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Abstract. We present a classical polynomial time attack against the
FRS branching program obfuscator of Fernando-Rasmussen-Sahai (Asi-
acrypt’17) (with one zerotest parameter), which is robust against all
known classical cryptanalyses on obfuscators, when instantiated with
the CLT13 multilinear map.
The first step is to recover a plaintext modulus of CLT13 multilinear map.
To achieve the goal, we apply the Coron and Notarnicola (Asiacrypt’19)
algorithm. However, because of parameter issues, the algorithm cannot
be used directly. In order to detour the issue, we convert a FRS obfus-
cator into a new program containing a small message space. Through
the conversion, we obtain two zerotest parameters and encodings of zero
except for two nonzero slots. Then, they are used to mitigate parameter
constraints of the message space recovering algorithm.
Then, we propose a cryptanalysis of the FRS obfuscation based on the re-
covered message space. We show that there exist two functionally equiv-
alent programs such that their obfuscated programs are computationally
distinguishable. Thus, the FRS scheme does not satisfy the desired se-
curity without any additional constraints.

Keywords: CLT13 multilinear map, FRS obfuscation, indistinguishable
obfuscation, input partitionability, zeroizing attack.

1 Introduction

Indistinguishability obfuscation (iO) is a weak notion of the program obfusca-
tion which requires that if two functionally equivalent circuits are given, their
obfuscated programs are indistinguishable. The first plausible candidates of iO
was proposed by Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13b]
using cryptographic multilinear maps. Since then, several candidates of iO have
been proposed [AGIS14,MSW14,BR14,PST14,AB15,Zim15,BMSZ16,GMM+16,
BD16,HHSSD17,CVW18,DGG+18,BGMZ18] based on the three cryptographic
multilinear maps [GGH13a, CLT13, GGH15]. In particular, the CLT13 multi-
linear map is well known as the most practical scheme used for implementa-
tions [LMA+16,CMR17]. The common features of multilinear maps are to be a
graded encoding scheme and to provide a zerotest parameter. This parameter



distinguishes whether a message of a top-level encoding is zero or not. However,
it leads the multilinear map including CLT13 to suffer from several attacks, cat-
egorized as zeroizing attacks.

Previous attacks against CLT13 and iO based on CLT13. We briefly
review the papers which deal with the cryptanalyses of the CLT13 multilinear
map, and iO based on CLT13. Cryptanalyses of the CLT13 multilinear map
crucially exploits low level encodings of zero [CHL+15] and almost zero [CN19].
On the other hand, all known cryptanalyses of iO based on CLT13 employ a
special property: input zero partitionable.1

• Cheon et al. [CHL+15] proposed the first cryptanalysis of the CLT13 mul-
tilinear map when low level encodings of zero are given. They totally broke
the scheme by obtaining all secret elements.

• Coron et al. [CGH+15] extended the CHLRS attack [CHL+15] when low
level encodings of zeros are not directly given. This implies cryptanalyses
of branching program obfuscations over the CLT13 multilinear map when
targeted branching programs satisfy input zero partitionable property.

• Coron, Lee, Lepoint, Tibouchi [CLLT17] extended a [CGH+15] attack using
the vectorization identity under the obfuscation of branching program also
satisfying input zero partitionable.

• Coron and Notarnicola [CN19] extended Gentry, Lewko, and Waters’s algo-
rithm [GLW14] to recover a message space of CLT13, and presented a way
to analyze CLT13 multilinear maps when there is a low level encoding of
almost zero, which is a zero vector except one message slot.

However, given top level encodings of almost zero, the CLT13 multilinear
map has been still open although the message space can be recovered.

At Asiacrypt 2017, Fernando, Rasmussen and Sahai [FRS17] proposed a new
iO scheme over the CLT13 multilinear map. The FRS construction follows a
standard method to construct a branching program obfuscator; 1) randomiz-
ing a given branching program (called a randomized program) 2) encoding a
randomized branching program using cryptographic multilinear maps (called an
obfuscated program). Yet, FRS construction proposed the extra step before the
step 1), called FRS conversion. The ‘FRS conversion’ is a generic conversion from
arbitrary branching program BP into an input zero ‘unpartitionable’ branching
program BP′ while preserving functionality. Since the FRS conversion can be
used regardless of the randomization step, the FRS conversion allows it to be

1 In this paper, we refine the input partitionable property into two concepts; input
partitionable and input zero partitionable. Informally, the definition of input zero
partitionable requires that the output of branching programs should be the zero.
Input partitionability does not have constraints for outputs of branching programs,
which is a relax notion of input zero partitionable. See the Definition 1.1 and 1.2 for
their definitions.
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applied to any iO schemes based on CLT13 multilinear map. Therefore, FRS con-
version serves as an important role in thwarting an input zero partition based
attacks up to date.

In summary, justification of the security of iO schemes with FRS conversion
remains as the open problem.

1.1 This work

In this paper, we present a cryptanalysis of the FRS obfuscation based on the
CLT13 multilinear map.2 Our attacks consist of two steps: 1) recover a plaintext
modulus of CLT13, and 2) cryptanalyze the FRS obfuscation scheme.

The attack only requires a message space of original branching program,
but the message space recovering algorithm proposed by Coron and Notarni-
cola [CN19] is not applicable to the FRS obfuscation with the zerotest parameter
because of the parameter issue. To bridge the gap, we convert a FRS obfuscated
program on message space ZG into a new program on message space ZG0

× ZG
by choosing a small prime integer G0. Moreover this conversion allows to obtain
encodings of zero except for two nonzero slots which include the small message
space G0, and two zerotest parameters. They are used to relax parameter con-
straints of a message space recovering algorithm. We are then able to show that
the FRS obfuscation scheme does not have the desired security.

As an implication, a new attack shows that combining FRS conversion with
any iO schemes based on the CLT13 multilinear map does not improve the se-
curity of these schemes. More precisely, our contributions are as follows:

1. Recover a plaintext modulus of CLT13. The first step is to recover
a plaintext modulus of CLT13. To formally describe the attack condition, we
introduce some parameters.

• α: the bit-length of message space of CLT13
• η: the bit-length of secret primes of CLT13
• n: the number of secret primes of CLT13
• β: the bit-size used in a zerotest parameter of CLT13.
• ν: the bit-size of extraction bits of CLT13
• θ: the number of non-zero plaintext slots of CLT13
• k: the number of CLT13 encodings
• ι: the root Hermite constant of employed lattice reduction algorithm

Then, the algorithm proposed by Coron and Notarnicola [CN19] with a zerotest
parameter recovers a message space as long as

α · θ(1 + 1/k) + ι(k + 1) < ν,

2 Throughout this paper, we consider the FRS obfuscation with one zerotest param-
eter. It is an usual construction of this field.
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where α · θ is the bit size of the message space to recover. Additionally, this
condition can be optimized as

α · θ + 2
√
α · θ · ι+ ι < ν

with k =
√
α · θ/ι.

