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Abstract. In this paper we revisit the modular lattice signature scheme
and its efficient instantiation known as pqNTRUSign. First, we show that
a modular lattice signature scheme can be based on a standard lattice
problem. The fundamental problem that needs to be solved by the signer
or a potential forger is recovering a lattice vector with a restricted norm,
given the least significant bits. We show that this problem is equivalent to
the short integer solution (SIS) problem over the corresponding lattice.
In addition, we show that by replacing the uniform sampling in pgN-
TRUSign with a bimodal Gaussian sampling, we can further reduce the
size of a signature. An important new contribution, enabled by this Gaus-
sian sampling version of pqNTRUSign, is that we can now perform batch
verification of messages signed by the same public key, which allows the
verifier to check approximately 24 signatures in a single verification pro-
cess.

1 Introduction

Organizations and research groups are looking for candidate algorithms to re-
place RSA and ECC based schemes |[CJLT16/NSAINTS| due to the threat of
quantum computers [Sho94|. In 2017, the National Institute of Standards and
Technology announced a call for proposals for candidate quantum-safe algo-
rithms [NIS|. Among all candidates, lattice based solutions seem to be most
promising. This is due to two main reasons. First, lattice problems are conjec-
tured to be quantum resistant. Second, average case lattice problems (like short
integer solution problems and learning with error problems) can be shown to
be as hard as the worst-case lattice problems (like gap shortest vector problems
and shortest independent vector problems).

On the subject of signature schemes, there exist two families of solutions
which are well studied in the literature. The first one, initiated from the cele-
brated rejection sampling methods of [Lyu09], was followed by a sequence of im-
provements and variants [Lyul2lDDLLI3JAABTIDKL™18|. They are the lattice
based analogues of Schnorr signatures that use Fiat-Shamir transformation. The
other family of novel constructions use the GPV framework [GPV08] that follows
a hash-then-sign paradigm. Examples of this construction are [DLPT4/FHK™].

A new family of lattice based signature scheme is pqNTRUSign, which was
originally presented in [HPS™14] as an instantiation of modular lattice signature.



The submitted version [HWZ] to NIST PQC process has a few significant mod-
ifications/improvements over [HPS™14]. In this paper, we give a formal analysis
of those improvements.

Note that by the time of this revision, NIST has announced their second
round of candidate algorithms, and pgNTRUSign is not included in the sec-
ond round, despite the fact that no flaws were identified during the evaluation.
Nonetheless we believe that pgNTRUSign is still an interesting research topic,
with potential use cases that other solutions do not provide.

1.1 Modular lattice signatures

Let us briefly recall the framework of modular lattice signatures. Given a lattice
L with a trapdoor T in the form of a short basis of row vectors; and a message
digest in the form of a vector m whose coefficients are in [0, p), the signature of
a modular signature scheme in [HPS™14] is a lattice vector v such that

1. v=m mod p; and
2. ve L.

This vector can be obtained via the following steps:

1. sample a vector v from L;

2. use T to micro-adjust the vy so that v := vg 4+ aT meets the congruence
condition for some a;

3. use rejection sampling to hide T from v

In principle, the above framework works for generic lattices. In practice, it is
natural to instantiate the scheme with NTRU lattices [HPS98| to get optimized
signatures as was done in BLISS [DDLL13] and DLP [DLPI14]. The structure of
the NTRU lattice provides much flexibility in choosing the parameters, resulting
in an optimized version of the scheme that is a considerable improvement over
one obtained via a generic lattice.

In this paper we revisit the modular lattice signature scheme and its NTRU
instantiation from the following perspectives.

Security proof. In the original modular lattice signature scheme in [HPST14],
the public key security is connected to a unique Shortest non-zero Vector Prob-
lem (uSVP), i.e., recovering T from (a bad basis of) £; while the unforgeability
is based on an approximate Closest Vector Problem (approx-CVP) over the in-
tersection of a lattice and a translation of a lattice, namely, £ N (pZ™ + my).
Although the second problem is conjectured to be hard for this ad hoc lat-
tice, a connection between the first and the second problems is missing. The
scheme, therefore, requires two (seemingly independent) hardness assumptions.
For example, when the scheme is instantiated via an NTRU lattice [HPS™14], it
requires the uSVP assumption for the NTRU lattice and the above approx-CVP
assumption for the intersection of the two lattices. In an earlier version of this
manuscript [HPWZ17] we introduced a new assumption named “learning with



truncation”, and based the unforgeablity of the scheme on this new assump-
tion. In this paper, we are able to give a new reduction from a standard lattice
problem, namely, the Short Integer Solution (SIS) problem, under the classical
Random Oracle Model (ROM). Prior to our work, the pgNTRUSign signature
scheme did not have a formal security proof.

Sampling method. Early lattice based signature schemes, such as GGHSign
[GGHIT] and NTRUSign [HHP 03], leak private key information in a transcript
of message/signature pairs. An attacker can produce a signing key from a long
enough transcript using methods for “learning a parallelepiped" [NRO9JDN12].

In [Lyu09], Lyubashevsky proposed a rejection sampling method to thwart
transcript leakage attacks. Using his technique, signatures are produced accord-
ing to a fixed public distribution (typically either a Gaussian as in [Lyu09] or
a uniform distribution as in [HPS™14]). A transcript reveals only this public
distribution, and contains no information about the particular signing key that
is used to generate the signatures. The sampling method therefore becomes a
core issue in designing signature schemes. For example, replacing a Gaussian
sampler with a bimodal Gaussian sampler [DDLL13)| significantly improves the
performance of a scheme.

Recall that in [HPST14], a signature in this scheme is a lattice vector. Since
the verifier already knows a (bad) basis of the lattice for verification purpose, it
is sufficient to transmit part of the vector v as long as the verifier can complete
the whole vector during the verification phase.

Popular lattice based schemes, such as BLISS [DDLL13] and qTESLA JAAB™],
do not have this property. Signatures in those schemes are vectors close to the
lattice. Hence, when the vectors are compressed, an additional helper needs to
be generated for the verifier to derive the original vector (although this helper
is only a few hundred bits). To be precise, if we parametrize the scheme to be
presented in this paper with the same parameters as in [DDLL13]|, the difference
in the size of a signature is exactly the size of this helper.

This advantage in design did not give a smaller signature size for [HPS™14]
due to the sampling method. For an n-dimensional vector with coefficients in
[—2,2), it requires n[logq] bits for storage. For comparison, a discrete Gaus-
sian vector of the same dimension with a deviation of o ~ /g can be stored
with ~ n(lo% + 2) bits. A natural question is whether one can use (bimodal)
Gaussian sampling [DDLL13] for modular lattice signatures. In this paper, we
give a positive answer to this question.

Remark 1. Although schemes using Gaussian sampling allow smaller signature
sizes, recent development in lattice based signature schemes [DKL™18| shows a
trend of moving back to uniform rejection sampling since uniform sampling is eas-
ier to implement and to ensure constant time. Nevertheless, with pqNTRUSign,
Gaussian sampling enables us to obtain an additional property: signature aggre-
gation. We note that this may make the scheme vulnerable to the attacks that
exploit leakages on Gaussian samplers.



Signature aggregation. Signature aggregation allows one to compress a set of
signatures into a single signature. It is often associated with batch verification,
where verifying this aggregated signature implies verifying the whole set of sig-
natures; verification operations are on the order of a single verification.

Generic aggregation/verification means the verifier is able to verify signatures
signed under different public keys. A weaker notion of same key batch verification,
on the other hand, assumes all signatures are signed under a same key. It is still
a very useful property in many use cases. As an example, for a secure boot
mechanism where the software image is signed, signature aggregation allows one
to sign individual software images individually (and do so component wise rather
than with monolithic updates) while still verifying the entire set of software
images in one pass. This allows for a faster boot.

