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Abstract. In this work, we formulate and investigate a pragmatic question
related to practical side-channel attacks complemented with key enumera-
tion. In a real attack scenario, after an attacker has extracted side-channel
information, it is possible that despite the entropy of the key has been
significantly reduced, she cannot yet achieve a direct key recovery. If the
correct key lies within a sufficiently small set of most probable keys, it can
then be recovered with a plaintext and the corresponding ciphertext, by
performing enumeration. Our proposal relates to the following question:
how does an attacker know when to stop acquiring side-channel observa-
tions and when to start enumerating with a given computational effort?
Since key enumeration is an expensive (i.e. time-consuming) task, this is an
important question from an adversarial viewpoint. To answer this question,
we present an efficient (heuristic) way to perform key-less rank estimation,
based on simple entropy estimations using histograms.
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1 Introduction

Key enumeration and key rank estimation are important parts of the security eval-
uation of cryptographic implementations. These methods allow post-processing the
side-channel attack outcomes and determine the computational security of an im-
plementation with respect to a full key recovery. Key enumeration is an adversarial
tool that allows testing key candidates without the knowledge of the key by list-
ing the key candidates starting with the most likely one according to the attack
results. For example, Veyrat-Charvillon et al. presented a deterministic algorithm
for key enumeration [13] that allows the optimal enumeration of full keys by de-
creasing order of probabilities, by reformulating the key enumeration problem as a
geometric problem. Ye et al. proposed a so-called key space finding algorithm [15],
that returns the enumeration workload for a given success probability, by consid-
ering the number of optimal guesses for each subkey. Bogdanov et al. proposed a
score-based key enumeration algorithm [2] that reduces the high computational and
memory complexity of previous proposals. Martin et al. provided a new method [9]
by casting the key enumeration as an integer knapsack problem.

On the other hand, rank estimation is a part of the side-channel evaluator’s tool
set: given lists of discrete probability distributions for independent parts of the key



and the correct key, a key rank estimation algorithm provides tight bounds for
the position of the correct key among all possible ones (i.e. the number of guesses
required to find the key following an optimal enumeration like above). In 2013,
Veyrat-Charvillon et al. showed [14] that in the context of security evaluations
(for which the key is usually known), it is possible to estimate the rank of a key
beyond the evaluator’s practical enumeration capabilities. Bernstein, Lange, and
van Vredendaal improved this rank estimation proposals [1] and introduced a new
method using polynomial multiplication to calculate lower and upper bounds for
the ranks of all keys, by re-writing the problem of counting probabilities larger than
the key’s probability as finding the number of terms in a generalized polynomial
satisfying a specific condition. In parallel, Glowacz et al. proposed a new tool
for rank estimation [6] that is conceptually simple and very efficient, based on
histogram convolutions, which was later extended to key enumeration by Poussier,
Standaert, and Grosso [10]. At CHES 2017, a different and faster approach [5] was
finally proposed by Choudary and Popescu. They suggested to bound the guessing
entropy with information theoretic measures and inequalities, that do not require
the knowledge of the correct key, estimated across multiple side-channel attacks.

In this paper, we tackle a different question than key enumeration or rank
estimation, which lies somewhere in between. In a realistic attack scenario, after an
adversary has performed a divide-and-conquer side-channel information extraction
using a set of N observations, she obtains a vector of probabilities or scores for each
subkey. The goal of the adversary is to perform a full key recovery. In this context,
if all the subkeys have not been fully recovered immediately from the information
extracted, the natural next step is key enumeration, up to a certain limit defined
by her computational capabilities. Depending on the attacks, the cryptographic
operation(s) targeted, and the size of the key, enumeration can become the most
time- and resource-consuming step. Hence, it is very useful (for an adversary)
to efficiently estimate the key rank, and therefore to know whether it is worth
to start enumerating the key candidates or if the collection of more side-channel
observations is needed. We believe that this is an important problem from an
adversarial point-of-view, that has not yet been investigated.