Unfortunately, in the FRS obfuscation constraints, α has large size because
the scheme performs the evaluation of branching program in a composite mod-
ulus of the product n primes. CLT13 multilinear map only has the relation
ν ≥ α + β + 5 [CLT13, Lem. 3] between α and ν. Therefore there is no guar-
antee that the above condition is always met. Hence, the recovering algorithm
proposed by the paper [CN19] cannot be used directly.

Our key idea is to transform the FRS obfuscated program with a message
space

∏n
i=1 ZGi into a new program of a message space ZG0

×
∏n
i=1 ZGi with

a small integer G0 = O(1). Additionally this conversion allows to obtain two
zerotest parameters and encodings of zero except for two nonzero slots. For
this, we first blow-up a ciphertext modulus from N to x0 := p0 ·N by multiplying
extra prime p0. Moreover, we add another branching program (BP) defined on
G0 = O(1), and encode the program on modulo p0. Applying the CRT on the
FRS obfuscated program and the new encoded program, we can construct a
new program. Then, we can recover a plaintext modulus under the asymptotic
condition

α+ log(G0)

2
+
√

2(α+ log(G0)) ≈ α/2 +
√

2α < ν

using the LLL algorithm. For more details, we refer to Section 4.1.

2. Nullifying the FRS conversion. As the second contribution, we present
our main technique to nullify the FRS conversion. As mentioned above, Coron et
al. [CLLT17] suggested a polynomial time attack when ‘input zero partition-
ability’ holds for given branching programs. The essential way to prevent the
attack used in the FRS obfuscation is to perform encoding between the original
branching program and input zero ‘unpartitionability’ functions in parallel over
the CLT13 multilinear map.

We aim at annihilating the effect of input zero unpartitionability functions.
In other words, this technique leads to obtain evaluations of a randomized pro-
gram over plaintext modulus G1 from evaluations of the obfuscated program
defined over encoding modulus N .

2-1. Cryptanalysis of the FRS obfuscation. As the last contribution, we
show that the FRS obfuscation over the CLT13 multilinear map is not secure
regardless of β. In other words, there exist two functionally equivalent branching
programs P and Q such that for given P and Q and an obfuscated program of
one of them, one can distinguish which one is obfuscated in polynomial time.

By the nullification in the second contribution, we can get a randomized
program defined over G1. As a next step, we propose an algorithm to analyze
the randomized program defined over G1. Hence, we can determine which one
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branching program is obfuscated although we cannot fully recover elements used
in the randomization step.

Furthermore, our attack has an advantage of the class of attackable branching
program compared to previous works. As mentioned before, previous attacks em-
ployed a branching program obfuscation via input ‘zero’ partitionability, which
is formally defined as follows:

Definition 1.1 (Input ‘zero’ partitionablility, [FRS17]) Let v be a vector
in Nt and f : Zv → {0,⊥} be a function. An input zero partition for f of degree
k is a tuple

Ikf = (σ ∈ St, {ai}i∈[k] ⊂ Zu1
, {cj}j∈[k] ⊂ Zu2

)

satisfying ai 6= aj and ci 6= cj for all i, j ∈ [k] with i 6= j and σ(u1||u2) = v
such that for all i, j ∈ [k], f(σ(ai||cj)) should be ‘the zero’.
If any PPT adversary cannot find a tuple Ikf , we say f is input zero unparti-
tionable.

On the other hand, we extend a target class to branching programs having
input partitionablility that is relaxation of the definition of input zero partition-
able;

Definition 1.2 (Input partitionability) For a vector v ∈ Nt, a function f :
Zv → {0,⊥} is input partitionable of degree k if there exists a tuple

Ikf = (σ ∈ St, {ai}i∈[k] ⊂ Zu1 , {cj}j∈[k] ⊂ Zu2)

satisfying ai 6= aj and ci 6= cj for all i, j ∈ [k] with i 6= j and σ(u1||u2) = v.
If any PPT adversary cannot find a tuple Ikf , we say f is input unpartitionable.

We remark that since the output of branching program does not have to be
zero unlike input zero partitionability, any single input branching program is
always converted into input partitionable branching program using the vector-
ization identity

vec(A ·B · C) = (CT ⊗A) · vec(B),

where vec is an operator from an m× n matrix into an mn-dimensional column
vector obtained by stacking the columns below one another. Remark that if the
vectorization identity is used s times to satisfy ‘input partitionability’, then the
dimension of matrices increases exponentially with s.

In addition, we give an example of branching programs in Section 5.2 to show
slightly difference between definitions, and introduce how our attack works.

Even more, our attack is also applicable to the FRS obfuscated program of
multi-input branching programs since any multi-input branching programs are
interpreted as single input branching programs when we fix some inputs.

Counter Measure. There exists a simple countermeasure of our attack, which
actually prohibits recovering a plaintext modulus. As a counter measure, we
consider a repeated BPs to increase θ which is set to be 1 in the original FRS
obfuscation.
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In the FRS obfuscation, the set of branching programs BP := {BP1, · · · ,BPn}
is used once for parallel encoding, but we use it δ times for parallel encoding
construction. In other words, we simultaneously encode δ sets of matrices BP.
Then, θ, the number of nonzero slots, is at least δ. As a result, the parameter
constraints for recovering a plaintext modulus is changed into

αδ + 2
√
αδι+ ι < ν

with k =
√
αδ/ι where the parameters are defined as above. Since δ is indepen-

dent to other parameters, if we set it large, then the above inequality cannot
hold. Therefore, one cannot recover a plaintext modulus.

Open Questions. We leave some open problems.

1. The FRS conversion is still applicable to the branching program iO based
on composite order GGH13 multilinear map. Can our attack be extended to
the case? It is not easy since adversaries require to find a short element of a
plaintext space which is an ideal of ring, not enough to recover a plaintext
space.

Organization. In Section 2, we introduce preliminaries related to the iO, ma-
trix branching program, tensor product and CLT13 multilinear map. We briefly
describe a FRS obfuscation in Section 3, and present our attack through two
Sections 4 and 5.

2 Preliminaries

Notations. We use the lower bold letters as vectors, and capital letters as
matrices. Sometimes we use ‘bold’ capital letters to denote matrices. Let N be
the set of natural numbers and Z the set of integers, respectively. For n ∈ N, [n]
and Sn denote a set of natural numbers {1, 2, · · · , n} and the set of permutations
from [n] to [n], respectively. The disjoint union of two sets X and Y are denoted
by X

⊔
Y . For q ∈ N, we denote Zq by the set Z

⋂
(−q/2, q/2] and use the

notation [x]q to denote the integer in Zq congruent to x mod q. Expanding it to
a vector v, [v]q is denoted by ([vi]q)i, where v = (vi)i.

