Efficient Construction of Nominative Signature Secure under Symmetric Key Primitives and Standard Assumptions on Lattice

Meenakshi Kansal, Ratna Dutta and Sourav Mukhopadhyay
Department of Mathematics,
Indian Institute of Technology Kharagpur,
Kharagpur, India
Email:{kansal,ratna,sourav}@maths.iitkgp.ernet.in

Abstract
Nominative signature is a cryptographic primitive where two parties collude to produce a signature. It is a user certification system and has applications in variety of sectors where nominee cannot trust heavily on the nominator to validate nominee’s certificate and only targeted entities are allowed to verify signature on sensitive data. We provide a new construction for nominative signature from standard assumptions on lattice. Our construction relies on collision resistant preimage sampleable function and symmetric key primitives like collision resistant pseudorandom function and zero knowledge proof system ZKB++ for Boolean circuits. We provide a detailed security analysis and show that our construction achieves security under unforgeability, invisibility, impersonation and non-repudiation in existing model. Furthermore, our construction exhibits non-transferability. The security under non-repudiation is achieved in the quantum random oracle model using Unruh transform to ZKB++.

Keywords: Nominative signature, User certification system, Zero knowledge proof, Unruh transform.

1 Introduction

User certification system. User certification system is an important mechanism that addresses privacy issues associated with the distribution of signed digital certificates. Generally speaking, a user certification system enables a user ‘U’ to convince a verifier ‘V’ that the certificate ‘c’ issued by an authority ‘A’ is authentic. Typically, the signed certificate contains the truthfulness of certain statements and attributes linked to the identity of the user to which the certificate is issued. The real life examples include the issuing of identity cards, legal permanent residential proofs, birth certificates and driving licenses. A user can present proofs to a verifier, who in turn can verify signature and be convinced of the truth of the statements contained in the certificate.

A large fraction of applications can benefit from user certification system where the data to be verified are sensitive and requires only the targeted party to verify the signature. Standard digital signatures are publicly verifiable and thereby, insufficient to apply in user certification system.

Nominative Signature. A nominative signature (NS) scheme is a user certification system without any trusted certifying authority where a nominator (nr) and a nominee (ne) jointly produce a nominative signature featuring the following properties simultaneously.

P1: The nominator or nominee ‘alone’ cannot produce a valid nominative signature.
P2: The nominative signature must be verifiable only by the nominee.
P3: Only the nominee can prove the validity or invalidity of the nominative signature to a public verifier.
The central advantage of using nominative signature is that the nominee does not need to trust the nominator as the nominator cannot validate nominee’s certificate to a third party. We review two examples below.

- **NS in Medical Scenario.** Consider medical records of patients in a hospital. These records are sensitive and the patients do not want a third party to verify their records. At the time of key generation, a user’s public and secret key (pk_a, sk_a) are first generated using the probabilistic polynomial time (PPT) algorithm $\text{TrapGen}(n, m, q) \rightarrow (A_a, T_{A_a})$. The pair $(pk_a, sk_a) = (A_a, T_{A_a})$ is generated by the user a. The user a can be a nominator nr or a nominee ne. We informally describe below how we produce a nominative signature nsig on a message $M \in \{0, 1\}^*$ such that nsig satisfies the three properties P1, P2, P3 of a nominative signature mentioned earlier. To issue a signature $\text{Sig} = (M, \mathbf{v}, y_1, \Pi)$ on a message M to the nominator (nr), the nominee (ne) first finds a short vector $\mathbf{v} \in \mathbb{Z}_q^m$ satisfying $g_{B_{ne}}(\mathbf{v}) = B_{ne} \cdot \mathbf{v} = H(M, A_{nr}, B_{ne}) \mod q$ where $B_{ne} = A_{ne}$ and $H : M \times (\mathbb{Z}_q^{n \times m})^2 \rightarrow \mathbb{Z}_q^q$ is a hash function. The nominee ne then samples a uniform vector $\mathbf{r}_1 \in \mathbb{Z}_q^m$ and computes $y_1 = f(\mathbf{r}_1, \mathbf{v})$ where f is a collision resistant hash function. We integrate zero knowledge proof system ZKB++ by integrating Unruh transform [2]. For security under non-repudiation, we follow the security model of Huang et al. [12]. For security under invisibility, we follow the security model of Schuldet et al. [21]. Our scheme attains security in the random oracle model. Besides, our construction achieves security under non-repudiation in quantum random oracle model Q(ROM) unlike [13].

Our construction derives its security from the worst-case hardness assumptions of lattice and the security of the underlying symmetric key primitives. More precisely, we have the following.

- We achieve unforgeability against malicious nominee and unforgeability against malicious nominator under the hardness of collision resistance preimage sampleable function (CRPSF). The invisibility relies on the hardness of PRF.
- Non-repudiation follows from the completeness and soundness properties of the non-interactive zero knowledge proof system ZKB++. We achieve the security under non-repudiation in quantum random oracle model (QROM) by integrating ZKB++ using Unruh transform [2].
- Similar to [21], the security against impersonation in our model is addressed in the unforgeability against malicious nominator.
- Non-transferability guarantees that the verifier cannot convince a third party that he has received a valid/invalid signature from the nominee on a message. Non-transferability follows from the combination of invisibility and the zero knowledge property of the protocol.

Our Technique. At a high level, our nominative signature $\text{NS} = (\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign}, \text{verify}, \text{cfORds}) = (\text{neTM}, \text{vrTM})$ proceeds as follows.

At the time of key generation, a user’s public and secret key (pk_a, sk_a) are first generated using the probabilistic polynomial time (PPT) algorithm $\text{TrapGen}(n, m, q) \rightarrow (A_a, T_{A_a})$. The pair $(pk_a, sk_a) = (A_a, T_{A_a})$ is generated by the user a. The user a can be a nominator nr or a nominee ne. We informally describe below how we produce a nominative signature nsig on a message $M \in \{0, 1\}^*$ such that nsig satisfies the three properties P1, P2, P3 of a nominative signature mentioned earlier. To issue a signature $\text{Sig} = (M, \mathbf{v}, y_1, \Pi)$ on a message M to the nominator (nr), the nominee (ne) first finds a short vector $\mathbf{v} \in \mathbb{Z}_q^m$ satisfying $g_{B_{ne}}(\mathbf{v}) = B_{ne} \cdot \mathbf{v} = H(M, A_{nr}, B_{ne}) \mod q$ where $B_{ne} = A_{ne}$ and $H : M \times (\mathbb{Z}_q^{n \times m})^2 \rightarrow \mathbb{Z}_q^q$ is a hash function. The nominee ne then samples a uniform vector $\mathbf{r}_1 \in \mathbb{Z}_q^m$ and computes $y_1 = f(\mathbf{r}_1, \mathbf{v})$ where f is a collision resistant hash function. We integrate zero knowledge proof system ZKB++ by integrating Unruh transform [2]. For security under non-repudiation, we follow the security model of Huang et al. [12]. For security under invisibility, we follow the security model of Schuldet et al. [21]. Our scheme attains security in the random oracle model. Besides, our construction achieves security under non-repudiation in quantum random oracle model Q(ROM) unlike [13].

Our construction derives its security from the worst-case hardness assumptions of lattice and the security of the underlying symmetric key primitives. More precisely, we have the following.

- We achieve unforgeability against malicious nominee and unforgeability against malicious nominator under the hardness of collision resistance preimage sampleable function (CRPSF). The invisibility relies on the hardness of PRF.
- Non-repudiation follows from the completeness and soundness properties of the non-interactive zero knowledge proof system ZKB++. We achieve the security under non-repudiation in quantum random oracle model (QROM) by integrating ZKB++ using Unruh transform [2].
- Similar to [21], the security against impersonation in our model is addressed in the unforgeability against malicious nominator.
- Non-transferability guarantees that the verifier cannot convince a third party that he has received a valid/invalid signature from the nominee on a message. Non-transferability follows from the combination of invisibility and the zero knowledge property of the protocol.

Our Contribution. Our main result is to put forth a new construction of nominative signature (NS) based on the worst case hardness of lattice. The scheme is secure assuming the existence of preimage sampleable function (PSF) and symmetric key primitives such as collision resistant pseudorandom function (CRPRF) and collision resistant hash function. We integrate zero knowledge proof system ZKB++ using Unruh transform [2]. For security under unforgeability, we adopt the security model of Huang et al. [12]. For security under invisibility, we follow the security model of Schuldet et al. [21]. Our scheme attains security in the random oracle model. Besides, our construction achieves security under non-repudiation in the quantum random oracle model Q(ROM) unlike [13].

Our construction derives its security from the worst-case hardness assumptions of lattice and the security of the underlying symmetric key primitives. More precisely, we have the following.

- We achieve unforgeability against malicious nominee and unforgeability against malicious nominator under the hardness of collision resistance preimage sampleable function (CRPSF). The invisibility relies on the hardness of PRF.
- Non-repudiation follows from the completeness and soundness properties of the non-interactive zero knowledge proof system ZKB++. We achieve the security under non-repudiation in quantum random oracle model (QROM) by integrating ZKB++ using Unruh transform [2].
- Similar to [21], the security against impersonation in our model is addressed in the unforgeability against malicious nominator.
- Non-transferability guarantees that the verifier cannot convince a third party that he has received a valid/invalid signature from the nominee on a message. Non-transferability follows from the combination of invisibility and the zero knowledge property of the protocol.

Our Technique. At a high level, our nominative signature $\text{NS} = (\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign}, \text{verify}, \text{cfORds}) = (\text{neTM}, \text{vrTM})$ proceeds as follows.

At the time of key generation, a user’s public and secret key (pk_a, sk_a) are first generated using the probabilistic polynomial time (PPT) algorithm $\text{TrapGen}(n, m, q) \rightarrow (A_a, T_{A_a})$. The pair $(pk_a, sk_a) = (A_a, T_{A_a})$ is generated by the user a. The user a can be a nominator nr or a nominee ne. We informally describe below how we produce a nominative signature nsig on a message $M \in \{0, 1\}^*$ such that nsig satisfies the three properties P1, P2, P3 of a nominative signature mentioned earlier. To issue a signature $\text{Sig} = (M, \mathbf{v}, y_1, \Pi)$ on a message M to the nominator (nr), the nominee (ne) first finds a short vector $\mathbf{v} \in \mathbb{Z}_q^m$ satisfying $g_{B_{ne}}(\mathbf{v}) = B_{ne} \cdot \mathbf{v} = H(M, A_{nr}, B_{ne}) \mod q$ where $B_{ne} = A_{ne}$ and $H : M \times (\mathbb{Z}_q^{n \times m})^2 \rightarrow \mathbb{Z}_q^q$ is a hash function. The nominee ne then samples a uniform vector $\mathbf{r}_1 \in \mathbb{Z}_q^m$ and computes $y_1 = f(\mathbf{r}_1, \mathbf{v})$ where f is a collision resistant hash function. We integrate zero knowledge proof system ZKB++ by integrating Unruh transform [2]. For security under non-repudiation, we follow the security model of Huang et al. [12]. For security under invisibility, we follow the security model of Schuldet et al. [21]. Our scheme attains security in the random oracle model. Besides, our construction achieves security under non-repudiation in quantum random oracle model Q(ROM) unlike [13].
Table 1: Comparative summary of secured nominative signature schemes using bilinear map.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>size of pk_{nr}</th>
<th>size of sk_{nr}</th>
<th>size of pk_{ne}</th>
<th>size of sk_{ne}</th>
<th>NS size</th>
<th>pairings</th>
<th>exponentiations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[21]</td>
<td>(k + 3)G</td>
<td>G</td>
<td>(k + 6)G</td>
<td>(k + 3)G</td>
<td>4G</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

The notations pk_{nr}, sk_{nr}, pk_{ne}, sk_{ne} are respectively the public and secret key size of the nominator and nominee.

Table 2: Comparative summary of lattice based nominative signature schemes.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Key size</th>
<th>NS size</th>
<th>Communication cost</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14]</td>
<td>(O(n^2))</td>
<td>(O(n))</td>
<td>(t \cdot (c + O(L) + 1))</td>
<td>ROM</td>
</tr>
<tr>
<td>Ours</td>
<td>(O(n^2))</td>
<td>(O(n))</td>
<td>(t \cdot [c + 3\alpha + \log_2 3 +</td>
<td>\log q</td>
</tr>
</tbody>
</table>

Here \(L = 6(m + 1)p, p = [\log_2 \beta] + 1, \beta = 2\sigma \sqrt{m}\) where \(\sigma\) is the standard deviation of the discrete Gaussian distribution.

\[f : \mathbb{Z}_q^n \times \mathbb{Z}_q^m \to \mathbb{Z}_q^n \] is a collision resistant pseudorandom function (CRPRF). The nominee (ne) finally generates a zero knowledge proof II using ZKB++ to prove the knowledge of the witness \(r_1 \in \mathbb{Z}_q^m\) and sends the signature \(\text{Sig} = (M, v, y_1, \Pi)\) to the nominator \(\text{nr}\). Note that we sample \(r_1 \in \mathbb{Z}_q^m\) uniformly random, hide \(r_1\) inside a CRPRF and send the knowledge of \(r_1\) through a zero knowledge proof II. By the soundness property of ZKB++ and the collision resistant property of the PRF \(f\), the probability of finding \(r_1\) by an adversary becomes negligible. After receiving and verifying the signature \(\text{Sig} = (M, v, y_1, \Pi)\), the nominator (\(\text{nr}\)) generates the nominative signature \(\text{nSig} = (z, v) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^m\). The vector \(z \in \mathbb{Z}_q^n\) is a short vector that satisfies the equation \(g_{A_m}(z) = A_{nr} \cdot z = y_1 \mod q\).

Security. The verification of \(\text{nSig}\) can be performed only by the entity who possesses \(r_1 \in \mathbb{Z}_q^m\). We have shown that an adversary which makes successful verification without the knowledge of \(r_1\) with non-negligible probability, can be reduced to an adversary attacking the output indistinguishable property of the pseudorandom function i.e., given \(x \in \mathbb{Z}_q^m, y \in \mathbb{Z}_q^n\) and a pseudorandom function \(f : \{0, 1\}^m \times \{0, 1\}^m \to \{0, 1\}^n\), it is hard to distinguish whether \(y \in \mathbb{Z}_q^n\) is uniformly chosen from the set \(\mathbb{Z}_q^n\) or \(y = f(k, x)\) for some \(k \in \mathbb{Z}_q^m\). It has also been spotted that a nominee solves the preimage sampleable function without trapdoor if it can ‘alone’ produce a nominative signature without interacting with the nominator. In a similar manner, if a nominator produces a nominee’s signature then either nominator finds a solution to preimage sampleable function without the trapdoor or solves the collision resistant property of PRF. We achieve the following results.

Theorem 1. (informal) Our nominative signature scheme achieves unforgeability against malicious nominee under the hardness of collision resistant preimage sampleable function.

Theorem 2. (informal) If collision resistant preimage sampleable function is hard then our proposed construction of nominative signature achieves unforgeability against malicious nominator.

Theorem 3. (informal) Our scheme follows security under invisibility if for given \(x \in \mathbb{Z}_q^m, y \in \mathbb{Z}_q^n\) and a pseudorandom function \(f : \{0, 1\}^m \times \{0, 1\}^m \to \{0, 1\}^n\), it is hard to decide whether \(y \in \mathbb{Z}_q^n\) is uniformly chosen from the set \(\mathbb{Z}_q^n\) or \(y = f(k, x)\) for some \(k \in \mathbb{Z}_q^m\).