Our scheme allows for same key batch verification (with fine-tuned parame-
ters). Generally speaking, a signature v for a message digest m is valid so long as
v = m mod p and v € L. Therefore, for a set of signatures {v,}, corresponding
to a set of messages {m;} we have

1. Y v; => m; mod p; and
2. Zw eL.

As such, one can simply check > v; instead of checking each individual v. When
realizing this technique for our proposed scheme, we can use a single ring mul-
tiplication (which is usually the most costly operation in verification) to verify
a batch of signatures. Nevertheless we note that one will still need to perform
multiple hash functions to obtain those message digests. In addition, since the
aggregated signature is a larger vector in the lattice (compared to a single signa-
ture), we will require that the corresponding lattice problem for this aggregated
signature is also hard. We will give more detail in Section [f]

We also note that schemes that realize the Fiat-Shamir heuristic, such as
BLISS |[DDLLI3] and qTESLA JAAB™|, cannot provide this property easily as
they need to perform the ring operations before the hash function.

Security estimations. We also give a rigorous treatment of the proposed pa-
rameters in [HWZ]. We consider best known attacks, including lattice reduc-
tion attacks [CNIIJADPS16], brute force search attacks [HS06], hybrid attacks
[How(7], subfield attacks [ABD16] and [HPS™14].

Paper Organization. In Section [2] we give some background to this work. In
Section [3] we give a modular lattice signature scheme based on the short inte-
ger solution problem. This is followed by a practical instantiation using NTRU
lattices and a bimodal Gaussian in Section 4l Then we explain signature ag-
gregation in more details in Section [5| and present parameters and a security
analysis for our practical instantiation in the Section [f] and [7]



2 Background

2.1 Notations

We use lower case bold letters for vectors, upper case bold letters for matrices. For
a polynomial f(z) = fo+ fix+- -+ fan_12" "1, we denote its vector form by f :=
{fo, f1,--+, fn—1). We sometimes abuse the notation of vector and polynomial
when there is no ambiguity. For a polynomial /vector f, the norms are ||f|| =

Vs f7 and [[flloo = max(fi]).

We often use the polynomial rings R, := Z[z]/F(z) with F(z) = 2™ + 1.
An anti-cyclic rotated matrix of a polynomial f(x) over the ring R, is a matrix
M = (fl, fg, ey fn)T with fz = f(x)xi_l mod F(Jﬁ)

For a real a, we let |a| denote the closest integer less than a. Modular oper-
ations are center lifted, for example a mod ¢ returns an integer within —¢/2 and
q/2. These notations are also extended to vectors and matrices.

2.2 NTRU, SIS and Lattices

A lattice L is a discrete sub-group of R™, or equivalently, the set of all the integer
combinations of d < n linearly independent vectors over R:

EZZZb1+Zb2+"'+Zbd,biGRn.

B = (by,...,by)7 is called a basis of £. Given a lattice £, finding a vector that
is no longer than - A1 (£) is called the approximate shortest vector problem (-
SVP), where A; is the first minima, i.e, the length of the shortest vector, of the
lattice. The Gaussian heuristic says that for random lattices, this first minima
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should be approximately A\; &~ /92 det(£) @, where det(£) and dim denotes
the determinant and dimension of the lattice £ respectively. Given a particular
lattice £, where there exists a unique shortest non-zero vector, finding this vector
is called the unique shortest vector problem.

We view an NTRU lattice as an R, module of rank 2. Let f,g € R, with
small coefficients. Let h = g/f over R,. The NTRU lattice associated with h is
defined as

L:={(s,t) € Ry :t=sh mod g}.

Given h, it is believed to be hard to find f and g. This is known as the NTRU
assumption, and it can be reduced to the unique shortest vector problem for the
NTRU lattice.

We write a vector in the NTRU lattice as v = (s, t), where s and t are each
an element in R,. In addition, we refer to the sub-vector that forms the first
part of this vector as the “s-side" vector, and that which forms the second part
of this vector as the “t-side" vector.

We extend this notion to the short integer solution problem (SIS) when
applicable. Recall that an SIS problem is defined as follows:



Definition 1 (SIS, ., s problem). Given a random matriz A € Z3*™, find
a short non-zero vector v such that vA = 0 mod ¢ with ||v]js < 8.

For a matrix A that is a horizontal concatenation of two matrices, i.e., A =

{ﬁl] , the lattice associated with A is defined as
2

L:={(s,t) : sA; + tAz = 0 mod ¢}.

Finding a short (s,t) in this lattice provides a solution to the SIS problem. It
was shown in [MP13] that solving SIS on average for n = poly(m), ¢ > 8- m°
for some positive 4, is as hard as the shortest independent vector problem with
approximating factor max{1, 38.,/q} - O(B8y/m) where B, is an upper bound
for the infinity norm of v.

The SIS problem has a “dual" version, known as the LWE problem. Informally
speaking, let m,n,q be some positive integers, let x, be an error distribution
parametrized by o, for example, a discrete Gaussian distribution with standard
deviation o, sample uniformly at random A € Z;*™, s € Z;; sample e € x";
compute by = sA + e mod ¢; the decisional LWE assumption states that given
two pairs (A, bg), with by generated as above; and (A, b;), with by chosen from
a uniform distribution, one is not able to distinguish those two pairs.

2.3 Bimodal Gaussian distribution and rejection sampling

An n-dimensional Gaussian distribution with mean v and standard deviation o is
defined by py »(x) == exp(M). When there is no ambiguity, we abbreviate
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this by p,. An n-dimensional discrete Gaussian distribution over Z is defined

by Xo = pp:(Z’fL)), where p,(Z") =3, 7. po(2) is a scaling quantity needed to

make the function into a probability distribution [Lyul2].

Tail cutting: For a discrete Gaussian distribution x7* and a positive 7 > 1,

1 _ 2 m
po(Z™\Tor/mB) < 2p,(Z™) <T exp( h )) :
where B is the centered unit ball [MRO7]. As suggested in [DDLL13|, setting
7 =+ A2In2 for a 1-dimensional Gaussian will ensure all samples are bounded
by 7o with a probability greater than 1 — 27*. Typically, 7 = 13.3 for A = 128
and 7 = 18.8 for A = 256.

Rejection sampling: Let S and c be, respectively, a fix secret matrix and vector,
which consist of small norm elements, and y be a vector sampled from x,.
Consider the distribution of x = y + ¢S, i.e., a Gaussian distribution shifted
by cS. It has been shown in [NROIIDNI2| that each sample x leaks partial
information on S. The method used to seal this leakage is rejection sampling
|[Lyu09]: making the output distribution independent of S by probabilistically
accepting the output according to certain criteria.



As shown in [Lyul2|, if we wish to force the output distribution to be the
same as y, it is sufficient to have

Xo (X)

<M,
XCS,O‘(X)

and this inequality holds with

270 max. ||cS|| + max, ||cS||?
-l ] moe <51

where M is the repetition rate. The constant M determines the rate of rejection,
and the smaller M is, the more efficient the signature generation process is. A
common choice is to set ¢ = 7max, ||cS|| which gives a constant (while still
largish) M. This is improved when bimodal Gaussian sampling is used [DDLL13].

Bimodal Gaussian: Informally speaking, a bimodal Gaussian is a sum of two
Gaussian distributions with the same ¢ and means of the same absolute value,
with opposite signs. Following the above example, the distribution of x = y +¢S
is very close to a bimodal Gaussian distribution. One can use rejection sampling
to produce the Gaussian distribution x, from the bimodal Gaussian distribution
%Xcs,g(x) + %X_cs,g(x) if there exists a constant M such that

Xo (%)

< M.
%XCS,O’(X) + %X—CS,O’(X)

It has been shown in [DDLLI3| that this inequality holds with

M = exp (maxc(CS||2)> . (1)
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It is also shown in [DDLLI3]|, that for an individual x =y =+ ¢S, the proba-
bility of accepting it is given by

p=1/ (Mexp < ”2‘:082”) cosh <<X;§S>)> . 2)

Remark 2. As usual there is a trade-off between efficiency and storage size. For
the discrete Gaussian distribution x,, the entropy of its output x is bounded
above by

H(x) < klog(4.10).

Therefore, such a vector can be efficiently stored with approximately k(log(o)+2)
bits, using Hoffman coding. Thus a smaller o yields a smaller signature, but
simultaneously makes rejection sampling less efficient.