For distinct primes p1, · · · , pt and integers x1, · · · , xt, CRT(p1,··· ,pt)(x1, · · · , xt)
is denoted by the element m ∈ Z∏

i pi
such that m ≡ xi (mod pi) for all i ∈ [n].

If the list and indices of pi’s and xi’s are clear, we use an abbreviated nota-
tion CRT(pi)(xi). The notation (a||b) means a concatenation of vectors a and
b. Similarly. we denote he concatenation of matrices A and B by [A||B] For a
vector x ∈ Nn, we denote by Zx by the set

∏n
i=1 Zxi where x = (x1, · · · , xn).

For each element (m1, · · · ,mn) ∈
∏n
i=1 Zxi , the vector can be regarded as an

integer m ∈ Z∏n
i=1 xi

since
∏n
i=1 Zxi ' Z∏n

i=1 xi
when xi’s are relatively primes.

We sometimes abuse these representations.
To denote a matrix notation, we borrow (ai,j)i,j for a matrix whose (i, j)-

component is ai,j . For two matrices A,B, we denote

(
A

B

)
by diag(A,B).
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Similarly, diag(a1, · · · , an) is denoted by an n × n matrix whose i-th diagonal
entry is ai, but other entries all zero. Additionally, we denote the n× n identity
matrix by In.

When given vectors {vi}1≤i≤n, we denote a linear space generated by the
vectors over S ∈ {R,Z} by 〈v1, . . . ,vn〉S .

2.1 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-to-input
function and several matrix chains.

Definition 2.1 A width w, length h, and a s-ary matrix branching program P
over an `-bit input is a set which consists of index-to-input maps {inpµ : [h] →
[`]}µ∈[s], sequences of matrices, and two disjoint sets of target matrices

P = {P0 ∈ Zw×1, Ph+1 ∈ Z1×w, (inpµ)µ∈[s], {Pi,b ∈ {0, 1}
w×w}i∈[h],b∈{0,1}s}.

The evaluation of P on input x = (xi)i∈[`] ∈ {0, 1}` is computed by

P (x) =

{
0 if P0 ·

∏h
i=1 Pi,(xinpµ(i))µ∈[s]

· Ph+1 = 0

1 if P0 ·
∏h
i=1 Pi,(xinpµ(i))µ∈[s]

· Ph+1 6= 0
.

If s = 1 and s = 2, then they are called a single-input BP and a double-input
BP, respectively. Similarly, if s > 3, it is called a multi-input BP. Remark that
any NC1 circuit can be expressed in the form of the BP using the Barrington’s
theorem.

2.2 Indistinguishability Obfuscation

Definition 2.2 (Indistinguishability Obfuscation) A probabilistic polyno-
mial time machine O is an indistinguishability obfuscator for a circuit class
C = {Cλ} if the following conditions are satisfied

• For all security parameters λ ∈ N, for all circuits C ∈ Cλ, for all inputs x,
the following probability holds:

Pr [C ′(x) = C(x) : C ′ ← O(λ,C)] = 1.

• For any p.p.t distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ Cλ, C0(x) = C1(x) for all inputs x implies

|Pr [D(O(λ,C0)) = 1]− Pr [D(O(λ,C1)) = 1] | ≤ α(λ).

Generally, direct approach of the constructing iO mainly consists of three parts:
1) Convert the circuits to matrix branching programs, 2) Randomize these ma-
trices, and 3) Obfuscate them using cryptographic multilinear maps [GGH13a,
CLT13,GGH15].
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2.3 Tensor product and vectorization

For any two matrices A = (aij)i,j ∈ Zm×n and B ∈ Zp×q, a tensor product of
matrices A⊗B is defined as a mp× nq integer matrix such that

A⊗B :=


a11 ·B · · · a1m ·B

...
. . .

...

an1 ·B, · · · , anm ·B

 .

Consider a matrix C ∈ Zn×m whose i-th column is denoted by ci. Then, vec(C)
is a mn-dimensional vector such that

vec(C) =


c1

c2
...

cm

 ∈ Zmn.

Then, for appropriate matrices A,B and C, the identity holds [Lau05,CLLT17]
that

vec(A ·B · C) = (CT ⊗A) · vec(B).

Throughout this paper, we call it ‘the vectorization identity’.

2.4 CLT13 multilinear map

Coron et al. suggested a candidate of multilinear map over the integers [CLT13].
In this section, we briefly overview the CLT13 multilinear map. Any encodings
of the CLT13 multilinear map has the level and one can check whether the
message of top-level encoding is zero or not. To see more details, we refer the
readers to [CLT13].

In the setting of CLT13, the message and encoding space areM =
n∏
i=1

Z/〈Gi〉

and E = Z/〈
n∏
i=1

pi〉 '
n∏
i=1

Z/〈pi〉, respectively. Here the integers Gi and the large

primes pi are secret and the
n∏
i=1

pi hard to factorize is a public parameter. For

the sake of simplicity, we abbreviate the
n∏
i=1

pi as N and N/pi as p̂i for each i,

respectively. An encoding of m = (m1, · · ·mn) ∈ M at level set L = {k} is of
the form:

encL(m) = CRT(pj)

(
rj ·Gj +mj

zk

)
,

where rj are small integers, and zk is a secret mask. We simply denote enck(m)
instead of enc{k}(m). To support a κ level multilinearity, κ distinct secret masks
{zi}1≤i≤κ are required.
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When the summation of two same level encodings or product of two dif-
ferent level encodings has the denominator of small size, we hold encL(m1) +
encL(m2) = encL(m1 + m2) and encL(m1) · encL′(m2) = encL

⊔
L′(m1 ·m2),

where the operation of vectors is done component wisely. We simply denote a top
level encoding as encκ(m) at a top level set [κ]. Additionally the CLT scheme
provides a zerotest parameter, which is defined by:

pzt =

 n∑
j=1

[
hj ·

∏κ
k=1 zk
Gj

]
pj

· p̂j


N

,

where hj are small integers. We remark that original paper [CLT13] gives sev-
eral zerotest parameter to check whether the message of encoding is zero vec-
tor or not. However, in this work, we only consider iO schemes with one ze-
rotest parameter which is an usual construction. For a top level encoding of
zero encκ(v) = CRT(pj)(rj ·Gj/

∏
i zi), a zerotest value is defined by product

between the top level encoding and a zerotest parameter in modulo N . Then it
gives as follow:

[pzt · encκ(v)]N =

 n∑
j=1

[
hj ·

∏κ
i=1 zi
Gj

]
pj

· p̂j ·
[
rj ·Gj∏κ
i=1 zi

]
pj


N

=

 n∑
j=1

hj · rj · p̂j


N

=

n∑
j=1

hj · rj · p̂j

We note that since the term rj · hj is much smaller than pj , the last equality
holds over Z and the result is also very small compared to N . More precisely,
for the bit-size of extraction parameter ν, the size of zerotest result is less than
N · 2−ν−λ−2 if encκ(v) is an encoding of zero.

