢ to each of P, and P,, S sends abort to the trusted party, and outputs
the partial view. If P3 sends the same t to P; and P,, but Z; is not in the correct format, S sets abort; = 1.
If Z5 is not in strictly increasing order, he sets abort, = 1. If P53 sends the same t' < t to P, and P, S sets
abortz = 1.

4. E,El : S simulates the outputs of Fioi, using random bits. If P3 submits { # Zle ri[(z2: — 22i-1)] to

FCheckZero OF if abort; = 1, S sends 51 = false to P, sends abort to the functionality, outputs the partial view
of P3, and terminates. Otherwise, he returns b; = true as the output of FopeckZero-

5. Circuit-based protocol: [Z5]B by: S simulates the output of the share conversion, [Zo]4 — [Z5]B, by
sending random Boolean values for the replicated shares. If P3 submits correct shares to the computations of
the comparison circuits and abort; = 0, § simulates the output by sending by = true. Otherwise, S hands Ps3
by = false.

Hybrid protocol: 53: If P3 submits correct shares to FynionLs, and aborts = 0, S simulates the output by
sending b3 = true. Otherwise, S hands P3 b3 = false.

Let [D] be the shares of the data that go with Z;.

6. For f(PSI): If Ps alters his shares [D] before sending them to the functionality that computes the circuit
f(D), S aborts and outputs the partial view. Else, S outputs whatever P; outputs.

Claim 4 For the simulator S corrupting party P3 as described above, and interacting with the functionality Fepsi),

{HYBRIDWCmA(Z) ((X,D(l)), (Y,D@)),Iﬁ:)} = {IDEAL]:f(ps’_)VS(Z) ((X7D(1)), (Y,D®), n)}

2€{0,1}*,kEN 2€{0,1}*,keN

Proof:
Hybridy: Real execution.
Hybrid;: Same as hybridy, except that the PRP is replaced with random encoding.
Hybrid,: Ideal execution.

It’s clear that Hybridy and Hybrid; are computationally indistinguishable by a reduction to the PRP. We
prove that Hybrid; and Hybrids are also computationally indistinguishable.

First, we consider the partial views up to Step 5 in the protocol 7.,. The partial view in the hybrid; is {[V4],
[DW), [Va], [D®)], [x(DWV||D®)], Z} and in the ideal world is {[V4], [DM], [Va], [D@], [«(DD||D@))], Z}. In
both worlds, these messages are distributed uniformly at random and independently from one another and from
the rest of the joint distributions, thus, the partial views in both worlds are identically distributed.

Next, we consider every possible deviation by the adversary, and show that, in each case, the joint distributions
in both worlds remain statistically indistinguishable. If P5 deviates from the protocol by sending the wrong shares
to one of the functionalities (FcheckZeros Flz)A (218, the 3PC comparison circuit (or FunionLB), or the 3PC circuit
to compute f(psi)), or by sending different values of ¢ to P; and P» in Step 7, then, in the ideal world the simulator
detects this right away and aborts, while in the hybrid world the parties will abort with probability at least
1—O(1/|F]). Thus, the joint distributions in both worlds are statistically close under these deviations.

Beside the deviations mentioned above, P3 can purposely mess up the shuffling process in Step 6 by providing
a bad permutation to Fanue. If this is the case, in the ideal world, the simulator detects this immediately, but still
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hands P; random elements to simulate the shares he receives from Fapuffie: [Z (1)], [2 (2)]. In the hybrid world, Ps
receives [Z(V],[Z(?)]. The executions now continue in Step 7. At this point, we have two different cases.
Case 1: Pj3 sends correct ¢t to P; and Ps, however, the permutation is wrong.

e If abort; = 1: P3 purposely messes up Z;. In the ideal execution, S aborts and outputs the joint distribution
{vi], [DD], [Va], [DP®], [x(DM||D@)], Z, R, by = false, L}. We claim that in the hybrid world, Fcneckzero
will outputs by = false with probability at least (1 — O(1/|F])), and the joint distribution in the hybrid world
is {[Va], [DW], [Va], [DP], [x(DW||DP@)], Z, R, by = false, L}, which is identically distributed as that in
the ideal world. In Step 8, Pr[b; = true|abort; = 1] = Pr[sum = 0] + Pr{sum # 0 A FCheckZero(SUM) = true],
where sum = Zle 1ri(22; — 22;—1). At least one of the terms (2za; — 22;,—1) is non-zero (otherwise, the simulator
would set abort; = 0), thus sum = 0 if and only if 7;(29; — 29;—1) = — Z#i (22 — #2j—1). This happens with
probability 1/|F|, thus Pr{sum = 0] = 1/|F|. In case sum = 0, the probability that Fcheckzero(sum) outputs
true is 1/|F|. It follows that Pr[b; = true|abort; = 1] = ﬁ +(1- ﬁ)ﬁ < %, and the joint distributions
in both worlds are statistically close.

e If abort; = 0,aborty; = 1,abort3 = 1 : The only extra thing that Ps can do here is to submit the wrong shares
to one of the functionalities in Step 8 and Step 9, which causes abort to happen in the ideal world with the
probability of 1, and in the hybrid world with the probability of at least 1 — O(1/|F|). In this case, the
joint distributions in both worlds are statistically close. If P3 submits the correct shares, then in the ideal
world, the simulator returns by = false (b3 = false in the hybrid branch) in Step 9 and aborts, while in the
hybrid world, the parties output by = false (b3 = false in the hybrid branch) with the probability of at least
1 —O(1/|F]) and abort. In all cases, the joint distributions in both worlds are statistically close.

We note that if P; cheats in Step 6, no matter what P; does in the next steps, either abort; = 1 or (aborty =
1/aborts = 1) must be true.

Case 2: P3 sends t # | X NY| to P, and P». In this case, the analysis is very similar to case 1. If t < | X' NY],
abort; = 1,aborts = 1, else if ¢ > | X' NY]|, abort; = 1. With similar arguments in case 1, the claim that the joint
distributions in both worlds are statistically close holds.

If P;3 does not deviate from the protocol, it is easy to see that the joint distributions in both worlds are identically
distributed.

In conclusion, the joint distributions in both worlds are computationally indistinguishable. [ |

4.3 Three Party Oblivious Shuflling

Fshuffle
Inputs: Py, Py, P3 submit a set of replicated arithmetic shares [X]* = {[z1]4, ..., [z2.]*}. P3 submits a permutation
.
Functionality:

e If there are any inconsistencies among the input shares, output abort to every party.
e Shuffle the shares using permutation 7.
e Re-randomize the replicated shares.