3 Modular lattice signatures with Gaussian sampling

3.1 The scheme

Construction: Let m, n and k be three positive integers with n = k 4+ m. Let
S1 € Z;** be a matrix with small (and sparse) coefficients. For simplicity, we
assume S; is sampled from a certain S-bounded sampler such that ||S1|ec <
B < q. In practice one can use either a discrete Gaussian sampler with small
variance, or a uniform sampler within a small range.

Our secret key is a matrix S == [pS;[I,,] € Z;"*™ with small entries. The

public key is constructed from a matrix A = {il} such that SA = 0 mod ¢ and
2

A, is invertible mod ¢. Equivalently, we can sample A; uniformly from Z’; xm
and then set Ay = —pS1A; mod gq. We re-sample A; if Ay is not invertible mod
q. The SIS lattice defined by A is:

L:={(u,v) :uA; 4+ vAy = 0mod ¢},

where S is a short trapdoor basis for this lattice. Note that the procedure above
is a standard construction for the SIS problem, except that we have a factor
of p on S;. By setting the parameter p such that p is co-prime to ¢, it can be
shown that the distribution of A, is statistically close to a uniform distribution
by applying leftover hash Lemma when n =~ mloggq.

It is perhaps more convenient to look at a kxm matrix B := Aj(—A3)~! mod
q. With B, the lattice £ can be interpreted as

L:={(u,v) : uB = v mod ¢},
0 ql,

I, B
above procedure is described in Algorithm [I]

with a g-array basis P = } The detailed algorithm that captures the

Signing: The signing algorithm is described in Algorithm [2] We assume the
input message digests are vectors, denoted by m;, € Zj, that are essentially
the outputs of some one-way hash function. We write m,, := (u,,v,), with
u, € Z’; and v, € Z;'. We also use a sampler that outputs vectors from a
discrete Gaussian distribution .

Next, we sample a vector (u,vy) from L(P) such u; = u, mod p. To do
so, one invokes the sampler to obtain r g x*. Then, compute ug = pr, u; =
up—+uy, and find a lattice vector whose “s-side" is u; by setting v; = u;B mod g.
As such, (uy,v1) is a vector in the lattice, with u; = u, mod p.

An alternative way to view the above procedure is to generate a random
vector (r,rB mod ¢) in the lattice. By definition, the matrix [I|B] is a basis of
a sub-lattice of L(P). Also, since r is sampled from a discrete Gaussian distribu-
tion, this random vector can be viewed as an output of a GPV sampler [GPV0S]
over L([Ix|B]). If o is greater than the smoothing parameter of £([I;|B]), the



vector r[Ix|B] will be uniform over £([Ix|B]) and a discrete Gaussian over Z".
Then we take this vector modulo g to obtain the exact output vector.

Since vy is discrete Gaussian over Z", it will have random coefficients modulo
p, and therefore will not meet the congruence condition. To complete the process,
we need to micro-adjust v; so that the t-side also meets the congruence condition;
in the meantime we do not want to break the congruence condition on the s-side.
We use the secret basis S = [pS1]|L,,] to achieve this goal. Let a = v, — vy mod p.
We compute (uz,vy) = aS = (paSi,a). Note that (uz,vy) = (0,a) mod p by
construction, and (usg, ve) is a vector in the lattice.

The final signature is (u,v) = (u1,v1) + (ug, v2). It is easy to see that (u,v)
remains in the lattice as long as || V||« < ¢/2. On the other hand, we have

u=u; +uz =u; =u, modp

and
V=V]+Vy=vVy+V,— V) =V, modp.

Therefore, (u,v) is a valid signature for our scheme.

Verification: The verification process, as shown in Algorithm [3] is essentially
to re-construct u and v from the signature, and then verifies the congruent
condition holds.

3.2 Rejection sampling

As stated before, a candidate signature (u, v) leaks information about the secret
key S. To seal this leak one needs to use the rejection sampling technique. The
efficiency of the above scheme relies heavily on how often one will need to reject
a signature. As a proof of concept, we will show how rejection sampling can be
used to seal information leakage here. We will give a more efficient instantiation
in Section [4 which uses bimodal Gaussian distribution.

Rejection sampling on u. Recall that u = p(r + aS;) + u,. Since both p and u,
are publicly known, we need to seal the leakage of S; from b := r + aS;. Also
recall that x* is the distribution for r. This situation is exactly analogous to the
one handled by rejection sampling in [Lyul2].

Rejection sampling on v. On the t-side, we do not require rejection sampling.
We have v = vy + va. First, vi = (pr + u,,)B, which is not linked to the secret
key Si. Second, vy = (vi — v,) mod p is also not linked to any secret key.

Another way of saying this is that rejection sampling is not required for the
t-side due to the fact that the “secret key" corresponding to the t-side is actually
I,.. In fact, we can write v = vy 4+ aS, where Sy happens to be I,,. As we shall
see in the next section, we still need to use rejection sampling to seal the leakage
for S when an alternative secret matrix replaces I,,.

Nonetheless we do need to restart if || v]| o becomes too large and causes a
wraparound mod g. When this occurs, the congruent condition is broken after
mod ¢ reduction.



Alternatives. In our construction we choose to do rejection sampling so that
I[v]co does not cause any wraparound. We chose this approach despite the fol-
lowing two alternatives. First, the signer can send a helper indicating to the
verifier the coefficients where wraparound occurred. This can be seen as a recon-
ciliation approach of Ding’s (R)LWE-based key exchange in 2012 [Din12|, whose
variants are used in [ZZDT15/Peil4/ADPS16]. We do not adopt this solution as
it would increase the signature size.

Second, since the wraparound only occurs with a low probability, we can let
the verifier accept the signature based on a fuzzy matching: accept the signature
when the majority of the coefficients on the t-side meet the congruent condition.
This promising method may weaken our security since it makes forgery easier.
For conservative purpose we do not consider this approach.

3.3 Signature compression

There are three sources of compression. First, one can effectively store only the
“s-side" of the vector instead of the whole vector, as long as the vector is in L.
In other words, given u, the verifier is able to reconstruct v =uB mod g.

Second, the verifier is able to reconstruct u = pb 4 u, from b as both p and
u,, are publicly known. So only b is required for verification.

Finally, since b follows a discrete Gaussian distribution after the rejection
sampling, one can use code based compression techniques to reduce the space
requirement for b.

The final signature is a k-dimensional discrete Gaussian vector that allows
for Hoffman coding. The size of the final signature is k(log(o) + 2) if Hoffman
coding is employed. Looking ahead, we did not use this encoding since it is rather
inefficient.

Algorithm 1 Key Generation Algorithm
Input: Parameters m, k, n, 3, p, q.
Output: Public key B and secret key Si.
1: Sy« [-8, 8™
Ay ZEx™
Ay = —pS1A; mod g;
if A, is not invertible mod g then go to step 2 end if;
B = Al(ng)_1 mod g;
return S;, B

3.4 Correctness

The scheme presented above is correct with probability greater than 1 —27%. To
see that, first note that b is statistically close to the distribution of y*. So for



Algorithm 2 Signing Algorithm
Input: Message p; Public key B; Secret key Si; Distribution x,
Input: Parameters k, m, p, q, M
Output: A signature b for message u
1: (up,vyp) = Hash(u|B)
r < Xoi
u; = pr+ up; vi = u1B mod ¢
a=vp,—vimodp
v =vi +a;
if ||v]|s > ¢/2 then go to step 2 end if
return b = (r 4+ aS;) with probability 1/ (M exp <%ﬁl—W))

20

go to step 2

Algorithm 3 Verification Algorithm
Input: Message u; Public key B; Signature b;Parameters p, ¢
Output: Accept or Reject the signature
1: if ||b|| > 20v/k then Reject end if
(up, vp) = Hash(u[B)
u=pb+u,
v = uB mod ¢
if v # v, mod p then Reject end if
return Accept

a legitimate signature, ||b|| < 20k with probability 1 — 2=%, by Lemma 3.3 of
[Lyul2].