Parameters. We borrow several parameters of CLT13 scheme used to construct
the FRS obfuscation. They will be used in Section 5 for introducing the attack.
For the security parameter λ, current parameters are set as follows.

• ρ : the bit-size of fresh randomness; satisfy ρ = Ω(λ) to be robust against
brute-force attack.
• η : the bit-size of secret primes pi’s; satisfy η = Ω(λ2) for preventing factoring

attack for N .
• n : the number of plaintext slots. Namely, n = ω(η log λ)
• β : the bit-size of hi’s in the zerotest parameter pzt.
• α : the bit-size of Gi’s; takes α = n · λ.3

• ρf : the bit-size of maximum randomness at a top level κ; satisfy κ(µ+ ρ+
α+ 2 log2 n+ 2) + ρ+ 1 with µ = Ω(λ).
• ν : the bit-size of most significant bits to extract set to ν = η−β−ρf−λ−3.

Then, ν ≥ α+ β + 5. (See the Lemma 3, in the [CLT13])
3 It is a mainly different part from the original parameter constraints of CLT13.
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3 Fernando-Rasmussen-Sahai obfuscation

At Asiacrypt 2017, Fernando, Rasmussen and Sahai [FRS17] gave a new iO
scheme over CLT13 multilinear map immune to zeroizing attacks. They pro-
posed a general transformation, called ‘FRS conversion’, by suggesting “stamp-
ing functions” for preventing the input zero partition attack. Hence, most of the
iO schemes with FRS conversion are robust under the current input zero parti-
tion attacks. In this section, we give a high-level description of FRS obfuscation.
For a full description, we refer to the paper [FRS17].

First, we borrow a definition of a stamping function H in [FRS17].

Definition 3.1 (Stamping function, [FRS17]) Let v1 ∈ Nt1 ,v2 ∈ Nt2 be
vectors and v denote by the concatenation of v1 and v2. For F : Zv1

→ {0, 1}
and H : Zv1 → Zv2 , construct a function F ′ : Zv → {0,⊥} as follows:

F ′(x1||x2) =

{
F (x1) if H(x1) = x2

⊥ Otherwise.

where ⊥ symbolizes any nonzero outputs. We say that H secures F if F ′ is input
unpartitionable. This H is called a stamping function.

Note that FRS obfuscation presented three types of initiations for stamping
functions. However, we do not consider the concrete stamping functions because
our attack only requires a condition that H = (H1||H2|| · · · ) is the concatenation
of independent functions Hi’s, which captures current candidates of stamping
functions.

We briefly overview how the FRS conversion works. For simplicity, we assume
single-input BP and one-to-one function inp. Our goal is to construct a new BP
BP′ from the original BP and a stamping function H which satisfies

– BP′ takes as input of the form (u||v), where u is an input of BP.
– checks whether H(u) = v; if H(u) = v, returns BP(u). Otherwise, it outputs

some nonzero values.

Securing a branching program. Suppose that we have a length-` branching
program BP over {0, 1}` and a stamping function H : Zv1 → Zv2 with v1 =
{0, 1}` and v2 ∈ Nt, can be represented by t BPs with the same length ` + t.
For a target BP = ({Mj,b}j∈[`],b∈{0,1},M0,M`+1, inp) with a left (right) bookend
vector M0 (M`+1), we pad t identity matrices, and redefine a BP and an input
function in order to identify the length of ` + t BPs. We call the new input
function inp′.

Thus, we can assume that there are n := t + 1 BPs whose lengths are ` + t
denoted by {BPi}ni=1, which is called pre-branching programs. For convenience,
we ordered BP1 as the original BP, and others comes from a stamping functionH.
More formally, let BPi = ({Mi,j,c}j∈[`+t],c∈vj ,Mi,0,Mi,`+t+1, inpi) where Mi,0’s
(Mi,`+t+1’s) are left (right) bookend vectors, respectively. In order to implement
parallel evaluating, we have following constraints about a stamping function H.
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• Every BPi has the same length `+ t for all i ∈ [n] and takes inputs from Zv.

• All matrices of BPi have the same width. If not, we should manipulate the
size of matrices by padding the identity matrices.

• For each i ∈ [n], all matrices and vectors of BPi are defined over ZGi where
Gi is the product of n primes gi,j .

4 Then, the plaintext space of CLT13
multilinear map is

∏n
i=1 ZGi .

• Every BPi shares the same input function; for all 2 ≤ i ≤ n, inpi = inp′.

Then, a new branching program BP′ = ({M ′j,c}j∈[`+t],c∈vj ,M ′0,M ′`+t+1, inp
′)

is defined over the ring ZG := Z∏n
i=1Gi

'
∏n
i=1 ZGi such that

• M ′j,c ≡ Mi,j,c (mod Gi) for all i ∈ [n], j ∈ [` + t] and c ∈ Zvj . Similarly, we
let M ′0 ≡Mi,0 (mod Gi) and M ′`+t+1 ≡Mi,`+t+1 (mod Gi) for all i ∈ [n].

• Evaluating BP′ at x ∈ Zv is the product of

M ′0 ×
`+t∏
j=1

M ′j,xinp′(j)
×M ′`+t+1 (mod G).

Note that BP′(x) is the zero if and only if Mi,0 ·
∏`+t
j=1Mi,j,xinp′(j) ·Mi,`+t+1

(mod Gi) is the zero for all i ∈ [n].

Next, the branching program is randomized by employing Kilian style ran-
domization and multiplying extra scalars while preserving functionality. We will
denote M̃ by a randomized matrix of M . We defer a description of randomized
matrices in Section 5.1.

Last, the randomized matrices are entry-wisely encoded via CLT13 scheme.
Note that for each element m ∈ Z∏n

j=1Gj
in a matrix M , an encoding of m at

level set {L} is an integer in ZN of the form

encL(m) ≡ CRT(pj)

(
mj +Gjrj

zL

)
mod N,

where mj ≡ m mod Gj , rj and zL’s are integers derived from CLT13 scheme.
As a natural extension, for a matrix M = (Mi,j)i,j (resp. a vector M = (Mi)i),
we denote encL(M) by (encL(Mi,j))i,j (resp. (encL(Mi))i).

Let κ be the multilinearity level which is set to (`+t)+2. Then, any matrices

M̃ ′i,c in BP′ are encoded as a enci(M̃ ′i,c). The matrices M ′0 and M ′`+t+1 can be
similarly encoded.

