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Abstract

We give the first construction of three-round non-malleable commitments from the almost min-
imal assumption of injective one-way functions. Combined with the lower bound of Pass (TCC
2013), our result is almost the best possible w.r.t. standard polynomial-time hardness assumptions
(at least w.r.t. black-box reductions). Our results rely on a novel technique which we call bidirec-
tional Goldreich-Levin extraction.

Along the way, we also obtain the first rewind secure delayed-input witness indistinguishable
(WI) proofs from only injective one-way functions. We also obtain the first construction of a dis-
tributionally extractable commitment scheme from injective one-way functions. We believe both
of these to be of independent interest. In particular, as a direct corollary of our rewind secure WI
construction, we are able to obtain a construction of 3-round promise zero-knowledge from only
injective one-way functions.
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1 Introduction
The notion of non-malleability is central in cryptographic protocol design. Its objective is to protect
against a man-in-the-middle (MIM) attacker who has the power to intercept messages and transform
them in order to harm the security in other instantiations of the protocol. Commitment is often used as
the paragon example for non-malleable primitives because of its ability to almost “universally” secure
higher-level protocols against MIM attacks.

Commitments allow one party, called the committer, to probabilistically map a message m into a
string, Com(m; r), which can be then sent to another party, called the receiver. In the statistically bind-
ing variant, the string Com(m; r) should be binding, in that it cannot be later “opened" into a message
m′ 6= m. It should also be hiding, meaning that for any pair of messages, m,m′, the distributions
Com(m; r) and Com(m′; r′) are computationally indistinguishable.

A commitment scheme is said to be non-malleable [DDN91] if for every message m, no MIM
adversary, intercepting a commitment Com(m; r) and modifying it at will, is able to efficiently gen-
erate a commitment Com(m̃; r̃) to a related message m̃. Interest in non-malleable commitments is
motivated both by the central role that they play in securing protocols under composition (see for ex-
ample [CLOS02, LPV09]) and by the unfortunate reality that many widely used commitment schemes
are actually highly malleable. Indeed, man-in-the-middle (MIM) attacks occur quite naturally when
multiple concurrent executions of protocols are allowed, and can be quite devastating.

Beyond protocol composition, non-malleable commitments play a crucial role in designing round
efficient secure multi-party computation (see [KOS03, Wee10, Goy11], or more recently, [BGJ+18,
HHPV18]), authentication schemes [NSS06], as well as a host of other non-malleable primitives (e.g.,
coin flipping, zero-knowledge, etc.), and even applications as diverse as position based cryptography
[CGMO09]. Beyond cryptography, techniques from non-malleable commitments have found applica-
tions in designing non-malleable extractor and codes [CGL16], which in turn were used to obtain a
breakthrough in constructing non-malleable extractors [CZ16]. Techniques from non-malleable com-
mitments (and non-malleable zero-knowledge) have also found applications in the realm of hardness
amplification: in particular in disproving a “dream version” of Yao’s XOR lemma [DJMW12].

The last five years have seen significant progress in understanding the necessity for interaction
in non-malleable commitments, in terms of the concrete number of messages required. In partic-
ular, Goyal, Richelson, Rosen and Vald [GRRV14] constructed four round non-malleable commit-
ments based on the existence of one-way functions (OWF). Goyal, Pandey and Richelson [GPR16]
constructed three round non-malleable commitments using quasi-polynomially hard injective one-
way functions. Khurana [Khu17] constructed three round non-malleable commitments by relying
on the decisional Diffie-Hellman (DDH) assumption. Pass [Pas13] showed an impossibility for non-
malleable commitments using 2 rounds of communication, via a black-box reduction to any “standard”
intractability assumption. Recently beautiful works have been able to bypass this lower bound using
sub-exponential DDH [KS17], and, using time-locked puzzles [LPS17].

Our question. The lower bound of Pass implies that if one relies on standard polynomial-time hard-
ness assumptions, three rounds is the best possible for non-malleable commitments (at least w.r.t. black-
box reductions). The state of art for three or more rounds is represented by several incomparable works:
4 round using injective one-way functions [GRRV14], 3 rounds using quasi-polynomial one-way func-
tions [GPR16], and, 3 rounds using the DDH assumption [Khu17]. In this context, the last remaining
natural question is: what is the minimal cryptographic hardness assumption required for constructing
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3-round non-malleable commitments?

1.1 Our Results.
Our main result is the following

Theorem 1. There exists a construction of three-round non-malleable commitments from injective one-
way functions.

Note that OWF are necessary to construct commitment schemes. In conjunction with the lower
bound of Pass, the above theorem completely settles the question of assumptions and round complexity
of non-malleable commitments w.r.t. standard polynomial time hardness assumptions (modulo OWF
vs injective OWF).

Our key technical tool is a construction of a 3-round distributionally extractable commitment scheme
from injective one-way functions. Roughly speaking, this means there is an extractor so that the ex-
tracted message agrees with the committed message as a distribution. Though weaker than standard
extractability, our scheme does not suffer from “over-extraction", or, “under-extraction", so for all ma-
licious C∗, the chance that the extractor outputs ⊥ is close to the chance that C∗ commits to ⊥ (please
see the next Section for further details; or see our formal definition in Section 2). A similar primi-
tive is constructed in [JKKR17], based on number theoretic assumptions (namely either DDH or QR
residuosity). Our techniques are essentially unrelated. We use Goldreich-Levin-type arguments to es-
tablish both hiding and extraction properties. We call this technique bidirectional Goldreich-Levin style
extraction. We believe this to be of independent interest.

A crucial building block we construct and use in our work is a 3−round, delayed-input rewind
secure witness-indistinguishable (WI) proof, also from injective one-way functions. This means that
the WI property holds even if the prover is rewound and forced to prove multiple different statements all
with a fixed first round message. The delayed-input property requires the prover and the verifier to have
access to the input (i.e., the statement, and, in case of the prover, the witness) only in the last round. To
our knowledge, the problem of rewind secure WI first appeared in [GRRV14] where it was bypassed
by constructing a “weakly" rewind secure scheme where the WI property is guaranteed to hold only
with probability 1 − δ (where δ is noticeable). The issue of rewind security for delayed input WI has
continued to arise in subsequent works [COSV16b, COSV17a, COSV17b] where it was bypassed using
different (and sophisticated) techniques. Very recently, the first construction of a delayed input rewind
secure WI was given by Badrinarayanan et al [BGJ+18] by relying on the DDH assumption 1. No such
construction has been from any general assumption in any polynomial number of rounds even in the
setting where the prover is rewound only once. We prove the following theorem.

Theorem 2. Assuming injective one way functions, for every (polynomial) rewinding parameter B,
there exists a three round delayed-input witness-indistinguishable argument system with B-rewinding
security.

We also note our non-malleable commitments, and, distributionally extractable commitments also
have the delayed input property (i.e., the committer requires the input string only in the last round).
This property is sometimes useful while using such commitment schemes in designing larger protocol
such as secure multi-party computation.