Outputs: [7(X)]*

Figure 9: Ideal Functionality for Shuffling

We construct a low-bandwidth protocol for permuting replicated arithmetic shares in the three party setting,
where P3 chooses the permutation 7 that remains hidden from the two other players. Our protocol runs in linear time
and has communication cost of 5n field elements when permuting n values. The formal description of the protocol
appears in Figure 10. Informally, the parties begin by sampling replicated shares of a random field element, «, and
compute replicated sharing [ax]A through a call to Fut. Ps and P, begin by converting the replicated sharing
into a 2-out-of-2 sharing, and then apply a random permutation oy to the resulting shares. P, sends P; his shares
(after re-randomizing), and Ps sends to Py mo o 1 They both permute their shares, and the three parties convert
the two-out-of-two sharings back into to replicated shares. Because neither P; nor P, sees both permutations,
neither learns anything about the composed permutation 7. However, going from replicated shares to two-out-of-
two additive shares in order to hide the permutation allows the adversary to modify the shared values. To prevent
this, the parties expose «, and perform several checks to ensure that everyone behaved honestly.
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We note one important subtlety about how the correctness of the shares is validated. Letting X ) denote
permuted the output array, and Y®) denote the authenticate array, it does not suffice to simply verify at the end
of the computation that aX® = Y®). Without the verification that «X = Y, a malicious P; could learn some
information about the permutation with non-negligible probability: in Step 2, he adds d; to the i* shares in Y so
that y; = ax; + d;. In Step 7, he adds —d; to the j** shares in Y'(®) before converting it back to replicated sharing.
If the check in Step 10 fails, he learns that (i) # j. If the check passes (with probability 1/n), he knows x (i) = j.
By having both checks in Step 9 and 10, P; or P, can only modify the shares of the data and MACs once, and
they will be caught with high probability if they choose to do so. If any of them attempts to modify the data, the
checks fail with high probability.

Ilshufme: Three Party Shuffling

Inputs: P, P2, and P; have replicated shares [X]* = {[z1]%, ..., [zn]*}, Ps has a permutation 7. (As all shares are
of arithmetic values, we suppress the superscript indicating this going forward.)
Protocol:

1. Pi, P, and P3 call Frang to sample a shared random MAC key, o € Z,. The key is distributed as replicated
shares [a].

2. The parties make n calls to Fuie, computing [Y] = {[az] | z € X}.
3. P, and P locally compute 2-out-of-2 shares of X and Y: [X] 2% (X)) and [Y] 25 (YD),
(The superscript denotes a possible change in the shared value by an adversary.)
4. P> and Ps call Feoin to sample a random permutation oi. They permute their shares according to o;.

5. P> and Ps call Feoin and use the resulting randomness for re-randomizing their shares:
(X@) « reRand((g1(X™))) and (Y?) « reRand((o1 (Y V))).
P> sends his shares to P;.

6. P3 sends oo =mo (01)71 to Pi. They permute their shares according to o2.
7. The three parties transform the permuted shares into replicated sharings:
(02(X@)) 3 [XD), (02(Y?)) 5 [Y ).
8. The parties securely open « and locally compute [Z(V] = [a- X — Y] and [Z?] = [a- X©®) — Y ®)),

9. The parties make n calls to Feoin, receiving Ri = {r1,...,mn}. They run Fcneckzero([D 7i2:]) where z; € AS
and abort if the output is False.

10. The parties make n calls to Feoin, receiving Ra = {51, ..., Sn}. They run Fcheckzero([D Si2i]) where z; € AR
and abort if the output is False.

Output: Py, P, and P3 output replicated sharing [X ®].

Figure 10: A protocol for securely permuting the replicated sharing of an array.

Theorem 3 The protocol Uspusme for shuffling the shares obliviously (Figure 10) securely realizes the ideal function-
ality Fshume (Figure 9) with abort, under a single malicious corruption.

We first describe a simulator for the case where P; is corrupt, and argue that the protocol remains secure under
the corruption of P;. The simulation and argument are almost identical for P». The simulation of P3; appears below
that of P1 .

0. The simulator, S, receives input shares of X from the distinguisher, and places them on the tape of P;.

1. [&]A: S plays the role of Fanq, sending P; random field elements as his shares of a.

2. [Y]4: S plays the role of Fue. It receives the corrupted party’s shares of X and «, and the adversary’s
specified output shares [y;]1. If any of the shares of X differ from the ones placed by S on P;’s input tape,
or if the shares of « are inconsistent with the simulated values from Step 1, S sets abort; = 1. Regardless, S
sends A a random field element for every share of Y that he expects to receive from Ps: [;]2.

3. <)Z' @), <17(2)>: S simulates the message that P; receives from P, in Step 5 by sending random field elements.
4. 0o: S sends P; a random permutation oy on behalf of P;. He permutes his local state with oo to mirror the

expected behavior of P;.
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5. ([X®)],[Y®)]): S receives Py’s shares of (X®), (Y(®) as input to the two (independent) calls to the share
conversion functionality. If there is any discrepancy with the simulated values from Step 3, S set aborty = 1.
Regardless, he queries the ideal functionality to receive [r(X)], and uses these to simulate the output of the
first call to the share conversion functionality. He sends random field elements to simulate the output of the
second call to the share conversion functionality: [V (®)].

6. a: S sends random elements to simulate the opening of a.

7. ﬁl,glz S sends n random elements to simulate the calls to Feoin. If abort; = 1, or if P; sends the wrong
shares t0 FcheckZero, S submits abort to the ideal functionality and simulates the output of Fcheckzero(Z (1))

by sending b; = 0 to A.

8. EQ,ZQZ S sends n random elements to simulate the calls to Feoin. If abort; = 1, or if P; sends the wrong
shares t0 Fcheckzero, S submits abort to the ideal functionality and simulates the output of Foheckzero(Z (2))
by sending by = 0 to A.

Claim 5 For the simulator S corrupting party Py as described above, and interacting with the functionality Fspuffe,

{HYBRID g, . a(2) (X, Y, “)}ze{o,l}*,neN = {IDEALZ,,,. s5(-) (X, Y, K)}ze{o,l}*,neN

Proof: The joint distribution of the view of P; and the output, in the real and ideal executions, respectively, are:
{HYBRIDﬂ'Shume,A(z) (X7 Ya K:)}ZG{O,:[}*,I{GN = {[Oé], [Y]7 <X(2)>7 <Y(2)>3 g2, [X(S)]v [Y(S)]a «, Rla b17 R27 b2; 01, 02, 03}

{IDEAL]:Shume,A(Z) (X, K K)}ZE{OJ}*,REN = {[&], [Y], <X(2)>, <}/(2)>7 6'\2/, [X(3)], [Y(S)}, &7 Rl, b1, RQ, b27 51, 52, 53}

We consider a partial view of the protocol, through Step 8, just before the two calls to Fconeckzero: {[a], [Y],
(X@) (Y2, 00 [X®], [Y®)], a} and {[a], [Y], (XP), (Y®), 55,[X®)], [Y®)], &} in the hybrid world and ideal
world, respectively. The reader can verify by inspection that every such partial view has identical probability weight
in both the hybrid and ideal worlds (whether P; cheats or not). Each of the messages in the views are distributed
uniformly at random and independent from one another. L

Case 0: If P, executes the protocol honestly, it is clear that Rj, Ra, Ri, R2 are all distributed uniformly at
random and b; = b; = true. Thus, the joint distributions in both worlds are identical.