Eventually, a FRS obfuscation scheme outputs

O = {{encj(M̃ ′j,c)}j∈[`+t],c∈vj , enc0(M̃ ′0), enc`+t+1(M̃ ′`+t+1), inp′, pzt},

where pzt is the zerotest parameter of CLT13. Note that the evaluation on input
x of the FRS obfuscation consists of two process. The first process is to compute

4 Here, we assume Gi’s are relatively primes.
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a product of elements

pzt · enc0(M̃ ′0)×
`+t∏
j=1

encj(M̃ ′j,xinp′(j))× enc`+t+1(M̃ ′`+t+1) (mod N).

Throughout the paper, we call the output of the first process pre-evaluation value
on x. The second one is to check the size of pre-evaluation value. If the size is
small, then the obfuscated program outputs the zero. Otherwise, it outputs 1.

4 Recover a plaintext modulus

In this section, we describe how to recover a plaintext modulus of CLT13. The
main part of this section is to mitigate attack conditions of [CN19] for recover-
ing a message space ZGi by converting a FRS obfuscated program into a new
program.

More specifically, Coron and Notarnicola proved that if parameters (asymp-
totically) satisfy α+2

√
α < ν with the bit-size of plaintext space α and extraction

bit ν, then a plaintext space ZG1
can be recovered. 5 However, the extraction bit

ν only needs a condition α ≤ ν, so we cannot directly use the result of [CN19].
To overcome this gap, we add one more message slot ZG0

of α′(� α)-bit. More-
over we employ two zerotest parameters, and encodings of zero except for two
nonzero slots, which corresponds to the message slot ZG0 and target message
space ZG1

.
As a result, the constraint to recover an integer G0 · G1 is changed to√

2(α+ α′)+(α+α′)/2 < ν. By setting the O(1)-bit integer G0, one can recover
the plaintext modulus G1 in polynomial time under the asymptotic condition√

2α+α/2 < ν. Next we exploit the integer G1 to cryptanalyze FRS obfuscation
scheme. We describe the attack in Section 5.

4.1 Program conversion

Suppose we have two BPs P and Q and one obfuscated program O(M) for
M = P or Q. In this section, we describe how to convert the obfuscated program
into a new program. According to the conversion, a message space

∏n
i=1 ZGi is

changed into ZG0 ×
∏n
i=1 ZGi with an α′-bit prime integer G0. This conversion

additionally allows to obtain 1) two zerotest parameters and 2) CLT13 encodings
of two nonzero message slots of ZG0

× ZG1
. Then, this conversion mitigates the

parameter constraints of the message space recovering algorithm [CN19]. The
detailed algorithm is as follows.

We assume a given BP P is of the form:

P = ({Pj,c}j∈[`],c∈vj , P0, P`+1, inp).

5 The paper [CN19] stated a condition α < ν when adversary has one zerotest param-
eter. However, its actual condition is (1 + ε)α < ν for small ε. On the other hand,
the paper also suggested an attack when multiple zerotest parameters are given, but
all iO schemes usually employed only one zerotest parameter.
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From the program, we define a new BP BP0:

BP0 = ({P ′j,c}j∈[t+`],c∈vj , P
′
0, P

′
t+`+1, inp

′),

where P ′j,c, inp′, P0, and P`+1 are exactly the same to the Pj,c, inp, P ′0, and

P ′t+`+1 for j ∈ [`]. If j > `, P ′j,c and inp′ are identity matrix and identity
function, respectively. Let BP = {BP1, . . . ,BPn} be a pre-branching program
O(M) of in above section. Then, for input x such that BP1(x) 6= 0 and BPi(x) =
0 for all 2 ≤ i ≤ n, this new BP, BP0 and the obfuscated program O(M) are of
the same functionality.

Let G0 and p0 be α′(< α)-bit, and η-bit prime integers which correspond
to a message space, and an encoding space modulus of CLT13, respectively.
We then mimic the randomization and CLT13 encoding procedures of the FRS
obfuscation on a message space ZG0

and an encoding space Zp0 to generate an
obfuscated program O(BP0) with two zerotest parameters p′zt,b = h0,b ·(G−10 mod
p0), where h0,b’s are β-bit integers. Clearly, O(BP0) and O(M) share the same
width, length, inp′, and the functionality on the input x.

As the last step, we compute a new program O(M ′) by applying the CRT
to O(BP0) and O(M). To generate the new program, we explain how to design
input function, zerotest parameter, and a set of matrix, respectively. Since the
input function inp′ is the same, an input function of new program also has the
same thing. In the case of zerotest parameter, the two zerotest parameters of
O(BP0) lead to obtain two zero parameters p′zt,b as follows:

pzt,b = pzt · p0 + p′zt,b ·N for b ∈ {0, 1}.

For a set of matrices, we applied the CRT to two matrices that share the same
index. Through the process mentioned above, we can get a new program O(M ′)
defined on a new encoding space N ′ = N · p0.

Intuitively, the new program can be regarded as an obfuscated program of
BP′ = {BP0,BP1,BP2, · · · ,BPn} with two zerotest parameters pzt,0 and pzt,1.

4.2 Recover a plaintext modulus

In this section, we recall how to apply the message recovering algorithm to
the converted obfuscation scheme generated in Section 4.1. Here we exploit two
zerotest parameters pzt,0, pzt,1 to recover a message space ZG1

of an encoded
original program. The whole process exactly coincides with the original Coron et
al. algorithm [CN19]. However we can control the size of G0 without limitation.
It leads us to get a more improved result compared to the previous result.

Throughout this section, we use a notation N ′ and p̂′i to denote N · p0 and
N ′/pi, respectively. Let BP′ = {BP0,BP1,BP2, · · · ,BPn} be the pre-branching
program described in Section 4.1. Now, we only consider an input x such that
BP0(x) = BP1(x) = 1 and BPi(x) = 0 for all 2 ≤ i ≤ n for obtaining encodings
of almost zero.
{wj,b}1≤j≤k,0≤b≤1 is denoted by the set of pre-evaluation values of O(P ′)

with a zerotest parameter pzt,b, on such an input x of the obfuscated program. It

13



will be explained later how to set the number of samples k. By the construction,
it can be written as;

wj,b = h0,b · (G−10 mod p0) · p̂′0 · m̃0,j + h1 · (G−11 mod p1) · p̂′1 · m̃1,j

+ h0,b · r0,j · p̂′0 +

n∑
i=1

hi · ri,j · p̂′i mod N ′,

where ri,j ’s are ρf -bit integers and m̃0,j , m̃1,j are non-zero integers. For simplic-
ity, letting wb = (wj,b)

T
j , ζ0,b = h0,b·(G−10 mod p0)·p̂′0, ζ1 = h1·(G−11 mod p1)·p̂′1,

m̃θ = (m̃θ,j)
T
j with θ = 0, 1, and rb = (h0,b · ri,j · p̂′0 +

∑n
i=1 hi · ri,j · p̂′i)Tj , we

observe the following vector equation;

wb = ζ0,b · m̃0 + ζ1 · m̃1 + rb mod N ′ ∈ Zk.