1An earlier ePrint version of [BGJ+18] claimed a construction of delayed input rewind secure WI from only injective
OWFs. However the construction was subsequently revised to use DDH.
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As a direct consequence of the above theorem, we are able to get a construction of 3-round promise
zero-knowledge (ZK) using injective one-way functions. The notion of promise ZK was introduced
by Badrinarayanan et. al [BGJ+18] who presented a construction based on the DDH assumption. The
source of the DDH assumption was their usage of rewind secure WI based on DDH. Promise ZK is a
weakening of zero-knowledge which was used by Badrinarayanan et al in constructing the first 4 round
MPC from polynomial time hardness assumptions.

Corollary 2.1. Assuming injective one way functions, there exists a construction of promise zero-
knowledge proofs in 3-rounds.

Subsequent Work. Our construction of delayed-input rewind secure WI was recently used to ob-
tain a construction 4-round MPC from 4-round oblivious transfer [CCG+19]. All previous construc-
tions relied either on sub-exponential hardness assumptions, or, specific number theoretic assumptions
[ACJ17, BGJ+18, HHPV18]. Four rounds of interaction are necessary for MPC w.r.t. black-box simu-
lation.

1.2 Technical Overview
Recently, Goyal, Pandey and Richelson [GPR16] constructed a 3−round commitment scheme based
on one-to-one OWF which is non-malleable against a synchronizing adversary (i.e., an adversary who
plays the various rounds of the left and right protocol executions one after the other). The only non-
trivial non-synchronizing message scheduling for the adversary is the sequential scheduling (i.e., the
MIM plays the left session fully, then plays the right session). The basic scheme from GPR fails to
defend against a sequential MIM, essentially because their scheme is not extractable. They solved this
problem by composing their main scheme with a 3−round extractable commitment scheme. However,
since no such scheme was known from one-to-one OWF, they used a simple scheme based on quasi-
polynomially hard one-to-one OWF, and thus their full construction inherits this hardness assumption.
Our main technical contribution is the construction of a 3-round commitment scheme from one-to-one
OWF with extraction properties which, when composed with the main component of the GPR scheme,
gives a non-malleable commitment scheme. The remainder of this technical overview focuses on our
construction of this primitive.

The Challenge of 3−Round Extractable Commitment. Consider the following example commit-
ment scheme: C breaks a message m into a pair of secret shares (s0, s1) using XOR secret sharing:
m = s0⊕ s1. In this way, C prepares k such pairs and commits to each of them, using a non-interactive
commitment scheme. The receiver R then chooses one share from each pair at random in the sec-
ond round, and in the third round, the selected shares are opened by C. This basic scheme exhibbits
some extractable properties since the extractor can rewind C and with high probability, recover both
the shares for at least one pair. However, this scheme suffers from over-extraction, since a cheating
committer C∗ might prepare the first pair to XOR to a different message than all of the others (so the
committed message is ⊥), and the extractor might not detect this discrepency, for example if C always
aborts instead of opening the first share of the first pair. The extractor will realize that it failed to re-
cover both shares of the first pair, and so will not know whether these shares satisfy s0⊕s1 = m or not.
In the first case, the extractor should output m, in the second ⊥, and the extractor cannot do anything
better than guess. Versions of this problem are called overextraction or underextraction, and commit-
ment schemes which suffer from them are called weakly extractable commitment schemes. Weakly
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extractable commitments are not sufficient for proving non-malleability against the sequential MIM,
since they do not defend against certain types of “selective ⊥” attacks. This problem can be overcome
by using a zero-knowledge proof of consistency, but this adds an additional round of interaction.

Non-Interactive Commitment based on the Goldreich-Levin Theorem. The starting point for our
protocol is Blum’s non-interactive commitment scheme [Blu81], built from a one-to-one OWF f with
λ−bit inputs. To commit to a bit m, C samples x, r← {0, 1}λ, and, sends

(
f(x), r, 〈x, r〉⊕m

)
, where

〈x, r〉 is the inner product mod 2: 〈x, r〉 = x1r1 ⊕ · · · ⊕ xλrλ. This commitment scheme is perfectly
binding since f is one-to-one. Hiding follows from the Goldreich-Levin theorem [GL89]. The proof of
the Goldreich-Levin theorem is key to understanding our protocol. We explain here the artifacts from
the proof we will need for this high level overview; more details can be found in Section 2.3.

The core of the proof of the Goldreich-Levin theorem is the “prediction implies inversion” lemma,
which says that any prediction algorithm which, given r, can predict 〈x, r〉 with probability noticeably
better than guessing, can recover x. Specifically, if Prr←{0,1}λ

[
Pred(r) = 〈x, r〉

]
≥ 1/2 +ε holds, then

Pred can be used to recover x. This is done by choosing r1, . . . , rk ← {0, 1}λ for k = O
(
log 1/ε

)
, and

considering the output of Pred on every string in the set

GL(r1, . . . , rk) :=
{
rS,i ∈ {0, 1}λ : ∅ 6= S ⊂ {1, . . . , k}, i ∈ {1, . . . , λ}

}
,

where rS :=
⊕

α∈S rα, and rS,i := rS ⊕ ei where ei is the i−th unit vector. We refer to the strings
in this set as Goldreich-Levin queries or GL queries. Notice the number of GL queries is exponential
in k. It is important for the proof of the Goldreich-Levin theorem, that Pred performs well on the GL
queries. This follows from the fact that GL queries are pairwise independent.

The Starting Protocol. Our starting point is a 3−round, extractable version of Blum’s non-interactive
commitment. In this scheme, C sends f(x) in the first round, then R sends r in the second, then C sends
〈x, r〉 ⊕m in the third. It can be shown that this scheme has good extractability properties. The idea
is to have the extractor rewind C and send all GL queries in a GL set. As long as C is committing
to m = 0 with probability 1/2 + ε, (the case when m = 1 is similar), the extractor can then run the
Goldreich-Levin machinery and recover x, and ultimately, m. The hiding of this protocol is however
unclear. Indeed, this protocol is unlikely to satisfy the hiding property since a receiver, given f(x),
might be able to recover the first bit x1 of x. In this case, a cheating R∗ could send r = e1, so that
〈x, r〉 = x1, the value it knows. Then given C’s response, R∗ could recover m. So to summarize, it
seems as though whichever party controls r, the Goldreich-Levin apparatus can be used to get security
against the other party (i.e., if C controls r then we can prove hiding; if R controls r we can prove
extractability).

Bidirectional Goldreich-Levin. Suppose we could construct a single protocol such that: 1) if C∗ is
corrupt, then an extractor can rewind C∗, sending r of its choice; and 2) if R∗ is corrupt and breaks
hiding via a distinguisher D, then D can be rewound and fed with r’s under the control of an inversion
algorithm for the OWF f . Under these ideal circumstances, the Goldreich-Levin theorem could be
used in both directions, to prove extractability and hiding. So the main question is how do we design a
protocol which gives sufficient control of r to both sides?