We show in this article a simple solution for this purpose and propose a key-less
heuristic (i.e. that doesn’t require the knowledge of the key) to efficiently approx-
imate the rank of a key given the result of a side-channel attack. Our solution is
based on the key rank estimation method from Glowacz et al. [6] using histograms,
which we combine with information theoretic metrics to predict the rank of the full
key from one single attack. In particular, it differs from the solution of Choudary
and Popescu [5] in the sense that it allows estimating the key rank of a single
attack (rather than the estimation of the average key rank). Nonetheless, we com-
pare an adaptation of their solution to this single attack setting with our method
in Section 6.

The rest of the paper is organized as follows. First, Section 2 describes more
precisely the problem under investigation. Secondly, Section 3 introduces the re-
quired background. Then, Section 4 discusses our proposed method to estimate
the rank without the knowledge of the key from an attack perspective. Section 5
suggests an adaptation of the CHES 2017 proposal for rank estimation to the single-
attack/attacker scenario. The results of the different methods are further shown in



Section 6. We additionally discuss the usability and some limitations of our method
in 7. We finally conclude in Section 8.

2 Problem statement

Key enumeration algorithms can offer a trade-off between the required number of
side-channel observations and the computational power of the adversary. That is,
the use of such algorithms allows recovering the full key with fewer traces, often
referred to as the data complexity of a side-channel attack, at the cost of compu-
tational /time complexity. However, in practice, it is not trivial for an adversary
to know when to start the enumeration. Our goal is to tackle this problem by
answering the following question: Can the attacker infer if more side-channel mea-
surements are required or if she expects a successful key recovery after enumeration,
given the current attack outcome?

To highlight the importance of this question, we picture the strategy that an
adversary follows to recover the full key. When performing a side-channel attack it
is common to follow a divide-and-conquer strategy, in which parts of the key are
targeted and possibly recovered independently. For the rest of this paper, we use the
same notations as in [6]. The target of a side-channel attack is an n-bit key k € K,
divided into N, = 7 parts of b bits, called subkeys and denoted as k;, for 7 in [1 :
N,|. A side-channel attack makes use of a set of ¢ inputs A and the corresponding
set of ¢ leakages L, (for example when targeting the AES S-box output, the attacker
observes, given an input xf (1 < j < q), the leakage lg of S(:EZ @ k;)). After
the attack, the adversary obtains N, lists of probabilities Pr[k}|X;, £,] where k}
refers to a subkey possibility out of the 2° candidates. Attacks using Gaussian
templates [4] or a linear-regression model [11] output probabilities, but for other
distinguishers such as DPA [7] and CPA [3], a Bayesian extension is possible [13].

Let’s assume that the adversary is able to perform key enumeration with respect
to some computational effort e (e.g. 1 < e < 2°0). A first attack strategy is shown
in Algorithm 1. In that case, the attacker first collects a set of measurements,
performs the attack, enumerates up to the first e most probable key candidates or
until the correct key has been recovered. If the key has not been recovered, she
then collects new side-channel observations and repeats the process.

Algorithm 1 Greedy attacker’s strategy.

Input. Enumeration effort e.
1: Collect a set of side-channel measurements.
Update the attack IV, probability lists P; for each subkey k;.
Enumerate up to the first e key candidates or until the correct key k is found.
if k£ not found then
Collect new side-channel measurements and go to step 2.
end if

The greedy attacker strategy has one main drawback. Indeed, the attacker does
not know if the key is reachable via enumeration after step 2. That is, she has no



way to know how many times she has to loop over steps 2 to 6. More specifically, if
(e.g.) w repetitions of side-channel measurements are required for the attack, the
adversary spends an effort of w X e in enumeration. As the time complexity of such
a method is high, it mitigates the original goal of enumeration, which is to trade a
lower measurement complexity for a higher computational power.

The aforementioned issue could be avoided if the adversary could assess if the
key is reachable with an enumeration effort at most e, using the currently available
measurements. Following this idea, we now assume that the attacker is provided
with a tool that, from the probability lists P; and without the knowledge of the
actual key, returns an approximate R of the actual rank R. Using this tool, a more
efficient attack strategy is shown in Algorithm 2. With this method, enumeration
is executed only if the approximated rank R is found to be within the enumeration
effort e. If R is close enough to R, this method is obviously more optimal than the
previous one and achieves the desired trade-off between side-channel observations
and computational power.

Algorithm 2 Efficient attacker’s strategy.
Input. Enumeration effort e, and a key-less rank estimation.