Now the verification is correct, as long as the lattice vectors remain the same
for signing and verification. In addition, since the vectors are in the lattice, it is
sufficient to show that the s-side of the lattice vector in the signing algorithm is
equal to the s-side of the lattice vector in the verification algorithm, since the
t-side vector can be deterministically generated through the s-side vector.

Note that the corresponding s-side vector in the signing algorithm is u; +
paS; = p(r+aS;)+u, (which has not been explicitly computed); meanwhile, in
verification algorithm we have u = pb + u, = p(r + aS;) + u,. It follows that v
also remains the same as one generated during the signing algorithm. Therefore,
(u,v) must be the same as the corresponding ones in the signing algorithm.

What is left to shown is that (u, v) = (up, v,) mod p. This is straightforward
from the signing algorithm.

3.5 Transcript simulation

By Theorem 4.6 of [Lyul2|, the signature algorithm specified above must be
negligibly close to a triple (up, vp, b), with distribution UF x U™ x x%, where U,
is uniform mod p and x* is our discrete Gaussian distribution. Such a transcript,
negligibly close to a genuine transcript, can be simulated without knowledge of
the secret key in the following way:



1. Choose b at random from x*;

2. If ||b|| > 20k go to step 1;

3. Set u = pb + u,, with u, chosen at random mod p so that ||ullec < ¢/2;
4. Set v=uB mod ¢, and lift v to the interval (—q/2, q/2];

5. If ||v]eo > inpjp go to step 1; otherwise, output v, = v mod p.

We claim that the distribution of the output of the actual signing algorithm is
indistinguishable from that of the simulation. This is obtained from the following
arguments:

— For b: Theorem 4.6 of [Lyul2] states that the statistical distance of b in the
simulation is within statistical distance 27% /M from the distribution of b in
the actual signing algorithm.

— For u,: uy is chosen at random from U;f in the transcript simulation. There-
fore the distribution of u, in the transcript simulation is identical to the
distribution of u,, which is the random oracle output.

— For v,,: First, B is indistinguishable from a random matrix by construction.
Therefore, one can view B as a random mapping from Z’; to Zg'. Then, since
u has enough entropy (as b is sampled from x*), v will be indistinguishable
from random elements over Z". Finally we use rejection sampling to ensure
v mod p is uniform modulo p. With appropriate parameters, for example,
plg or ¢ = 1 mod p, ete., this procedure will terminate within polynomial
time.

Looking ahead, in the proof of unforgeablity, we will use a hybrid signing
algorithm that resembles this simulation.

3.6 Security

For the security of the public key, it is easy to see that the ability to find the
secret key (or merely a short enough vector that allows for forging) from a public
key can be reduced to the ability to solve an SIS problem. In this section we are
mainly focused on the difficulty of forging signatures, under the classical random
oracle model. We show that our signature scheme is existential unforgeable under
chosen message attacks as defined in Definition [2]

Definition 2 (EU-CMA). A signature scheme is existential unforgeable under
a chosen message attack (EU-CMA), if for any polynomial-time adversary A,
the probability of winning the following game is negligible.

1. The challenger C creates a pair of public keys pk and sk, and sends pk to
the adversary A;

2. A chooses a list of messages my, ..., my from the message space, and receives
the corresponding signatures oy, ...,o0¢ from the C;
3. A produces a pair of (m’,d’) where m' is not from mq, ..., my;

4. A wins the game if o’ is a valid signature of m' under pk.



In addition, the scheme is strongly unforgeable if m’ = m; € {m4,..., m;}, while
o #o;.

Before proving the security of the scheme, we present two Lemmas which will
be needed in the security reductions.

Lemma 1. Let g be a prime. If A € Zg**™ is chosen at random, then probability
m—1,_m 2

that it is invertible is w.

Proof. For A to be invertible, we need each row of A to be linearly independent.
So the number of possible choices for the first row is ¢"*—1. For the second row to
be linearly independent, we need the second row to not be a linear combination
of the first row. Thus the number of possible choices for the second row is g™ —gq.
Continuing similarly, the number of possibilities for any i-th row is ¢™ — ¢*~ 1,
where ¢ indices the m rows of A. Thus, the total number of possible matrices A
which are invertible in Z, is Hf:ol(qm — ¢"). Hence the result follows.

Lemma 2. Let q be a composite integer which has the unique prime factorisa-
tion q = H;:l q;‘j. Then the probability of a random matriz invertible in Z, is
Hl H;’;l(Q;'L_Q;)

j=1

a;"
Proof. First consider j = 1. The result follows from the fact that A is invertible
in Z, if and only if A is invertible in Z,. For j > 1, it follows from the Chinese
Remainder Theorem.

Next, we will be using a hybrid signing algorithm in Algorithm [] that is
build from the simulation. As shown earlier, the statistical distance between the
outputs of this algorithm and the actual signing algorithm is negligible.

Algorithm 4 Hybrid Signing Algorithm
Input: Message p; Public key B; Distribution x.
Input: Parameters k, m, p, ¢, M
Output: A signature b for message p
1: b« x5,
u, < Zﬁ;
v = (pb + u,)B mod g;
if ||v[lec > [35]p then go to step 1 end if
vy, = v mod p;
Program the random oracle so that (up,v,) = Hash(u|B);
Return b with probability 1/M.

Now we are ready to present the existential unforgeability result under a
chosen message attack (EU-CMA) of the scheme.

Theorem 1 (Unforgeability). Suppose there exists an adversary who queries
h times to the random oracle Hash and s times to the signature algorithm, and



can succeed in forging a signature with non negligible probability §. Then there
exists an efficient algorithm to solve the SISy, m.s problem for any random

matriz with probability (1 — (s + h)/p™) €5 , where B = \/1602(n — m) + ¢2>m/p>

and € = ngl % The running time for solving the SIS instance is the

sum of the runm'njg time for the adversary’s forgery, and s + h times of the
running time for hybrid signing algorithm.

Proof. Assume that the simulator is provided with a random matrix A := ij
and his goal is to find a solution to the SIS problem for A. With overwhelming
probability, A is invertible (by Lemma . Assume this is the case.

He first computes B = A;(—A5)~! and publishes it as the public key for
the adversary. Note that the statistical distance of the distribution of the public
key in the proof and in the actual key generation algorithm is negligible, by
construction.

Next, the adversary is allowed to query the random oracle (h times) and
signatures (s times) of his choice. During any queries of the adversary, the sim-
ulator runs the hybrid signing algorithm (Algorithm [4]) on the query input. The
output will be (u,,v,) for a random oracle query, and b for a signature query.
The simulator stores (b',u,,v}), (b2, u?, vg) ;- (bfub, vi), where t = s+ h.
Note that the distinguish advantage between Algorithm [2] and Algorithm [4] is
at most ¢/p", which is the probability that Algorithm |4] happens to sample a
(up, v,) that the distinguisher has seen before. That is, the probability of distin-
guishing Algorithm 2] from Algorithm []is negligible in n, assuming a polynomial
number of calls to the random oracle and the actual signing algorithm.

Moving ahead, the adversary will output a signature forgery b on a message
1 of his choice. There are two scenarios. Scenario 1, the attacker does not query
the random oracle on this message. In this scenario he needs to make a random
guess from all possible range of the random oracle, and it’s success probability
is 1/p™ which is negligible in n.

Scenario 2, the adversary has queried the random oracle on . In this case, let
the simulator’s random oracle output for p be (ul, vJ) for some j € [t]. Since,
(ufﬂvg;) is a random oracle output, by the construction of the hybrid signing
algorithm (Algorithm , the simulator knows another signature b? on p, which
is distinct from the attacker’s except for negligible probability. This is because
b’ was sampled at random from x*, which contains an exponential number of
candidates. From b and b7, the simulator is able to build

(u,v) :== (pb + ui,pc + vg) € L(B)

(w,v) = (pb’ + ), pc! +v1) € L(B)

for some ¢ and ¢/ with ||¢||, ||¢?]|co < q/2p. Therefore,

(u,v) — (u,v') =p(b —b?, c— )



is also a vector in the lattice. In other words,
p(c—c?) = p(b —b?)B mod q.
Also, since p is co-prime with ¢, we have

(b—-b)A; + (c — ¢/)Ay = 0 mod ¢.