Using Coin Flipping? A natural next idea is to try coin flipping to generate r. For example, consider
the protocol where C sends f(x) and Com(r0) in the first round, where x, r0 ← {0, 1}λ, and Com is
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a non-interactive commitment scheme. Then R responds with a uniform r1. Finally, C opens r0 and
sends 〈x, r〉 ⊕m, where r = r0 ⊕ r1. The extraction will continue to work, since, by binding, C∗ must
open his first commitment to r0. Thus, the extractor will have full control over r during rewinding. The
proof of hiding, however, still remains unclear. Note, a OWF-inversion algorithm can rewind R∗ and
commit to a new value of r0. The problem is that R∗ retains full control of r1 (which may be different
in different rewinds). Thus, the inverter will get to see many transcripts with many different values of
r, but there seems to be no way to ensure that these r’s are GL queries. This means we cannot harness
the Goldreich-Levin theorem to prove hiding.2

Another idea is to change the protocol so that C commits to many strings in the first round: C
sends

(
f(x),Com(r1

0), . . . ,Com(r`0)
)

where x, r1
0, . . . , r

`
0 ← {0, 1}λ; R responds with r1 ← {0, 1}λ

as before; finally C chooses i ← [`] and opens Com(ri0), and sends 〈x, r〉 ⊕ m, where r = ri0 ⊕ r1.
The extraction can still be made to work much like above. The key point is that since ` = poly(λ), the
extractor can choose i ∈ [`] and only try to extract when C∗ opens Com(ri0); by doing this, the extractor
can get full control over r. It seems as though we have made progress towards proving hiding, since
now the OWF-inverter can rewind R∗ to the beginning of the third round and vary which Com(ri0)
it opens. These ri0 are under the inverter’s control, so it looks like we use Goldreich-Levin to prove
hiding, say setting the ri0 to the GL queries in a GL set. The problem with this is that R∗’s advantage
in the hiding game might be very small: ε � 1/`. In particular, it might be the case that R∗ only
breaks hiding when C opens Com(r1

0), and for all other choices 2 ≤ i ≤ `, R∗ has no advantage. In
this case, the r’s obtained by opening Com(ri0) for 2 ≤ i ≤ ` will not be useful to the inverter. Thus,
this protocol fails as the inverter does not have sufficient control of r for the Goldreich-Levin proof of
hiding to work.

Using Implicit Representation of GL Queries. Note that ` GL queries can be implicitly repre-
sented by only O(log `) strings. To take advantage of this, let us change our protocol so that C
sends

(
f(x),Com(r1

0), . . . ,Com(rk0)
)

in the first round; then R sends r1 in the second; and C sends(
r0, 〈x, r〉 ⊕ m

)
in the third round where r = r0 ⊕ r1; and, in addition, C proves to R in WI that

r0 ∈ GL(r1
0, . . . , r

k
0). Note that `, the number of options for r0, is exponential in k, so by choosing

k = ω(log λ), we ensure that ε � 1/`. This is starting to look like our final protocol. However, two
more changes are still required, one each to fix the proofs of hiding and extraction. This brings us to
our two novel subroutines.

Using Rewind Secure WI to Prove Hiding. The hiding proof for the protocol so far goes as follows.
It is assumed that R∗ breaks hiding via a distinguisher D who distinguishes with probability 2ε between
commitments to m = 0 and m = 1. Then R∗ and D are used to construct a prediction algorithm
Pred which takes (r0, τ3) as input, and outputs a bit. The prediction algorithm is hardcoded with the
first two rounds of the commitment,

(
f(x),Com(r1

0), . . . ,Com(rk0), r1, τ1, τ2

)
, and a guess for the bit

〈x, r1〉. The input pair (r0, τ3) satisfies r0 ∈ GL(r1
0, . . . , r

k
0) and (τ1, τ2, τ3) is a WI transcript proving

that r0 ∈ GL(r1
0, . . . , r

k
0). The assumption that R∗ breaks hiding via D means that with non-negligible

probability over the hardcoded values, the following holds:

Prr0←GL(r10,...,r
k
0),τ3

[
Pred(r0, τ3) = 〈x, r0〉

]
≥ 1

2
+ ε.

2A plausible solution here would be to use a two-sided simulatable coin flipping which would allow Inv to fully control
the r’s by controlling the outcome of the coin flipping protocol. However, this would require an additional round of
interaction.
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We then apply the Goldreich-Levin theorem to use Pred to invert the OWF, completing the proof of
hiding.

However, the pairwise independence condition which is crucial for the Goldreich-Levin proof to
go through is more complicated in this context than usual. This is due to the fact that Pred takes the
pair (r0, τ3) as input, rather than just the string r0. Pairwise independence in our setting essentially
translates to “pairwise independence of two views with a fixed first message". Moreover, our notion
is computational; we cannot hope for pairwise independence of views in our cryptographic protocol
to hold against an unbounded adversary. We formulate the precise pairwise independence we need for
our proof of hiding in Section 3.4. Roughly speaking, the requirement is that if the adversary is given
two protocol executions with the same first two messages, it cannot distinguish if the two values of r0

it sees are of the form (rS,i, rT,i), or, (rS,i, rT,j) with i 6= j (recall that the strings in GL(r1
0, . . . , r

k
0) are

of the form rS,i =
(⊕

α∈S r
α
0

)
⊕ ei).

Observe that the last round messages from two different executions of our protocol would also con-
tain two different last messages of the WI protocol (with the same first message). In such a setting, all
bets regarding the security of a typical WI protocol are off. To solve this problem, we use a delayed
input rewind secure WI protocol which guarantees witness indistinguishability even if the prover is
rewound and forced to prove multiple statements with the same first message. To achieve our compu-
tational equivalent of pairwise independence, security under a single rewinding turns out to be enough.
As mentioned before, getting such a construction in any number of rounds from injective one-way func-
tions (or from any general assumption) has been an open problem. We resolve problem by constructing
a 3-round delayed input rewind secure WI from injective one-way functions for any (polynomial) B
s.t. the security holds even if the prover is rewound B times. Our protocol is additionally a proof of
knowledge. Our key technique relies on using “two-layers" of MPC in the head [IKOS07] along with a
careful combinatorial analysis. More details are given in Section 3.2.

Using Unbounded Polynomial Commitments to Prove Extractability. Recall that the first protocol
in the “Using Coin Flipping?” paragraph had a working extractability proof. Also recall that extraction
for the second protocol of that section (the one where C commits to Com(ri0), i = 1, . . . , ` in in the first
round) reduced to extraction in the first since the number of possible r0’s was a fixed polynomial. This
ceases to hold when we switch to implicitly representing the r0’s using (r1

0, . . . , r
k
0) for k = ω(log λ),

and so the proof of extractability stops working. Thus we find ourselves in the seemingly problematic
scenerio where we require that `, the number of possible r0’s, is at most polynomial (so extraction
works), and is simultaneously larger than 1/ε for arbitrary non-negligible ε > 0 (so that hiding works).
Our final protocol modification resolves this conflict and fixes this problem.