Case 1: If P; cheats in Step 2 or Step 7, we argue that the joint distributions in the hybrid and in the ideal
worlds are statistically close. First, in the ideal world, any deviation of P; will be detected immediately by the
simulator. The simulator will output the partial view {[a], [Y], (X)), (Y ), 5o,[X®)], [Y )], @, Ry, by = false} if
P, deviates from the protocol in Step 2, and he’ll output {[a], [Y], (X@)), (YD), 55, [X®], [Y®)], &, Ry, by = true,
Eg, 52 = false} if P; deviates in Step 7. In both cases, he tells the ideal functionality to abort. However, in the
hybrid world, P; has a chance to cause Fcheckzero t0 accept and the hybrid world execution results in the view {[a],
V], (X@) (Y aq [XP], [YP], «, Ry, by = true, Ry, by = true} which is distinguishable from that in the ideal
world. We claim that this occurs with probability at most %

We first consider the case where abort; = 1, which happens when P; cheats in Step 2. Let D = {dy,...,d,}
be the vector of additive terms added to the MAC values by P;. That is, after Step 2 (in the protocol), [Y] =
{[ax; + di]|z; € X} and [Z(MD] = a[X] — [Y] = {[~di]|i = 1...n}. Note that at least one of the d; is non-zero, which
is why the simulator aborts. Assume d; # 0, then Y " | —r;d; = 0 if and only if r;jd; = — Z#j rid;. When r; # 0,
the equation is satisfied with probability ﬁ as 7jd; is uniformly distributed in F. When r; = 0, the sum is zero
if the adversary only cheats on the j** shares. Thus, Pr}_ ., rd; = 0] < ﬁ + (1 - ﬁ)‘—;ﬂl < \TQ’I In the real

world execution, the check passes with probability 1 if ., r;d; = 0 and with probability ﬁ otherwise. Thus, the

probability that the views in two worlds are different is at most % +(1- %)ﬁ < %

Next we consider the case that abort; = 0 and abort, = 1. In Step 7, P; can introduce an additive attack to
alter the shares of the data and the MAC. Let the additive terms be E = {ey,...,e,} and F = {f1,..., fn}, such
that [X®)] = {[z; + e;]|i = 1...n} and [Y @] = {[az; + fi]|i = 1...n}. In the real world execution, the check passes
with probability 1 if Y"1 | s;(ce; — fi) = 0, and it passes with probability ‘1?' if Y0 | si(ce; — f;) # 0. Assume that
e; #0or f; #0. Then Y1 | s;(ce; — f;) = 0 if and only if s;(ae; — f;) = >z Silfi —aei). If ae; — f; # 0, then
the above equation is satisfied with probability ﬁ, as sj(ae; — f;) has uniform distribution over F. Furthermore,

Priae; — f; = 0] = ﬁ, since o was unknown at the time that e; and f; were chosen. In total, the chance that

St si(ae; — f;) = 0 is at most ﬁ +(1- ﬁ)ﬁ < ‘72' Thus, the chance that the check passes in the real world
ion i 2 —23y1 - 3

execution is at most 7 + (1 — 7)1y < 777
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In both cases, the view in the real world is different from that in the hybrid world with the probability of at
most % It follows that the distribution on views in the two worlds are statistically close.

Case 2: If P; is honest up to Step 8, however, it cheats by sending the wrong shares to any of the FcheckZeros
abort happens in both worlds and the joint distribution in the hybrid world is identical to that in the ideal world.

In conclusion, the joint distributions in both worlds are statistically close. To complete the proof of the Theorem,
we note that the honest output is independent of the view of P;. [ |

Now we describe a simulator for a corrupted Ps.
1. [a]*: S plays the role of Frana by receiving the corrupted party’s shares of @.

2. [}7]’4: S plays the role of Fui. It receives the corrupted party’s shares of X and «, and the adversary’s
specified output shares [y;]3. If any of the shares of X differ from the ones placed by S on Ps’s input tape, or
if the shares of & are inconsistent with the values specified by Ps in Step 1, S sets abort; = 1. Regardless, S
sends A a random field element for every share of Y that he expects to receive from Pj: [y;]1.

3. 5177@:1: S chooses a random permutation o7 and a random key El, simulating the output of Feoin. 751 is the
randomness that P, and Ps use to re-randomize the shares. S uses o1 and k1 to compute (X (2)> and (Y(Q)),
mirroring the adversary’s action.

4. [X®)], [Y®)]: S receives the permutation oy that Ps sends to Py and extracts Py’s input 7/ = oy 0 01. S
uses gy compute (oo(X?)) and (o9(Y?)). S observes the messages that P3 sends to Fla)—[z]) in Step 7.
S compares those messages with the one he computes locally. If there is any mismatch, S sets abort, = 1.
Regardless, S submits ([X],7’) to the ideal functionality and receives [7/(X)]. S hands Ps [7/(X)] as [X®)],

and hands him random elements as shares of [Y3)].
5. a: S sends random element to simulate the opening of «.

6. El,zlz S sends n random field elements to simulate the calls to Feoin. If abort; == 1, or if P3 sends the wrong
shares t0 Fcheckzero, S Submits abort to the ideal functionality and simulates the output of Fcheckzero(Z (1))
by sending b; = 0 to A.

7. ]Ai;g,ggz S sends n random field elements to simulate the calls to Feoi,. If abort, == 1, or if P3 sends the wrong
shares t0 FcheckZero, S submits abort to the ideal functionality and simulates the output of Fcheckzero(Z (2))

by sending by = 0 to A.

Claim 6 For the simulator S corrupting party Ps3 as described above, and interacting with the functionality Fspuffe,
C
{HYBRID g, . a(2) (X, Y, K)}ze{o,l}*,neN = {IDEALf,,,,. s(») (X, Y, “)}ze{o,l}*,neN

Proof:
Case 0: If P; follows the protocol honestly, the joint distribution of the view of P3 and the output, in the real and
ideal executions, respectively, are:

{HYBRID g, ., 4(2) (X, Y, “)}ze{o A {la], [Y],01, (X [Y®),a, Ry, by = true, Ry, by = true, out }

{IDEAL . aG) (X, YR} (g 1y e = 1160, [Y],51, [X®], [Y®),& Ry, by = true, Ry, by = true, out }

where out = (01, 02, 03) and out = (01,02, 03).