Theorem 4. (informal) If the zero knowledge proof of knowledge ZKB++ follows completeness and soundness properties then our nominative signature scheme is secure under non-repudiation.

Efficiency. Our construction for nominative signature enjoys improved efficiency compared to [12], [21]. It achieves public and secret key sizes \(\tilde{O}(n^2)\) for a user. The size of the nominative signature is \(\tilde{O}(n)\) in our scheme. While [12] has public-secret key sizes \(|G|\) for nominator and nominee, the approach in [21] leads the nominator’s public key and secret key sizes \((k + 3)|G|\) and \(|G|\) respectively, the nominee’s public key and secret key sizes \((k + 6)|G|\) and \((k + 3)|G|\) respectively. In [12], [21] the size of the nominative signature is \(4|G|\). Here \(|G|\) is the bit size of an element of the group \(G\) and \(k\) is the length of the message. Thus the size of the public key and secret key of both nominator and nominee in [21] are linear in length \(k\) of the message. The NS in [12] uses 2 pairings and 5 exponentiations and the NS in [21] uses 3 pairings and 11 exponentiation.
In our approach, the nominee needs to send a non-interactive zero knowledge proof Π to the nominator and to a public verifier to prove the knowledge of a secret witness $x \in \mathbb{Z}_q^m$ satisfying the equation $y = f(x)$ where $y \in \mathbb{Z}_q^*$ is publicly known. The size of the proof is a central issue apart from the strong security guarantees and fast operations. We use ZKB++ with Unruh transform to generate the proof Π. Concretely, the size of the proof Π is $t \cdot [c + 3\lambda + \log_2 3 + \lceil \log q \rceil (m + 2b)]$ where λ is the security parameter, b is the number of binary multiplication gates, t is the number of parallel repetitions and c is the size of the commitments (in bits).

Related Work. There are several variants of user certification system— undeniable signature, designated confirmer signature, designated verifier proofs, universal designated verifier signature, nominative signature etc. [4, 3, 13, 22, 15]. Undeniable signature developed by Chaum et al. [4] is one of the user certification systems that allows a signer to have complete control over its signature. The participation of the signer is required in confirmation of the signature by a recipient. If the signer becomes unavailable (such as might refuse to cooperate), a recipient cannot make use of the signature. Designated confirmer signature, designated verifier proofs, universal designated verifier signature, nominative signature etc. [3] solves this issue by allowing designated parties to confirm the signature to a recipient without the signer.

Undeniable signature allows only the prover to decide ‘when’ a signature (proof) is verified and not by ‘whom’ or ‘how many parties’. Thus in order to avoid man-in-the-middle attack in such scenario, the prover must be able to designate ‘who’ will be convinced by the proof. To address this fact, Jakobsson et al. [13] introduced designated verifier proofs whereby only the designated verifier can be convinced about the validity or invalidity of the proof. This is due to the fact that the designated verifier can always create a signature for himself indistinguishable from the original signature.

In a user certification system, Alice can send a copy of her certificate issued by a certifying authority to any verifier Bob. After receiving the certificate, Bob can learn all the statements about Alice and will also get convinced about the truth of the statement by verifying the signature of the certifying authority on the certificate. Further, Bob can pass Alice’s certificate to any third party and thus it may cause a threat to Alice’s privacy. This user privacy in user certification system is addressed by universal designated verifier signature (UDVS) [22]. A UDVS scheme can work as a standard digital signature with an additional feature which allows the holder of a signature to designate the signature to any desired designated verifier. Given the designated signature, the designated verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact.

All the above mentioned user certification systems require either the direct involvement of the signer or involvement of a designated party appointed by the signer to verify the signature. Nominative signature solves this issue and provides the verification privacy to the recipient.

Nominative signature is first introduced by Kim et al. [15] in 1995. Since then it has been studied extensively [15, 6, 11, 12, 13, 21, 24, 25, 27, 14]. However, none of these except [12, 21] and [14] are secure. Both the constructions [12, 21] use bilinear maps on prime order groups. The underlying hard problems in [12] are bilinear Diffie-Hellman exponent (BDHE) problem, weak computational Diffie-Hellman-I (WCDH-I) problem, WCDH-II problem, weak discrete logarithm (WDLOG) problem and weak decisional Diffie-Hellman (WDDH) problem. The scheme in [21] is secure under the hardness of discrete logarithm problem and the decisional linear problem. This is the only scheme secure in the standard model and uses the transformation proposed by Cramer et al. [5] which converts a sigma protocol into a perfect zero knowledge proof of knowledge. The resulting zero knowledge proofs are efficient 4-move protocols and no additional hardness assumptions are required in the transformation. The construction in [12] is secure in the random oracle model (ROM) and employs the witness indistinguishable Feige and Fiat-Shamir protocol [8] to prove/disprove the DH-tuple. Nominator starts the communication to issue the nominative signature in both the schemes [12, 21] and the communication between nominee and nominator does not involve the zero knowledge proof in [12, 21]. In contrast, in the work of [14] as well as ours nominee begins the communication between nominee and nominator. The zero knowledge argument system of [10] is used in the process of issuing nominative signature in [14]. To the best of our knowledge, the scheme in [14] is the only scheme secure under standard assumptions on lattice. The scheme in [14] is secure in the random oracle model (ROM).

Organization of the paper. We define notations and recall some concepts from lattice, symmetric key
primitives in Section 2. We provide the syntax and security model of nominative signature in Section 3. In Section 4, we present our construction and provide the security proofs for the security models given in Section 3. Section 5 concludes with a conclusion.

2 Preliminaries

Notations. Throughout this paper we assume that a vector \(a \in \mathbb{S}^n \) denotes a column vector of dimension \(n \times 1 \) with entries from the set \(\mathbb{S} \). For \(u = (u_1, u_2, \ldots, u_n) \in \mathbb{R}^n \), let \(||u||_\infty = \max |u_i| \) denotes the maximum norm and \(||u|| = \sqrt{u_1^2 + \ldots + u_n^2} \) stands for the Euclidean norm. Let \(A = (a_1, a_2, \ldots, a_m) \) be a matrix with \(m \) columns in \(\mathbb{R}^n \). Then \(||A|| = \max_{1 \leq i \leq m} ||a_i|| \). We say that a function \(f \) is negligible in \(\lambda \) if \(f = \lambda^{-\omega(1)} \). The abbreviation PPT refers to the probabilistic polynomial time.

Definition 1. (Hash function). \cite{20} A hash function \(H : D \rightarrow \mathbb{R} \) is a function that takes an input \(x \in D \) of arbitrary length and returns \(H(x) \in \mathbb{R} \) of fixed finite length. Hash functions must be easy to compute. The “ideal” hash function verifies the following properties.

(i) Collision resistance: Finding two inputs \(x, x' \in D \) such that \(x \neq x' \) and \(H(x) = H(x') \) \(\in \mathbb{R} \) should cost \(\Omega(|R|^\frac{1}{2}) \) by the birthday paradox \cite{20}.

(ii) Second preimage resistance: Given \(x \in D, H(x) \in \mathbb{R} \), finding another \(x' \in D \) such that \(H(x) = H(x') \) \(\in \mathbb{R} \) should cost \(\Theta(|R|) \) by classical exhaustive search.

(iii) Preimage resistance: From a hash value \(h \in \mathbb{R} \), finding an input \(x \in D \) so that \(H(x) = h \) should cost \(\Theta(|R|) \) by classical exhaustive search.

Definition 2. (Pseudorandom function (PRF)). \cite{19} Let \(\mathcal{F} = \{F : D \rightarrow \mathbb{R}\} \) denotes the set of all functions mapping from the domain \(D \) to the range \(\mathbb{R} \). Let \(f : \mathcal{K} \times D \rightarrow \mathbb{R} \) be an efficiently computable, length preserving keyed function where \(\mathcal{K} \) is the set of keys, \(D \) is the domain and \(\mathbb{R} \) is the range of \(f \). We say that \(f \) is a pseudorandom function (PRF) if for all PPT distinguisher \(D \),

\[
|\Pr[D^{f(k,:)}(1^n) = 1] - \Pr[D^{\mathcal{F}(1^n)}(1^n) = 1]| \leq \text{negl}(n)
\]

where \(F \) is chosen uniformly at random from \(\mathcal{F} \) and \(\text{negl}(n) \) is a negligible function in \(n \).

Definition 3. (Collision resistant pseudorandom function (CRPRF)). Let \(f : \mathcal{K} \times D \rightarrow \mathbb{R} \) be a PRF. We say \(f \) is a CRPRF if given \(x_0 \in \mathcal{K}, y_0 \in D \) and \(f(x_0, y_0) \in \mathbb{R} \), it is computationally hard to find \(x_1 \in \mathcal{K}, y_1 \in D \) such that \(f(x_0, y_0) = f(x_1, y_1) \).

Definition 4. (Problem-I) \cite{19} Given \(x \in \mathbb{Z}_q^n, y \in \mathbb{Z}_q^n \) and a pseudorandom function \(f : \{0, 1\}^m \times \{0, 1\}^m \rightarrow \{0, 1\}^n \), it is hard to decide whether \(y \in \mathbb{Z}_q^n \) is uniformly chosen from the set \(\mathbb{Z}_q^n \) or \(y = f(k, x) \) for some \(k \in \mathbb{Z}_q^n \).

2.1 Lattice Problems

Definition 5. (Lattice). \cite{10} For any \(m \geq n \), let \(B = \{b_1, b_2, \ldots, b_m\} \) be any linearly independent set of vectors in \(\mathbb{R}^n \). A lattice generated by the set \(B \) is defined as \(\Lambda(B) = \{ \sum_{b_i \in B} c_i b_i : c_i \in \mathbb{Z} \} \) with basis \(B \) of dimension \(n \).

For \(q \in \mathbb{N} \), matrix \(A \in \mathbb{Z}_q^{n \times m} \) and vector \(u \in \mathbb{Z}_q^n \), we define the following three \(q \)-ary lattices generated by \(A \): \(\Lambda^+_q(A) = \{ x \in \mathbb{Z}_q^n : Ax = 0 \mod q \} \), \(\Lambda_0(A) = \{ x \in \mathbb{Z}_q^n : Ax = u \mod q \} \), \(\Lambda_q(A) = \{ x \in \mathbb{Z}_q^n : A's = x \mod q \} \), for some \(s \in \mathbb{Z}_q^n \), where \(m, n \) are integers with \(m \geq n \geq 1 \) and \(0 \) is a zero vector of size \(n \times 1 \).
Definition 6. (Gaussian distribution over a lattice). \cite{lo01} For a lattice Λ and a real number $\sigma > 0$, discrete Gaussian distribution over Λ centered at 0, denoted by $D_{\Lambda,\sigma}$, is defined as: $\forall \mathbf{y} \in \Lambda$, $D_{\Lambda,\sigma}(\mathbf{y}) \sim \exp(-\pi \|\mathbf{y}\|^2 / \sigma^2)$, i.e. $D_{\Lambda,\sigma}(\mathbf{y})$ is proportional to $\exp(-\pi \|\mathbf{y}\|^2 / \sigma^2)$ where $D_{\Lambda,\sigma}(\mathbf{y})$ means the vector $\mathbf{y} \sim D_{\Lambda,\sigma}$. We say that $D_{\Lambda,\sigma}$ is a distribution with standard deviation σ.

Lemma 1. \cite{lo01} For any n-dimensional lattice Λ and for any real number $\sigma > 0$, we have the following results and probabilistic polynomial time (PPT) algorithms:

(i) $\Pr_{b \leftarrow D_{\Lambda,\sigma}}[\|b\| \leq \sigma \sqrt{n}] \geq 1 - 2^{-\Omega(n)}$, i.e. if $b \leftarrow D_{\Lambda,\sigma}$ then $\|b\| \leq \sigma \sqrt{n}$ with overwhelming probability.

(ii) $\text{TrapGen}(n, m, q) \rightarrow (A, T_A)$. This randomized algorithm outputs a matrix $A \in \mathbb{Z}_q^{n \times m}$ and a short basis $T_A \in \mathbb{Z}^{m \times m}$ of $A^\perp(A)$ such that A is within the statistical distance $2^{-\Omega(n)}$ to $U(\mathbb{Z}_q^{n \times m})$ and $\|T_A\| \leq O(\sqrt{m n \log q})$. Here $U(\mathbb{Z}_q^{n \times m})$ is the uniform distribution of integer matrices over \mathbb{Z}_q of order $n \times m$ and T_A is the Gram-Schmidt orthogonalization of T_A.

(iii) $\text{SampleD}(1^n) \rightarrow x$. This algorithm samples a vector $x \in \mathbb{Z}^m$ from the distribution $D_m = \{e \in \mathbb{Z}^m \mid \|e\| \leq \sigma \sqrt{m}\}$. Here $m \geq 5n \log q$ and $\sigma \geq m^{1+\epsilon} \cdot \omega(\log m)$ for any $\epsilon > 0$.

(iv) $\text{SamplePre}(A, T_A, u, \sigma) \rightarrow (x \in \Lambda_u^n(A))$. This algorithm takes as input a matrix $A \in \mathbb{Z}_q^{n \times m}$, a short basis $T_A \in \mathbb{Z}^{m \times m}$ of $A^\perp(A)$, a vector $u \in \mathbb{Z}_q^n$ and a real number σ. The algorithm returns a short vector $x \in \Lambda_u^n(A)$ sampled from a distribution statistically close to $D_{\Lambda^u_n(A),\sigma}$ whenever $\Lambda_q^n(A)$ is non empty i.e., x satisfies the relation $Ax = u \mod q$.

Definition 7. ((Inhomogeneous) short integer solution (SIS) search problem) \cite{lo01}. Given an integer q, a real number β, a uniformly random matrix $A \in \mathbb{Z}_q^{n \times m}$ and a uniformly random vector $u \in \mathbb{Z}_q^n$, the SIS problem is to find a non-zero integer vector $e \in \mathbb{Z}^m$ such that $Ae = u \mod q$ and $\|e\| \leq \beta$ with non-negligible probability. If $u = 0 \in \mathbb{Z}_q^n$, then it is known as short integer solution (SIS) problem.

If $m, \beta = \text{poly}(n)$ and $q > \beta \cdot \tilde{O}(\sqrt{n})$, then the SIS problem with parameters n, m, q, β is at least as hard as the worst-case lattice problem shortest independent vector problem (SIVP) for some $\gamma = \beta \cdot \tilde{O}(\sqrt{nm})$ \cite{lo01}.

Definition 8. (Preimage Sampleable Function (PSF)) \cite{lo01}. A collection of PSFs based on the average-case hardness of SIS and/or ISIS is defined as follows for $q = \text{poly}(n)$, $m \geq 5n \log q$, $L = m^{1+\epsilon}$ for any $\epsilon > 0$, and Gaussian parameter $\sigma \geq L \cdot \omega(\sqrt{\log m})$.

(i) The function generator using the algorithm $\text{TrapGen}(n, m, q) \rightarrow (A, T_A)$ described in Lemma 1 where $A \in \mathbb{Z}_q^{n \times m}$, $T_A \in \mathbb{Z}^{m \times m}$.