That is, (b —b?, c — ¢’) is a solution to the SIS problem instantiated within A.

Since b and b’ are both Gaussian vectors, we expect ||b — b7|ls < 40Vk.
This is because ¢, norm of a k dimensional Gaussian is bounded by 20k with
probability greater than 1 — 2% (see Lemma 3.3 of [Lyul2]). Also, by construc-
tion ||c — ¢’||oc < ¢/p, hence ||c — ¢?||2 < q/py/m. To conclude, the simulator
finds a short vector with ¢ norm bounded by

V1602(n — m) + ¢®>m/p2.

Additionally, if the time required for the adversary to output a forgery is T a4y,
and the time required for running hybrid signing algorithm (as in Algorithm
is Tryp, then the simulator solves the underlying SIS problem in time Ty, ~
Tadgw + (s + R)Tryp.

We remark that to ensure the provable security of SIS problem, we require a
rather large p, on the order of /g, which makes this scheme less efficient. As we
will see in next section, our efficient instantiation uses practical parameters that
are derived from best-known attacks (this is also the design principle for most
practical lattice-based signatures, except for JAAB™]). For this purpose we will
choose a small p that allows for efficient rejection sampling.

Strong unforgeability. One subtlety in the (standard) unforgeablity notion is
that the forger is asked to sign messages that have never been previously signed.
The notion of strong unforgeability, however, requires an attacker to be unable
to forge a new signature on a message, even if a set of signatures of this same
message are given. This is not captured by the above Theorem. Indeed, here we
show a modification that allows strong unforgeability to be achieved.

As shown in [HPST14], for a given message digest m,, all candidate signa-
tures associated with this message digest are short vectors within the intersec-
tion of the original lattice and pZ™ +m,,. Therefore, the task of forgery becomes
finding a short vector in the original lattice that meets the length requirement
and the congruence mod p requirement. This is roughly the reduction to the
approx-CVP in [HPS™14].

Now, suppose that the attacker is given a list of signatures on a same message
digest. Then, it becomes easier (compared to without this list) for the attacker to
find another short vector in this lattice, that is, generating a new signature on this
same message. However, we note that any linear combination of such signatures
is highly unlikely to also satisfy the correct mod p congruence conditions.

In general, our solution to achieving strong unforgeability is to include a
random salt in the hash when generating the message digest; this salt will be



part of the signature and used during verification. This ensures that it is highly
improbable, (probability (1/p)™ for each message), that the same message digest
will occur more than once. Note that this is also the same technique that provides
similar functionalities for GPV based signatures [GPV0S].

Nevertheless, as the strong unforgeability model is sometimes too strong for
practical use (i.e., the attacker doesn’t need to forge a new signature since it
has already got a list of them on a same message), we leave out this salt in our
efficient instantiation to minimize signature size.

4 A practical instantiation with an NTRU lattice

In the previous section we presented an inefficient modular lattice signature
scheme based on the SIS which requires n =~ mlogq. Even if we use the ring-
SIS version, the scheme is still somewhat inefficient as it requires n ~ log g - the
reduction of a factor of m comes directly from the use of the ring structure in the
construction. A natural way to improve its efficiency is to relax the requirement
of n & log ¢ (This will make the underlying (ring) SIS problem easier, so we will
derive parameters from the best known attacks).

For example we can reduce n to 2m (2 in the case of ring-SIS). This makes
A, a square matrix which causes another issue:

pSIAI + ImA2 = 0 mod q.

When A; is a square matrix and invertible, one can easily recover S; from A,
and A.2.
A naive remedy is to set Ay to be private too, and therefore we will have a

|
equation without giving away S;. This seemingly plausible solution poses another
challenge: we are not able to perform a micro-adjustment on the “t-side" of the
vector any more, as now As is no longer small. If we perform the same micro-
adjustment as before, the coefficients of vo will explode and will always cause
wraparound over q.

Hence, the final solution to the above problem is to have a small and private
As. The final key generation becomes finding such A and an invertible S, and
setting A; = Ay(pS;)~! mod ¢. This, not surprisingly, yields an NTRU lattice.
In the following, we will slightly change the notation: H := A, G := Ay and
F = Sl.

. . . |A . .
secret matrix [pSi|Az] and a public matrix { 1] which also satisfies the above

4.1 Overview

In the following we will work over the polynomial ring R, = Z4[z]/(z™ + 1).
Our scheme also works over other rings, such as Z,[z]/(z" — 1) with minor
modification. Let f(z), g(z) and h(z) be three polynomials in R,, where f(z)
and g(z) have very small coefficients; h(x) = p~tg(z)f~!(x). We express by
f, g and h the vector form of the polynomials. Also let F, G and H be the



matrix obtained from nega-cyclic rotations. The NTRU lattice with regard to h
is defined as

Ly ={(u,v) ERgzuh:v}

or rather, the vector/matrix form:
Ly ={(u,v) €Z" :uH = v}

0 qIN
Iy H
We also require g(z) to be invertible over R,, which is the same as G being
invertible mod p.

The rest of the scheme is almost identical to the one presented in the previous
section, except for a few differences.

First, we use rejection samplings on keys. This gives us better bounds for
laf||oc and ||ag|/c during signing, and in return ensures a better rejection rate.
Note that key rejection isn’t uncommon. For example, it was also performed in
BLISS [DDLL13]|, with a different rejection method.

Second, we use a bimodal Gaussian distribution to improve the acceptance
rate. To cope with this modification, we set p = 2 so that the change of signs in
b = r 4+ af will vanish after reduction modulo p.

Third, we use [pF|G] rather than [pS;|I,,,] to perform the micro-adjustment.
This modification does raise another issue: the “¢-side" vector during the signing
procedure will contain information about G. To be precise, the “t-side" vector
will be v := v; & ag where v; is indistinguishable from uniform over R,, a is
uniform over Zi,v . We will need to perform rejection sampling to seal the leakage
of information about g. As shown in [HPS™14|, after rejection sampling, the
distribution of v will be computationally indistinguishable from uniform over
(=2 + By, 2 — By) for a public parameter B; which depends on ¢, the (uniform)
distribution of a, and the number of +1s and —1s in g.

To avoid confusion, we will use M, to denote the rejection rate for the s-side,
M; for the t-side, and M for the overall rate.

where there exists a public basis P = and a secret generator [pF|G].

4.2 The scheme

Key generation : The key generation algorithm is shown in Algorithm [5} We
use the classical NTRU flat form (non-product form, cf. [HPST17]) keys with a
pre-fixed number of +1s and —1s. Here, T'(d1,d2) is a set of trinary polynomials
of degree less than N, where there are exactly d; positive coefficients and ds
negative coefficients. One can choose thicker keys for a higher level of security.
Since we require both f and g to be invertible, we have set f(1) = g(1) = 1.
Now we give arguments for rejection sampling on f. A similar argument
applies to g. We wish to estimate ||af||oc where a is assumed a uniform binary
vector. We view af as a vector-matrix multiplication: aF. Since a is binary,
this operation can be seen as randomly adding some coefficients from each row
of F. Therefore for a given f, the corresponding ||f|~ will correlate with the



Algorithm 5 Key Generation Algorithm
Input: Parameters N, p, q, d, Bx.
Output: Public key h and secret key (pf, g).

1: £« T(d+1,d);
if f is not invertible mod g then go to step 1 end if;
F « Cyclic matrix of f, and f < sum of rows of F;
if ||f||c > B then go to step 1 end if;
g+ T(d+1,d);
if g is not invertible mod p then go to step 5 end if
G «+ Cyclic matrix of g, and g < sum of rows of G;
if ||g|lcc > Bk then go to step 5 end if;
h = g/(pf) mod ¢
: return h, g and f

—_

expected value of ||af||... Hence, rejection sampling based on ||f|| will ensure
that ||af]| is also small. Note that with the parameters given in this paper, our
key space after the rejection sampling is still large enough to be robust against
search attacks.