The key idea is to allow k to be chosen dynamically during the protocol. Specifically, we design
a kGen sub-protocol which takes two rounds, and outputs a value k to C. The flexibility we require is
that 1) for any R∗, a simulator can arrange the output to be such that ` (recall that ` is exponential in k)
is an arbitrarily large polynomial (so `� 1/ε can be ensured); and 2) for any C∗ and N = poly(λ), the
chance that k is so that ` > N is at most roughly 1/N . The first and second points, respectively, enable
the proofs of hiding and extractability to go through. See Section 3.1 for the description of kGen and
the formal security guarantees. Armed with this subroutine, our protocol works as follows.

1. C→ R: C sends
(
f(x),Com(r1

0), . . . ,Com(rλ0), σ1, τ1

)
where x, rα0 ← {0, 1}λ, σ1 is the first mes-

sage of kGen and τ1 is the first message of delayed-input, rewind secure WI proof.

2. R→ C: R sends (r1, σ2, τ2) where r1 ← {0, 1}λ, σ2 and τ2 are the second messages of their proto-
cols.
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3. C→ R: Let k be the output of kGen. C sends (r0, 〈x, r〉 ⊕m, τ3) where r = r0 ⊕ r1 for a random
r0 ← GL(r1

0, . . . , r
k
0), and where (τ1, τ2, τ3) proves that r0 ∈ GL(r1

0, . . . , r
k
0).

Note that even though C commits to r1
0, . . . , r

λ
0 in round 1, only the strings r1

0, . . . , r
k
0 are active (i.e.,

available for generating r0 in the third round), where k is the output of kGen.

Final Changes. We mention here that the “final protocol” in the previous section is still a simplifi-
cation of our actual protocol; some standard changes are required. For example, as written the above
protocol is not extractable since m only appears in the third round. This is fixed by committing to m in
the first round using non-interactive commitment, and using the above to commit to the decommitment
information ω. Another required change is due to the fact that we will need two possible witnesses for
the WI proof statements, and so some of the protocol parts above will be run twice, and the proof will
ensure the statement holds for one of the parts. Finally, the above protocol allows C to commit to a
bit. We support string commitments in our final scheme by repeating the above in parallel for each bit
separately. See Section 4 for our formal scheme.

Related works. Given their foundational role in cryptography and beyond, a large body of literature
has been dedicated to studying how efficiently non-malleable commitments can be constructed under
different assumptions. A long line of work studies the round complexity of non-malleable commitments
[DDN91, Bar02, PR05b, PR05a, LP09, PPV08, PW10, Wee10, Goy11, LP11, GLOV12, GRRV14,
GPR16, COSV16a, COSV16b, GKS16, KS17, LPS17, Khu17]. A lower bound of Pass [Pas13, KS17]
showed the impossibility of two-round non-malleable commitment proven secure w.r.t. a black-box
reduction to any “standard" polynomial-time intractability reduction. Thus, three rounds are necessary
to get non-malleable commitments from standard polynomial-time hardness assumptions (at least w.r.t.
black-box reduction). However the questions of obtaining three round non-malleable commitments
from minimal assumptions has remained opened. Relevant to our work, Goyal, Pandey and Richelson
[GPR16] gave a 3-round construction of non-malleable commitment scheme from injective one-way
functions w.r.t. so called synchronizing adversaries who keep the left and the right execution “in sync".
That is, the adversary finishes the i-th round on both the left and the right before beginning the (i+ 1)-
th round in either execution. A construction against general adversaries was also presented albeit
assuming quasi-poly hard injective one-way functions. Khurana [Khu17] was able to obtain a three
round construction against general adversaries using the incomparable DDH assumption even obtaining
the stronger notion of concurrent non-malleability. In this paper, our primary goal is to obtain three
round non-malleable commitments from minimal (or almost minimal) assumptions.

2 Preliminaries
Throughout, we let λ denote the security parameter, and we write negl(λ) for functions which tend to
zero faster than λ−c for any constant c. For probability distributions X and Y, we write X ≈c Y if X and
Y are computationally indistinguishable: i.e. if for all PPT distinguishers D,∣∣∣Prx←X

(
D(x) = 1

)
− Pry←Y

(
D(y) = 1

)∣∣∣ = negl(λ).

For an algorithm A, we denote the running time of A by TA.
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2.1 Non-Malleable and Distributionally Extractable Commitments
In this section we define commitment schemes (Definition 1), non-malleable commitment schemes
(Definition 2), and distributionally extractable commitment schemes (Definition 3), the last being a
new notion. All commitment schemes in this work are perfectly binding, so we give definitions only
for this case.

Definition 1 (Perfectly Binding Commitment). Let 〈C,R〉 be a two-phase, two party protocol be-
tween a committer C and a receiver R which works as follows. In the commit phase, C uses secret
input m and interacts with R who uses no input. Let c = Com(m; r) denote R’s view after the commit
phase; let (m,w) = Decom(c,m, r) denote R’s view after the decommit phase, which R either accepts
or rejects. We say that 〈C,R〉 is a perfectly binding commitment scheme if the following properties
hold:

• Correctness: If parties follow the protocol, then R(c,m,w) = 1;

• Perfect Binding: For all c and (m,w), (m′, w′), at most one of R(c,m,w) and R(c,m′, w′) is 1;

• Hiding: For all m0,m1,
{

Com(m0; r)
}
r
≈c
{

Com(m1; r)
}
r
.

If, moreover, the commitment scheme consists of a single round from C to R, 〈C,R〉 is called a non-
interactive, perfectly binding commitment scheme. Such schemes can be constructed from any one-to-
one one-way function [Blu81].

The MIM Experiment. Given a commitment scheme 〈C,R〉, the man-in-the-middle experiment,
refers to the situation where an adversarial M plays two executions of 〈C,R〉, once on the left where
he interacts with an honest C, and once on the right where he interacts with an honest R. We call such
an adversary a man-in-the-middle (MIM). The output of the experiment consists of two transcripts of
〈C,R〉, and the commitment m̃ inside the right session. The experiment is parameterized by a left
commitment message m and a left identity id. Thus, (T, m̃) ← MIMM

m,id. If the right execution has
identity ĩd = id, the experiment outputs ⊥ automatically.

Definition 2 (Non-Malleable Commitment). Let 〈C,R〉 be a perfectly binding commitment scheme.
We say that 〈C,R〉 is non-malleable if there exists a PPT simulator SIM which, on input id, and given
oracle access to M, outputs a transcript-message pair, (T, m̃) such that for all m:{

(T, m̃)
}

(T,m̃)←MIMM
m,id
≈c

{
(T, m̃)

}
(T,m̃)←SIMM(id)

.

Definition 3 (Distributionally Extractable Commitment). We say that a perfectly binding commit-
ment scheme 〈C,R〉 is distributionally extractable if for all ε > 0, there exists an extractor Extε satisfies
the following syntax, running time and extraction guarantees.