1: Collect a set of side-channel measurements.

2: Update the attack N, probability lists P; for each subkey k;.

3: From P; lists, compute an estimation R of the rank R.

4: if R < e then

5: Enumerate up to the first e key candidates or until the correct key k is found.
6: if k not found then

T Collect new side-channel measurements and go to step 2.

8: end if

9: else

10: Collect new side-channel measurements and go to step 2.

11: end if

It is worth mentioning that, as a side advantage, the existence of such a tool
would also give information to the adversary on whether or not the attack will
succeed eventually. Indeed, observing the trend of R either gives some confidence
in the efficiency of the attack if it decreases steadily as the number of measurements
increases, or shows that the attack has little chance to eventually recover the key
(or a significant part of it) otherwise.

3 Background

In this section, we first define the metrics we investigate: the entropy, the rank
and the guessing entropy. For the work described in this paper, we make use of
the Glowacz et al. key rank estimation method [6], which we describe using the
notations introduced in the previous section.



3.1 Entropy, rank and guessing entropy

Entropy. The Shannon entropy H of a discrete random variable X € X following
a probability distribution Pr is defined as:

HX)=-— Z Pr(z) - log Pr(z).

reX

Rank. The rank R, after a side-channel attack using a set of ¢ inputs X and a
corresponding set of ¢ leakages L, provides the position of the correct key k in the
sorted vector of |[K| = 2" key candidate probabilities p = [p1, p2, ..., p|x|], i-e:

R(k) =i if Pr[k|X,, L] = p;.

Guessing entropy. The guessing entropy GE [12] measures the average number
of key candidates to test after a side-channel attack. It corresponds to the average
rank and is defined as:

3.2 Key rank estimation

Given a set of discrete probability distributions for independent parts of a key and
a correct key k, a rank estimation algorithm provides tight bounds for the rank
among the set of all possible candidates. Among the different proposals for key
rank estimation, we use the histogram-based approach of Glowacz et al. [6]. This
algorithm provides efficiently tight bounds for the rank of the key and gives the
probability distribution of the full key expressed as a histogram. Given the N,
lists of the log probabilities of the subkeys LP; = log(Pr[k}|X,, £,]), the method
of Glowacz et al. starts by constructing the corresponding N, histograms H; =
hist(LP;, bins) where bins is a set of Ny, equally-sized bins, used for all the
histograms. The convolution of two histograms is denoted as conv(H;, H;). Knowing

NP
the key k, its log probability is log(Pr[k|X,, L,]) = > log(Pr[k;|X,, £4]). The

i=1
following steps are described by Algorithm 3. In a nutshell, the rank estimation
algorithm provides a very efficient way to estimate and bound the number of key
candidates with a probability higher than k.



Algorithm 3 Rank estimation.

Input: The key log probability log(Pr[k| Xy, L£4]) and the histograms H;.
Output: An approximation of k’s rank.

initialization: Hcuyy = Hi;
histograms convolution:
fori=2:N,

chrr = ConV(chrn Hz)y
end
rank estimation:

Np-Npin—(Np—1)
estimated_rank ~ Z Heure (7).
i=bin(log(Pr[k|Xq,Lq]))

The estimated rank is then bounded by tracking the quantization error of the
histograms as:

Np-Niin—(Np—1)
rank lower bound = Z Hey (3),
i=bin(log(Pr[k|Xq,Lq]))+Np

and:
NpNpin—(Np—1)

rank upper bound = Z Heur: (4),
i=bin(log(Pr[k|Xq,Lq]))—Np

By increasing the number of bins, the tightness of the bounds can be arbitrarily
reduced. In the rest of this paper, and for the practical experiments, we use a
number of bins large enough such that the tightness is below 1 bit. As this precision
is enough for our experiments, we consider the estimated rank as the “true” rank
and ignore the bounds. We emphasize that the histogram convolutions do not
require the knowledge of the key, and only the rank estimation itself does. For the
rest of this paper, we use the final histogram constructed, which corresponds to
the full key distribution.