Algorithm 6 Signing Algorithm
Input: Message p; Public key h; Secret key f and g; Distribution x,
Input: Parameters N, p, q, M, B
Output: A signature b for message p
1: (up,vy) = Hash(ulh)
r+xY, b+ {0,1}
u; =pr+ up; vi = urth mod ¢
a= (v, — vi)/g mod p {Additional g~! factor}
v=vi+(-1)ag;
if ||v]lec > q¢/2 — B: then go to step 2 end if {Additional rejection sampling on ¢
side}
return b = (r + (—1)%af) with probability 1/ (MS exp (f“;—f”) cosh (@))

=

o2 o

8: go to step 2

Signing algorithm : The signing algorithm is shown in Algorithm [6] We highlight
the differences between this signing algorithm and the one described in previous
section.

First, there is a factor of g7" mod p for step 4, which is there to ensure the
congruence condition for the ¢-side.

Second, in step 6, rejection sampling is performed on the t-side, parametrized
by an additional integer B;. The distribution of the ¢-side vector will be uniform
within the interval (—4 4 By, 4 — B;). The public parameter B; is also computed
as an average over a large number of choices of g and a. Since we have performed

1



rejection samplings on g during the sign algorithm, we obtain a better bound
for ag which reduces the number of repetitions.
Finally, unlike the scheme in previous section, here we have

(u,v) = (ug,v1) + (=1)°(uz, v2)

for a random bit b. This makes the raw distribution of b = (r + (—1)%af) a
bimodal Gaussian distribution. As stated before, one can achieve a much higher
acceptance rate for this distribution. Note that in the initial construction of
BLISS [DDLLI3|, the bimodal Gaussian distribution makes a signature some-
times unverifiable due to the odd modulus ¢. BLISS solved this problem by
moving the modulus from ¢ to 2¢g. We solve this problem by setting p = 2. It
follows that v = v; + (—=1)%(v, — v1) = v}, mod 2.

Algorithm 7 Verification Algorithm
Input: Message u; Public key h; Signature b; Parameters p, ¢, B, 0, N
Output: Accept or Reject the signature
1: if ||b|]| > 20v/N then Reject end if
(up, vp) = Hash(ulh)
u=pb+u,
v = uh mod ¢
if v # v, mod p or ||v||ee > q/2 — B, then Reject end if
return Accept

Verification : The verification algorithm in shown in Algorithm|[7} It firstly checks
the signature is in the correct range. It then re-compute the lattice vector, and
checks if the vector meets both length requirement, and the congruent condition.

4.3 Transcript simulation

As in Section [3.5] a transcript, indistinguishable from a genuine transcript, can
be simulated without knowledge of the secret key in the following way. Note that
the only difference here is p|(¢/2 — B;) in our setting.

Choose b at random from y%;

Reject if ||b|| > 20v/N and return to Step 1.

Set u = pb 4 u,, with entries of u, chosen at random mod p;

Set v =uh mod ¢, and lift v to the interval [—q/2, ¢/2);

Reject if ||V]eo > ¢/2 — B and return to Step 1. Otherwise set v, = v
mod p and accept b as a signature on u,, v,.

A



4.4 Security

We may apply a same proof technique as in the SIS-based construction in Section
However, a challenger will only be able to recover a lattice vector (b’,c’) €
Ly, that, although is somewhat short, remains significantly larger than the secret
keys f and g. Therefore, with a same reduction, one is able to show that a forger
against EU-CMA security implies a solver of the SIS problem over the NTRU
lattice Ly; although the precise hardness of this problem is not established. We
omit the details of the proof since it will be identical to the previous one.

5 Batch verification

The modular lattice signature scheme presented here allows for same key batch
verification. This is because, as stated in the introduction, the sum of signatures,
after lifting to the integers, is still a valid lattice vector that satisfies the mod p
congruence condition.

However, in order to fully utilize this functionality, it appears at first that
one will need to send the whole lattice vector as the signature. In other words,
one cannot merely send the “s-side" of the vector. To see why this is the case,
suppose that for two signatures (u,v) and (u’,v’) corresponding to messages
(up,vp) and (u,,v},), one computes

(v+v')mod ¢ = (u+u')h mod ¢q

The difficulty is that (v + v’) will, with high probability, cause a wraparound
mod ¢, as ||V + V/||x & ¢ — 2B;. Thus one will recover (v + v') mod ¢ rather
than v + v/. When this occurs,

(v +v') mod ¢ mod p # (v, + v,) mod p

and the verification will fail.

One way to solve this issue is to send both the “s-side" and the “t-side" of
the vector. Then one recovers u + u’ and v + v’ over the integers. The mod p
relationship can be checked from this, and then the lattice relation mod ¢ can be
checked. As a trade-off, one will have to send 2 elements in R, for each signature.
This increases the size of a signature.

We can actually do efficient batch verification with a much smaller cost. We
can send merely the “¢-side" of the vectors. Then the sum of the t-side vectors
can be computed over the integers, and the congruence mod p can be checked.
Then, multiplying by A~' and reducing mod ¢ will reveal the sum of the “s-side"
of the vectors mod ¢. Signature aggregation works so long as the sum of the “s-
side" vectors mod ¢ identically equals the sum over the integers, that is, does
not result in any wraparound modulo q. Since the “s-side" vectors are Gaussian
distributed with a variance ¢ much smaller than ¢, we are able to sum quite a
few s-side vectors without a wraparound mod gq.

To be precise, suppose we want to verify k signatures in one batch, corre-
sponding to u, ..., u®) vectors on the s-side. We require that || Zf:o ul®| <
¢/2 to not cause a wraparound. Since u = pb + u,, this is effectively the sum of



1. k samples from discrete Gaussian, multiplied by p, and
2. k samples from uniform distribution modulo p.

We approximate the first quantity by replacing discrete Gaussian with con-
tinuous Gaussian. Then, the sum of k& samples will be close to samples from
continuous Gaussian with variance vko except for negligible probability. Use
the tail-cutting property, we know that the first quantity is bounded by prv/ko.
Next, for the second quantity, we know that the infinity norm for a sum of &
binary vectors of dimension N will be bounded by k.

Finally, we conclude that our scheme can batch verify k signatures so long

as
prvko + k < q/2.

For our parameter choices, to be shown in Section [f], we have k = 24, ¢ =
216 11, o = 250 and 7 = 13.3. See Algorithm [8 below, for the batch verification
algorithm.

Algorithm 8 Batch Verification Algorithm

Input: Messages {y;}; Public key h; Signature {v;};Parameters p, ¢, By, k, o
Output: Accept or Reject the signature
L: (up,i, vp,i) = Hash(u:|h)

2: if ||villeo > q/2 — B; then Reject end if

3: (up,vp)=0;v=0

4: for i € [k] do

5 (up,vp) += (up,i, vVp.i)

6: vV +=v;

7: end for

8: u=vh ! mod g

9: if |lufls > VkTpo then Reject end if

10: if (u,v) # (up, vp) mod p then Reject end if
11: return Accept

5.1 Known attacks on batch verification

Here is an potential attack on batch setting, which performs better than forging
a single signature directly. For a set of message digests {ul(f)7 vg)} for1 <i<k,

do the following:
) = VZ(,i) mod p; this can be done

by adding some vector, that is a multiple of p, to v](f);

— for each v,(,i), find a vector ng’) such that Vgi

—set V= Zf ng); V meets the congruent condition by design;

— compute U = Vh™’

— Since we allows (U, V) to be reasonably large, we can simply use the public
key /basis (I, pH™!) for the micro-adjustments. Suppose the micro adjust-
ment vector is (Ug, V)



— Write Vj as a sum of k vectors {v(()i)}
— Publish v; = V((f) + ng) as the signatures.