Note that the size of each vector rb in the above equation is approximate to the
bit-size of ρR = logN ′ − ν.

Our goal is to recover a modulus G0 ·G1 by employing the two vector wb. It
allows us to recover an original plaintext modulus G1 because we already know
the integer G0. Now we consider a lattice

L1 := {((B·u1)‖u2) ∈ Zk+2 | 〈(u1‖u2), (wb‖eb)〉 ≡ 0 mod N ′ for all b ∈ {0, 1}},

where B = 2ρR is a scaling factor and e0 = (1, 0) and e1 = (0, 1) are standard
unit vectors in Z2.

We claim that the lattice L1 contains k-linearly independent short vectors
and these k-short vectors can be used to recover the message space ZG1

.
First of all, in order to show the lattice L1 contains k-short vectors, we

consider the following lattice

L2 := {f ∈ Zk | 〈f , m̃0〉 mod G0 ≡ 0, and 〈f , m̃1〉 mod G1 ≡ 0}.

Then, we expect that the lattice L2 includes k-linearly independent vectors
{f j}kj=1 of norms ≤ (G0 · G1)1/k by assuming Gaussian Heuristic on the lat-

tice L2, since detL2 = G0 ·G1
6 and rank(L2) = k.

These short vectors guarantee the existence of short vectors of the lattice L1.
Let 〈f j , m̃θ〉 be of the form cj,θ ·Gθ for some integer cj,θ ∈ Z for each 1 ≤ j ≤ k
and 0 ≤ θ ≤ 1. By the definition of ζi,b and ζ1, it holds that G0 · ζ0,b = h0,b · p̂′0
and G1 · ζ1 = h1 · p̂′1. We then observe that for all b ∈ {0, 1},

〈(f j‖ −
1∑
b=0

(〈f j , rb〉+ cj,0 · h0,b · p̂′0 + cj,1 · h1 · p̂′1) · eb), (wb‖eb)〉

= 〈f j ,wb〉 − 〈f j , rb〉 − cj,0 · h0,b · p̂′0 − cj,1 · h1 · p̂′1
= 〈f j , ζ0,b · m̃0〉+ 〈f j , ζ1 · m̃1〉+ 〈f j , rb〉 − 〈f j , rb〉 − cj,0 · h0,b · p̂′0 − cj,1 · h1 · p̂′1
6 Here, we assume that gcd(m̃11, · · · , m̃1k, G0 ·G1) = 1.
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= 0 mod N ′.

It implies that f̂ j :=
(
B · f j‖ −

∑1
b=0(〈f j , rb〉+ cj,0 · h0,b · p̂′0 + cj,1 · h1 · p̂′1) · eb

)
is contained in the lattice L1. In terms of size, each term of the vector asymptoti-
cally has the size of norms ≤ 2ρR ·‖f j‖. In other words, the lattice L1 contains at

least k linearly independent vectors f̂ j of norms (asymptotically) ≤ 2ρR · ‖f j‖.
Then, by applying the LLL algorithm with an approximate factor 2k/2 to the

lattice L1, we can obtain k linearly independent vectors f ′j = (B · tj,1‖tj,2) such
that

‖f ′j‖ ≤ 2k/2 · 2ρR · ‖f j‖ ≤ 2k/2 · 2ρR · (G0 ·G1)1/k

for each 1 ≤ j ≤ k.

Now we show that {tj,1}1≤j≤k is a basis of the lattice L2. Therefore, it has
a determinant of G0 ·G1. To achieve it, we consider another lattice L3 which is
the set of vectors of the form (C0 · u0, C1 · u1||u2) ∈ Z4 such that

〈((u0, u1)||u2), ((ζ0,b, ζ1)||eb)〉 ≡ 0 mod N ′ for all b ∈ {0, 1},

where C0 = 2ρR−α
′
, and C1 = 2ρR−α are scaling factors.

We claim that a short vector f ′j guarantees a short vector of L3. A lattice L3

has rank 4 and determinant C0 · C1 ·N ′2. Then, the lattice L3 contains a short
vector

s0 = (C0 ·G0, 0,

1∑
b=0

−h0,b · p̂′0 · eb) ∈ Z4

s1 = (0, C1 ·G1,

1∑
b=0

−h1 · p̂′1 · eb) ∈ Z4.

These two vectors has the asymptotic size of 2ρR . So it implies that λ1(L3) ≤
λ2(L3) ≤ 2ρR . In addition, since

∏4
i=1 λi(L3) is larger than detL3, it holds that

C0 · C1 ·N2/22ρR ≤ λ3(L3)2

under the assumption that λ3(L3) ≈ λ4(L3). Therefore, if there exists a lattice

point u ∈ L3 such that ‖u‖ ≤ N ′/2
α+α′

2 , then u is a linear summation of s0
and s1.

On the other hand, for a lattice point f ′j = (B · tj,1‖tj,2) ∈ L1 and all
b ∈ {0, 1}, it holds that

0 ≡ 〈(tj,1||tj,2), (wb||eb)〉 mod N ′

= ζ0,b · 〈tj,1, m̃0〉+ ζ1 · 〈tj,1, m̃1〉+ 〈tj,1, rb〉+ 〈tj,2, eb〉

≡ 〈((ζ0,b, ζ1)||eb), (〈tj,1, m̃0〉, 〈tj,1, m̃1〉)||
1∑
i=0

(〈tj,1, rb〉+ 〈tj,2, eb〉) · ei)〉 mod N ′.
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Thus the lattice L3 contains a vector

f̃ ′j = ((〈tj,1, m̃0〉, 〈tj,1, m̃1〉)‖
1∑
i=0

(〈tj,1, rb〉+ 〈tj,2, eb〉) · ei)

derived from f ′j . As previously, if the short vector f̃ ′j satisfies an inequality

‖f̃ ′j‖ ≤ N ′/2
α+α′

2 , (1)

the vector f̃ ′j is a linear summation of two vectors s0 and s1. We then hold
that 〈tj,1, m̃θ〉 becomes a multiple of Gθ. Namely, 〈tj,1, m̃θ〉 ≡ 0 mod Gθ. Since
the set of vectors {tj,1}1≤j≤k is independent, it would be a basis of a lattice L2.
Then, by computing the determinant of L2, we can recover the integer G0 ·G1,
and G1.