4 Using the entropy to approximate the rank

The entropy of the key candidate probabilities produced by an attack intuitively
brings some information on the outcome of the attack, since it measures the un-
certainty on the key, which amounts to the number of bits of information left to
recover on the key. For instance, an attack ran on data that is uncorrelated with
the key would tend to attribute average probabilities to most candidates, yielding
a high entropy (n bits in the extreme case where all candidates have a probability
of 27" while the average rank is 2~!). On the other hand, an attack performing
extremely well would give a high probability to the correct key candidate and very
low ones to all other candidates. In that case, the entropy tends to 0 (like the rank)



as the probability of the wrong candidates also tends to 0. This intuition that in
realistic cases entropy and rank are linked — although it’s a loose link, as one can
show that entropy and rank can diverge in specific cases — leads us to consider the
use of the entropy to estimate the remaining enumeration effort of an attack.

In the following, we present how the entropy of the full key can be estimated
using the histogram obtained with the convolution-based method from Glowacz
et al. Although the histogram is only a compressed representation of the full key
candidates’ probability distribution, it still is an excellent tool to analyze it. To es-
timate the entropy, we require a proper probability distribution that sums up to 1.
Thus, it is preferred to normalize the full key candidates’ probability distribution.
This is done by ensuring that the sum of the exponential of log probabilities given
by the bins of all keys in all histograms sum to 1. Furthermore, it is recommended
to normalize the distribution of the subkeys, prior to the histogram convolution,
to avoid that the estimated metrics are weighted by the distributions of the sub-
keys. The entropy of the full key after a side-channel attack is estimated using the
corresponding histogram (H,bin) as:

H=— Y Pr(k*)-logPr(k*) = Y exp(bin(k*)) - bin(k*)
k*elC k*ek
Np-Npin—(Np—1)
~ > H (i) - exp(bin()) - bin(i)
i=1

We denote by H the estimation of the entropy using the histogram. Note that
bounds on this estimation can be computed. The corresponding formulas are given
in Appendix A.

5 Adapting the CHES 2017 key-less GE

At CHES 2017, Choudary and Popescu [5] consider a number of information the-
oretic measures and inequalities that are easy and efficient to estimate in order
to bound the guessing entropy of the key. However, in their proposal, they make
a distinction between a key-agnostic guessing entropy and one that requires the
knowledge of the key!'. This key-less guessing entropy, that we denote by GEyy,
is computed given the sorted vector of the || = 2™ key candidate probabilities
P = [p1, P2, ..., p|k|] obtained after a side-channel attack as:

i=1

The GEy; is impossible to compute since the sum is over all full key candidates. For
that purpose Choudary and Popescu use common measures and bounds described

! The framework [5] is actually misleading in this respect as it suggests that the GE is
the actual key rank while it is the average key rank. The keyed and key-less versions
are equivalent in case the templates used in the key-less estimation are perfect so the
difference between both definitions only lies in the knowledge of the key.



in information theory literature. Since this work provides a key-less rank estimation
tool, a natural alternative to our previous proposal is to try to adapt it to our
single-attack context. This alternative is again only heuristic since the bounds
are only valid on average [5]. To describe this alternative solution, we use again
the histogram-based PDF estimation provided by the Glowacz et al. Here, GEy;
corresponds to the sum of the position of every key weighted by its probability and
it can be estimated as:

K| Np-Npin—(Np—1)
GEg = ZZ P R Z Z H(j) | - Pr[k"]
i—1 ke K j=bin(k*)

Then, we sum across all histograms and corresponding log probability bins,
yielding the estimation of the key-less guessing entropy GEg;:

~ Np-Npin—(Np—1) [ Np-Npin—(Np—1)
GEp ~ > > H(j) | - exp(bin(i))

i=1 j=i

Again, new bounds on the key-less guessing entropy estimation can be computed
from the histogram approximation, which are given in Appendix A. However, these
bounds are not directly relevant to our work. Precisely, the ones in [6] require the
knowledge of the key (i.e. an evaluation setting) while we aim at key-less rank es-
timation, and the ones in [5] only become tight on average over many experiments
(i.e. also in an evaluation setting) while we aim to estimate the rank of single exper-
iments on-the-fly. For the same reason, bounds on the entropy are also irrelevant
in our adversarial setting. Subsequently, the rest of this paper ignores the bounds
and only focus on the heuristic evaluation of these metrics.