As all the shares, o, &, R;, R; are uniformly distributed, and ([X®)], out) and ([)?(3)7 OAJt) are identical, the joint
distributions in both worlds are identically distributed.

Case 1: If P3 cheats in Step 2 or Step 7, causing abort; = 1 or abort; = 1 in the ideal world, the simulator
outputs the view {[a], [Y], o1, [X®)], [Y®)], &, Ry, by = false} if P3 deviates in Step 2, and he outputs the view
{[a], Y], 1, [X®], [Y®)], &, Ry, by = true, Ry, by = false} if P; deviates in Step 7. In the hybrid world, P; has
a chance to cause the execution to result in a view that is distinguishable from that in the ideal world, if he can
cause FcheckZero t0 output 1. Following the similar analysis in the previous proof, the chance that this happens is
at most O(1/|F|). Thus, the joint distributions in both worlds are statistically close.

Case 2: If P5 is honest up to Step 8, the partial views up to this step in both worlds are identically distributed.
If P3 cheats in either Step 9 or Step 10 by sending the incorrect shares to Fcheckzero, both the hybrid execution
and the ideal execution abort. Thus, the joint distributions are also identically distributed. [ |
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5 Computing on intersecting indices

The approach in Section 4.2 fails when the indices are needed to compute the function f. An attack is possible due
to the fact the F(k,-) values are computed locally and are not bound to the input 2. For example, a malicious Py
can supply an incorrect triple ([x]4, [d]4, F(k,z')), causing trouble if 2’ is in the intersection and z is not, or vice
versa. We propose two different protocols to perform f(PSI) on indices. In both, we make use of a shared oblivious
PRF (soPRF). This is a pseudorandom function that allows for distributed evaluation: the parties, holding secret
shares of the PRF key, and secret shares of the input value, can compute the output of the PRF.

In our first construction, in Figure 11, we use a 3-party soPRF (3soPRF), but we do so in a non-black box way.
That is, the code of the 3soPRF is embedded inside a larger circuit, and the whole circuit is evaluated securely in
an MPC. In our experiments, we instantiated the 3soPRF using both AES, and the Naor-Reingold PRF [33] and
found the construction from AES to be more efficent.

In our second protocol (Figure 12), we make black-box use of a 2-party shared oblivious PRF (2soPRF). We
instantiated this using the 2soPRF designed by Gordon et al. [19], which is a shared variant of the Naor-Reingold
PRF. This construction also failed to beat the non-black box use of AES, but we are hopeful that a more efficient
2s0PRF might be found to replace this one, making the construction in Figure 12 more efficient than the one in
Figure 11. It is worth noting that highly efficient primitives related to oblivious PRFs have recently been constructed
from OT-extension and used in other PSI protocols [29], so something similar here is quite plausible, though still
unknown.

The difference between protocols that compute a function on intersection payloads and on intersection indices is
how the encoded indices are computed. In Figure 11, this is done by a secure evaluation of a 3soPRF, however, in
Figure 12, it is handled differently. First, P; and P commit their inputs (indices and payloads) by secret-sharing
them as replicated shares. For each index z € X, P; computes F(k,x), secret-sharing it, opening it to Ps. For
the same input, P, and Ps compute 2s0PRF by using the shared key and shared data. If all parties follow the
protocol honestly, Ps; will receive the same values. If Py cheats by sending F(k,z’) or P, cheats by providing the
wrong share for the 2soPRF, P;5 will catch them with high probability. If Ps is malicious, the only thing he can
do is to claim that he receives different encodings, causing all parties to abort. The same thing happens when the
three parties compute the encoded indices for P»’s inputs. This procedure enforces the binding between [z] and
[F(k,z)] in Figure 12 . The simulation and security proof for f(PSI) on intersection indices are very similar to
that of protocols in Figure 8, thus we do not list them here.

The protocols in Figures 11 and 12 have linear computational complexity and linear communication cost. They
are asymptotically better than the merge-compare-shuffle approach [23] that requires O(nlogn) runtime and
O(nlogn) bandwidth. In concrete numbers, the AES circuit has 6800 AND gates, thus 2 x 6800 x N AND gates in
total, while the merge-compare-shuffle circuit has at least 40N log(2N) AND gates, where o is the total length of
the index and the payload in bits, and NN is the number of inputs. For N = 22°, the AES circuit will have less AND
gates if 0 > 162. When compared with the protocol for computing only on payloads in Section 4.2, computing on
indices is about 5-10X slower in a LAN, and 11-35X slower in a WAN. We also note that our circuit has a constant
number of rounds, while the merge-compare-shuffle has O(o logn) rounds.

Size hiding PSI cardinality: The protocols in Figure 11 can be modified slightly to give a PSI cardinality
protocol that gives output only to P; and P,;. The intuition is: the PRF key is unknown to anyone, thus after
computing the 3soPRF and shuffling the output shares, the PRF values can be safely revealed to P; and P, instead
of P3;. However, this requires some extra steps to ensure that P; and P, provide valid inputs, i.e. all items in their
set are unique. Otherwise, a malicious party can include item x in his set twice: if x is not in the other party’s set,
the protocol will compute f(PSI U {z}). Otherwise, the honest party will see 3 copies of F(k,z) in the encoded
set and will abort. In both cases, the adversary learns whether x is in the intersection.

To prevent this, P; and P sort their input locally and secret-share them as replicated arithmetic shares. They
run a 3PC share conversion circuit to convert the shares to replicated Boolean shares. Now for each set of input,
the parties run 3PC comparison circuit to verify that they are both in increasing order. After the verification, the
parties execute the remainder of the protocol, using the same arithmetic shares to ensure input consistency.

It is tempting to try and compute f(PSI) while hiding the size of the intersection from P in a similar manner.
However, if we wish to involve Ps in the 3-party computation of f(Z;), we need to reveal the intersection size when
we choose the circuit representing f. Without leaking the size of the intersection, P; and P, can evaluate multiple
circuits with Pj3, each with a different size, but, depending on f, this might require them to execute n circuits. One
interesting direction to explore in future work is the possibility of leaking a noisy intersection size to Ps, preserving
differential privacy.
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3PC Circuit-Based PSI computations via 3soPRF/AES

Inputs: P has X = {z1,...,z,} and payload values DM = {dﬁ”,...,dﬁ}’}, P, has Y = {y1,...,yn} and D® =
{d?, ..., dP}, Ps does not have inputs.
Protocol:

1. Py, P2, and Ps call Frana to sample a shared key [k:]B

2. P; and P, calls Finpu to share their input and payloads as replicated arithmetic shares ([X]%,[D®]*) and
([Y]4, [D®]4) respectively among the three parties.

3. The parties concatenate the shares [Z]* « [X]*]|[Y]* and [W]* « [DW)4||[DP]A.

4. Ps samples a random permutation 7. The three parties call Fspuse to shuffle the replicated arithmetic shares
according to 7. Let Z®Y = n(Z) and W = n(W).