In summary, a vector f̃ ′j obtained from a vector f ′j of the lattice L1, satisfying
the inequality (1), allows us to recover a basis of the lattice L2 and G0 · G1. It
is clear that each size of |〈tj,1, m̃b〉|, |〈tj,1, rb〉|, and |〈tj,2, eb〉| are bounded by
2k/2 · 2ρR · (G0 ·G1)1/k.

Subsequently, f̃ ′j also has the asymptotically same size with the vector f ′j .
Then, the above condition to find a basis of L2 can be simplified as:

ρR + (α+ α′)/k + k/2 < log(N ′)− (α+ α′)/2.

Replacing the number of samples k, ρR, and α′ with
√

2(α+ α′), log(N ′) − ν,
and O(1), respectively, gives a concise approximate bound

√
2α+ α/2 < ν.

As a result, we have the following result.

Proposition 4.1 Let n, α ∈ N and Gi be distinct α-bit integers for 1 ≤ i ≤
n. Let ν be the number of bits that can be extracted from zerotest in CLT13
multilinear map. Given encodings where the corresponding plaintexts have only
one nonzero components in modulo G1, one can recover the plaintext modulus
G1 in polynomial time when it holds:

√
2α+ α/2 < ν.

This gives a factor 2 improvement compared to the bound described in Propo-
sition 4 of Coron et al paper [CN19]. By CLT13 parameter condition described
in Section 2.4, the condition of proposition 4.1 is always satisfied. Thus, a secret
plaintext modulus ZG1 can be recovered.

Remarks. Generally, instead of one space ZG0
, we can add more extra branching

programs on
∏m
i=1 ZG′

i
of O(1)-bit prime integers G′i. Then we can obtain a more

improved result: √
2α+ α/(m+ 1) < ν.
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5 Cryptanalysis of the FRS obfuscation

In this section, we present two cryptanalyses of the FRS obfuscation. As previ-
ously, we assume that the original BP is encoded under the message space ZG1

in FRS obfuscation and the message space is already recovered.
Suppose there exists two equivalent BPs P and Q and one obfuscated pro-

gram O(M̃) for M = P or Q. Our goal is to distinguish whether the program
M is P or Q. The common strategies throughout the section are to nullify the
FRS conversion. In other words, we convert an obfuscated program defined on
ZN into a randomized program defined on ZG1

.

5.1 Cryptanalysis of the FRS obfuscation

The distinguishing algorithm consists of two steps: 1) Nullify the stamping func-
tion using the message space, and 2) Determine the obfuscated programs whether
M is P or Q as a final step.

Since every BP can be converted into an input partitionable BP, so we assume
that we have an input partitionable BP P without loss of generality. Moreover,
the program P takes as input x ∈ Zv for a vector v = (vi), BPs {BPi}2≤i≤t+1

from a stamping function H, and the obfuscated program O(P ).
For convenience of description, we assume a FRS converted BP P ′ is given

rather than an original program P .

P ′ = ({P ′j,c}j∈[t+`],c∈vj , P
′
0, P

′
t+`+1, inp

′)

O(P ) = ({encj(P̃ ′j,c)}j∈[t+`],c∈vj , enc0(P̃ ′0), enct+`+1(P̃ ′t+`+1), inp′),

where P̃ ′j,c are randomized matrices of P ′j,c. Note that P ′j,c is of the form

diag

(
αj,cK

−1
j−1

(
P ′j,c

Rj,c

)
Kj , α

′
j,cK

′−1
j−1

(
I

R′j,c

)
K ′j

)
,

where {αj,c, α′j,c}, Kj ,K
′
j are randomly chosen scalar bundlings and invertible

matrices, respectively. Note that there are some constraints on randomly chosen
scalars and invertible matrices to preserve its functionality;

P ′0 ×
t+∏̀
j=1

P ′j,xinp(j)
× P ′t+`+1 = 0 ⇐⇒ P̃ ′0 ×

t+∏̀
j=1

P̃ ′j,xinp(j)
× P̃ ′t+`+1 = 0.

Now, we give a technique how a stamping function nullifies in the FRS ob-
fuscation scheme and determine the obfuscated program. More precisely, we
describe a relation when P and O(P ) are given; if we have P and O(Q), then
it may not have any relations.

Step 1: Nullify the stamping function. Suppose we know the plaintext
modulus G1. For a vector x ∈ Zv, let w(x) be the product of

enc0(P̃ ′0)×
t+∏̀
j=1

encj(P̃ ′j,xinp(j)
)× enct+`+1(P̃ ′t+`+1) (mod N).
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Then, we observe w(x) can be rewritten as CRT(pi)

(
ri ·Gi + m̃i∏

k zk

)
for some

integers ri, where m̃i = P̃i,0 ×
∏t+`
j=1 P̃i,j,xinp(j)

× P̃i,t+`+1 (mod Gi).
Now, we evaluate pzt · w(a‖b) (mod N) whenever H(a) = b and a nonzero

m̃1. Here, each m̃i for 2 ≤ i ≤ t in the evaluation equals to zero from the fact
H(a) = b. Furthermore, the zerotest value can be regarded as

h1 · p̂1 · (m̃1/G1 mod p1) +

t∑
i=1

hi · p̂i · ri (mod N).

Multiplying G1 by the above equation in modulus N , then we have an integer
value

h1 · p̂1 · m̃1 +

t∑
i=1

G1 · hi · p̂i · ri.

if |G1·pzt·w(a‖b) mod N | < N/2. Note that it holds under the current parameter
setting; due to |pzt · w(a‖b)| < N · 2−ν−λ−2 and log2 |G1| ≤ α.

Eventually, by taking modulus G1 we obtain h1 · p̂1 · m̃1 mod G1, which is
only related to evaluation of BP P ′ at a in ZG1 . In other words, this value does
not depend on the value of {BPi}2≤i≤t at all.

Step 2: Determine the obfuscated program. Suppose a given BP P ′ over
v = ({0, 1}`||v2) ∈ Z`+t satisfies a following structure: {P ′j,c (mod G1)}j,c =

{P1,j,c}j,c has an input partition. Note that {P1,j,c}j,c is defined over {0, 1}`.
More formally, there are partitions PX1

, PX2
and PX3

satisfying

1. {P1,j,c}j,c = PX1

⊔
PX2

⊔
PX3

2. P1,j,c ∈ PXk for all j ∈ Xk with respect to {0, 1}` = σ(X1||X2||X3) with
X2 = {0, 1} for some permutation σ ∈ S`.

Let us denote W (a) by [[G1 · pzt ·w(a‖b)]N ]G1 for H(a) = b. For sufficiently
many xi ∈ X1,yj ∈ X2, and zk ∈ X3, by employing the vectorization identity,
we can construct two invertible matrices W 0 and W 1 such that