In short, The attacker finds a large vector (U, V) in the lattice, congruent
to the sum of messages mod p. In addition, V can be written as a sum of k
different vy)’s such that vﬁi) is congruent to vz(,i) for each message mod p. In the
meantime, the U vector also meets the congruence condition; while the attacker
doesn’t need to find individual u(’s. In the meantime, for sufficiently large k,
the size of (U, V) will be acceptable. Hence, the attack can claim that each such
small vector is a signature for a given message, as collectively they can be batch
verified, although each individual verification will fail.

Note that for this attack to work, k£ needs to be large. For properly chosen k
this attack will fail. The intuition is that, when k is small enough, the sum of &
valid signatures will remain a short vector in the lattice so that the root Hermite
factor with respect to this lattice/vector is still small (although it will be larger
than in a single verification setting). In other words, if the attacker is able to
find a vector (U, V) sufficiently small, he is also able to find an approximate
shortest vector in the lattice (with a root Hermite factor slightly larger than the
single verification case).

5.2 Security

We define the unforgeability of the aggregated signature scheme through the
following game:

1. The challenger C creates a pair of public keys pk and sk, and sends pk to
the adversary A;

2. A chooses a list of messages my, ..., m; from the message space, and receives
the corresponding signatures o1, ..., o0, from the C;

3. A receives another list of message and signature pairs m(l), .. ,m(k_l) and
oW ..., 0 =1 Those m? may be from {my,...,ms};

4. A produces a pair of (m®*), o) where m*) is not from my, ..., my;

5. A wins the game if ¢ is a valid signature of m(*), ..., m®*) under pk.

We sketch the proof here. There are two ways that a forger may succeed in
this game. First scenario, the forger is able to generate a valid signature o*) for
m(¥); it follows that the forger can easily build the aggregated signature since
all k signatures are valid. The success probability of the forger is negligible in
this setting, since the underlying signature algorithm is EU-CMA secure.

Alternatively, in the second scenario, the forger may try to forge a o for which
it does not know o(*). In this case, the forger has to forge a ¢ = V for some

random u,, v,, where (u,,v,) = Zle (uf[,’“), vz(,k)). Then, the simulator will be

able to compute U = Vh~!. That is,

k k
<pb + Z uz(f)> h=pc+ Z vz(f)
i=1 =1



for some c.
In the meantime, since the hash function is modelled as a random oracle
and the forger doesn’t know the hash value of m(*), similar to the proof for

the fundamental game, the simulator will have a list of tuples (uz(,k), vz(,k), b(k)).

From this list, the simulator is also able to get

k k
[ 3 oo S
i=1 =1

for b’ = Zle b, and some ¢’. Therefore, the simulator will be able to extract
the same solution (b —b’,c — ) to the SIS problem as in the previous proof.

Note that a major difference here is on the quality of the extracted vector. In
this setting, the extracted vector will be larger (it will be k times larger compared
to the extracted vector from the basic signature scheme). Therefore, we need to
increase the parameters of the scheme so that even extracting a larger vector
is hard based on best known attacks. This also confirms our observation in the
previous subsection.

6 Parameters and benchmarks

We give 2 sets of parameters. The first one, namely, Gaussian-1024, is designed
in accordance with the scheme described in Section 4. For completeness, we
also provide parameters for the original pqNTRUSign scheme. Its parameter set
is named Uniform-1024. The pgNTRUSign signature scheme, with both parame-
ters, was submitted to NIST for standardization consideration for post-quantum
cryptography.

We estimate that Gaussian-1024 and Uniform-1024 provide 269 bits of classical
security and 149 bits of quantum security. The details of the above estimations
shall be presented in Section [7] Note that the parameter sets in this proposal are
not the same as in [HPST14/HPWZT7| due to the use of a different estimation
model. In previous estimations |[HPST14[HPWZ17|, the authors followed the
work of [CN1I| and [DDLLI3| by assuming that a root Hermite factor of 1.005
is not achievable. Here we have used a more rigorous estimation for our new
parameter sets. To be a bit more detailed, we used BKZ with core-sieving model
to estimate the cost of attacks to be presented in the next section, for both
classical and quantum security, respectively.

Table 1. Parameters.

PAarAM R,N,q ds,dy| o |Bk,Bs,Bi|Raw PK size|Raw Sig size
Gaussian-1024| #1024, 2% + 1] 205 | 250 |40, 500,49| 16384 bits |~ 11264 bits
Uniform-1024| 2420 | 1024,2'° + 1| 205 |N/A|40, 98, 49| 16384 bits | 16384 bits




We implemented our scheme with C. Our software is available at [gif] under
GPL license. We benchmarked our implementation on a dual core Intel i7-6600U
processor @ 2.60GHz. Our operation system was Linux Ubuntu 16.04. We used
gce version 5.4.0.

Table 2. Benchmark results

\ Gaussian-1024 \ Uniform-1024 ]
Key Generation 47.8 ms / 124 280 k cycles|48.9 ms / 127 140 k cycles
Signing 120 ms / 312 000 k cycles| 72 ms / 187 200 k cycles
Verification 0.96 ms / 2 496 k cycles | 0.97 ms / 2 522 k cycles
Batch Verification (10 signatures)| 1.01 ms / 2 626 k cycles | 1.02 ms / 2 649 k cycles

We present the implementation results in Table [2l We also note that we
did not use FTT/NTT techniques to accelerate ring multiplications in sign-
ing/verification since we need to perform mod p over the integers regularly. We
leave the investigation of this potential optimization to future work.

6.1 Comparison

We give a brief comparison between our scheme and the other candidates in
the NIST PQC standardization process in Table [3] Our scheme is significantly
slower. Note that the benchmark for Dilithium and qTesla are based on their
AVX-2 implementations. Our implementation is significantly slower mainly due
to a slower ring multiplication implementation, as well as a much larger rejection
sampling parameter. We also admit that due to this large rejection sampling
parameter, it is unlikely that our scheme will outperform any of the three even
if we have an AVX-2 accelerated implementation for ring multiplication.

Table 3. Comparison with other candidates

Dilithium 1024 x 768|qTESLA-III|Falcon 1024|Uniform-1024
PK (bytes) 1184 3104 1793 2048
Signature (bytes ) 2044 2848 1234 2048
Key gen (ms) 0.03 0.85 19.64 48.9
signing (ms) 0.11 0.15 0.32 72
verification (ms) 0.04 0.05 0.06 0.97

7 Best known attacks

7.1 Overview

In this evaluation, we will



1. follow the new analysis in [ADPS16] using BKZ 2.0 with classical sieving to
estimate the classical security.

2. follow the new analysis in [ADPS16| using BKZ 2.0 with quantum sieving
to estimate the quantum security.

For completeness, we also give the analysis result of

3. the original BKZ 2.0 analysis [CN11] with the extreme pruning method;
4. the (quantum) hybrid attacks following the sequence of work [How07/Wun16|/GvVWI17[Wun19].

Table 4. Lattice strength given by root Hermite factor

Gaussian-1024 | Uniform-1024

Public key strength (%‘) N 524705 ~ 1.0030

Forgery strength (”g—““) N 195301 a2 1.0016|153205 ~ 1.0024

For signatures, there are two types of attacks, namely, public key attacks
which try to recover the secret key from a public key, and forgery attacks, which
try to forge a signature without a secret key. As we shall see from Table [4]
forgery attacks are strictly harder than public key attacks, due to the smaller
root Hermite factors. Therefore, our focus here is to evaluate the security of the
public keys, i.e., recovering f or g from h.

Here, we summarize the evaluations in Table |5} We estimate a 165 bits secu-
rity in the classical setting, and a 149 bits security in the quantum setting.

Table 5. Best known attacks and their bit complexity on public keys

BKZ + Enum|BKZ + Sieving|BKZ + QSieving
uSVP[Hybrid [uSVP] Hybrid [uSVP| Hybrid
[1024] 407 | 269 [165] 165 [149] 154 |

N

7.2 Lattice attacks on public keys

For an NTRU public key polynomial h, let H be the matrix whose row vectors
are the cyclic rotation of h. Then the NTRU lattice associated with h uses a
basis of the rows of

-3

H Iy

where Iy is an N-dimensional identity matrix. Within this NTRU lattice, there
exist unique shortest vectors, namely, the vector form of (f,g) and its cyclic
rotations.