(ii) The function $g_A : D_{\mathbb{Z}^\nu}\rightarrow \mathbb{Z}_q^n$ is an efficiently computable function with public basis A and is defined as $g_A(d) = A \cdot d \mod q$ with $d \in D_{\mathbb{Z}^\nu}$, $\{e \in \mathbb{Z}^m \mid \|e\| \leq \sigma \sqrt{m}\}$ and $g_A(d) \in \mathbb{Z}_q^n$. The input d is sampled using the algorithm SampleD given in Lemma 2 with the standard basis for \mathbb{Z}^m. The distribution of $g_A(u)$ is uniform over the range \mathbb{Z}_q^n.

(iii) The trapdoor inversion algorithm $\text{SamplePre}(A, T_A, u, \sigma)$ samples from the conditional distribution of $d \leftarrow \text{SampleD}(1^n)$ given $g_A(d) = u$ for every $u \in \mathbb{Z}_q^n$.

(iv) For any PPT algorithm F, $\Pr[F(1^n, A, u) = d \in g_A^{-1}(u) \subseteq D_{\mathbb{Z}^\nu}] \leq \text{negl}(n)$ where the probability is taken over the choice of A and the target value $u \leftarrow \mathbb{Z}_q^n$ chosen uniformly at random. A collision-resistant PSF satisfies the above four properties in addition to the following two properties.

(v) Preimage min-entropy: For every $u \in \mathbb{Z}_q^n$, the conditional min-entropy of $d \leftarrow \text{SampleD}(1^n)$ given $g_A(d) = u$ is at least $\omega(\log n)$. It means that the most likely element $d \leftarrow \text{SampleD}(1^n)$ given $g_A(d) = u$ for any $u \in \mathbb{Z}_q^n$, occurs with probability $2^{-\omega(\log n)}$.

(vi) Collision-resistance: For any PPT algorithm F, $\Pr[F(1^n, A) \rightarrow (d, d') \in D_{\mathbb{Z}^\nu} \times D_{\mathbb{Z}^\nu} \mid g_A(d) = g_A(d')] \leq \text{negl}(n)$.
2.2 ZKB++ [2]

This section recalls the non-interactive zero knowledge proof system ZKB++ on arbitrary circuits that uses Fiat-Shamir transform \[9\] and (2,3)-decomposition of a function \(f : \mathbf{F}^* \rightarrow \mathbf{F}^t \) which can be expressed as an \(n \)-gate arithmetic circuit on an arbitrary finite field \(\mathbf{F} \) using addition by constant, multiplication by constant, binary addition and binary multiplication gates. The prover wants to prove the knowledge of a witness \(x \) satisfying \(y = f(x) \) where \(y, f \) are public. A (2,3)-decomposition of \(f \) is given by the following functions where all the arithmetic operations are over \(\mathbf{F} \).

(i) \(\text{Share}(x, \rho_1, \rho_2, \rho_3) \rightarrow (\text{sh}_1^{(0)}, \text{sh}_2^{(0)}, \text{sh}_3^{(0)}) \in (\mathbf{F}^*)^3 \) is a randomized invertible function that generates \(\text{sh}_1^{(0)} = H_3(\rho_1), \text{sh}_2^{(0)} = H_1(\rho_2), \text{sh}_3^{(0)} = x - \text{sh}_1^{(0)} - \text{sh}_2^{(0)}. \) Here \(\text{sh}_1^{(0)} \) is the share for party \(P_j, \rho_j \in \mathbf{F}^* \) is the randomness used by the party \(P_j \) for \(j = 1, 2, 3 \) and \(H_1 : \mathbf{F}^* \rightarrow \{0, 1\}^* \) is a hash function.

(ii) \(\text{Update}_j(\text{sh}_1^{(k)}, \text{sh}_2^{(k)}, \rho_j, \rho_{j+1}) \rightarrow \text{sh}_1^{(k+1)} \in \mathbf{F}^* \) computes party \(P_j \)'s share of the output wire of gate \(g_k \) for \(k = 0, 1, \ldots, n - 1 \) using shares, randomness of parties \(P_j, P_{j+1} \) and using the following gate specific operations. The notation \(w_d \) refers to the \(d \)-th wire and \(w_d^{(j)} \) refers to the value of \(w_d \) in party \(P_j \)'s share.

addition by constant \((w_b = w_a + c) \): \(w_b^{(j)} = \begin{cases} w_b^{(j)} + c & \text{if } j = 1 \\ w_b^{(j)} & \text{otherwise} \end{cases} \)

multiplication by constant \((w_c = w_a \cdot c) \): \(w_c^{(j)} = c \cdot w_a^{(j)} \)

binary addition \((w_c = w_a + w_b) \): \(w_c^{(j)} = w_a^{(j)} + w_b^{(j)} \)

binary multiplication \((w_c = w_a \cdot w_b) \): \(w_c^{(j)} = w_a^{(j)} \cdot w_b^{(j)} + w_a^{(j+1)} \cdot w_b^{(j)} + w_a^{(j)} \cdot w_b^{(j+1)} + Q_j(C) - Q_j+1(C), \) where \(Q_j(C) \) is the \(C \)-th output of a pseudorandom generator seeded with \(\rho_j \).

(iii) \(\text{Output}_j(\text{sh}_1^{(n)}) \rightarrow \text{out}_j \in \mathbf{F}^t \) selects \(l \) output wires of the circuit stored in the share \(\text{sh}_1^{(n)} \).

(iv) \(\text{Reconstruct}(\text{out}_1, \text{out}_2, \text{out}_3) \rightarrow y = \text{out}_1 + \text{out}_2 + \text{out}_3 \in \mathbf{F}^t \).

Theorem 5. \[2\] For all \((\text{sh}_1^{(0)}, \text{sh}_2^{(0)}, \text{sh}_3^{(0)}) \leftarrow \text{Share}(x, \rho_1, \rho_2, \rho_3), \text{sh}_1^{(k+1)} \leftarrow \text{Update}_j(\text{sh}_1^{(k)}, \text{sh}_2^{(k)}, \rho_j, \rho_{j+1}) \) for \(k = 0, 1, \ldots, n - 1 \), \(\text{out}_j \leftarrow \text{Output}_j(\text{sh}_1^{(n)}), \) and for all circuits \(f \), for all inputs \(x \), \(\Pr[f(x) = \text{Reconstruct}(\text{out}_1, \text{out}_2, \text{out}_3)] = 1 \).

Formally, ZKB++ for the relation \(L = \{ \text{public}(f, y), \text{private}(x) | y = f(x) \} \) is a non-interactive one round protocol ZKB=\text{prove, verify} between a prover and a verifier, both having access to \(y \) and \(f \) with the following requirements. Here ZKB\text{prove} is a PPT algorithm and ZKB\text{verify} is a deterministic algorithm. Let \(H_1 : \mathbf{F}^* \rightarrow \mathbf{F}^*, H_2 : \mathbf{F}^* \rightarrow \mathbf{F}^m, H_3 : \mathbf{F}^* \rightarrow \{1, 2, 3\}^t \) be three hash functions used by both the prover and verifier.

- **ZKB.prove**\((L) \rightarrow (\Pi_L) \). The prover samples randomness \(\rho_j[\gamma] \in \mathbf{F}^* \) for each party \(P_j \) and does the following for \(\gamma = 1, 2, \ldots, t \) in parallel.
 - Compute \((\text{sh}_1^{(0)}[\gamma], \text{sh}_2^{(0)}[\gamma], \text{sh}_3^{(0)}[\gamma]) \leftarrow \text{Share}(x, \rho_1[\gamma], \rho_2[\gamma], \rho_3[\gamma]) \) where \(\text{sh}_1^{(0)}[\gamma] = H_3(\rho_1[\gamma]), \text{sh}_2^{(0)}[\gamma] = H_1(\rho_2[\gamma]), \text{sh}_3^{(0)}[\gamma] = x - \text{sh}_1^{(0)}[\gamma] - \text{sh}_2^{(0)}[\gamma]. \) Here \(\text{sh}_1^{(0)}[\gamma] \) is the share for party \(P_j, \rho_j \in \mathbf{F}^* \) is the randomness used by the party \(P_j \) for \(j = 1, 2, 3 \) and \(H_1 : \mathbf{F}^* \rightarrow \{0, 1\}^* \) is a hash function.
 - For each iteration \(\gamma \in [1, t] \), the verifier proceeds as follows where \(j = \gamma_{ch} \):
 - \(\text{Reconstruct} \)

- **ZKB.verify**\((y, f, \Pi_L) \rightarrow (0 \lor 1) \). For each iteration \(\gamma \in [1, t] \), the verifier proceeds as follows where \(j = \gamma_{ch} \):
 - \(\text{Reconstruct} \)
At high level, we define a nominative signature scheme. The verifier computes the nominative signature \(\text{nsig} \), which is a valid (or invalid) signature. For this, the nominee \(\text{ne} \) first signs some data and sends the signature \(\sigma \) to the verifier \(\text{vr} \). The verifier then checks the signature by computing the response \(\text{rsp} \) and verifying it against the signature. If the response matches the signature, the verifier accepts the signature; otherwise, it rejects it.

2.2.1 Unruh Transform [24]

Similar to Fiat-Shamir (FS) transform [9], Unruh transform allows to construct non-interactive zero knowledge (NIZK) proofs and signature schemes from \(\Sigma \)-protocol [7] that provide provable security in the quantum random oracle model.

Given a \(\Sigma \)-protocol with challenge space \(S = \{1, 2, 3\} \), an integer \(t \), two hash functions \(H : F^t \rightarrow \{1, 2, 3\}^t \) and \(G : F^* \rightarrow F^t \), the prover under Unruh’s transform will perform the following steps:

1. Run the first phase of the \(\Sigma \)-protocol \(t \) times to produce \(\text{com}_1, \text{com}_2, \ldots, \text{com}_t \).
2. For each \(\gamma \in [1, t] \) and \(j \in S \), compute the response \(\text{rsp}_{\gamma,j} \) for \(\text{com}_\gamma \) and challenge \(j \in S \). Compute \(\sigma_{\gamma,j} = G(\text{rsp}_{\gamma,j}) \).
3. Compute \(\{j_1, j_2, \ldots, j_t\} = H(x, \text{com}_1, \text{com}_2, \ldots, \text{com}_t, \sigma_{1,1}, \ldots, \sigma_{t,1}, \sigma_{1,2}, \ldots, \sigma_{t,2}, \sigma_{1,3}, \ldots, \sigma_{t,3}) \).
4. Output \(\Pi_L = (\text{com}_1, \text{com}_2, \ldots, \text{com}_t, \text{rsp}_{1,j_1}, \text{rsp}_{2,j_2}, \ldots, \text{rsp}_{t,j_t}, \sigma_{1,1}, \sigma_{1,2}, \sigma_{1,3}, \ldots, \sigma_{t,3}) \).

The verifier will verify the hash, verify if the given values match the corresponding \(\sigma_{i,j_i} \) values, and that the \(\text{rsp}_{i,j_i} \) values are valid responses with respect to the \(\text{com}_i \) values.

3 Nominative Signature- Syntax and Security

Syntax of nominative signature.

At high level, we define a nominative signature scheme \(\text{NS} \) as four PPT algorithms \(\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign} \), a deterministic algorithm \(\text{verify} \) and a two party interactive protocol \(\text{cfORDs} \). A trusted third party, called the key generation center (KGC), generates the system parameter \(\mathcal{Y} \leftarrow \text{NS.setup} \). A user generates its public-secret key pairs \((\text{pk}, \text{sk}) \leftarrow \text{NS.keygen} \). The public keys are made publicly available while the secret keys are kept secret to the respective entities. The nominee uses its own secret key \(\text{sk} \) to generate a signature \(\text{(Sig, state)} \leftarrow \text{NS.neSign} \) and sends \(\text{Sig} \) to the nominator over a public channel and keeps its updated current internal state \(\text{state} \) secret to itself. The nominator in turn, issues a nominative signature \(\text{nsig} \leftarrow \text{NS.nrSign} \) using its own secret key \(\text{sk} \). The nominative signature \(\text{nsig} \) is verifiable only by the nominee using its internal state \(\text{state} \) by executing the algorithm \(\text{NS.verify} \). Finally, the confirmation (or disavowal) protocol \(\text{NS.cfORDs} = (\text{neTM}, \text{vrTM}) \) is invoked which is an interactive protocol between the nominee \(\text{ne} \) and a verifier \(\text{vr} \). The aim of this protocol is to make it possible for \(\text{ne} \) to convince \(\text{vr} \) that the nominative signature \(\text{nsig} \) is a valid (or invalid) signature. For this, the nominee \(\text{ne} \) sets a relation \(\mathcal{R} \) using a private witness that is available only to \(\text{ne} \) and generates \((\mu, \Pi_\mathcal{R}) \leftarrow \text{NS.cfORDs.neTM} \). Here \(\mu \in \{0, 1\} \) and \(\Pi_\mathcal{R} \) is a zero knowledge proof for a relation \(\mathcal{R} \) set by \(\text{ne} \). The verifier runs the algorithm \(\text{NS.cfORDs.vrTM} \) on receiving \((\mu, \Pi_\mathcal{R}) \) and returns \(\beta \in \{0, 1\} \). The bit \(\beta = 0 \) indicates that the verifier \(\text{vr} \) is not convinced.
that the private witness for the relation \mathcal{R} is held by ne itself and disagrees with the proof $\Pi_\mathcal{R}$ whereas $\beta = 1$ assures it agrees with the proof $\Pi_\mathcal{R}$.

Formally, a nominative signature $\text{NS}=(\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign}, \text{verify}, \text{cfORds}=(\text{neTM, vrTM}))$ works as follows.

- $\text{NS}.\text{setup}(1^\lambda) \rightarrow \mathcal{Y}$. On input a security parameter λ, a trusted authority called the key generation center (KGC) generates the system parameter \mathcal{Y}.
- $\text{NS}.\text{keygen}(\mathcal{Y}, a) \rightarrow (pk_a, sk_a)$. On given the system parameter \mathcal{Y}, the user a generates the public and secret key pair (pk_a, sk_a).
- $\text{NS}.\text{neSign}(\mathcal{Y}, sk_v, pk_v, M) \rightarrow (\text{Sig}_{M,v,u}, \text{state}_v)$. On input of the public parameter \mathcal{Y}, public-secret key pair (pk_v, sk_v) of a nominee v, public key of pk_v, the nominator u and the message M, the nominee v runs this algorithm to generate the nominee’s signature $\text{Sig}_{M,v,u}$ on a message M with nominator u.
- $\text{NS}.\text{nrSign}(\mathcal{Y}, sk_u, pk_u, pk_v, M, \text{Sig}_{M,v,u}) \rightarrow \text{nsig}_{M,v,u}$. This algorithm is run by a nominator u on input the public parameter \mathcal{Y}, public-secret key pair (pk_v, sk_v) of a nominator u, public key pk_v of the nominee v, message M and the nominee’s signature $\text{Sig}_{M,v,u}$ and generates the nominative signature $\text{nsig}_{M,v,u}$.
- $\text{NS}.\text{verify}(\mathcal{Y}, \text{state}_v, pk_v, pk_u, M, \text{nsig}_{M,v,u}) \in \{\text{valid, invalid}\}$. This algorithm is run by the nominee with its state_v and it verifies whether the nominative signature $\text{nsig}_{M,v,u}$ is valid or invalid.
- $\text{NS}.\text{cfORds}=(\text{neTM, vrTM}) \rightarrow ((\mu, \Pi_\mathcal{R}), \beta)$. This is an interactive protocol between a nominee v and a verifer vr and the nominee returns a bit $\mu \in \{0,1\}$ and a zero knowledge proof $\Pi_\mathcal{R}$. If the verifier agrees with the proof $\Pi_\mathcal{R}$, the verifier returns $\beta = 1$. Otherwise vr returns $\beta = 0$.