5. They call Fi,ja_,(,5 to convert [ZW]A to [zMW)5.

6. They execute the 3PC 3so0PRF/AES circuit on shared key [k]® and shared data [z]? for z € Z*) and obtain
[T)? = [3soPRF(k, z)|® or [T1? = [AES(k, 2)|? for z € Z1,

7. The parties open T to Ps.

8. P3 uses w7 ! to shuffle the set 7. If Ps receives duplicated values from either P; or Ps, he aborts.

9. They then reveal T' to P; and P». For each pair of duplicated ¢t € T, the parties use the corresponding
replicated sharings of index and payload as input to a circuit for f.

Output:
P and P> output the result of f and the intersection size s. P3 outputs the size of the intersection s.

Figure 11: The protocol to compute a function of both indices in the intersection and the payloads associating
with the indices. AES can be replaced by a 3PC soPRF.

6 Experiments and Results

We implemented all protocols in C/C++ with the use of NTL and EMP library and tested them with AWS
instances (r4.8xlarge). For the LAN configuration, all the instances are in Northern Virginia region. For the
WAN configuration, we used the instances in Northern Virginia, Oregon, and North California. In all protocols,
the field has to be large enough so that the PRP encodings have negligible collision probability. Let 2=* be the
desired probability for collision to happen, and let n be the input size. Then the field size needs to be at least
A+2log2n — 1= A+ 2logn + 1 bits.

We focus primarily on f(PSI) and PSI cardinality protocols in the three-party setting with honest majority.
Kamara et al. [27] computes PSI in this setting, but there is no related work that computes f(PSI) or PSI cardinality
in the 3-party setting. In order to have a meaningful comparison, we implemented the generic merge-compare-shuffle
protocol using one of the most efficient three-party protocols with honest majority [1], and compared our f(PSI)
results against this implementation. For the PSI cardinality (PSI-CA), we compare our results against the merge-
compare-add version. For generic three party protocols, Araki et al. [1] achieves the best communication cost with
7 bits per AND gate per party, however, the number of rounds depends on the depth of the circuit. We note here
that the merge-compare-add may be slightly faster if implemented with ABY3 [31]: instead of doing the addition
by a Boolean circuit (with O(n) AND gates and depth O(log®n)), using the ABY3 framework, we could convert
the binary shares into arithmetic shares after the comparison phase, and then perform addition on the arithmetic
shares for free. However, the dominant cost for the merge-compare-add circuit is the merge step, which requires
20nlog(2n) AND gates and has the depth of O(ologn): the speed-up from using ABY3 would be less than 2X. We
have not taken the time to implement their protocol, but it might be interesting to do so. For the f(PSI) case, the
most efficient way to implement the merge-compare-shuffle is by Boolean circuit, thus, there would be no difference
between using the constructions of Araki et al. [1] and Mohassel et al. [31], as the latter use the former when it
executes Boolean circuits.

It would also be interesting to compare our results with Mohassel et al. [32], which is based on garbled circuits,
has a constant number of rounds, and also assumes 1 malicious party out of 3. However, as the implementation
is not available, we instead compare with an implementation of semi-honest, two-party garbled circuits; the three-
party version is not as efficient as the semi-honest protocol, so this comparison is conservative. Beside comparing
our protocols against the generic protocol in the three party setting, we also provide the comparison against the
relevant state-of-the-art two party protocols such as [35].
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Inputs:

1. P

2. P

4. P
P
P,

5 P
P,
P

6. Ps

=

7. P;

8. P

Output:

{d?, ...
Protocol:

[k

([Y]4, [D®]?) respectively among the three parties.
3. They call Fj,ja_,,5 to convert [X]4, Y] to [X]5, [Y]".

P>, he aborts.

next to its duplicate, and that moves the rest of (Z2) to the bottom, in sorted order. The three parties call
Fshufle to shuffle the shares according to . The payloads are shuffled along with their indices.

Otherwise, they abort.

9. For Zi, the parties verify that there are ¢ duplicate pairs, using secure arithmetic comparisons.

10. Circuit-based protocol:
For Zs, the parties convert [F(k,y)]* to [F(k,y)]® . They then run a sequence of 3PC comparison circuits
to verify that the items are in sorted order.
Hybrid protocol:
For Za, the parties run the union lower bound proof from Section 3 (Figure 4).

If the proof fails to verify, abort.

11. For each pair of duplicates in Z1, the parties use one of the corresponding replicated sharings as input to a
circuit for f.

P and P> output the result of f and the intersection size s. Ps outputs the size of the intersection s.

3PC Circuit-Based PSI computations via 2soPRF

Py has X = {x1,...,z,} and payload values D) = {dgl),...,dﬁf)}, P, has Y = {y1,...,yn} and D@ =
d512>}7 Ps does not have inputs.

and P> sample random keys k£ by calling Feoin. They then distribute the keys as replicated shared keys
among 3 parties using the same randomness.

and Py calls Fippue to share their input and payloads as replicated arithmetic shares ([X]#,[D")]*) and

and Ps convert [k] to (k). For each z € X:
computes F(k,z), secret shared as [F(k,z)]"*, and opens the value to Ps.
and Ps convert [z]Z to (z)? locally and compute (2s0PRF(k,z))“. They open the prf to Ps.

and Ps convert [k] to (k). For each y € Y:
computes F(k,v), secret shared as [F(k,y)]* and open the value to Ps.
and P convert [y]® to (y)? locally and compute (2s0PRF(k,y))*. They open the prf to Ps.

verifies that for the same input z, the prf values are the same. If Ps sees duplicated prf values from P; or

fixes a permutation 7 that moves items in the intersection (Z; = X NY) to the top, placing each item

sends the size of the intersection, ¢, to P» and P>. Pi and P, verify that they receive the same value.

e They make ¢ calls to Feoin to receive R = {r1,...,7:}.

e They run }—CheckZerO([ZZﬂ ri(z2: — 22:-1)]), where z; € ZM and abort if the output is False.