• Syntax: Extε is parametrized by ε > 0, gets oracle access to a possibly unbounded cheating
C∗, takes a transcript T of 〈C,R〉 as input and outputs a message m.

• Running Time: The running time of Extε is poly
(
λ,TC∗ , 1/ε

)
.

• Extraction: Let valC
∗

and ExtC
∗

ε denote the distributions which generate a transcript T by
running 〈C,R〉 between an honest R and C∗; then valC

∗
outputs m = val(T), the commit-

ted message inside T; ExtC
∗

ε outputs m = ExtC
∗

ε (T). Then for any cheating, unbounded C∗,
∆
(
valC

∗
,ExtC

∗

ε

)
≤ ε.
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2.2 Delayed-Input Rewind Secure Witness Indistinguishable Proofs
Definition 4 (Delayed-Input Interactive Arguments). [BGJ+18] An n-round delayed-input interac-
tive protocol (P, V ) for deciding a language L is an argument system for L that satisfies the following
properties:

• Delayed-Input Completeness. For every security parameter λ ∈ N, and any (x,w) ∈ RL such
that |x| ≤ 2λ,

Pr[(P, V )(1λ, x, w) = 1] = 1− negl(λ).

where the probability is over the randomness of P and V . Moreover, the prover’s algorithm
initially takes as input only 1λ, and the pair (x,w) is given to P only in the beginning of the n’th
round.

• Delayed-Input Soundness. For any PPT cheating prover P ∗ that chooses x∗ (adaptively) after
the first n− 1 rounds, it holds that if x∗ /∈ L then

Pr[(P ∗, V )(1λ, x∗) = 1] ≤ ε.

where the probability is over the random coins of V , and, ε is known as the soundness error of
the protocol.

The next definition is from [BGJ+18] where such a primitive was constructed assuming the poly-
nomial hardness of DDH.

Definition 5 (3-Round Delayed-Input WI with Bounded Rewinding Security). [BGJ+18] Fix a
positive integer B. A delayed-input 3-round interactive argument (as defined in Definition 4) for an
NP language L, with an NP relation RL is said to be WI with B-Rewinding Security if for every non-
uniform PPT interactive Turing Machine V ∗, it holds that {REALV ∗0 (1λ)}λ and {REALV ∗1 (1λ)}λ are
computationally indistinguishable, where for b ∈ {0, 1} the random variable REALV

∗

b (1λ) is defined
via the following experiment. In what follows we denote by P1 the prover’s algorithm in the first round,
and similarly we denote by P3 its algorithm in the third round.

Experiment REALV
∗

b (1λ):

1. Run P1(1λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the message
to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs {(xi, wi)}i∈[B−1], xB, wB0 , w
B
1 and a set of messages

{rwii2}i∈[B].

3. For each i ∈ [B − 1], run P3(σ, rwii2, x
i, wi), and for i = B, run P3(σ, rwii2, x

i, wib) where P3

is the (honest) prover’s algorithm for generating the third message of the WI protocol. Send the
resulting messages {rwii3}i∈[B] to V ∗.

In Section 3.2, we construct three-round delayed-input WI with bounded-rewinding security from
any one-to-one one-way function for any fixed polynomial rewinding parameter B. Our construction
will use as a building block the 3-round delayed-input WI protocol of [LS90] (i.e., the case of B = 1
above).
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MPC-in-the-Head [IKOS07]. As in [BGJ+18], we make black-box use of a 3-round zero knowledge
protocol (non delayed-input) with bounded rewinding security. The soundness error of the protocol
would depend upon the rewinding parameter B.

Definition 6 (3-Round ZK with Bounded Rewinding Security). [BGJ+18] Fix a positive integer
B. A delayed-input 3-round interactive argument (as defined in Definition 4) for an NP language
L, with an NP relation RL is said to have B-Rewinding Security if there exists a simulator Sim
such that for every non-uniform PPT interactive Turing Machine V ∗ and (x,w) ∈ RL, it holds that
{REALV ∗(1λ, x, w)}λ and {IDEALV ∗(1λ, x)}λ are computationally indistinguishable, where the ran-
dom variable REALV

∗
(1λ, x, w) is defined via the following experiment; IDEALV

∗
(1λ, x) is the output

of SimV ∗(1λ, x).

Experiment REALV
∗
(1λ): Let P1/P3 denote the prover’s algorithm in the first/third round.

1. Run P1(1λ, x, w; r) and obtain output rwi1 to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1) and interpret its output as message rwi2.

3. Run P3(1λ, rwi2, x, w; r), where P3 is the (honest) prover’s algorithm for generating the third
message of the WI protocol, and send its output rwi3 to V ∗.

4. Set a counter i = 0.

5. If i < B, then set i = i+ 1, and V ∗ (given all the information so far) generates another message
rwii2, and receives the (honest) prover’s message P3(rwii2, x, w; r). Repeat this step until i = B.

6. The output of the experiment is the view of V ∗.

Imported Theorem 1. [IKOS07, BGJ+18] Assume the existence of injective one-way functions. Then,
for any (polynomial) rewinding parameter B, there exists a 3-round zero-knowledge protocol for prov-
ing NP statements that is simulatable under B-bounded rewinding according to 6.

If B is a constant, the soundness error of the above protocol will be a constant. If B = poly(λ), the
soundness error ε ≤ 1− q(λ) where q is also a polynomial.

2.3 The Goldreich-Levin Theorem
An influential result of Goldreich and Levin [GL89] says that every one-way function has a hardcore
predicate. The core of their proof is the “prediction implies inversion” lemma, which says roughly that
if an algorithm can, given f(x), predict random inner products of x with probability noticeably better
than 1/2, then this prediction algorithm can be used to invert f and recover x. We will make frequent
use of this lemma in our security proofs. We set some notations, and then prove the lemma we need.

Given λ−bit strings r1, . . . , rk ∈ {0, 1}λ and a subset S ⊂ {1, . . . , k} we let rS :=
⊕

i∈S ri. Given
S and i ∈ {1, . . . , λ} we let rS,i := rS ⊕ ei where ei is the i−th unit vector.

Definition 7. Given r1, . . . , rk ∈ {0, 1}λ, let

GL(r1, . . . , rk) :=
{
rS,i ∈ {0, 1}λ : ∅ 6= S ⊂ {1, . . . , k}, i ∈ {1, . . . , λ}

}
.
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Rackoff’s combinatorial proof of the Goldreich-Levin theorem considers sets of the form GL(r1, . . . , rk)
and shows how to recover x using an algorithm whose prediction success on r ∈ GL(r1, . . . , rk) satis-
fies certain statistical properties. This technique is demonstrated in the proof below.