Security model. Following are the security attributes of a nominative signature.

- Unforgeability against malicious nominee. The nominee ne alone cannot produce a valid nominative signature $\text{nsig}_{M,ne,\text{nr}}$ where the nominee ne and the message M both are chosen by the nominator nr. The security game $\text{Exp}_{\mathcal{F}}^{\text{uf-mne}}(\lambda)$ for unforgeability against malicious nominee between an attacker \mathcal{F} and a simulator \mathcal{S} is provided in Figure 1.

1. The simulator \mathcal{S} generates system parameter \mathcal{Y} and fixes the uncorrupted nominator nr^*. The simulator \mathcal{S} also randomly fixes the public key pk_{nr^*} of the nominator nr^* and sends the tuple $(\mathcal{Y}, \text{nr}^*, pk_{\text{nr}^*})$ to the forger \mathcal{F}.
2. The forger \mathcal{F} makes polynomially many, say α, queries to \mathcal{S} for each of the oracles Create, Corrupt, SignNR, SignNE, cfORds. The simulator \mathcal{S} returns \bot when the forger \mathcal{F} makes Corrupt and SignNR queries on a user $a = \text{nr}^*$.
3. Finally, \mathcal{F} outputs a forgery $(M^*, \text{nsig}_{M^*,\text{ne},\text{nr}}^*)$ on a corrupted nominee ne and the uncorrupted nominator nr such that $pk_{\text{ne}} \in L_{\text{Corrupt}}$.
4. The simulator \mathcal{S} returns 1 if the following conditions hold:
 (a) $\text{NS.\text{verify}}(\mathcal{Y}, \text{state}_{\text{ne}}, pk_{\text{ne}}, pk_{\text{nr}}, M^*, \text{nsig}_{M^*,\text{ne},\text{nr}}) \rightarrow \text{valid}$,
 (b) $pk_{\text{nr}} \notin L_{\text{Corrupt}}$,
 (c) $(\text{Sig}_{M^*,\text{ne},\text{nr}}, \text{nsig}_{M^*,\text{ne},\text{nr}}) \notin L_{\text{SignNR}}$ and
 (d) $(\text{nsig}_{M^*,\text{ne},\text{nr}}, \mu, \Pi_\mathcal{R}) \notin L_{\text{cfORds}}$.
 Otherwise, \mathcal{S} returns 0.
5. The forger \mathcal{F} wins the game if \mathcal{S} returns 1.

![Figure 1: selective unforgeability game $\text{Exp}_{\mathcal{F}}^{\text{uf-mne}}(\lambda)$ against malicious nominee](image)

Definition 9. (Unforgeability against malicious nominee). We say that a nominative signature is secure under unforgeability against malicious nominee if

$$\text{Adv}_{\mathcal{F}}^{\text{uf-mne}}(\lambda) = \Pr[\text{Exp}_{\mathcal{F}}^{\text{uf-mne}}(\lambda) = 1] \leq \text{negl}(\lambda)$$

for every PPT adversary \mathcal{F} in the experiment $\text{Exp}_{\mathcal{F}}^{\text{uf-mne}}(\lambda)$ defined in Figure 2, where $\text{negl}(\lambda)$ is a negligible function in λ i.e., $\text{negl}(\lambda) = \lambda^{-\omega(1)}$.

• Unforgeability against malicious nominator. The nominator \(ne \) alone cannot produce a valid nominative signature \(nsig_{M,ne,ne} \) and cannot convince a verifier about the validity or invalidity of the nominative signature. The security game \(\text{Exp}_{F}^{af,mnr}(\lambda) \) for unforgeability against malicious nominator between an attacker \(F \) and a simulator \(S \) is provided in Figure 3.

1. The simulator \(S \) generates system parameter \(\mathcal{Y} \leftarrow \text{NS} \text{.setup}(\lambda) \) and fixes the uncorrupted nominee \(ne^* \). The simulator \(S \) also randomly fixes the public key \(pk_{ne^*} \) of the nominator \(ne^* \) and sends the tuple \((\mathcal{Y}, ne^*, pk_{ne^*}) \) to the forger \(F \).
2. The forger \(F \) makes polynomially many, say \(\alpha \), queries to \(S \) for each of the oracles \(\text{CreateNR} \), \(\text{CreateNE} \), \(\text{CorruptNR} \), \(\text{CorruptNE} \), \(\text{SignNR} \), \(\text{SignNE} \), \(\text{cfORds} \). The simulator \(S \) returns \(\perp \) when the forger \(F \) makes \(\text{Corrupt} \), \(\text{SignNE} \) and \(\text{cfORds} \) queries on an oracle \(a = ne^* \).
3. Finally, the forger \(F \) outputs a forgery \((M^*, \text{Sig}_{M^*,ne,ne; ne}, nsig_{M^*,ne,ne}) \) on a corrupted nominator \(nr \) and an uncorrupted nominee \(ne \) such that \(pk_{nr} \in L_{\text{CorruptNR}} \), \((pk_{ne}, sk_{ne}) \in L_{\text{CreateNE}} \).
4. The simulator \(S \) returns 1 if the following holds:
 (a) \(\text{NS} \text{.verify}(\mathcal{Y}, \text{state}_{ne}, pk_{ne}, pk_{nr}, M^*, nsig_{M^*,ne,ne,nr}) \rightarrow \text{valid} \),
 (b) \(pk_{ne} \notin L_{\text{CorruptNE}} \),
 (c) \((\text{Sig}_{M^*,ne,ne; ne}, \text{state}_{ne}) \notin L_{\text{signNE}} \) and
 (d) \((nsig_{M^*,ne,ne,nr}, \mu, \Pi_{R}) \notin L_{\text{cfORds}} \).
Otherwise, \(S \) returns 0.
5. The forger \(F \) wins the game if \(S \) returns 1.

Definition 10. (Unforgeability against malicious nominator). We say that a nominative signature is secure under unforgeability against malicious nominator if
\[
\text{Adv}_{F}^{af,mnr}(\lambda) = \Pr[\text{Exp}_{F}^{af,mnr}(\lambda) = 1] \leq \text{negl}(\lambda)
\]
for every PPT adversary \(F \) in the experiment \(\text{Exp}_{F}^{af,mnr}(\lambda) \) defined in Figure 2 where \(\text{negl}(\lambda) \) is a negligible function in \(\lambda \) i.e., \(\text{negl}(\lambda) = \lambda^{-\omega(1)} \).

• Security under invisibility. Only the nominee \(ne \) can verify the nominative signature \(nsig_{M,ne,ne} \). Let \(F \) be a distinguisher and \(S \) be the challenger. The invisibility game \(\text{Exp}_{F}^{\text{invis}}(\lambda, b) \) is described in Figure 3.

1. The simulator \(S \) generates system parameter \(\mathcal{Y} \leftarrow \text{NS} \text{.setup}(\lambda) \) and sends it to the distinguisher \(F \).
2. Next the distinguisher \(F \) makes polynomially many, say \(\alpha \) queries to \(S \) for each of the oracles \(\text{Create}, \text{SignNR}, \text{SignNE}, \text{cfORds} \).
3. At any point of the game, \(F \) submits a tuple \((M^*, ne, nr) \) where \(M^* \) is a message to be signed with \(ne \) as the nominee and \(nr \) as the nominator such that \(pk_{ne}, pk_{nr} \in L_{\text{Create}} \) but \(pk_{ne} \notin L_{\text{Lcorrupt}} \) i.e., the nominee \(ne \) is not corrupted.
4. The simulator chooses a random bit \(b \in \{0,1\} \). If \(b = 1 \), the simulator \(S \) generates \(\text{Sig}_{M^*,ne,ne} \leftarrow \text{NS} \text{.neSign}(\mathcal{Y}, sk_{ne}, pk_{ne}, pk_{nr}, M^*) \), \(nsig_{M^*,ne,ne,nr} \leftarrow \text{NS} \text{.nrSign}(\mathcal{Y}, sk_{nr}, pk_{nr}, sk_{ne}, pk_{ne}, M^*, \text{Sig}_{M^*,ne,ne}) \) and sets \(K_b = nsig_{M^*,ne,ne,nr} \). Else, \(K_b \) is generated uniformly.
5. The distinguisher \(F \) observes \(K_b \), outputs a guess \(b' \) and wins the game if
 (i) \(b' = b \)
 (ii) \(F \) does not corrupt \(sk_{ne} \) i.e., \(pk_{ne} \notin L_{\text{Lcorrupt}} \).

Definition 11. (Security under invisibility). A nominative signature scheme is secure under invisibility if
\[
\text{Adv}_{F}^{\text{invis}}(\lambda) = \left| \Pr[\text{Exp}_{F}^{\text{invis}}(\lambda, 0)] - \Pr[\text{Exp}_{F}^{\text{invis}}(\lambda, 1)] \right| \leq \text{negl}(\lambda)
\]
for every PPT adversary \(F \) in the experiment \(\text{Exp}_{F}^{\text{invis}}(\lambda, b) \) defined in Figure 3 where \(b \in \{0,1\} \) and \(\text{negl}(\lambda) \) is a negligible function in \(\lambda \).

• Security under non-repudiation. If the nominative signature \(nsig_{M,ne,ne} \) is valid then the nominee \(ne \) cannot mislead a verifier \(vr \) by proving the invalidity of \(nsig_{M,ne,ne} \) to the verifier \(vr \) and vice versa. Let
F be a cheating nominee and S be the simulator. The non-repudiation game \(\text{Exp}^\text{rep}_F(\lambda) \) is explained in Figure 4.

1. The simulator \(S \) generates \(Y \leftarrow \text{NS.setup}(\lambda) \) and sends it to the adversary \(F \).
2. The adversary \(F \) may make polynomially many, say \(\alpha \), queries to oracles Create, Corrupt, SignNR, SignNE, cfORds.
3. The adversary \(F \) prepares a tuple \((M^*, \text{nsig}_{M^*, \text{ne}, \text{nr}}, \gamma = 1 - \mu)\) where \text{ne} is any nominee with \(\text{pk}_{\text{ne}} \in \text{Lcorrupt} \), \text{nr} is a nominator such that \((\text{pk}_{\text{nr}}, \text{sk}_{\text{nr}}) \in \text{Lcreate} \), \text{nsig}_{M^*, \text{ne}, \text{nr}} \) is a signature on \(M^* \) and \((\text{nsig}_{M^*, \text{ne}, \text{nr}}, \mu, \Pi_\text{R}) \) \in \text{LcfORds} \) where \(\Pi_\text{R} \) is a zero knowledge proof for the relation \(\mathcal{R} \) and \(\mu \) is a bit. If \(\text{NS.verify}(Y, \text{state}_{M^*, \text{ne}, \text{nr}}, \text{pk}_{\text{ne}}, \text{pk}_{\text{nr}}, M^*, \text{nsig}_{M^*, \text{ne}, \text{nr}}) \rightarrow \text{valid} \) then \(\mu = 1 \). Else \(\mu = 0 \).
4. To mislead, the adversary \(F \) sends the disavowal proof \(\Pi_\text{R} \) if \(\mu = 1 \). Otherwise, \(F \) computes the confirmation proof \(\Pi_\text{R} \). The simulator \(S \) runs \(\text{NS.cfORds.vrTM}(Y, \text{pk}_{\text{ne}}, \text{pk}_{\text{nr}}, M^*, \text{nsig}_{M^*, \text{ne}, \text{nr}}, \mu, \Pi_\text{R}) \rightarrow \beta \) and returns \(\beta \).

The adversary \(F \) wins the game if \(\beta = 1 \).

Figure 4: Security game \(\text{Exp}^\text{rep}_F(\lambda) \) under non-repudiation

Definition 12. (Security under non-repudiation). A nominative signature scheme is secure under non-repudiation if

\[
\text{Adv}^\text{rep}_F(\lambda) = |\Pr[\text{Exp}^\text{rep}_F(\lambda) = 1]| \leq \text{negl}(\lambda)
\]

for every PPT adversary in the experiment \(\text{Exp}^\text{rep}_F(\lambda) \) defined in Figure 4 and \(\text{negl}(\lambda) \) is a negligible function of \(\lambda \).

The attacker \(F \) has access to the following oracles in the attack games given in Figures 1-4 and interacts with the simulator \(S \) who generates the public parameter \(\mathcal{Y} \) and maintains five private lists: \(\text{Lcreate}, \text{Lcorrupt}, \text{LsignNE}, \text{LsignNR}, \text{LcfORds} \) (each initially empty).

- **Create Query**: When \(F \) makes this oracle query to \(S \) on a user \(a \), the simulator \(S \) returns \(\text{pk}_a \) to \(F \) by running \(\text{NS.keygen}(\mathcal{Y}, a) \rightarrow (\text{pk}_a, \text{sk}_a) \). The simulator \(S \) stores \((\text{pk}_a, \text{sk}_a) \) in the list \(\text{Lcreate} \).
- **Corrupt Query**: On receiving this query on a user \(a \) from \(F \), the simulator \(S \) checks whether \((\text{pk}_a, \text{sk}_a) \in \text{Lcreate} \). If not, it returns \(\bot \). Otherwise, \(S \) sends \(\text{sk}_a \) to \(F \) and stores \(\text{pk}_a \) in the list \(\text{Lcorrupt} \).
- **SignNE Query**: On querying this oracle on a tuple \((v, u, M)\) by \(F \) where \(v \) is a nominee, \(u \) is a nominator and \(M \) is a message, the simulator \(S \) checks whether \((\text{pk}_u, \text{sk}_u) \in \text{Lcreate} \). If not, \(S \) returns \(\bot \). Otherwise, \(S \) outputs the signature \((\text{Sig}_{M, u, v}, \text{state}_v) \leftarrow \text{NS.neSign}(\mathcal{Y}, \text{sk}_v, \text{pk}_v, \text{pk}_u, M) \) of the nominee \(v \) on \(M \) and stores \((\text{Sig}_{M, u, v}, \text{state}_v) \) in the list \(\text{LsignNE} \) where \(\text{state}_v \) is the current updated internal secret state of the nominee \(v \).
- **SignNR Query**: In response to this query on \(\text{Sig}_{M, u, v} \) from \(F \), the simulator \(S \) verifies whether \((\text{Sig}_{M, u, v}, \text{state}_v) \in \text{LsignNE} \). If so, \(S \) returns the nominative signature \(\text{nsig}_{M, u, v} \leftarrow \text{NS.nrSign}(\mathcal{Y}, \text{sk}_v, \text{pk}_u, \text{pk}_v, M, \text{Sig}_{M, u, v}) \) to \(F \) and stores \((\text{Sig}_{M, u, v}, \text{nsig}_{M, u, v}) \) in the list \(\text{LsignNR} \). Otherwise, \(S \) returns \(\bot \).
- **cfORds Query**: On receiving this query on \(\text{nsig}_{M, u, v} \) from \(F \), the simulator \(S \) checks whether \((\text{Sig}_{M, u, v}, \text{nsig}_{M, u, v}) \in \text{LsignNR} \). If not, \(S \) aborts. Otherwise, \(S \) extracts \(\text{state}_e \) from \((\text{Sig}_{M, u, v}, \text{state}_e) \in \text{LsignNE} \) and returns \((\mu, \Pi_\text{R}) \leftarrow \text{NS.cfORds.neTM}(\mathcal{Y}, \text{state}_e, \text{pk}_v, \text{pk}_u, M, \text{nsig}_{M, u, v}) \) to \(F \) where \(\mathcal{R} \) is the relation for the zero knowledge \(\Pi_\text{R} \). The simulator \(S \) stores \((\text{nsig}_{M, u, v}, \mu, \Pi_\text{R}) \) in the list \(\text{LcfORds} \).