Figure 12:

The protocol to compute a function of both indices in the intersection and the payloads associating

with the indices.
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Table 1: Runtime in seconds in LAN/WAN setting and communication cost in megabytes. The best results for
f(PSI) are in blue, those for PSI cardinality are in red, and those for both are in green. In our protocols, we consider
the data with variable bitlength. When bitlength (o) is not specified, the protocols are independent of the bitlength.

n 28 212 216 220 ‘ 28 212 216 220 ‘ 28 212 216 220
PSI-CA LAN WAN Total Comm (MB)
Cristefaro et al [8] 0.89 144 230 3677 | - - - - 0.16 2.5 40 640
Davidson et al [11] 11.8 176 2837 - - - - - 2.83 453 724 -
Circuit + 2D cuckoo hashing [35]

Iterative Separate PSI-CA (o = 32) - 243 113 122 - 11.2 575 548 - 72.3  826.1 9971
Iterative Combine PSI-CA (o = 32) - 222 9.08 86.6 - 10.1 453 390 - 52.7 639 6951
Circuit-based PSI-CA [34]

No-Stash PSI-CA - 1.20 849 121 - 591 221 262 - 9 149 2540
3PC Merge-Compare-Add [1]

o =32 0.63 1.13 445 356 | 385 499 746 234 | 046 997 201 3891
o =064 1.33 215 643 702 | 72.6 92.8 140 487 | 0.93 19.9 402 7782
o =80 1.65 274 786 912 |86.5 116 162 602 | 1.16 249 503 9726
(Our) Polynomial PSI-CA

|PSI| ~0 0.04 041 6.9 138 04 038 8.0 143 | 0.03 0.4 6.3 100
|PSI| = 0.25n 0.04 045 79 162 04 08 8.9 166 | 0.03 0.4 6.3 100
|PSI| = 0.50n 0.04 047 84 173 04 09 94 176 | 0.03 0.4 6.3 100
|PSI| = 0.75n 0.04 049 8.8 182 04 09 99 186 | 0.03 0.4 6.3 100
|PSI| ~n 0.04 050 8.0 162 04 09 94 165 | 0.03 0.4 6.3 100

PSI-CA and f(PSI)
(Our) Circuit PSI-CA /f(PSI)

|PSI| =~ 0 0.20 0.37 2.6 19.4 | 275 283 347 110 | 048 7.66 123 1962
|PSI| = 0.25n 021 034 20 15.8 | 269 271 333 934 | 038 6.028 96 1540
|PSI| = 0.50n 020 030 1.6 119 | 26.6 27.3 30.7 76.8 | 0.27 4.37 70 1119
|PSI| = 0.75n 0.22 026 1.3 8.00 |264 279 29.8 615 |0.17 2.72 44 698
|PSI| ~n 020 024 0.8 3.61 | 2569 26.7 294 435 | 0.07 1.08 17 276
(Our) Hybrid PSI-CA /f(PSI)

|PSI| ~ 0 0.04 037 652 130 | 1.00 1.7 102 146 | 0.08 1.31 21 336
|PSI| = 0.25n 0.03 034 584 117 | 1.02 1.7 9.5 133 | 0.08 1.29 20.7 331
|PSI| = 0.50n 0.03 032 558 111 | 1.02 1.65 9.3 127 | 0.08 1.27 20.4 326
|PSI| = 0.75n 0.03 0.29 4.88 989 | 1.02 1.68 8.5 114 | 0.08 1.25 20.1 321
|PSI| ~n 0.02 026 350 679 |1.02 163 7.4 91.8 | 0.07 1.08 17 276
(Our) f(PSI) on indices 0.58 251 23 290 41 50 151 2974 | 8.90 142 2270 36327
f(PSI)

3PC Merge-Compare-Shuffle [1]

o =32 0.32 077 477 657 39 50 82 404 0.9 19 391 7596
o =064 0.73 135 114 132 Tt 100 144 872 1.8 38 782 15196
o =380 0.88 1.63 13.7 159 91 124 180 1303 | 2.2 48 975 18989
2PC Merge-Compare-Shuffle [23]

o =32 1.04 225 86.0 - 1.28 243 286 - 7.5 166 14040 -
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Table 2: Time (in seconds) taken for shuffling the indices and for the whole circuit PSI-CA /f(PSI). The time taken
to shuffle data depends only on the input length. We show results for the case |PSI| = 0.5n. Runtime of circuit
PSI-CA/{(PSI) for different intersection size can be found in Table 1.

n 28 212 216 220
LAN Shuffle 0.004 0.022 0.21 2.34
Circuit f(PSI) | 0.20 0.30 1.6 11.9

Shuffle 0.32 0.44 1.00 8.61

WAN Circuit f(PSI) | 26.6 273 30.7 76.8

Table 3: Experiments with payload in LAN setting: runtime in seconds, length of the indices ¢ = 80, number of
items n = 65536, |PSI| = 0.5n

payload length 0 80 160 240 320 400 480 560 640 720 800

3PC MCS [23] 13.7 23.0 344 457 545 675 78.0 872 99.5 108 121

Our Circuit f(PSI) 1.60 1.78 1.98 221 237 256 274 292 3.14 331 3.56

Table 4: Experiments with payload: communication cost in megabytes, length of the indices ¢ = 80, number of
items n = 65536, |PSI| = 0.5n

payload length 0 80 160 240 320 400 480 560 640 720 800

3PC MCS [23] 975 1950 2925 3900 4875 5850 6825 7800 8775 9750 10725

Our Circuit f(PSI) 70 83 97 110 124 137 151 164 178 191 205

6.1 Computing functions of the intersection
6.1.1 Computing on the payloads

Both of our protocols that compute f(PSI) on payloads (circuit/hybrid f(PSI)) are strictly better than the generic
protocols in every setting that we consider: varying input length, network configuration (LAN, WAN), and measuring
runtime or communication cost. For the case of empty payload, the results are shown in Table 1. Consider the case
that the indices have length of 80 bits (or they have variable length). For input sets of size 22° items, circuit f(psi)
is 8X-44X faster than the generic three-party merge-compare-shuffle in LAN, about 12X-30X in WAN, and it uses
9X-68X less bandwidth. For hybrid f(PSI), it is 9X-14X faster in WAN, and uses 56X-68X less bandwidth. The two
party garbled circuit implementation of the generic protocol is strictly worse than the three party protocol, thus,
we also outperform [32].

When there is an attached payload, the gap between our protocols and the generic ones is even larger. The
only cost added to our f(PSI) protocols is the cost to shuffle the payloads together with the indices during the
oblivious shuffling step. For our protocols, the shuffling takes very little time compared with the circuit execution
step (as shown in Table 2), thus the extra overhead is relatively cheap. However, this is not the case for the
generic merge-compare-shuffle circuit. The size and depth of the circuit increases super-linearly with respect to
the total length of the indices and the payloads. If the payload length is equal to the indices’ length, the runtime
and communication cost will increase more than twice. In Table 3 and Table 4, we show how payloads of different
length affect the performance of our circuit f(PSI) and that of the generic merge-compare-shuffle protocol in LAN.
Without the payload, our protocol is just 8X faster and uses 14X less bandwidth. However, when the payload’s
length is 800 bits, ours is 34X faster and uses 52X less bandwidth.