Definition 8. Fix ε > 0 and a secret x ∈ {0, 1}λ. A Goldreich-Levin Prediction Algorithm with
secret x and advantage ε (or just GL-predictor for short), is a randomized procedure Pred which takes
r ∈ {0, 1}λ as input, and outputs a value in {0, 1} ∪ {⊥} such that:∣∣∣∣Prr←{0,1}λ

[
Pred(r) = 〈r,x〉

]
− 1

2

∣∣∣∣ ≥ ε.

Lemma 1. Let y = f(x) for a one-to-one function f : {0, 1}λ → {0, 1}poly(λ). Let Pred be a GL-
predictor with secret x ∈ {0, 1}λ and advantage ε > 0. Then there exists an inversion algorithm Inv
which, given y and oracle access to Pred, outputs x with high probability 1− 2−Ω(λ). The running time
of Inv is TInv = poly

(
λ, 1/ε,TPred

)
.

Definition 9. We call the algorithm Inv guaranteed by Lemma 1 the GL-inversion algorithm corre-
sponding to Pred.

Proof of Lemma 1. We give the combinatorial proof due to Rackoff. We assume that the quantity inside
the absolute value is positive. This is without loss of generality since Inv can perform the following
procedure twice, one time negating all outputs of Pred ensuring the quantity is positive once. Upon
producing x1 and x2 in this way, Inv outputs the xi for which f(xi) = y; there can be at most one as f
is one-to-one. The Inv procedure we describe below outputs x with probability at least ε3/16. This is
amplified to 1− 2−Ω(λ) by repeating ε−3 · λ times.

Let k = 3 + 3 log
(
1/ε
)
. Inv chooses r1, . . . , rk ← {0, 1}λ and b1, . . . , bk ← {0, 1} at random.

For S ⊂ [k], let bS := ⊕i∈Sbi. With probability 2−k = ε3/8, bi = 〈ri,x〉 for all i, in which case
bS = 〈rS,x〉 for all S ⊂ [k]. For all rS,i ∈ GL(r1, . . . , rk), Inv sets a guess for the i−th bit of x,
xS,i = Pred(rS,i)⊕ bS , and xi = MAJORITY

(
{xS,i}S

)
. Whenever bi = 〈ri,x〉 holds for all i ∈ [k], the

expected number of non-empty S ⊂ [k] for which Pred(rS,i) = 〈rS,i,x〉 is at least (2k−1) ·ε ·(1/2+ε),
while the expected number of S for which Pred(rS,i) 6= 〈rS,i,x〉 is at most (2k − 1) · ε · (1/2 − ε)
(expectation over r1, . . . , rk ← {0, 1}λ). Since the strings {rS,i}S are pairwise independent for all
i ∈ [λ], the probability that xi is not the i−th bit of x, can be bounded using Chebyshev’s inequality:

Pr
[
xi wrong

]
≤ Pr

[
#{S : xS,i cor.} ≤ (2k − 1)ε/2

]
+ Pr

[
#{S : xS,i inc.} ≥ (2k − 1)ε/2

]
≤ ε−3

2k − 1
+

ε−3

2k − 1
≤ 1

2λ
.

Thus, Pr
[
∃ i st xi wrong

∣∣bi = 〈ri,x〉 ∀ i
]
≤ 1/2 follows from the union bound. So conditioned on

bi = 〈ri,x〉 for all i, Inv recovers all xi correctly with probability at least 1/2. The result follows.

3 Building Blocks

3.1 Unbounded Polynomial Commitment
Here we present a simple, yet key component of our main construction. It is a two round commitment
scheme where C commits to an integer. If executed honestly, the committed value is 1 with high
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probability. Moreover, even if C cheats, the committed value is at mostN with probability proportional
to 1/N . We call this protocol an unbounded polynomial commitment because a simulator who is able
to rewind R can, in time poly(N), produce an indistinguishable transcript where the committed value
is N . The protocol is the following.

1. C→ R: send c = Com(s ◦N ; η) where s,N ←
[
2λ
]

and η ← $;

2. R→ C: draw and send s′ ←
[
2λ
]
;

Committed Value: the committed value is N if s+ s′ ≡ 0 (mod N ); 1 otherwise.

Note that if C sends c = Com(s,N ; η) in round 1, then

1/2N ≤ Prs′←[2λ]

[
s+ s′ ≡ 0 (mod N )

]
≤ 2/N. (1)

It follows from (1) (upper bound) that a) if C and R play honestly, then the committed value is 1 with
probability 1 − 2−Ω(λ); b) no matter how C deviates from the protocol, if R plays honestly then the
committed value is at most N with probability at least 1− 2/N .

3.2 Rewind Secure Delayed-Input Witness-Indistinguishable Proof
Building Blocks. Our construction will make use of two building blocks: the 3-round delayed-input
WI protocol in [LS90], and, the bounded rewinding secure 3-round “MPC in the head" based 3-round
protocol of [IKOS07].

Theorem 3. Assuming injective one-way functions, for every (polynomial) rewinding parameter B,
there exists a three round delayed-input witness-indistinguishable proof system RWI with B-rewinding
security.

The soundness of our protocol depends upon the rewinding parameter B and can be amplified
via parallel repetition while preserving the WI property. Our protocol RWI will consist of 4 algo-
rithms (RWI1,RWI2,RWI3,RWI4) where the first 3 denote the algorithms used by the prover and ver-
ifier to send their messages and the last is the final verification algorithm. We use the protocol from
[IKOS07]. We denote its algorithms by Head.ZK = (Head.ZK1,Head.ZK2,Head.ZK3,Head.ZK4),
where the first 3 denote the algorithms used by the prover and verifier to generate their messages,
and the last is the final verification algorithm. The simulator of the protocol Head.ZK is denoted
by Szk. We will also use the delayed-input WI protocol from [LS90] and denote its algorithms by
DIWI = (DWI1,DWI2,DWI3,DWI4), where the first 3 denote the algorithms used by the prover and
verifier to generate their messages, and the last is the final verification algorithm.

Let λ be the statistical security parameter. We define parameter N = B2λ4.

3.3 Security Analysis of RWI

Proving Soundness. We prove that our protocol RWI has soundness δ/2 where δ is the soundness
parameter of the Head.ZK construction. Suppose x /∈ L. Consider the following two cases:

1. Case 1: There exists i ∈ [N ] s.t. ci 6= Com(0). In this case, we claim that V will reject the
execution with probability at least δ/2. This is because with probability 1/2, the challenge ch
will be 0. If so, by the soundness of Head.ZK, V is guaranteed to reject the execution with
probability at least δ.
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Inputs: At the beginning of the third round, the prover P gets as input (x,w); V gets only x.

1. Round 1: Prover message:
• P prepares and sends commitments c1, . . . , cN where ci = Com(0) for all i.

• P also prepares and sends a first round message hzkP→V1 for a single instance of Head.ZK,
using Head.ZK1. The statement for Head.ZK is that each ci, i ∈ [N ] is indeed a commit-
ment to 0; P uses the commitment openings as its witness.

• P also prepares and sends first round messages {dwiP→V1,i }i∈[N ] for N separate instances
of DIWI. The statements for these DIWI instances will come in the third round.