6 Simulated and real experiments

In the following sections, we investigate whether the previous metrics can be used to
approximate the rank of the correct key after a single side-channel attack. In that
purpose, we evaluate two average absolute differences (for multiple side-channel
attacks): the first between the logarithm of the rank and the estimated entropy
H, and the second between the logarithm of the key rank and the logarithm of
GE},. For that purpose, we use both simulated and real experiments. We start by
describing our experimental setups and then show practical results.

6.1 Experimental setups

Simulated leakages: We simulated side-channel leakages of the 16 S-box outputs
of the first round of an unprotected AES. For each byte z; out of the 16, we
model the leakage of x; as HW(xz;) + b, where HW denotes the Hamming weight
function, and b represents an independent noise distributed according to a normal
distribution with mean 0 and standard deviation 10.

Real leakages: We target a custom constant-time C implementation of an unpro-
tected AES with T-tables. The code runs on an ARM Cortex-M3 microcontroller



running at 83 Mhz, mounted on an Arduino Due board. We acquired EM measure-
ments with a Langer near field RF-U 5-2 probe and a Lecroy 610Zi oscilloscope at
a sampling rate of 1GHz. We synchronized the traces at the beginning of the AES
computation using a trigger signal. As for the simulated case, we target the output
of the S-boxes of the first round. For each of the 16 target bytes, we selected the
point of interest that exhibit the highest correlation with the corresponding S-box
output value, using a first set of 10,000 traces with a known key.

We performed a template attack [4] for both simulated and real leakage exper-
iments. For the real experiments, we use a set of 100,000 traces with known key
and plaintext for the template building phase.

6.2 Results

We show here the practical results using the estimation of the entropy H and the
estimation of the key-less guessing entropy GEj; to approximate the rank of the
key R after a side-channel attack. We additionally compare the performance of
both metrics. We recall that we estimate the rank using the histogram method of
Glowacz et al. and that we used a large enough number of bins so that the bounds
are tight enough for us to use the estimated rank and ignore the bounds. In the
following, we refer to the approximation of log(R) using the entropy as the H-based
approximation and the one using the logarithm of the key-less guessing entropy as
the GEj;-based approximation.

As a preliminary experiment, we ran a single attack against both simulated and
real traces. We incremented the number of attack traces until the rank reached one.
The results are depicted in Figure 1. The left (resp. right) part of the figure shows
the results for simulated (resp. real) traces. In each case, the X-axis represents the
number of attack traces, and the Y-axis is used to represent the different metrics
in log, scale. We notice that the entropy-based approximation is closer to the
logarithm of the rank than the one based on the key-less guessing entropy. More
specifically, for the simulated traces the H-based approximation remains within less
than 10 bits of log(R), while the gap with the GEj; goes up to 25 bits. The real
experiments show less optimistic results. Indeed, while H remains mainly within 5
bits of log(R), we can observe a fairly large gap of 30 bits when the rank is around
240, Results are worse for log(GEjy;) with a maximal gap of 50 bits.

The previous experiment showed some results for a single attack and that the
entropy is neither an upper bound or a lower bound on the logarithm of the rank.
While this gives some insight about the interest of the considered metrics, it does
not allow deriving any general conclusion. Next, we examine how the H-based ap-
proximation and the GEj;-based one perform on average over many independent
experiments. For that purpose, we evaluate the average absolute difference in bits,
first between H and log(R), then between log(GEy;) and log(R). This is performed
over 100 independent attacks for the simulated and the real traces. The results on
the simulated traces are shown in Figure 2. The X-axis corresponds to log(R). The
Y-axis on the left (resp. right) part of the figure gives the mean (resp. standard
deviation) of the distance between each measure and the rank. For the left part of
the figure, we additionally plot the maximal distance obtained over the 100 attacks
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Fig. 1. Comparison of log(dEkl), H and log(R) for a single random side-channel attack
on the AES S-box output. Simulated traces (left) and real EM traces (right).

in corresponding dashed curves. We notice that the entropy clearly seems to out-
perform the key-less guessing entropy when estimating the rank for a single attack.
First focusing on the average distance on the left part of the figure, the entropy
stays within less than 10 bits of R. The maximal difference we obtained among the
100 experiments is slightly above 20 bits. However, the mean distance of log(R) to
log(GEy) is in most cases above 10 bits and below 25 bits, with a maximum above
45 bits. Also considering the standard deviations of these distances on the right
part of the figure, it is reasonable to consider that the entropy provides a more
reliable estimation of R than the key-less guessing entropy: since the standard de-
viation of the distance to H is lower than the one to log(GEy;), the first one is less
likely to deviate from its mean value which is below 10 bits.
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Fig. 2. Simulated HW leakages: (Left) The average distance from the rank to both the

H-based approximation and the GEg;-based approximation as function of the logarithm

of the rank and the maximal distance observed in corresponding dashed lines. (Right) the
distances’ standard deviations.