4 Our Nominative Signature Scheme

Our nominative signature \(\text{NS} = (\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign}, \text{verify}, \text{cfORds} = (\text{neTM}, \text{vrTM})) \) works as follows.

- **NS.setup(\(\lambda \) → \(\mathcal{Y} \))**: On input a security parameter \(\lambda > 0 \), the KGC selects integers \(n \) and \(q \) of sizes \(O(\lambda) \) and \(O(n^3) \) respectively, sets \(m \geq 5n[\log q] \), picks real numbers \(\sigma \) and \(\delta \) where \(\sigma \) is the standard deviation of the discrete Gaussian distribution \(D_{\lambda, \sigma} \) of size \(\Omega(\sqrt{n \log q} \log n) \) and \(\delta = 2\sigma \sqrt{m} \) is an error bound. It chooses
cryptographically secure hash function \(H : \mathcal{M} \times (\mathbb{Z}_q^n \times \mathbb{Z}_q^m))^2 \rightarrow \mathbb{Z}_q^n \) where \(\mathcal{M} \) is the message space, selects a CRPRF \(f : \mathbb{Z}_q^n \times \mathbb{Z}_q^m \rightarrow \mathbb{Z}_q^n \). For our scheme, it is suffice to consider a function that is collision resistant only on one hard space. That is, given \(x_0, y \in \mathbb{Z}_q^n \) and \(f(x_0, y) \in \mathbb{Z}_q^n \), it should be hard to find another \(x_1 \in \mathbb{Z}_q^n \) such that \(f(x_0, y) = f(x_1, y) \) and \(x_0 \neq x_1 \). Finally, it publishes the public parameter \(\mathcal{Y} = \{ n, q, m, \sigma, \delta, H, f \} \).

- **NS.keygen**(\(\mathcal{Y} \), \(a \)) \(\rightarrow \) (\(pk_a \), \(sk_a \)). The user \(a \) invokes the algorithm \(\text{TrapGen}(n, m, q) \rightarrow (A_a, T_{A_a}) \) (see Lemma 1 in Section 2.1) and sets \(pk_a = A_a \in \mathbb{Z}_q^n \), \(sk_a = T_{A_a} \in \mathbb{Z}_q^{m \times m} \). The user \(a \) publishes \(pk_a \) and keeps \(sk_a \) secret to itself.

- **NS.nesign**(\(Y, sk_{ne} \), \(pk_{ne} \), \(pk_{nr} \), \(M \)) \(\rightarrow \) (\(\text{Sig}_{M,ne,ne} = (M, v, y, 1, \pi_{R_f}), \text{state}_{ne} \)). Let \(M \in \mathcal{M} \) be a message to be signed. The nominee \(ne \) performs the following steps using \(\mathcal{Y} = \{ n, q, m, \sigma, \delta, H, f \}, sk_{ne} = T_{A_{ne}}, pk_{ne} = A_{ne} \) and public key \(pk_{nr} = A_{nr} \) of a nominator \(nr \). For our convenience, we write \(B_{ne} = A_{ne} \) and \(T_{B_{ne}} = T_{A_{nr}} \).

- Compute \(y = H(M, A_{nr}, B_{ne}) \in \mathbb{Z}_q^n \) and generate a short vector \(v \in \mathbb{Z}_q^n \) satisfying \(g_{B_{ne}}(v) = B_{ne} \cdot v = y \mod q \) with \(||v|| \leq \sigma \sqrt{m} \) by running the algorithm SamplePre(\(B_{ne}, T_{B_{ne}}, y, \sigma \)) \(\rightarrow \) \(v \) using the short basis \(T_{B_{ne}} \) given in Lemma 1 in Section 2. Note that \(||v||_{\infty} \leq ||v|| \leq \sigma \sqrt{m} \leq \delta = 2\sigma \sqrt{m} \).

- Select randomly \(r_1 \in \mathbb{Z}_q^m \), compute \(y_1 = f(r_1, v) \in \mathbb{Z}_q^n \) and generate a zero knowledge proof \(\Pi_{R_f} \) for the relation \(R_f = \{ \text{public}(f(v, y_1), \mathcal{Y}) \}, \text{private}(r_1) \mid y_1 = f(r_1, v) \} \) by executing the algorithm \(ZKB.prove \) using the protocol \(ZKB++ \) as described in Section 2.2.

- Set the signature \(\text{Sig}_{M,ne,ne} = (M, v, y, 1, \pi_{R_f}) \), send it to the nominator \(nr \) over a two party public channel and update its current internal state \(\text{state}_{ne} = \text{state}_{ne} \cup \{(r_1, v, M, nr) \} \) (\(\text{state}_{ne} \) is initially empty).

- **NS.nrsign**(\(Y, sk_{nr} \), \(pk_{nr} \), \(pk_{ne} \), \(M, \text{Sig}_{M,ne,ne} = (z, v) \)) \(\rightarrow \) (\(\text{nsig}_{M,ne,ne} = (z, v) \)). On receiving the signature \(\text{Sig}_{M,ne,ne} = (M, v, y, 1, \pi_{R_f}) \) from the nominee \(ne \), the nominator \(nr \) executes the following steps using \(sk_{nr} = T_{A_{nr}}, pk_{ne} = A_{nr} \) and \(pk_{nr} = B_{nr} \).

- Verify \(g_{B_{nr}}(v) = B_{nr} \cdot v = H(M, A_{nr}, B_{ne}) \mod q \) with \(||v|| \leq \sigma \sqrt{m} \) and zero knowledge proof \(\Pi_{R_f} \), by invoking the algorithm \(ZKB.verify \) using the \(ZKB++ \) protocol as described in Section 2.2. The nominator aborts and outputs \(\text{nsig}_{M,ne,ne} = \perp \) if any of the above verification fails where \(\perp \) is a designated symbol indicating verification failure.

- Otherwise, find a short vector \(z \in \mathbb{Z}_q^m \) satisfying \(g_{A_{nr}}(z) = A_{nr} \cdot z = y_1 \mod q \) with \(||z|| \leq \sigma \sqrt{m} \) using the short basis \(sk_{nr} = T_{A_{nr}} \). Following the algorithm \(\text{SamplePre}(A_{nr}, T_{A_{nr}}, y_1, \sigma) \rightarrow z \) as in Lemma 1 in Section 2.1 and issues the nominative signature \(\text{nsig}_{M,ne,ne} = (z, v) \).

- **NS.verify**(\(Y, \text{state}_{ne} \), \(pk_{ne} \), \(pk_{nr} \), \(M, \text{nsig}_{M,ne,ne} = (z, v) \)) \(\in \{ \text{valid}, \text{invalid} \} \). This algorithm is executed by the nominee \(ne \) with its current internal state \(\text{state}_{ne} \) containing \((r_1, v, M, nr) \) who on receiving \(\text{nsig}_{M,ne,ne} = (z, v) \) uses \(pk_{ne} = A_{nr} \) and \(pk_{nr} = B_{ne} \) to verify whether \(g_{A_{nr}}(z) = f(r_1, v) \mod q \) with \(||z|| \leq \sigma \sqrt{m} \) and \(g_{B_{nr}}(v) = H(M, A_{nr}, B_{ne}) \mod q \) with \(||v|| \leq \sigma \sqrt{m} \). Here the nominee \(ne \) extracts \(v, r_1 \) from its internal secret state \(\text{state}_{ne} \) containing \((r_1, v, M, nr) \). If the verification succeeds, it outputs valid; otherwise it returns invalid.

- **NS.cfOrds**(\(\text{neTM}, \text{vrTM} \)) \(\rightarrow \{ (\mu, \pi_{R}), \beta \} \). This protocol is an interactive protocol between the nominee \(ne \) and a verifier \(vr \) satisfying the following requirements:

 (i) \(\text{neTM}(Y, \text{state}_{ne}, \text{pk}_{ne}, \text{pk}_{nr}, M, \text{nsig}_{M,ne,ne}) \rightarrow (\mu, \pi_{R}) \). The nominee performs the following steps using \(\text{pk}_{ne} = B_{ne}, \text{pk}_{nr} = A_{nr}, \text{state}_{ne} \) and \(\text{nsig}_{M,ne,ne} = (z, v) \):

 - Extract \(r_1, v \) from \((r_1, v, M, nr) \) contained in \(\text{state}_{ne} \). Generate a zero knowledge proof \(\Pi_{R} \) for the relation \(R = \{ \text{public}(A_{nr}, B_{ne}, v, z, M, Y) \}, \text{private}(r_1) \mid B_{ne} \cdot v = H(M, A_{nr}, B_{ne}), A_{nr} \cdot z = f(r_1, v) \} \) by executing the algorithm \(\text{ZKB.prove} \) using the protocol \(ZKB++ \) as described in Section 2.2.

 - Run \(\text{NS.verify}(Y, \text{state}_{ne}, \text{pk}_{ne}, \text{pk}_{nr}, M, \text{nsig}_{M,ne,ne}) \). If the output is valid then return \((\mu = 1, \Pi_{R}) \) to the verifier \(vr \); otherwise, send \((\mu = 0, \pi_{R}) \) to the verifier \(vr \). The proof \(\Pi_{R} \) is treated as a confirmation (disavowal) proof of the relation \(R \) when \(\mu = 1 \) (\(\mu = 0 \)).

 (ii) \(\text{vrTM}(Y, \text{pk}_{ne}, \text{pk}_{nr}, M, \text{nsig}_{M,ne,ne}, \mu, \pi_{R}) \rightarrow \beta \). On receiving a pair \((\mu, \pi_{R}) \) from the nominee \(ne \), the verifier \(vr \) verifies the zero knowledge proof \(\Pi_{R} \) by invoking the algorithm \(\text{ZKB.verify} \) using the \(ZKB++ \) protocol as described in Section 2.2. The verifier \(vr \) outputs \(\beta = 1 \) if \(vr \) agrees with the confirmation proof \(\Pi_{R} \).
It follows from the zero knowledge proof that the scheme is secure under the unforgeability against malicious nominee in the standard model as per Definition 9 for the security game given in Figure 1 assuming the existence of collision-resistant hash functions. The nominative signature scheme is described in Section 4.

4.1 Security Proofs

Remark 1. Note that the cheating nominee cannot construct a valid signature on some message \(M^* \neq M \). It follows from the zero knowledge proof \(\Pi_R \) which proves the knowledge of \(r_1 \in \mathbb{Z}_q^n \) such that \(y_1 = f(r_1, v) \) and the collision resistant property of the PRF \(f \).

Correctness. Let the KGC generates the public parameter \(\mathcal{Y} = (n, q, m, \sigma, \beta, H, f) \) \(\leftarrow \) NS.setup(\(\lambda \)). A nominator \(ne \) generates its public-secret key pair \((pk_{nr} = A_{nr}, sk_{nr} = T_{A_{nr}}) \leftarrow \) NS.keygen(\(\lambda, nr \)) and a nominee \(ne \) generates its public-secret key pair \((pk_{ne} = A_{ne}, sk_{ne} = T_{A_{ne}}) \leftarrow \) NS.keygen(\(\lambda, ne \)). Set \(B_{ne} = A_{ne} \) and \(T_{B_{ne}} = T_{A_{ne}} \). Let the nominee \(ne \) generates

\[
(Sig_{M,ne,ne} = (M, v, y_1, \Pi_{R_1}), state_{ne}) \leftarrow NS.neSign(\mathcal{Y}, sk_{ne}, pk_{ne}, pk_{nr}, M)
\]

where \(\Pi_{R_1} \leftarrow \) ZKB.prove is a zero knowledge proof for the relation \(R_1 = \{ \text{public}(f, v, y_1, \mathcal{Y}), \text{private}(r_1) | y_1 = f(r_1, v) \}, v \in \mathbb{Z}_q^n \) is a short vector satisfying \(B_{ne} \cdot v = H(M, A_{nr}, B_{ne}) \) with \(||v|| \leq \sigma \sqrt{m} \). Let the nominee \(ne \) outputs \((\mu, \Pi_{R_1}) \leftarrow NS.cfORds.neTM(\mathcal{Y}, state_{ne}, pk_{ne} = B_{ne}, pk_{nr} = A_{nr}, M, nsig_{M,ne,ne} = (z, v)) \) where \(\mu \in \{0, 1\} \) and \(\Pi_{R_1} \leftarrow \) ZKB.prove is a zero knowledge proof for the relation \(R_1 = \{ \text{public}(A_{nr}, B_{ne}, v, z, m, \mathcal{Y}), \text{private}(r_1) | B_{ne} \cdot v = H(M, A_{nr}, B_{ne}), A_{nr} \cdot z = f(r_1, v) \} \) where \((r_1, v, M, nr) \in state_{ne} \).

If the nominee \(ne \), the nominator \(nr \) and the verifier \(vr \) are honest then we have the following.

(i) The algorithm NS.verify(\(\mathcal{Y}, state_{ne}, pk_{ne}, pk_{nr} = A_{nr}, M, nsig_{M,ne,ne} = (z, v) \)) run by the honest nominee \(ne \) outputs valid as \(A_{nr} \cdot z = f(r_1, v) \) where \((r_1, v, M, nr) \in state_{ne} \).

(ii) The algorithm NS.cfORds.verify(\(\mathcal{Y}, pk_{ne}, pk_{nr}, M, nsig_{M,ne,ne} = (z, v), \mu, \Pi_{R_1} \)) run by the honest verifier \(vr \). The verifier \(vr \) outputs \(\beta = 1 \) which follows from the correctness of ZKB.verify in Section 2.2. In other words, the verifier agrees with the proof \(\Pi_{R_1} \) and thereby convinced in zero knowledge that \(ne \) has the knowledge of the private witness \(r_1 \) satisfying \(A_{nr} \cdot z = f(r_1, v) \) mod \(q \) and \(B_{ne} \cdot v = H(M, A_{nr}, B_{ne}) \). Note that \(\Pi_{R_1} \) is a confirmation proof when \(\mu = 1 \) and disavowal proof when \(\mu = 0 \).

4.1 Security Proofs

Theorem 6. The nominative signature scheme \(NS = (setup, keygen, neSign, nsSign, verify, cfORds = (neTM, vrTM)) \) described in Section 4 is secure under the unforgeability against malicious nominee in the standard model as per Definition 3 for the security game given in Figure 3 assuming the existence of collision-resistant preimage sampleable function (CRPSF). Concretely, suppose there is a forger \(F \) that has advantage \(\epsilon \) against the scheme \(NS \). Suppose \(F \) makes at most \(Q_H > 0 \) hash queries to \(H \) and \(Q_f > 0 \) pseudorandom queries to \(f \). Then there is an algorithm \(S \) that breaks the collision resistant property of CRPSF with probability

\[
Pr[|F(\bar{A}, x, n, m, q) \to x'\mathrel{|}((g_A(x) = g_A(x') \land \sigma) \in \mathbb{Z}_q^{n \times m}, x \in \mathbb{Z}_q^{m}, ||x|| \leq \beta, \beta = 2|x|, \sigma = \Omega(\sqrt{n \log q \log n}), m = 2n \log q, q = O(n^3), n = O(\lambda))] \\
\geq \epsilon \quad \text{where} \quad \epsilon \geq \sigma e^2 \cdot \epsilon'.
\]

Here \(e \) is the base of the natural logarithm. The running time of \(S \) is \(O(time(F)) \).