2. Round 2: Verifier message:
• The verifier samples a challenge bit ch and sends it to P .

• If ch = 0, V in addition executes Head.ZK2 to sample hzkV→P2 and sends it to V .

• If ch = 1, V executes DWI2 on {dwiP→V1,i }i∈[N ] to get {dwiV→P2,i }i∈[N ] and sends to P .

3. Round 3: Prover message:
If ch = 0, P generates hzkP→V3 by running Head.ZK3 and sends it to P . If ch = 1, P proceeds
as follows:

• Following [IKOS07], emulate an MPC computation of the circuit representing the witness
relation with λ players. The input of each player will be a share of the witness w. Let the
view of the i-th player be Vi. For i ∈ [λ], compute cvi = Com(Vi) and send it to V .

• Select a set of λ(λ− 1) distinct random indices {ki,j ∈ [N ]}i 6=j,i∈[λ],j∈[λ]. Represent these
set of indices by SI and send them to V .

• Use {dwiP→V1,i , dwiV→P2,i }i∈SI and the algorithm DWI3 to generate {dwiP→V3,i }i∈SI and send
them to V . For each ki,j ∈ SI , the message dwiP→V3,ki,j

prove that either (a) cki,j is a com-
mitment to 1, or, (b) the views (Vi, Vj) are honest and “consistent" with each other. That
is, there exist input (wi, ri) (resp (wj, rj)) s.t. Vi (resp. Vj) is computed and committed
honestly using (wi, ri) (resp (wj, rj)). Furthermore, each outgoing message sent to the
j-th player in Vi is consistent with each incoming message from the i-th player in Vj ,
and, vice-versa. The honest prover P uses the witness corresponding to (b) to compute
dwiP→V3,ki,j

. Note that unlike [IKOS07], there is no challenge from the verifier selecting a
random subset of the views.

4. Verifier Output:
• If ch = 0, compute the output of the algorithm Head.ZK4 on (hzkP→V1 , hzkV→P2 , hzkP→V3 )

and the private randomness of V . Output whatever Head.ZK4 outputs.

• If ch = 1, for each i ∈ SI , execute the algorithm DWI4 on (dwiP→V1,i , dwiV→P2,i , dwiP→V3,i ).
If all executions of DWI4 accept, then output accept and reject otherwise.

Figure 1: 3-round Bounded Rewinding Secure WI

2. Case 2: For all i ∈ [N ], ci is indeed a commitment to 0. Assume that the verifier accepts all
λ(λ − 1) executions of the DIWIprotocol. Then w.h.p, the prepared views V1, . . . , Vλ are such
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that each pair (Vi, Vj) is consistent. This follows from the soundness of the DIWI protocol (which
has negligible soundness error). Since the underlying MPC construction has perfect correctness,
it follows that x ∈ L which is a contradiction. Hence, w.h.p, the verifier must reject at least one
execution of the DIWI protocol.

Suppose the probability of Case 1 and Case 2 are p and 1−p respectively. Then RWI has soundness
pδ/2 + (1− p) · (1− negl(λ)) ≥ δ/2.

Witness Indistinguishability under B rewinds: We will now prove that RWI satisfies witness in-
distinguishability under B rewinds where B is the rewinding parameter of the Head.ZK construction.
Consider the following sequence of hybrid experiments.

Hybrid H0: This hybrid experiment corresponds to the honest protocol execution where the prover
uses witnesses w1, . . . , wB0 to prove the statements x1, . . . , xB respectively in B rewound executions.

Hybrid H1: In this hybrid experiment, the prover starts using the simulator Szk to simulate the ex-
ecution of the protocol Head.ZK across all executions. In more details, the prover runs Szk to get the
message hzkP→V1 . Prover then prepares the first message of the protocol honestly except for using
hzkP→V1 given by Szk and sends it to V ∗. In all the B execution, the prover handles the messages of
Head.ZK as follows. If ch = 0, prover forwards the verifier message of Head.ZK to Szk and forwards
the response back to V ∗. If ch = 1, the prover aborts this particular execution with Szk since there will
be no further message of Head.ZK in this execution. All messages other than messages of Head.ZK are
computed honestly as in H0.

By the zero-knowledge property of Head.ZK, it follows that the view produced by Szk across the B
executions will be indistinguishable from that in H0. Hence, the view of V ∗ in H1 is indistinguishable
from that in H0.

Hybrid H2: The prover now selects a random set of λ(λ − 1) distinct indices (from N indices) for
each of the B executions even before the protocol starts. Denote these sets by SI1, . . . , SIB. Define a
set SU which consists of all the indices which appear in more than 1 of these B sets SI1, . . . , SIB. In
hybridH2, the prover is identical to that inH1 except that for each i /∈ SU , the prover sets ci = Com(1).
(The remaining commitments are commitments of 0 as before.)

The indistinguishability of this hybrid follows directly from the hiding property of Com. Observe
that in this experiment, the openings of the commitments c1, . . . , cN are not being used by the prover
in any of the B executions.

We also prove the following lemma.

Lemma 2. Suppose N = B2λ4. Except with negligible probability over the random tape of the prover,
|SU | ≤ λ

6
.

Proof. Define T = Bλ2. We consider the following experiment. First pick T independent and random
indices from the set N . The (multi)set of indices is denoted by ST and the indices themselves are
denoted by E1, . . . , ET . Since the indices are picked independently, it is possible that some of them
maybe the same (and hence ST is a multiset rather than a set). We now construct sets SI1, . . . , SIB
from ST as follows. SI1 will simply consist of the first λ(λ − 1) mutually distinct elements from ST
(starting with element E1). SI2 will consist of the second λ(λ − 1) mutually distinct elements from
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ST , and so on. Note that for all i, all elements within SIi must be distinct. However, two sets SIi and
SIj with i 6= j may have non-zero intersection. To be able to successfully construct SI1, . . . , SIB, it is
sufficient (though not necessary) for ST to have at least Bλ(λ− 1) distinct elements. The distribution
of sets SI1, . . . , SIB constructed using this algorithm is identical to the distribution when SI1, . . . , SIB
are picked one at a time by randomly picking λ(λ− 1) distinct indices out of N . We now prove that, in
fact, most elements in ST are distinct.

Claim 3.1. Multiset ST has at least T − λ/6 distinct elements except with negligible probability.

Proof. Since all elements of ST are picked independently and uniformly, the probability that the i-th
element is identical to any other element in ST is at most T

N
. Define random variable Xi s.t. Xi = 1 if

∃j 6= i s.t. Ei = Ej , and, Xi = 0 otherwise. Clearly, the expectation E[Xi] ≤ T
N

. Denote X =
∑

iXi.
By linearly of expectation, E[X] ≤ T 2

N
= 1.

Denote E[X] by µ. Set δ = λ
7
. By Chernoff bounds, we have that Pr[X > (1 + δ)µ] ≤ negl(λ).

Thus, Pr[X > λ
6
] ≤ negl(λ).