The results for real traces are shown in Figure 3. Again, the X-axis represents
log(R) and the Y-axis on the left (resp. right) part of the figure represents the



mean (resp. standard deviation) of the distances, computed over 100 independent
attacks. The experiments on real traces coincide with the simulated ones. Accord-
ingly, the entropy-based approximation provides a better estimate of log(R) than
the approximation based on the key-less guessing entropy. The average distance
between log(R) and H is below 12 bits while the average distance to log(GEg;) is
always above the average distance to H. The right part of Figure 3 is similar to
the right part of Figure 2, as the standard deviation of the distance to the entropy
is lower than the one to the key-less guessing entropy, confirming that for a real
side-channel attack, H provides a better approximation of log(R) than 10g(G~Ekl).
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Fig. 3. EM traces: (Left) The average distance from the rank to both the H-based ap-
proximation and the GE;-based approximation as function of the logarithm of the rank

and the maximal distance observed in corresponding dashed lines. (Right) the distances’
standard deviations.

We highlight the fact that all predictions have a higher variance/standard de-
viation for middle ranks, which are the most interesting for both evaluators and
attackers, as it is typically the range of ranks where enumeration turns from being
unfeasible to practically feasible. This has been previously observed by Martin et
al. in an evaluation setup [8] with the possibility to perform multiple attacks with
the knowledge of the key. Our results and the ones of Martin et al. show that the
interesting ranks are the hardest to estimate for an evaluator, and especially in the
context of a real attack with the purpose of recovering the key.

Our proposed metric cannot mathematically approximate nor bound the true
rank of the key after a single side-channel attack. However, we experimentally show
that the entropy tends to stay within reasonable limits from the logarithm of the
rank (provided that the attack does not suffer from errors, for e.g. due to a wrong
model assumption). As a result, we believe it can be used in a more efficient strategy
by trading data complexity for computational effort as illustrated by Algorithm 2
by enumerating key candidates up to (or slightly above) 2.



7 Discussion and limitations

Any attempt to predict the rank from one single attack without the knowledge of
the key suffers from a specific caveat. It is possible that the attack is not carried
out correctly and is converging towards a wrong key (due for example to wrong
intermediates, wrong assumptions about the leakage or unknown countermeasures).
The entropy and the key-less guessing entropy would then decrease as the attack
tends towards the wrong key candidate, while the rank of the correct key would not.
This behavior does not only affect the entropy and the key-less guessing entropy
but most probably any metric estimated without the knowledge of the correct key.

Another aspect to consider that affects the considered metrics is the key size.
This can be pictured through a simple example: let’s consider two attacks that both
aim at recovering a bit b whose value is 1, and output two probability distributions
p1 = [Pri[b = 0] = 0,Pr1[b = 1] = 1] and pa = [Pra[b = 0] = 0.45,Pro[b = 1] =
0.55]. Both attacks achieve a rank of one since the correct value of b has the highest
probability. On the other hand, the entropy values are quite different. The entropy
of the first attack is equal to 0, which is equal to the logarithm of the rank. For the
second attack, the entropy of b is higher and equal to 0.99277, albeit the correct
value of b is ranked first. These discrepancies can be observed for small keys, but
vanish for larger key sizes. This illustrates how independent conclusions on subkeys
can be quite misleading when trying to infer conclusions on full key recovery.