Proof. Let a PPT forger \(F \) with the secret key of a nominee forges our proposed nominative signature scheme \(NS \) with non-negligible advantage \(\epsilon \). We construct an algorithm \(S \) that breaks the collision-resistant property of PSF with probability close to \(\epsilon \). The algorithm \(S \) plays the role of the simulator in the security game \(Exp_{f}^{mor_{n}(\lambda)} \) (Figure 4) and interacts with \(F \) as follows:

1. The simulator \(S \) runs NS.setup(\(\lambda \)) to honestly generate the public parameters \(\mathcal{Y} = (n, q, m, \sigma, \delta, H, f) \) with integers \(n \) and \(q \) of sizes \(O(\lambda) \) and \(O(n^3) \) respectively, real number \(\sigma \) of size \(\Omega(\sqrt{n \log q \log n}) \) which

\[
\begin{align*}
\text{i.e., if } vr \text{ receives } &\mu = 1 \text{ and } ZKB.verify \text{ passes (or disavowal proof } \Pi_R \text{ i.e. } vr \text{ receives } \mu = 0 \text{ and } ZKB.verify \text{ succeeds). The verifier } vr \text{ thus convinced in zero knowledge that neither nominator nor nominee is a cheater. Otherwise, } vr \text{ disagrees with the confirmation/disavowal proof } \Pi_R \text{ and returns } \beta = 0.
\end{align*}
\]
is the standard deviation of the discrete Gaussian distribution $D_{\Lambda, \sigma}$, an error bound $\delta = 2\sqrt{m}$ where
$m \geq 5n{\log q}$, a hash function $H : M \times (\mathbb{Z}_q^{n\times m})^2 \rightarrow \mathbb{Z}_q^n$ where M is the message space and a collision resistant pseudorandom function $f : \mathbb{Z}_q^n \times \mathbb{Z}_q^m \rightarrow \mathbb{Z}_q^n$. The simulator S sends Y to the forger F, fixes the uncorrupted nominator nr^* along with its public key $pk_{nr^*} \in \mathbb{Z}_q^{n\times m}$ uniformly at random.

2. The forger F makes polynomially many, say α, queries to S for each of the following oracles where $Hlist$, PRFlist, Successlist, LsignNE, LsignNR, LcfORDs are the private lists maintained by the simulator S (which are initially empty).

- **Create** Query: On receiving this query on a user $a \neq nr^*$, the simulator S runs $NS\text{-keygen}(Y, a) \rightarrow (pk_a, sk_a)$ where $pk_a = A_a \in \mathbb{Z}_q^{n\times m}$ and $sk_a = T_{A_a} \in \mathbb{Z}_q^{r\times m}$. For the case $a = nr^*$, the simulator S sends the already fixed public key pk_{nr^*}. In this case $sk_{nr^*} = \bot$. The simulator S stores $(pk_a, sk_a) \in Lcreate$ and sends pk_a to the forger F. When user a plays the role of a nominee, we set $B_a = A_a$ and $T_{B_a} = T_{A_a}$. Observe that the simulation of this query is exactly same as in the original protocol.

- **Corrupt** Query: On receiving this query on a user a from F, the simulator S checks whether $a \neq nr^*$ and $\langle pk_a = A_a, sk_a = T_{A_a} \rangle \in Lcreate$. If not, S returns \bot. Otherwise, S sends sk_a to F and stores pk_a in the list $Lcorrupt$.

- **Hash** Query: To answer hash queries, S maintains a list $Hlist$ for the hash function H. This list stores records of the form $(x, H(x))$ where $x \in M \times (\mathbb{Z}_q^{n\times m})^2$ and $H(x) \in \mathbb{Z}_q^n$. The stored value is returned on the queried $x \in M \times (\mathbb{Z}_q^{n\times m})^2$ if it has already been queried before. Otherwise, a fresh value $H(x) \in \mathbb{Z}_q^n$ is generated honestly by using the public hash function H and $(x, H(x))$ is included in $Hlist$. The simulator S returns $H(x)$ to F. Note that the distribution of hash query is same as in the original protocol.

- **PRF** Query: To respond pseudorandom queries, S maintains a list $PRFlist$ for the collision resistant pseudorandom function f. Here $f : \mathbb{Z}_q^n \times \mathbb{Z}_q^m \rightarrow \mathbb{Z}_q^n$ is assumed to be collision resistant only on one space i.e., given $r_1, v \in \mathbb{Z}_q^m$, $f(r_1, v) \in \mathbb{Z}_q^n$, it is hard to find $r_2 \in \mathbb{Z}_q^m$ with $r_2 \neq r_1$ and $f(r_1, v) = f(r_2, v)$.

On receiving a query $(r_1, v) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^m$ from F, the simulator S checks whether $\langle (r_1, v), y_1 \rangle \in PRFlist$ and returns y_1 to F if so. Otherwise, S checks whether $\langle (M, A_{nr^*}, B_v), H(M, A_{nr^*}, B_v) \rangle \in Hlist$ satisfying $B_v \cdot v = H(M, A_{nr^*}, B_v) \mod q$. If such a pair does not exist in $Hlist$ then S computes $y_1 = f(r_1, v) \in \mathbb{Z}_q^n$ honestly similar to that in the real protocol, passes $y_1 \in \mathbb{Z}_q^n$ to the forger F and stores $\langle (r_1, v), y_1 \rangle$ in $PRFlist$. If there exists such a pair $\langle (M, A_{nr^*}, B_v), H(M, A_{nr^*}, B_v) \rangle \in Hlist$ satisfying $B_v \cdot v = H(M, A_{nr^*}, B_v) \mod q$ then the simulator S simulates a pseudorandom query on (r_1, v) as follows.

(i) choose a short vector $d \leftarrow \text{SampleD}(1^\ast)$ i.e., $d \in \mathbb{Z}_q^m$ with $||d|| \leq \sigma \sqrt{m}$,
(ii) compute $y_1 = g_{A_{nr^*}}(d) = A_{nr^*} \cdot d \mod q$ where $g_{A_{nr^*}}$ forms a PSF (see Definition 8 in Section 2.2),
(iii) store $\langle (r_1, v), y_1 \rangle$ in $PRFlist$ and return y_1 to F,
(iv) maintain a list Successlist and store (M, r_1, v, d, y_1) in Successlist.

For each distinct query (r_1, v) to f, the value returned by S is either the honest value $f(r_1, v)$ or the value $g_{A_{nr^*}}(d)$ where $d \leftarrow \text{SampleD}(1^\ast)$; by the uniform output property of the the algorithm SampleD, this is identical to the uniform random value of $f(r_1, v) \in \mathbb{Z}_q^n$. By the pseudorandom property of f, this simulation is same as in the real protocol. We fix the value of $y_1 \in \mathbb{Z}_q^n$ for the pseudorandom query on (r_1, v) and for every query on the same tuple (r_1, v), the simulator returns the same value $y_1 \in \mathbb{Z}_q^n$. In the original protocol, pseudorandom queries on (r_1, v) are answered by a single value having the same distribution as that in the simulated answer.

- **SignNE** Query: On querying this oracle on a tuple (B_v, A_u, M) by F for a nominee v, nominator u and message M, the simulator S proceed as follows.

(i) checks if $\langle (M, A_u, B_v), y \rangle \notin Hlist$, then S queries (M, A_u, B_v) to hash query and receives $y \in \mathbb{Z}_q^n$,
(ii) find $v \in \mathbb{Z}_q^m$ satisfying $B_v \cdot v = y$,
(iii) check whether $\langle (r_1, v), y_1 \rangle \in PRFlist$ for some $r_1 \in \mathbb{Z}_q^m$, $y_1 \in \mathbb{Z}_q^n$. If no, choose $r_1 \in \mathbb{Z}_q^m$ randomly and make pseudorandom query on (r_1, v),
(iv) generate a zero knowledge proof Π_{R_f} using ZKB++ for the relation $R_f = \{ \text{public } (A_u, B_v, v, z, M, Y) \},$ private $(r_1) | A_u \cdot z = f(r_1, v)$ and return $\text{Sig}_{M,v,u}(M, v, y_1, \Pi_{R_f})$ to F.

(v) update the current internal state $\text{state}_v = \text{state}_v \cup (r_1, v, M, u),$

(vi) store $(\text{Sig}_{M,v,u}, \text{state}_v)$ in the list LsignNE.

Observe that the distribution of SignNE query is identical to that in the real protocol by the uniform output property of the algorithms SampleD and SamplePre.

- SignNR Query: In response to this query on $\text{Sig}_{M,v,u} = (M, v, y_1, \Pi_{R_f})$ from F, the simulator S verifies whether the pair $(\text{Sig}_{M,v,u}, \text{state}_v) \in L\text{SignNE}$ and $u \neq nr^*$. If not, S returns \bot. Otherwise, the simulator S returns the nominative signature $(\text{nsig}_{M,v,u} = (z, v)) \leftarrow \text{NS.nrSign}(Y, sk_v, pk_u, pk_v, M, \text{Sig}_{M,v,u})$ to F and stores $(\text{Sig}_{M,v,u}, \text{nsig}_{M,v,u})$ in the list $L\text{signNR}$. The distribution of $\text{nsig}_{M,v,u} = (z, v)$ is similar to that in the real protocol.

- cFORds Query: The simulator S, on receiving this query on $\text{nsig}_{M,v,u} = (z, v)$ from F, calls the algorithm $\text{NS.cFORds.neTM}(Y, \text{state}_v, pk_u, pk_v, M, \text{nsig}_{M,v,u}) \to (\mu, \Pi_\mu)$ to execute the following steps using $pk_v = B_v, pk_u = A_u$ and (r_1, v, M, u) contained in state_v.

(i) extract r_1, v from (r_1, v, M, u) contained in state_v,

(ii) generate a zero knowledge proof Π_{R} for the relation $R = \{ \text{public } (A_u, B_v, v, z, M, Y) \},$ private $(r_1) | B_v \cdot v = H(M, A_u, B_v), A_u \cdot z = f(r_1, v)$ with $((r_1, v), y_1)$ in PRFlist and $((M, A_u, B_v), H(M, A_u, B_v))$ in $H\text{list}$ using the algorithm ZKB.prove of the non-interactive zero knowledge proof system ZKB++ as described in Section 2.2

(iii) return $(\mu = 1, \Pi_\mu)$ to the verifier ν if $\text{NS.verify}(Y, \text{state}_v, pk_u, pk_v, M, \text{nsig}_{M,v,u})$ is valid, otherwise, send $(\mu = 0, \Pi_\mu)$ to ν,

(iv) record $(\text{nsig}_{M,v,u}, \mu, \Pi_\mu)$ in the list LcFORds.

The proof Π_μ is treated as a confirmation (disavowal) proof of the relation R when $\mu = 1 (\mu = 0)$. Note that, the simulation of (μ, Π_μ) is exactly same as in the real protocol.

3. Finally, F produces a forgery $\text{nsig}_{M,ne,ne}^* = (z^*, v^*)$ on a message $M^* \in M$ against an uncorrupted nominator nr and a corrupted nominee ne i.e., $pk_{ne} \in L\text{corrupt}$. If the forgery $\text{nsig}_{M,ne,ne}^* = (z^*, v^*)$ is valid, the following conditions must hold.

(a) $\text{NS.verify}(Y, \text{state}_v, pk_v, \text{pk}_{ne}, M^*, \text{nsig}_{M,ne,ne}^*) \to \text{valid},$

(b) $\text{pk}_{ne} \notin L\text{corrupt},$

(c) $(\text{Sig}_{M,ne,ne}^*, \text{nsig}_{M,ne,ne}^*) \notin L\text{signNR}$ and

(d) $(\text{nsig}_{M,ne,ne}^*, \mu, \Pi_\mu) \notin L\text{cFORds}.$

When $nr = nr^*$, note that both the equations $A_{nr} \cdot z = y_1^* \mod q$ with $||z^*|| \leq \sqrt{m}$ and $B_{ne} \cdot v^* = y^* \mod q$ must be satisfied when F produces a valid forgery $(M^*, \text{nsig}_{M,ne,ne}^* = (z^*, v^*))$. This implies that the pair $((M^*, A_{nr}, B_{ne}), y_1^*)) \in H\text{list}, ((r_1^*, v^*), y_1^*) \in \text{PRFlist}$ and $(M^*, r_1^*, v^*, d^*, y_1^*) \in \text{Successlist}$. The simulator S collects $d^* \in \mathbb{Z}_q^m$ from Successlist satisfying $g_{A_{nr}}(d^*) = f(r_1^*, v^*) = A_{nr} \cdot d^*$. This yields a collision in $g_{A_{nr}}$ as the forgery $\text{nsig}_{M,ne,ne}^* = (z^*, v^*)$ gives $g_{A_{nr}}(z^*) = A_{nr} \cdot z^* = y_1^* = g_{A_{nr}}(d^*)$. From the preimage min-entropy of d^* (see Definition [9] in Section 2.1) it follows that the signature $z^* \neq d^*$, except with negligible probability $2^{-\omega(\log n)}$. Thus S outputs a valid collision in $g_{A_{nr}}$ with probability negligibly close to $1 - 2^{-\omega(\log n)}$.

Now, we show that S finds the collision in the PSF $g_{A_{nr}}$ with probability at least ϵ'. To do so, we analyze the three events required for S to succeed.

$A : S$ does not abort as a result of any of F’s Corrupt and SignNR queries.

$B : F$ generates a valid forgery $\text{nsig}_{M,ne,ne}^* = (z^*, v^*)$.

$C :$ Event B occurs and $nr = nr^*$ with $(M^*, r_1^*, v^*, d^*, y_1^*) \in \text{Successlist}$.
The simulator \mathcal{S} succeeds if all these events occur. Note that

$$
\Pr[A \cap B \cap C] = \Pr[A] \cdot \Pr[B|A] \cdot \Pr[C|A \cap B].
$$

Then using Lemma 2, Lemma 3 and Lemma 4 described below, the simulator \mathcal{S} produces a collision to the preimage sampleable function with probability at least $\frac{1}{\sqrt{2}}$. Simulator \mathcal{S}'s running time is same as \mathcal{F}'s running time together with the time it takes to respond to α many queries to each of the oracles Create, Corrupt, SignNE, SignNR, cfORds, Q_H hash queries and Q_f queries. Each query requires some computation time, let us assume that t_{gen} is the time taken. Hence, the total running time is almost $t + t_{\text{gen}}(Q_H + Q_f + 5\alpha) \leq t'$. This completes the proof of Theorem 6.

Lemma 2. $Pr[A] \geq \frac{1}{\sqrt{2}}$.