6.1.2 Computing on the indices

As discussed in Section 5, our f(PSI) on indices does not perform very well against the generic protocol when the
payload is small. For example, when input sets are of size 65536, there is no payload, and indices are 80 bits, our
protocol is about 2X slower in LAN. This is due to the fact that the players have to securely evaluate the PRP
on their indices instead of each computing them locally. However, when the payload is larger than 162 bits, our
protocol is the faster one. For the input sets of size 65536, indices of length 80, and the payload length of 800, it
takes our protocol 25 seconds to finish, which is 5X faster than the generic protocol. At the same time, it uses 4X
less bandwidth.
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Table 5: Runtime in seconds in LAN/WAN setting and communication cost in megabytes. In [38], the communi-
cation cost does not include the cost to perform base OT. When bitlength (o) is not specified, the protocols are
independent of the bitlength.

n 28 212 216 220 ‘ 28 212 216 220 ‘ 28 212 216 220
PSI LAN WAN Total Comm (MB)
Kamara et al [27]

|PSI| ~0 0.005 0.05 0.6 8.74 | 0.20 0.68 1.77 15.3 | 0.07 1.0 14 192
|PSI| = 0.25n 0.004 0.05 0.6 8.36 | 0.20 0.75 1.85 14.7 | 0.08 1.2 16 216
|PSI| = 0.50n 0.005 0.06 0.6 840 |0.26 0.81 1.84 15.8 | 0.09 1.3 18 240
|[PSI| = 0.75n 0.005 0.06 0.6 837|026 081 190 16.4 | 0.11 1.5 20 264
|[PSI| =~ n 0.005 0.07 0.6 830 | 0.26 0.81 2.01 16.5 | 0.12 1.6 22 288
Rindal et al [38]*

EC-ROM 0.13 0.19 094 126 | 0.67 1.5 16 255 | 0.29 4.8 79 1322
DE-ROM 0.13 023 1.3 18 0.9 1.2 6.3 106 | 0.25 3.5 61 1092
SM, o = 32 0.15 048 3.5 56 1.3 8 78 1322 | 2.3 40 451 7708
SM, 0 =64 0.19 0.84 8.0 134 1.9 16.8 226 3782 | 5.3 92 1317 22183
Our (Circuit PSI)

|PSI| ~ 0 0.21 037 22 194 | 264 275 363 113 | 048 7.66 123 1962
|PSI| = 0.25n 022 034 1.6 157 | 276 284 339 948 | 0.38 6.04 97 1546
|PSI| = 0.50n 0.21 0.31 1.3 11.8 | 2v.5 27.0 321 831 | 028 441 70.6 1129
|PSI| = 0.75n 0.20 027 09 797 | 283 27.7 315 639 | 017 278 445 713
|PSI| ~n 0.20 0.23 0.5 3.63 | 26.1 26.7 291 444 | 0.07 1.16 18.5 296

6.2 PSI Cardinality

We compare the performance of our protocols with the generic merge-compare-add protocol implemented by [1].
Beside that, we also compare them with other customized PSI cardinality protocols in two party setting such as [8],
[11], [35]. Cristofaro et al. [8] did not provide experiment results in their paper, however, we found the experiment
results in the LAN setting for their protocol in [13]. The execution time and communication cost of PSI cardinality
protocols are shown in Table 1.

In terms of communication cost, polynomial PSI-CA requires the least bandwidth while hybrid PSI-CA and
circuit PSI-CA needs 3X and 3X-20X more bandwidth respectively depending on the size of the intersection. The
generic merge-compare-add protocol needs 97X more bandwidth (for the case o = 80, while [8] and [11] requires
6.4X and at least 100X more communication respectively).

In the LAN setting, hybrid and polynomial PSI-CA is faster when the input length is small (2%), while circuit-
base PSI-CA is faster when the input size is large (28,216,22%). When the input size is small, round complexity
plays a more important role in the total runtime, even in the LAN setting. Polynomial and hybrid PSI-CA have
only a few rounds while circuit PSI-CA has a few hundred rounds. When o = 80 and input length is 22°, our
circuit PSI-CA is 4.7X-25X faster than the generic merge-compare-add protocol, 190X-1018X faster than [8], and
6X-33X faster than [34]. For [35], we only have the results for o = 32 bits, however, it is still slower than our
circuit PSI-CA 4.4X-24X.

In the WAN setting, the round complexity is an important factor. For circuit PSI-CA, the network delay
contributes to around 25 seconds in the total runtime. With the least bandwidth required, polynomial PSI-CA
perform the best for input size n = 28,212,216, When the input size is large n = 220, circuit PSI-CA is faster.
When compared with the generic protocol for input length of 220 and o = 80, circuit PSI-CA is 5.5X-14X faster,
and requires 5X-35X less bandwidth.

6.3 When f(PSI) computes the PSI

Our protocols are designed to focus on f(PSI) and PSI cardinality, however, as PSI is an important application, we
ran experiments for f(PSI) for the specific case that f(PSI) is PSI and compare our results against other state-of-
the-art PSI protocols in two/three-party setting such as [38] and [27] to complete the picture. We can obtain PSI
with any of our PSI-CA/f(PSI) protocols. The only extra thing that needs to be done is to have the third party to
send the intersection to the other two parties, and they verify that they receive the same set and that set is a subset
of theirs. The results in Table 5 shows that our PSI results are quite competitive, especially when the intersection
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size is large. When the input length is large (2!6,22%), our PSI is similar to [38] in Random Oracle model, and
7X-37X faster in standard model (for ¢ = 64). In some cases, we are even faster than [27] (input length 22° and
the intersection size is at least 3/4 of the input length).
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Assumed Ideal Functionalities

FUNCTIONALITY Frana - Generating Random Replicated Arithmetic Shares

Let P; be the malicious adversary. Upon receiving r; from P;, the ideal functionality Frana chooses a random r € F'
and samples 741,72 such that » = r; + rip1 + rit2. Frana gives {rj,rjy1} to P;.

Figure 13: Generating shares of a random field element

FUNCTIONALITY Fcoin - Generating Random Value

The ideal functionality Feoin chooses a random r € F' then gives r to all the parties.

B

Figure 14: Sample a random field element

Implementation details

B.1 Addition/Subtraction/Comparison Circuits

There are multiple ways to implement the addition/subtraction circuits, there are trade-offs between them in terms
of round complexity, runtime, and communication cost. For example, the simple ripple carry adder has O(k)
AND gates and O(k) rounds while a parallel prefix adder has O(klogk) AND gates and O(logk) rounds. In

our

implementation, we adopted the linear round addition and subtraction circuits (ripple carry adder and ripple
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FUNCTIONALITY Fmuit - Secure Mult. Up To Additive Attack

Input: Parties have replicated arithmetic shares of x,y. Let P; be the malicious adversary. P; specifies one of his
output shares, z;.