To demonstrate this effect, we performed the same experiments as described
in the previous section. We estimated the average distance between log(R) and
the entropy and then between log(R) and the key-less guessing entropy, but across
different key sizes. For each key size, we performed 100 attacks. We normalized the
distance with respect to the size of the key in bytes. Indeed, normalizing makes the
distances comparable for different key sizes, and allows to infer conclusions based
on the distance per byte. As an example, a minor distance for one key byte between
R and its key-less prediction is critical, but not so relevant for the full key. The
results are given in Figure 4, for both the simulated traces on the left and real
traces on the right. The dashed line indicates the maximum values observed. For
the simulated experiments, it was possible to perform experiments on large keys of
up to 64 bytes, and up to the AES-128 key size for the real traces we measured.
We used 400 attack traces for the simulations, leading to a rank of approximately
255 and 70 traces for the real attack to achieve a rank around 230 for a 128-bit
key (with proportional ranks for smaller key sizes). This was chosen to focus on
the interesting ranks and we did not notice any considerable differences for other
ranks, when it comes to the effect of the key size on the distance to log(R) of either
the H-based approximation or the GEj;-based one. As we can see, the normalized
difference indeed decreases when the key size increases, confirming our intuition.
Moreover, the trend starts to settle for both simulated and real traces once realistic
full key sizes are reached. First, for a 1-byte key size, we can observe on average
a two-bit difference between log(R) and H and a lower difference between log(R)
and 1og(dEkl). On the other hand, for a 16-byte key size, the distance between
the rank and the entropy-based prediction drops to around 0.5 bits of error per
byte for both the simulated and the real traces, while the distance between the
rank and GEj,; seems to settle at an average distance of 1.5 bits of error per byte



even for larger key sizes. For the maximal value, we observe the same trend as
previous experiments. The distance to the key-less guessing entropy is higher than
the one to the entropy in most cases. Overall, two conclusions can be drawn from
this experiment. First, it confirms that the entropy-based estimation seems to be
a better tool to approximate the rank than the key-less guessing entropy once real
key sizes are reached. Second, it shows that as expected, it is better to estimate
the security level in an adversarial scenario on the full key than on a small part of
the key, such as a subkey.
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Fig. 4. Average distances between the log of the rank, the entropy and log(GM) as func-

tion of the number of key bytes. Maximal distances observed in corresponding dashed
lines. Simulated traces on the left and real traces on the right.

8 Conclusion

In this paper, we described a heuristic way to infer an approximation of the key
rank for one single attack without the knowledge of the key. This corresponds to
a realistic attack scenario, where the adversary aims at figuring out if the correct
key can be reached through enumeration. Our proposal helps to devise an optimal
attack strategy to trade data complexity for computational effort when possible.
For that purpose, we showed that the remaining entropy of the full key can be esti-
mated using the histogram built with the rank estimation method from Glowacz et
al. without the knowledge of the key. We showed experimentally that the entropy
of the full key distribution after a side-channel attack is close to the logarithm of
the rank on both simulated data and real EM side-channel measurements of an
AES implementation. We compared this entropy-based approximation of the rank,
to a single-attack adaptation of the key-less rank estimation method of Choudary
and Popescu [5]. We additionally discussed factors that may affect the accuracy of
the entropy (and any measure that lacks knowledge of the key or its probability)
as a predictor of the logarithm of the rank. Further research might investigate if
the behavior observed in this paper is common to different side-channel datasets.
Moreover, it would be interesting to investigate if the tool described in this work



can help to identify possible wrong assumptions about the implementation or de-
vice that can possibly hinder the success of the attack. Alternatively, an interesting
direction is to propose a more precise technique or metric to approximate the rank
of the correct key in the single attack scenario.
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A Error bounds on the histogram estimations

The bounds on the estimation of the entropy and the key-less guessing entropy using
the Glowacz et al. full key distribution histogram and based on its quantization
error are given by:

NpNpin—(Np—1)
H_upper_bound = Z H(i).exp(bin(i + Np)).bin(i + Np)

i=1
Np-Npin—(Np—1)
H lower_bound = Z H(%).exp(bin(i — Np)).bin(i — N,)

i=1

Np-Niin—(Np—1) [ Np-Npin—(Np—1)

GEy;_upper_bound = Z Z H(j) | .exp(bin(i + Np))

i=1 j=i—N,

Np-Npin—(Np—1) [ Np-Npin—(Np—1)

GEy;_lower_bound = Z Z H(j) | .exp(bin(i — Np))

i=1 j=i+N,