Proof. We prove by induction that after \mathcal{F} makes i many Corrupt queries, the probability that \mathcal{S} does not abort is at least $\left(1 - \frac{1}{\sqrt{2}}\right)^i$. The claim is trivially true for $i = 0$. The probability that the forger \mathcal{F} makes a Corrupt query for the user $u = nr^*\alpha$ is at most $\frac{1}{\alpha}$ (the total number of allowed Corrupt query is α). Thus, the probability that \mathcal{S} does not abort is at least $\left(1 - \frac{1}{\sqrt{2}}\right)$. Using the inductive hypothesis, the probability that \mathcal{S} does not abort after i many Corrupt queries is at least $\left(1 - \frac{1}{\sqrt{2}}\right)^i$. Similarly, the probability that \mathcal{S} does not abort after j many SignNR queries is at least $\left(1 - \frac{1}{\sqrt{2}}\right)^j$. Thus, the total probability that \mathcal{S} does not abort is at least $\left(1 - \frac{1}{\sqrt{2}}\right)^{i+j}$. Since \mathcal{F} makes at most α many Corrupt and SignNR queries each, the probability that \mathcal{S} does not abort as a result of all the Corrupt and SignNR queries is at least $\left(1 - \frac{1}{\sqrt{2}}\right)^{2\alpha} \geq \frac{1}{\sqrt{2}}$.

The public key given to \mathcal{F} is from the same distribution as a public key produced by algorithm NS.keygen. The distribution of responses to all the queries Create, Corrupt, Hash, pseudorandom, SignNE, SignNR, cfORds are as in the real attack. All responses to Corrupt, SignNE and SignNR are valid. Therefore \mathcal{F} will produce a valid message-signature pair with probability at least ϵ. Hence, $\Pr[B|A] \geq \epsilon$. Thus we have the following lemma.

Lemma 3. $Pr[B|A] \geq \epsilon$.

Given that the events A and B have happened, the simulator \mathcal{S} will declare failure only if $nr \neq nr^*\alpha$. So, $Pr[C|A \cap B] = Pr[\text{nr = nr}^*\alpha] = \frac{1}{\alpha}$. Hence we have the following lemma.

Lemma 4. $Pr[C|A \cap B] = \frac{1}{\alpha}$.

Theorem 7. The $\text{NS}=(\text{setup}, \text{keygen, neSign, nrSign, verify, cfORds}=(\text{neTM, vrTM}))$ described in Section 4 is secure under the unforgeability against malicious nominator in the random oracle model as per Definition 10 for the security game given in Figure 2 assuming the existence of collision-resistant preimage sampleable function (CRPSF). Concretely, suppose there is a forger \mathcal{F} that has advantage ϵ against the scheme NS. Suppose \mathcal{F} makes at most $Q_H > 0$ hash queries to H and $Q_f > 0$ pseudorandom queries to f. Then there is an algorithm \mathcal{S} that breaks the collision resistant property of CRPSF with probability

$$
\Pr[\mathcal{F}(\bar{A}, x, n, m, q) \to x' | ((g_{\bar{A}}(x) = g_{\bar{A}}(x') \land (x \neq x'))), \bar{A} \in \mathbb{Z}_{q^2}^{n \times m}, x \in \mathbb{Z}_q^m, ||x|| \leq \beta, \beta = 2\sigma \sqrt{m}, \sigma = \Omega(\sqrt{n \log q \log n}), m \geq 5n \log q, q = \mathcal{O}(n^3), n = \mathcal{O}(\lambda)]
$$

at least ϵ' where $\epsilon \geq 2\epsilon^2 \cdot \epsilon'$. Here e is the base of the natural logarithm. The running time of \mathcal{S} is $O(\text{time}(\mathcal{F}))$.

Proof. Let a PPT forger \mathcal{F} with the secret key of a nominator forges our proposed nominative signature scheme NS with non-negligible advantage ϵ. We construct an algorithm \mathcal{S} that breaks the collision-resistant property of PSF with probability close to ϵ. The algorithm \mathcal{S} plays the role of the simulator in the security game $\text{Exp}_{\mathcal{F}}^{\text{ne}-\text{psf}}(\lambda)$ (Figure 2) and interacts with \mathcal{F} as follows:

1. The simulator \mathcal{S} runs $\text{NS.setu}(\lambda)$ and honestly generates the public parameters $\mathcal{Y} = (n, q, m, \sigma, \delta, H, f)$ where integers n and q are of sizes $\mathcal{O}(\lambda)$ and $\mathcal{O}(n^3)$ respectively, real number σ is of size $\Omega(\sqrt{n \log q \log n})$ is the standard deviation of the discrete Gaussian distribution $D_{\lambda, \sigma}$, an error bound $\delta = 2\sigma \sqrt{m}$ with $m \geq 5n \log q$, a hash function $H : \mathbb{M} \times (\mathbb{Z}_{q^2}^{n \times m})^2 \rightarrow \mathbb{Z}_q^m$ with \mathbb{M} as the message space and a collision resistant pseudorandom function $f : \mathbb{Z}_q^m \times \mathbb{Z}_q^m \rightarrow \mathbb{Z}_q^m$. The simulator \mathcal{S} sends \mathcal{Y} to the forger \mathcal{F}, fixes the uncorrupted nominee ne^* and the public key $\text{pk}_{\text{ne}^*} \in \mathbb{Z}_{q^2}^{n \times m}$ of the nominee ne^* uniformly at random.
2. The forger \mathcal{F} makes polynomially many, say α, queries to \mathcal{S} for each of the following oracles where Hlist, PRFlist, Successlist, LsigNE, LsigNR, LcfORds are the private lists maintained by the simulator \mathcal{S} (which are initially empty).

- **Create Query:** On receiving this query on a user $a \neq \text{ne}^*$, the simulator \mathcal{S} runs $\text{NS.keygen}(\mathcal{Y}, a)\rightarrow (\text{pk}_a, \text{sk}_a)$ where $\text{pk}_a = A_a \in \mathbb{Z}^{n \times m}$ and $\text{sk}_a = T_{A_a} \in \mathbb{Z}^{m \times m}$. For the case $a = \text{ne}^*$, the simulator \mathcal{S} sends the already fixed public key pk_{ne^*}. In this case $\text{sk}_{\text{ne}^*} = \bot$. The simulator \mathcal{S} stores $(\text{pk}_a, \text{sk}_a) \in \text{Lcreate}$ and sends pk_a to the forger \mathcal{F}. When user a plays the role of a nominee, we set $\text{B}_a = A_a$ and $\text{T}_{\text{B}_a} = T_{A_a}$. Observe that the simulation of this query is exactly same as in the original protocol.

- **Corrupt Query:** On receiving this query on a user a from \mathcal{F}, the simulator \mathcal{S} checks whether $a \neq \text{ne}^*$ and $(\text{pk}_a, A_a) \in \text{Lcreate}$. If not, \mathcal{S} returns \bot. Otherwise, \mathcal{S} sends sk_a to \mathcal{F} and stores pk_a in the list Lcrupt.

- **Hash Query:** To answer hash queries, \mathcal{S} maintains a list Hlist for the hash function H. This list stores records of the form (x, y) where $x = (M, A_u, B_v) \in \mathcal{M} \times (\mathbb{Z}^{n \times m})^2$ and $y \in \mathbb{Z}_q^n$. The stored value is returned on the queried $x \in \mathcal{M} \times (\mathbb{Z}^{n \times m})^2$ if it has already been queried before. Otherwise, a fresh random value $y = H(x) \in \mathbb{Z}_q^n$ is generated when $v \neq \text{ne}^*$. When $v = \text{ne}^*$, the simulator chooses a small random vector $w \leftarrow \text{SampleD}(1^n)$ i.e., $w \in \mathbb{Z}_q^n$ with $|w| \leq \sigma \sqrt{m}$ and computes $y = B_{\text{ne}^*} \cdot w$ and (x, y) is included in Hlist. The simulator \mathcal{S} returns y to \mathcal{F}. The simulator stores (x, w) in the list Succlist. Distributions of hash queries are exactly same as that in the original protocol as long as H is treated as a random oracle.

- **PRF Query:** To respond pseudorandom queries, \mathcal{S} maintains a list PRFlist for the collision resistant pseudorandom function f. On receiving a query $(r_1, v) \in \mathbb{Z}_q^n \times \mathbb{Z}_q^n$ from \mathcal{F}, the simulator \mathcal{S} checks whether $(\langle r_1, v \rangle, y_1) \in \text{PRFlist}$ and returns y_1 to \mathcal{F} if so. Otherwise, \mathcal{S} computes $y_1 = f(r_1, v) \in \mathbb{Z}_q^n$ honestly similar to that in the real protocol, passes $y_1 \in \mathbb{Z}_q^n$ to the forger \mathcal{F} and stores (r_1, v, y_1) in PRFlist. Distributions of PRF queries are exactly same as that in the original protocol.

- **SignNE Query:** In response to this query on (M, v, u) from \mathcal{F}, the simulator \mathcal{S} verifies whether $v \neq \text{ne}^*$. If not, \mathcal{S} returns \bot. Otherwise, the simulator \mathcal{S} returns the nominative signature $(\text{Sig}_{M, v, u} = \langle M, v, y_1, \Pi_{\mathcal{R}_f} \rangle) \leftarrow \text{NS.neSign}(\mathcal{Y}, \text{sk}_v, \text{pk}_v, \text{pk}_u, M)$ to \mathcal{F} and stores $\text{Sig}_{M, v, u}$ in the list LsigNE. Note that $\Pi_{\mathcal{R}_f}$ is a zero knowledge on the relation $\mathcal{R}_f = \{\text{public}(f, v, y_1, \mathcal{Y}), \text{private } (r_1) \mid y_1 = f(r_1, v)\}$. The distribution of $\text{Sig}_{M, v, u}$ is similar to that in the real protocol. The simulator \mathcal{S} updates the current internal state $\text{state}_v = \text{state}_v \cup (r_1, v, M, u)$ and stores $(\text{Sig}_{M, v, u}, \text{state}_v)$ in the list LsigNE. The simulator \mathcal{S} returns $(\text{Sig}_{M, v, u}, (z, v))$ to \mathcal{F}. Distributions of $\text{nsig}_{M, v, u} = (z, v)$ is similar to that in the real protocol.

- **cfORds Query:** The simulator \mathcal{S}, on receiving this query on $\text{nsig}_{M, v, u} = (z, v)$ from \mathcal{F}. The simulator \mathcal{S} returns \bot if $v = \text{ne}^*$. Otherwise, \mathcal{S} calls $\text{NS.\text{cfORds}.neTM}(\mathcal{Y}, \text{state}_v, \text{pk}_v, \text{pk}_u, M, \text{nsig}_{M, v, u}) \rightarrow (\mu, \Pi_{\mathcal{R}})$ to execute the following steps using $\text{pk}_v = B_v, \text{pk}_u = A_u$ and (r_1, v, M, u) contained in state_v.

(i) extract r_1, v from (r_1, v, M, u) contained in state$_v$,

(ii) generate a zero knowledge proof $\Pi_{\mathcal{R}}$ for the relation $\mathcal{R} = \{\text{public}(A_u, B_v, v, z, M, \mathcal{Y}), \text{private } (r_1) \mid B_v \cdot v = H(M, A_u, B_v), A_u \cdot z = f(r_1, v)\}$ with $(\langle r_1, v \rangle, y_1)$ in PRFlist and $((M, A_u, B_v), H(M, A_u, B_v))$ in Hlist using the algorithm ZKB.prove of the non-interactive zero knowledge proof system ZKB++ as described in Section 2.2.

(iii) return $(\mu = 1, \Pi_{\mathcal{R}})$ to the verifier μ if $\text{NS.verify}(\mathcal{Y}, \text{state}_v, \text{pk}_v, \text{pk}_u, M, \text{nsig}_{M, v, u})$ is valid, otherwise, send $(\mu = 0, \Pi_{\mathcal{R}})$ to μ.

(iv) record $(\text{nsig}_{M, v, u}, \mu, \Pi_{\mathcal{R}})$ in the list LcfORds.

The proof $\Pi_{\mathcal{R}}$ is treated as a confirmation (disavowal) proof of the relation \mathcal{R} when $\mu = 1$ ($\mu = 0$). Note that, the simulation of $(\mu, \Pi_{\mathcal{R}})$ is exactly same as in the real protocol.
3. Finally, \(F \) produces a forgery \(\Sigma^* = (\text{Sig}_{M^*}(\cdot), n_\text{sig}^{M^*}(\cdot), n_\text{sig}^*=\text{nsig}_{M^*}(\cdot)) \) on a message \(M^* \in \mathcal{M} \) against an uncorrupted nominee \(n_\text{ne} \) and a corrupted nominator \(n_\text{nr} \) i.e., \(\text{pk}_{n_\text{ne}} \in \text{Lcorrupt} \). If the forgery \(\Sigma^* \) is valid, the following conditions must hold.

(a) \(\text{NS.verify}(\cdot, \text{state}_{n_\text{ne}}, \text{pk}_{n_\text{ne}}, M^*, n_\text{sig}^*) \to \text{valid} \)

(b) \(\text{pk}_{n_\text{ne}} \notin \text{Lcorrupt} \)

(c) \((\text{Sig}_{M^*}(\cdot), \text{state}_{n_\text{ne}}) \notin \text{LsignNE} \)

(d) \((n_\text{sig}^*(\cdot), \text{state}_{n_\text{ne}}, \mu, \Pi) \notin \text{LcfORds} \)

When \(n_\text{ne} = n_\text{ne}^* \), note that both the equations \(A_{n_\text{nr}} \cdot z^* = y^*_1 \mod q \) and \(B_{n_\text{nr}} \cdot v^* = y^*_2 \mod q \) with \(||z^*||, ||v^*|| \leq \sigma \sqrt{m} \) must be satisfied when \(F \) produces a valid forgery \(\Sigma^* \). This implies that the pair \(((M^*, A_{n_\text{nr}}, B_{n_\text{nr}}), (r_1, v_1, r_2, v_2)) \in \text{PRFlist} \) and \((M^*, A_{n_\text{nr}}, B_{n_\text{nr}}, w^*) \in \text{Succlist} \). The simulator \(S \) collects \(w^* \in \mathbb{Z}_q^m \) from \(\text{Succlist} \) satisfying \(g_{B_{n_\text{nr}}}(w^*) = B_{n_\text{nr}} \cdot w^* \). This yields a collision in \(g_{B_{n_\text{nr}}} \) as the forgery \(\Sigma^* \) gives \(g_{B_{n_\text{nr}}}(v^*) = B_{n_\text{nr}} \cdot v^* = g_{B_{n_\text{nr}}}(w^*) \). From the preimage min-entropy of \(w^* \) (see Definition [2] in Section [2.1]) it follows that the signature \(v^* \neq w^* \), except with negligible probability \(2^{-\omega(\log n)} \). Thus \(S \) outputs a valid collision in \(g_{B_{n_\text{nr}}} \) with probability negligibly close to \(1 - 2^{-\omega(\log n)} \).

Now, we show that \(S \) finds the collision in PSF with probability at least \(\epsilon' \). To do so, we analyze the three events required for \(S \) to succeed.

A : \(S \) does not abort as a result of any of \(F \)'s \text{Corrupt} and \text{SignNE} queries.

B : \(F \) generates a valid forgery \(\Sigma^* \).

C : Event \(B \) occurs and \(n_\text{ne} = n_\text{ne}^* \) with \((M^*, A_{n_\text{nr}}, B_{n_\text{nr}}, w^*) \in \text{Succlist} \).