W 0 = (W (xi‖0‖zk))i,k = A ·B0 · C
W 1 = (W (xi‖1‖zk))i,k. = A ·B1 · C,

where A and C are matrices related only to PX1
and PX3

, respectively. Similarly
B0 and B1 are matrices calculated only by PX2 . Then, the matrix Bb for b ∈
{0, 1} can be represented by tensor product of matrices {P̃ ′1,j,b}, where j is a

location of X2 in {0, 1}`. For simplicity, we denote it as Bb = A(P̃ ′1,j,b) for some
function A(·).7

Since a block matrix P̃ ′1,j,c contains a matrix of P1,j,c up to constant multipli-
cations, and the tensor product of block matrices is computed independently for
each block, the set of eigenvalues ofB1·B−10 contains that ofA(P1,j,1)·A(P1,j,0)−1

7 Note that we know the function A(·).
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up to constant multiplication. Thus, the set of eigenvalues of W 1 ·W−1
0 also

contains the set of eigenvalues of A(P1,j,1) · A(P1,j,0)−1.
Let E = {ei}i be the set of eigenvalues of W 1 ·W−1

0 , and E ′ = {e′i}i the set of
eigenvalues of A(P1,j,1) ·A(P1,j,0)−1. We then consider the set Eh := {E/eh}eh∈E
and E ′h := {E ′/e′h}e′h∈E′ which mean we divide all elements in E and E ′ by a fixed
eh and e′h, respectively. Then, there exists a pair (h, h′) such that E ′h′ ⊂ Eh.

Therefore, if any adversary has O(M), P and Q, they can determine whether
M is P or Q by computing the eigenvalues of W 1 ·W−1

0 , A(P1,j,1) ·A(P1,j,0)−1,
and A(Q1,j,1) · A(Q1,j,0)−1. Otherwise, O(Q) and P are given, eigenvalues do
not have any relations.

Remarks. For the simplicity, we describe our attack on a special BP P ′ (mod G1)
which has three partitions PX1

, PX2
and PX3

. However, it is always possible to
repeatedly use the identity about tensor product and vectorization: vec(F1 ·F2 ·
F3) = (FT3 ⊗ F1) · vec(F2) for some corresponding matrices F1, F2 and F3. (See
Section 2.3.) Thus any BP can be regard as BP with input partitionable. The
difference seems to be minor, but it is able to extend attackable BP ranges.

As an example, a BP described in the next Section 5.2 is input partitionable,
not input zero partitionable, and an obfuscated program of the BP of example
has not been cryptanalyzed. However, our attack still works.

We additionally remark that our attack is also applicable to multi-input BPs
unlike the previous paper [CLLT17] since every multi-input BPs can be inter-
preted as single-input BPs when we fix some inputs. For example, if a double-
input BP {Mi,b1,b2}b1,b2∈{0,1} is given, it can be written as a single input program
when we fix b2 is always the zero for all i and b1.

Parameters. In the whole attack, there are two parameter constraints. One is
the |G1 · pzt · w(a‖b) mod N | < N/2, and the other comes from computing a
message space ZG1

.
As stated in the preliminaries 2.4, pzt ·w(a‖b) mod N is less than N ·2−ν−λ−2

with the bit-size of output of extraction ν. Moreover, since log2 |G1| = α is
usually set to be smaller than ν, |G1 · pzt · w(a‖b) mod N | < N/2 always holds
for current parameter. (See Section 2.4 and 4.2.)

Time Complexity. If the identity is used s times to find input partitions
{0, 1}` = σ(X1||X2||X3) for some permutation σ ∈ S`, then the matrix di-

mension of {W i}i∈{0,1} is at most d2
s

where d is the dimension of encj(P̃ ′j,c)
for all j, c. The complexity of whole attack process is dominated by computing
eigenvalues of matrix W 0 ·W−1

1 . Therefore, it implies that when the parameter
s is fixed as a small integer, it is polynomial time. Compared to the previous
attack [CLLT17], the time complexity is the same.

5.2 An example for our attack

In this section, we describe an example which is input partitionable BP, but not
input zero partitionable. We first introduce why a BP P is input partitionable.
Moreover, we describe how our attack works on this example.
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Let us consider a BP P with identity input function inp.

P = ({Pj,b}j∈[5],b∈{0,1}, P0 = (0, 1), P6 = (1, 0)T , inp)

Pi,b =



(
1 0

0 1

)
,

(
1 0

0 1

)
,

(
1 0

0 1

)
,

(
2 0

0 1

)
,

(
1 0

0 1

)
(

0 1

1 0

)
,

(
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 2

1 0

)
,

(
0 1

1 0

)

We then evaluate the program P at x = (xi)i ∈ {0, 1}5 as follows:

P (x) = P0 · P1,x1︸ ︷︷ ︸
P ′(x1)

× P2,x2︸ ︷︷ ︸
P ′(x2)

× P3,x3︸ ︷︷ ︸
P ′(x3)

× P4,x4︸ ︷︷ ︸
P ′(x4)

×P5,x5
· P6︸ ︷︷ ︸

P ′(x5)

.

Then, a BP P is not input zero partitionable. More precisely, due to the vec-
torization identity, an evaluation of P at x as (P ′(x1) ⊗ P ′(x5)) × (P ′(x2) ⊗
I2) × vec(P ′(x3) · P ′(x4)). We denote it by M(x1‖x5‖x2‖x3‖x4). To represent
the function M as a matrix multiplication, at least 25 elements are required.8 So
if P is input zero partitionable, M(x1‖x5‖x2‖x3‖x4) is always the zero for all
possible inputs. However, P does not always output the zero, so we cannot con-
struct a matrix with zero outputs Hence, P is ‘NOT’ input zero partitionable,
which obfuscated program is robust against previous attacks.

On the other hand, P always satisfies input partitionable. Moreover, we
briefly introduce how our attack works on BP P . For a proper order set of
X = Z = {0, 1}2, we can construct two matrices M0 and M1 of the form

M0 = (M(xi‖0‖zk))i,k =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ·
(
P2,0

P2,0

)
·


2 0 0 1

0 1 2 0

0 2 1 0

1 0 0 2



M1 = (M(xi‖1‖zk))i,k =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ·
(
P2,1

P2,1

)
·


2 0 0 1

0 1 2 0

0 2 1 0

1 0 0 2


Therefore a matrix M1 ·M−1

0 has {1} as an eigenvalue. On the other hand, we

consider a program Q which is equal to the program P except for Q2,1 =

(
2 0

0 3

)
.

Then BPs P and Q have the same functionality. However, in this case, {2, 3}
can be obtained as eigenvalues with the same computation. Hence, eigenvalues of
W 1 ·W−1

0 of an obfuscated program O can be used to determine which program
corresponds to the obfuscated program.

8 We need two 4× 4 matrices.
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Damien Stehlé. Cryptanalysis of the multilinear map over the integers.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 3–12. Springer, 2015.
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