1. Upon receiving shares from the honest parties, the ideal functionality F.¢ computes x,y and [sc];4 =
(x5, Tix1), [Y]2 = (yi,yig1). Let [¢']8 = (@}, i), W14 = (v, Yyi+1) be the shares submitted by the adversary.
The ideal functionality computes d = (x;y; + TiYi+1 + Tit1¥s) — (Tiy; + Tiyir1 + Tip1Yi)

2. Fumue hands [z], [y]#, and d to the adversary/simulator S.

3. The functionality Fmuit computes z = zy + d and samples z;41 uniformly at random, then it defines z;42 =
z— (zi + zit1).

4. The ideal functionality Fmus hands each party P; its share [2]# = {z;, 211}

Figure 15: Multiplication up to an additive attack

FUNCTIONALITY Fcheckzero - Checking equality to O

Input: Parties hold replicated shares [z]
Functionality: Upon receiving the shares from the parties, the functionality reconstruct x. Then:

e If z = 0, the functionality sends abort = 0 to the parties.

e If z # 0, with probability ‘—l%ﬂl the functionality sends abort = 0 to the parties, and with probability 1 — ﬁ it
sends abort = 1 to the parties.

Figure 16: Checking Equality to 0.

FUNCTIONALITY Finput - Sharing of Inputs

Let P; be the corrupted party.

1. Functionality Finput .receives inputs vi, ..., vm € F from the parties. For every i = 1,..., M, Finput also receives
from S the shares v] of the corrupted parties for the it" input.
J vj+1 ,Uj+2

2. For every i = 1,..., M, Finput computes all shares (v],v] " ,v] ") such that vf’l is sampled uniformly at

random and v; = v] + vf-“ + vg+2.
For every ¢ = 1,...,n, Finpus sends P; its output shares [Ui}jl = {v]

i7vg+1}'

Figure 17: Sharing inputs
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borrow subtractor) due to their simplicity compared to parallel prefix adders/subtractors. Due to the high number
of rounds, the protocols that use these circuits suffer due to network delay when operating in the WAN setting.
When the input size is small, the network delay is the main contributor to the total runtime.

For the comparison circuit (z > y), we adopt the approach used in [30]. Even though there exist O(log k) and
O(1) round circuits [17], we decided to implement a linear round comparison circuit due to its simplicity. The
inputs to the circuit are [2]® = [xp_1]P]|...||[r0]® and [y]® = [yr_1]P]||...||[vo]B. The circuit is described as the
following recursive relation: to = 0, t;11 = t; © ((t; ® x;).(t; © y;)). The output of the circuit is [t;]Z. If x ; vy,
tr = 1, otherwise, t; = 0.

B.2 Approximate x mod p circuit

As previously discussed in Section A, when converting [z]* to [x]P, we need to compute [x mod p]® where = €
[0,(3p — 3)]. This can be done by executing the circuit « < z — (x > p).p twice. However, it can be more
efficient with a circuit that computes an approximation of x mod p. Let k be the bitlength of p, x can be written
as T = Tpy1TpTr_1...Tg. As x € [0,(3p — 3)], both zp11 and xp cannot be 1, otherwise x > 3p. Thus, we
can have a faster way to compute x mod p: © = x — (2p.241) @ (p.xr). This approach, however, would fail if
%. To make this probability small, we
2773,

Th_1...79 € [p,2¥ — 1]. This happens with the probability of at most
pick p such that 2¥ — p is small. For example, k = 80, p = 280 — 65, the failure probability is at most

B.3 Field implementation based on built-in C/C++ 128-bit integer type

Our protocols operate on a field of size of at least 80 bits. NTL is a natural choice for the implementation, however,
NTL is quite slow. In our project, we implemented the field using built-in 128-bit unsigned integer. Our experiments
showed that our field multiplication operation is about 15X faster than that of NTL when the field size is less than
85 bits. Our circuit/hybrid PSI and PSI cardinality protocols used this implementation.

Assume that we are working on the prime field Z, where p = 22k _ . ris chosen to be small and 3k < 127.
For a concrete example, let k = 40,7 = 65, thus p = 280 — 65. Let « = 2Fx9 + 21,y = 2Fys + 3. We perform field
operations as below:

e Addition(x, y): z < x4y mod p
e Subtraction(x, y): z+ (p+z —y) mod p

e Multiplication(x, y): z = (2825 + 21)(2¥y2 + v1) mod p = 2%kwoys + 2F(zoys + 2192) + T1y1 mod p =
rrays + 2% (z2y1 + 21y2) + x1y1 mod p

e Fast modulo: x mod p

Loz r(z>2k) +z& (22 - 1)
2. while(z > p) x + (z —p)

B.4 Parallelization with multi-threading

We did not use parallelization in our implementation, even though the protocols are highly parallelizable. For
polynomial evaluation and interpolation, without multi-threading, the tree has to be built to the top level. However,
with multi-threading, we can divide the input into 2! groups, then evaluate each group with a thread. For the
interpolation, the step to build and evaluate the tree can be done the same way. When we reconstruct the polynomial,
the parallelization can be applied till the t** layer away from the root of the tree. For circuit execution, gates in
the same layer can be partitioned into groups so that each group can be executed independently by a thread.

B.5 Fast polynomial evaluation/interpolation over n arbitrary points

We implemented the O(nlog®n) algorithm [3] to evaluate and interpolate a polynomial over n arbitrary points
(Algorithm 1, 2, 3). Each point is an element of a prime field F,, where p is large. In our implementation, n is not
required to be a power of two, and the field can have arbitrary size. These algorithms were implemented with NTL
library.
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Algorithm 1 BuildTree

Input: X = {zg,...,Tpn_1}

Output: Binary tree T
1: if n == 1 then T.val = (z — x9)
2: else
3: T left < BuildTree({zo, ..., 7n/2—1})
4: T.right < BuildTree({z; /2, ..., Zn—_1})
5 T.val < T.left*T.right

Algorithm 2 Evaluation

Input: T < BuildTree(zo, ..., Tn_1), p(x) = ag + a1 + ... + ap_12" !
Output: {p(xo),...,p(xn-1)}

1: if (deg(T.val) == 1) then p(zg) + rem(p(x), T.val).

2: else

3: {p(z0), ..., p(xr/2-1)} + Eval(T left, rem(p(x), T.val)).
4 {p(xn/2)s s P(Tn_1)} + Eval(T.right, rem(p(x), T.val)).

Algorithm 3 Interpolation

Input: T - BuildTree(xo, ..., xn_1), f(z) < (T.val)’, {p(z0), ..., p(xn_1)}
Output: p(x) = ag + a1 + ... + ap_12" !
if (deg(T.val) == 1) then

y + rem(f(x), T.val)

T.p + (p(zo) ™" *y)

Interp(T.right, rem(f(x), T.val), {p(z14n/2), -, P(Zn-1)})
T.p < T.left.val*T.right.p + T.right.val*T.left.p

1:
2
3
4
5: Interp(T.left, rem(f(x), T.val), {p(xo), ..., p(Tpn/2)})
6
7
8: Return T.p
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