The simulator \(S \) succeeds if all these events occur. Note that

\[\Pr[A \cap B \cap C] = \Pr[A] \cdot \Pr[B|A] \cdot \Pr[C|A \cap B]. \]

Then using the Lemma [2] Lemma [3] and Lemma [4] described below, the simulator \(S \) produces a collision to the PSF with probability at least \(\Pr[A] \geq \epsilon' \). Simulator \(S \)'s running time is same as \(F \)'s running time together with the time it takes to respond to \(\alpha \) many \text{Create}, \text{Corrupt}, \text{SignNE}, \text{SignNR}, \text{cfORds} \) queries, \(Q_H \) hash queries and \(Q_f \) pseudorandom queries. Each query requires some computation time, let us assume that \(t_{\text{gen}} \) is the time taken. Hence, the total running time is atmost \(t + t_{\text{gen}}(Q_H + Q_f + 5\alpha) \leq t' \). This completes the proof of Theorem [7].

Lemma 5. \(\Pr[A] \geq \frac{1}{\epsilon'}. \)

Proof. We prove by induction that after \(F \) makes \(i \) many \text{Corrupt} queries, the probability that \(S \) does not abort is at least \((1 - \frac{1}{\alpha})^i \). The claim is trivially true for \(i = 0 \). The probability that the forger \(F \) makes a \text{Corrupt} query for the user \(u = n_\text{ne}^* \) is almost \(\frac{1}{\alpha} \) (the total number of allowed \text{Corrupt} query is \(\alpha \)). Thus, the probability that \(S \) does not abort is at least \((1 - \frac{1}{\alpha}) \). Using the inductive hypothesis, the probability that \(S \) does not abort after \(i \) many \text{Corrupt} queries is at least \((1 - \frac{1}{\alpha})^i \). Similarly, the probability that \(S \) does not abort after \(j \) many \text{SignNE} queries is at least \((1 - \frac{1}{\alpha})^j \). Thus, the total probability that \(S \) does not abort is at least \((1 - \frac{1}{\alpha})^{i+j} \). Since \(F \) makes atmost \(\alpha \) many \text{Corrupt} and \text{SignNE} queries each, the probability that \(S \) does not abort as a result of all the \text{Corrupt} and \text{SignNE} queries is at least \((1 - \frac{1}{\alpha})^{2\alpha} \geq \frac{1}{\epsilon'} \). □

The public key given to \(F \) is from the same distribution as a public key produced by algorithm \text{NS.keygen}. The distribution of responses to all the queries \text{Create}, \text{Corrupt}, \text{Hash}, \text{pseudorandom}, \text{SignNE}, \text{SignNR}, \text{cfORds} \ are as in the real attack. All responses to \text{Corrupt}, \text{SignNE} and \text{SignNR} are valid. Therefore \(F \) will produce a valid message-signature pair with probability at least \(\epsilon \). Hence, \(\Pr[B|A] \geq \epsilon \). Thus we have the following lemma.

Lemma 6. \(\Pr[B|A] \geq \epsilon \). □ (of Lemma [6])

Given that the events \(A \) and \(B \) have happened, the simulator \(S \) will declare failure only if \(n_\text{ne} \neq n_\text{ne}^* \). So, \(\Pr[C|A \cap B] = \Pr[n_\text{ne} = n_\text{ne}^*] = \frac{1}{\alpha} \). Hence we have the following lemma.
Lemma 7. \(\Pr[C|A \cap B] = \frac{1}{\alpha} \). \(\square\) (of Lemma 7)

Theorem 8. Assume that Problem-I defined in Section 3 is hard. Then the construction of our nominative signature scheme \(NS = \{\text{setup, keygen, neSign, nSign, verify, cfORds} \} \) described in Section 4 is secure under invisibility as per the Definition [1] for the security game given in Figure 3.

Proof. Let \(F \) be a PPT distinguisher that breaks the invisibility security game \(\text{Exp}^\text{Inv}(\lambda, \alpha) \) defined in Figure 3 with non-negligible advantage \(\epsilon \). We will construct a simulator \(S \) that breaks an instance of Problem-I using \(F \) as a subroutine i.e., given two vectors \(d \in \mathbb{Z}_q^n, w \in \mathbb{Z}_q^m \) with \(q = O(n^3), m \geq 5n[\log q] \) and \(\sigma = \Omega(\sqrt{n \log q \log n}) \), the simulator \(S \) interacts with \(F \) and distinguishes whether \(w = f(k, d) \) for some \(k \in \mathbb{Z}_q^m \) or \(w \) is uniformly chosen from \(\mathbb{Z}_q^m \). The simulator \(S \) sets \(Y = (n, q, m, \sigma, \beta, H, f) \) where \(\beta = 2\sigma \sqrt{m} \), \(f: \mathbb{Z}_q^n \times \mathbb{Z}_q^m \rightarrow \mathbb{Z}_q^m \) and \(H: \{0,1\}^* \rightarrow \mathbb{Z}_q^m \) are cryptographically secure hash functions.

The simulator \(S \) speculates an index \(k \in \{1, 2, \ldots, q_H\} \). More specifically, \(S \) guesses that \(F \) makes \(k \)-th \(H_1 \) query that is used by \(F \) to output a challenged tuple.

1. The simulator \(S \) sends \((Y, pk_{n:e}) \) to the forger \(F \).

2. The simulator responds to the distinguisher \(F \) on queries Create, CorruptNR, Hash, PRF, SignNE, SignNR, cfORds as follows and maintains seven lists \(L\text{create}, L\text{corrupt}, \text{Hlist}, \text{PFList}, \text{LsignNE}, \text{LsignNR}, \text{LcfORds} \).

• Create Query. On receiving this query for a user \(a \) from \(F \), the simulator \(S \) runs \(\text{NS.keygen}(Y, a) \rightarrow (pk_a, sk_a) \) where \(pk_a = B_a \in \mathbb{Z}_q^{nxm} \) and \(sk_a = T_{B_a} \in \mathbb{Z}_q^{m \times m} \) by calling the algorithm \(\text{TrapGen}(n, m, q) \rightarrow (B_a, T_{B_a}) \). The simulator \(S \) sends the public key \(pk_a \) to \(F \) and stores the public-secret key pair \((pk_a, sk_a) \) in its private list \(L\text{create} \).

• Corrupt Query. On receiving the query on a user \(a \) from \(F \), the simulator \(S \) checks whether \((pk_a = B_a, sk_a = T_{B_a}) \in L\text{create} \). If not, \(S \) returns \(\bot \). Otherwise, \(S \) sends \(sk_a \) to \(F \) and stores \(pk_a \) in the list \(L\text{corrupt} \).

• Hash Query. If the answer to the received tuple \(x = (M, A_u, B_u) \) has already made, the simulator returns the same value stored in \(L\text{hash} \). For \(k \)-th \(H_1 \) query, the simulator responds as \(H_1(x) = y^* = B_{ne} \cdot d \mod q \) and stores \((x, H_1(x), d) \) in the list \(L\text{success} \). Otherwise, the simulator \(S \) honestly generates as in the real protocol. The simulator finally sends \((x, H_1(x)) \) to the forger \(F \) and stores \((x, H_1(x)) \) in the list \(L\text{hash} \) and \((x, H_1(x), d) \) in the list \(L\text{success} \).

• PRF Query. To respond pseudorandom queries, \(S \) maintains a list \(\text{PRFList} \) for the collision resistant pseudorandom function \(f \). On receiving a query \((r_1, v) \in \mathbb{Z}_q^m \times \mathbb{Z}_q^m \) from \(F \), the simulator \(S \) checks whether \(((r_1, v), y_1) \in \text{PRFList} \) and returns \(y_1 \) to \(F \) if so. Otherwise, \(S \) computes \(y_1 = f(r_1, v) \in \mathbb{Z}_q^m \) similarly to that in the real protocol, passes \(y_1 \in \mathbb{Z}_q^m \) to the forger \(F \) and stores \((r_1, v, y_1) \) in \(\text{PRFList} \).

Distributions of PRF queries are exactly same as that in the original protocol.

• SignNE Query. In response to the tuple \((v, u, M) \) by \(F \), the challenger \(S \) checks whether \((pk_v = A_u, sk_v = T_{A_u}) \in \text{Lcreate} \). If not, \(S \) returns \(\bot \). Otherwise, \(S \) returns the signature \(\text{Sig}_{M,v,u} = (M, v, y_1, \Pi_{R_{v}}) \leftarrow \text{NS.neSign}(Y, sk_v, pk_v, pk_u, M) \) to \(D \) and stores \((\text{Sig}_{M,v,u}, \text{state}_e) \) in the list \(\text{LsignNE} \) where \(\text{state}_e \) contains tuple of the form \((r_1, v, M, v) \).

• SignNR Query. In response to this query on \(\text{Sig}_{M,v,u} \) from \(F \), the challenger \(S \) returns the nominative signature \(\text{nsig}_{M,v,u} \leftarrow \text{NS.nrSign}(Y, sk_v, pk_v, pk_u, M, \text{Sig}_{M,v,u}) \) to \(F \) and stores \((\text{Sig}_{M,v,u}, \text{nsig}_{M,v,u}) \) in the list \(\text{LsignNR} \).

• cfORds Query. The challenger \(S \) responds on receiving this query on \(\text{nsig}_{M,v,u} \) from \(F \) by checking if \((\text{Sig}_{M,v,u}, \text{nsig}_{M,v,u}) \in \text{LsignNR} \). If not, \(S \) aborts. Otherwise, \(S \) extracts \(\text{state}_e \) from \((\text{Sig}_{M,v,u}, \text{state}_e) \in \text{LsignNE} \) and returns \((\mu, \Pi_{R}) \leftarrow \text{NS.cfORds.neTM}(Y, \text{state}_v, pk_v, pk_u, M, \text{nsig}_{M,v,u}) \) to \(F \).

The challenger \(F \) stores \((\text{nsig}_{M,v,u}, \mu, \Pi_{R}) \) in the list \(\text{LcfORds} \).

3. At any point of the game, \(F \) submits a challenge tuple \((M, ne, nr) \) where \(M \) is a message to be signed with \(ne \) as the nominee and \(nr \) as the nominator such that \(pk_{ne} \in L\text{create} \) and \(pk_{nr} \in L\text{corrupt} \).
4. The challenger chooses a random bit \(b \in \{0, 1\} \). If \(b = 1 \), the challenger \(S \) generates \(\text{Sig}_{M^*}; \text{ne}, \text{nr} \leftarrow \text{NS}.\text{neSign}(Y, \text{sk}_{\text{ne}}, \text{pk}_{\text{ne}}, \text{pk}_{\text{nr}}, M^*) \), \(\text{nsig}_{M^*}; \text{ne}, \text{nr} \leftarrow \text{NS}.\text{nrSign}(Y, \text{sk}_{\text{nr}}, \text{pk}_{\text{nr}}, \text{pk}_{\text{nr}}, M^*, \text{Sig}_{M^*}; \text{ne}, \text{nr}) \) and sets \(K_b = \text{nsig}_{M^*}; \text{ne}, \text{nr} \). If the bit \(b = 0 \) then \(S \) finds \(z \in \mathbb{Z}_q^m \) satisfying \(A_{\text{nr}} \cdot z = w \mod q \) and returns the nominative signature \(\text{nsig}_{M, \text{ne}, \text{nr}} = (z, d, w) \).

5. The distinguisher \(F \) observes \(K_b \), outputs a guess \(b' \) and wins the game if \(b' = b \) and \(\text{pk}_{\text{ne}} \notin \text{Lcorrupt} \).

Note that one of the verification steps of \(\text{nsig}_{M, \text{ne}, \text{nr}} = (z, d, w) \) is to check whether \(A_{\text{ne}} \cdot z = f(r_1, d) \mod q \) which in turn checks whether \(w = f(r_1, d) \) for some \(r_1 \in \mathbb{Z}_q^m \). Thus the simulator \(S \) will correctly solve the given problem-1 whenever \(F \) correctly solves the invisibility challenge.

Theorem 9. Our nominative signature scheme \(\text{NS} = \{\text{setup}, \text{keygen}, \text{neSign}, \text{nrSign}, \text{verify}, \text{cfORds} = (\text{neTM}, \text{vrTM})\} \) described in Section 4 is secure under non-repudiation if no PPT cheating nominee has a non negligible advantage in game 4 assuming the completeness and soundness properties of the zero knowledge proof system ZKB++.

Proof. Let \(F \) be the cheating nominee and \(S \) be the challenger as given in the game experiment 4.

1. The simulator \(S \) runs \(\text{NS}.\text{setup}(\lambda) \rightarrow Y = (n, q, m, \sigma, \beta, H, f) \).

2. The simulator responds to the distinguisher \(F \) on queries \(\text{Create}, \text{CorruptNR}, \text{Hash}, \text{PRF}, \text{SignNE}, \text{SignNR}, \text{cfORds} \) exactly same as in the proof of Theorem 8.

3. The cheating nominee prepares the tuple \((M^*, \text{nsig}_{M^*}; \text{ne}, \text{nr}, \gamma = 1 - \mu)\) where \(\text{ne} \) is any nominee with \(\text{pk}_{\text{ne}} \in \text{Lcorrupt}, \text{nr} \) is a nominator such that \((\text{pk}_{\text{nr}}, \text{sk}_{\text{nr}}) \in \text{Lcreate}, \text{nsig}_{M^*}; \text{ne}, \text{nr} \) is a signature on \(M^* \) and \((\text{nsig}_{M^*}; \text{ne}, \text{nr}, \mu, \Pi_\mathcal{R}) \in \text{LcfORds} \) where \(\Pi_\mathcal{R} \) is a zero knowledge proof for the relation \(\mathcal{R} \) and \(\mu \) is a bit. Recall that \(\mu = 1 \) if \(\text{NS}.\text{verify}(Y, \text{state}_{\text{ne}}, \text{pk}_{\text{ne}}, \text{pk}_{\text{nr}}, M, \text{nsig}_{M^*}; \text{ne}, \text{nr}) \rightarrow \text{valid} \); otherwise \(\mu = 0 \).

4. If \(\mu = 1 \), the cheating nominee executes the disavowal proof. The probability that the verifier accepts the proof is \(\epsilon \in [0, 1/2] \) by the completeness property of the zero knowledge proof \(\Pi_\mathcal{R} \). Here \(\mathcal{R} \) is a relation \(\mathcal{R} = \{ \text{public}(A_{\text{nr}}, B_{\text{ne}, \text{nr}}, v, z, M, Y), \text{private}(r_1) | B_{\text{ne}, \text{nr}} \cdot v = H(M, A_{\text{nr}}, B_{\text{ne}, \text{nr}}), A_{\text{nr}} \cdot z = f(r_1, v) \} \).

If \(\mu = 0 \) then the cheating nominee executes the confirmation proof. The probability that the verifier accepts the proof is \(\epsilon \in [0, 1/2] \) by the soundness property of the zero knowledge proof \(\Pi_\mathcal{R} \). \(\square \)

5 Conclusion

In summary, the goal of this work is the construction of a nominative signature scheme secure against quantum adversary. Our construction provides unforgeability, invisibility, impersonation and non-repudiation. The scheme is secure under non-repudiation in the quantum random oracle model. The proposed construction is computationally efficient as lattice computations (addition and multiplication of vectors) are very efficient as compared to exponentiation and bilinear pairing.

References