This attack was first presented in the original NTRU paper [HPS98] circu-
lated during the rump session of Crypto’96. It was later observed in [CS97] that
one does not necessarily need to find the exact secret key to be able to decrypt.
An attack is successful if the attacker can locate any vectors in this lattice that
are sufficiently small (such as a cyclic rotation of the secret key).

It has been shown in [GNO§| that the ability to locate a unique shortest
vector in a lattice depends on the root Hermite factor of the lattice, which is the

n-th root of )
Gaussian expected length

l> norm of the target vector

where n is the dimension of the lattice.

Here, we give an estimate for the root Hermite factor corresponding to the
proposed parameter set. This lattice has a dimension of 2N. The Gaussian ex-
pected length of the shortest vector in this lattice is

v/ qN/me,

while the ls norm of the target vectors are ||f, g||2. This gives the root Hermite

factor of the lattice as )

()

If, gll2

It was originally believed that the current technique of BKZ 2.0 [CNII] is
only able to find a short vector with a root Hermite factor of at least 1.005.
However, in [ADPSI16|, the authors give a conservative analysis of the cost of
BKZ 2.0 reduction. As pointed out by the authors themselves, those estimations
are very optimistic about the abilities of an attacker. In particular, unlike the
analysis of BKZ 2.0 [CNI1], where the cost of shortest vector subroutines is
estimated via the cost of enumeration with extremely pruning [GNR10], this
analysis assumes that for large dimensional lattices, shortest vector problems
can be solved very efficiently using heuristic sieving algorithms, ignoring the
sub-exponential to exponential requirement of space.

Giving a few details, the best known classical and quantum sieving algorithms
have time costs of 2°-292" and 20-265" respectively [BLSI6]. The best plausible
quantum short vector problem solver costs more than 2929757 since this is the
space required to store the list of vectors. In practice, sieving tends to process
much slower than enumeration techniques. Moreover, sieving algorithms require
a similar level of space complexity (exponential in n), while the space requirement
of enumeration techniques is polynomial.

For the sake of completeness, we present the estimated cost of BKZ with clas-
sical and quantum sieving algorithms, following the methodology of [ADPSI6].
It is easy to see that the space requirement for classical sieving algorithms is far
from practical. For example, it is estimated that the world’s storage capacity is
around 295 exabytes ~ 2%® bits [stol1]; and the number of atoms in the whole
earth is around 10%° ~ 22 Jatol4]. Thus we do not use BKZ with classical
sieving to estimate the classical security of our parameters. Nonetheless, we do



use BKZ with quantum sieving algorithms to estimate the quantum security, in
accounting for unknown effects on data storages with quantum computers.

7.3 Search attack

For NTRU with trinary keys, since the secret keys are trinary polynomials with
df number of 1s and —1s, the search space for the secret key is (dfﬁ,df) /N. For
example, with our parameter set, we have 2138 candidates. (The factor 1/N
comes from the fact that an attacker can guess any of N anti-cyclic rotations
of the secret key, rather than just the secret key itself.) We remark that this
key space for our parameter set is considerably larger than that in [HPST17]
due to the switch from product form polynomials to flat form polynomials. This
is sufficient even with the presence of meet-in-the-middle attacks [HS06] and
quantum attacks using Grover’s algorithm [Gro96].

7.4 Hybrid attack

The previous best known attack against NTRU, prior to the BKZ with quantum
sieving analysis [ADPS16], was the hybrid attack [How(7] which is a hybrid of
a lattice attack and a meet-in-the-middle search attack. It has been revisited
recently, by a sequence of work [Wunl6lGvVWI17/Wun19]. In this paper, we use
the hybrid estimator from [Sch| to obtain the cost for hybrid attacks. We present
the cost of the classical hybrid attack and compare it with solving directly the
uSVP in Table Bl

7.5 Subfield attack

Subfield attacks against NTRU have been considered in [Berl4]. It was reported
in [ABDI16] that for certain “over-stretched” NTRU parameters, one can exploit
a subfield. This attack was only applicable to the NTRU lattices that are used to
instantiate a (fully) homomorphic encryption scheme. The authors of [ABDI16]
also showed that for our parameters the subfield attack will not be successful.

7.6 Forgery attack

The best forgery attack, other than deriving the secret keys from the public
keys via the above attacks, is the lattice reduction attack shown in [HPS™14].
Forging a signature can be accomplished if an associated approximate closest
vector problem in the intersection of the NTRU lattice, and pZ?" can be solved.
Therefore, the task of forgery can be solved by finding a vector that meets the
congruence mod p requirements, and is sufficiently close to the intersection lattice
to satisfy the length requirement.

This problem is harder than that of finding a short vector in the intersection
lattice, and so to simplify our analysis we will use this to quantify the strength



of the lattice problem. The intersection lattice is generated by the rows of the

matrix

[ 0 quN]

pIy pH' |’
for some appropriate H'. We also assume that this lattice behaves like a random
lattice.

For Uniform-1024, each coordinate of u (and v) is approximately randomly and

uniformly distributed between —q/2+ B and ¢/2— B, (—q/2+ B and ¢q/2 — By,
resp.) . Ignoring the Bs, the average squared coefficient will be approximately

1 [4/2
7/ 2dr = ¢*/12.
q —q/2

Thus u and v will have norm |[u||? ~ ||v||?> ~ ¢®? N/12. We thus have

Target Length ¢*N/6  [qme

Gaussian Heuristic Length | /Np2q/me \Voep?”

For Gaussian-1024, notice that the lattice is not “balanced" as ||u| is signifi-
cantly smaller than ||v||. In general, if the target is a vector (u,v), with u,v
each N-dimensional, and satisfying ||u| ~ av/N and |v|| = bv/N, then the op-
timal matrix for maximizing strength against lattice reduction attacks, that is,
minimizing the ratio of the norm of the target of the Gaussian expected norm,
is the 2N by 2N matrix

[ 0 quN:|
aply pH |’

with a chosen so that o = b/a.

The vector (au,v) will be a short vector in the lattice generated by this
matrix, and it is not surprising that the optimal « equalizes the lengths of the
vectors au, and v. We omit the details justifying this.

We now determine the values of a, b in our case. As it is a sum of k& vectors,
with each coordinate chooses from the Gaussian distribution, the expected norm
of ||lu|| will satisfy |Ju|?> ~ p?02kN. Thus a = pov/k. Also,

k
vV = E Vi,
i=1

with the coordinates of each v; approximately randomly and uniformly dis-
tributed between —q/2 + B; and ¢/2 — B;. As uniformly distributed vectors in
high dimensions are close to orthogonal, It follows that

k
IVIZ =~ > il
=1



Each coordinate of v; will be approximately randomly and uniformly distributed
between —q/2+ B; and ¢/2— B;. Ignoring the By, the average squared coefficient

will be approximately
1 [a/2
7/ 2dr = ¢*/12.
q —q/2

Thus v will have norm ||v||? =~ k¢>N/12, so b = ¢\/k/12 .
As stated above, in our particular case a = povk, b = g\/k/12, so o =
q/(po+v/12), and the length of the target is

Length target ~ bvV2N = ¢/kN/6.

For general, a,b, and o = b/a, the determinant of the matrix is a™Vp?N ¢V, and

thus the length of the Gaussian expected shortest vector is

[2N Npg?
Gaussian Heuristic Length = o'/2pg!/?y [ — = P
2me reav/12

We thus have
Target Length meok

Gaussian Heuristic Length o p\/g ’

and the strength against forgery is determined by the 2N** root of this ration,

which equals.
<7reak> 1/(4N)
pV3 '

8 Conclusion

In this paper we revisit the modular lattice signature scheme, and its instan-
tiation using NTRU lattices. The main improvement is a proof of the strong
unforgeability of the signature based on the short integer solution problem over
the corresponding lattice. In terms of practice, our non-optimized, non-factorized
implementation is not as efficient as other solutions in this domain, such as
Dilithium and Falcon. We leave this to future work.
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