If ST has T elements and at least T − λ/6 are distinct, at most λ/6 elements appear multiple times
in ST . This also means that at most λ/6 elements appear multiple times across the sets SI1, . . . , SIB.
Thus, |SU | ≤ λ

6
.

HybridH3: This hybrid is identical to the previous except in the way prover computes {dwiP→V3,i }i/∈SU
in the last round. Note that if i /∈ SU , ci = Com(1). Hence, the prover now has an alternative witness
to prove the statement. The prover switches to using this witness to compute {dwiP→V3,i }i/∈SU in all
executions.

Now observe the following. By definition of SU , if i /∈ SU , then the message {dwiP→V3,i }i/∈SU is
actually required to be sent in at most one execution. That is, i /∈ SU , the i-th parallel instance of DIWI
is only executed at most once (without any rewinding). Hence, the indistinguishability of the view of
V ∗ between H2 and H3 follows from the witness indistinguishability of DIWI.

Hybrid H4: We now define a set Sleak ⊂ [λ] of the views as follows. Start with an empty Sleak. For
all ki,j ∈ SU , add i and j to Sleak. Clearly, since |SU | ≤ λ

6
, it follows that |Sleak| ≤ λ

3
.

This hybrid is identical to the previous except now for all i /∈ Sleak, the prover sets cvi to be Com(0)
as opposed to Com(Vi) (in all executions). Now observe that if i /∈ Sleak, the opening of cvi was not
being used as a witness in any DIWI execution. This is because any DIWI instance which could have
used Vi has already been switched to using the alternate witness. Thus, the indistinguishability of the
view of V ∗ between H3 and H4 directly follows from the hiding of the commitment scheme Com.

Hybrid H5: This hybrid is identical to the previous one except in how the views are computed by the
prover in the last round. We note that in each rewound execution, the prover only needs to construct
a view Vi if i ∈ Sleak. However since |Sleak| ≤ λ

3
, the prover needs to construct at most λ

3
views.

The prover stops using the supplied witness at this point and instead starts using the MPC simulator to
generate all the required views. Observe that we are using an MPC protocol with perfect correct and
perfect security which is capable to simulating the view of up to λ

3
players. Thus, the indistinguishabil-

ity of the view of V ∗ between H4 and H5 follows from indistinguishability of real and simulated views
in the underlying MPC construction.
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We now observe that in hybrid H5, our prover is no longer using the supplied witnesses in any of
the B execution. Hence, our construction RWI is, in fact, zero-knowledge under B rewinds. This in
particular implies that our construction satisfies the notion of WI with bounded rewind security as de-
fined in 5. We also note that although not necessary in our application, the parallel repetition of RWI
can also be shown to have the proof of knowledge property.

3.4 Pairwise-Independent Coin-Flipping
In this section, we combine the building blocks from the two prior sections into a single coin-flipping
protocol. This is the only context in which either building block will appear throughout the rest of the
paper. At a high level, the coin-flipping protocol consists of the following parts; n ∈ N is an integer
parameter.

1. an unbounded polynomial commitment (Section 3.1) which C uses to commit to the value N ;

2. an n−way, three round coin-flip type protocol:

(a) C sends {zi}i∈[n] where each zi is a commitment to a random string ri ∈ {0, 1}λ; let
val(N) = O(logN) be a parameter we will fix precisely later.

(b) R sends random strings {r′i}i∈[n];
(c) C sends {ri}i∈[n]; we think of the strings ri ⊕ r′i as being the “outputs” of this subroutine;

3. C specifies a family of Goldreich-Levin sets by sending {zGLα }α∈[λ] where each zGLα is a commit-
ment to a random string rGLα ∈ {0, 1}λ;

4. C proves using RWI (Section 3.2) that:

EITHER: ri is the committed string inside zi for all i ∈ [n];
OR: there exists j ∈ [n] such that rj ∈ GL(rGL1 , . . . , rGLval) where val = O(logN), and ri is the

committed string inside zi for all i 6= j.

The above is an oversimplification of our actual protocol. For technical reasons resulting from our use
of witness-indistinguishable proofs, C actually commits to pairs of strings in Step 3: {zGL0,α, z

GL
1,α}α∈[λ].

Then in the ‘OR’ part of the statement in Step 4, C proves that rj ∈ GL(rGLb,1, . . . , r
GL
b,val) holds for some

b ∈ {0, 1}. The full protocol appears in Figure 2

3.5 Security Analysis of PairwiseCFn
Notation. We denote the three round transcript of PairwiseCFn by (τ1, τ2, τ3). We say that (τ1, τ2, τ3)
is valid if the proof verification algorithm accepts (rwi1, rwi2, rwi3).

The following Claim will help us establish extraction properties for our commitment scheme in Sec-
tion 6.

Claim 1. For all δ > 0 there existsMδ = poly
(
λ, 1/δ

)
such that for any first message τ1 of PairwiseCFn

sent by C∗, there exists a set LEGAL ⊂ {0, 1}λ·n of size at most |LEGAL| ≤Mδ such that

Pr
[
(τ1, τ2, τ3) valid & r /∈ LEGAL

]
≤ δ, (2)

where the probability is over (τ2, τ3).
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Parameters and Subroutines: Let λ be the security parameter, and n = poly(λ) a parameter. Let
Com be a non-interactive, perfectly binding commitment scheme. Let RWI be a three-round
3−rewind secure delayed-input WI proof. Let val(N) = 2 log(λ) + 3 log(N) + 2.

1. C −→ R: C sends
(
c; {zGL0,α, z

GL
1,α}α∈[λ]; {zi}i∈[n]; rwi1

)
to R where:

(a) c = Com(s ◦N ; η) for random s,N ←
[
2λ
]

and η ← $;

(b) zGLb,α = Com(rGLb,α;ωb,α) for random rGLb,α ← {0, 1}λ, ωb,α ← $;

(c) zi = Com(ri; ρi) for random ri ← {0, 1}λ, ρi ← $;

(d) rwi1 ← RWI1; the statement will come in the third round;

2. R −→ C: R sends
(
s′; {r′i}i∈[n]; rwi2

)
to C where:

(a) s′ ←
[
2λ
]
; (b) r′i ← {0, 1}λ ∀ i ∈ [n]; (c) rwi2 ← RWI2.

3. C −→ R: C sends
(
{ri}i∈[n]; rwi3

)
to R where {ri} are as in (1c) and (rwi1, rwi2, rwi3) prove:

EITHER: ∃ {ρi}i∈[n] such that zi = Com(ri; ρi) ∀ i ∈ [n];

OR: ∃
(
b, j, val; s,N, η; {rGLα , ωα}α∈[val]; {ρi}i 6=i∗

)
such that N > 1 and

(i) b ∈ {0, 1}; j ∈ [n]; val = val(N) (ii) c = Com(s ◦N ; η)
(iii) s+ s′ ≡ 0 (mod N ) (iv) zi = Com(ri; ρi) ∀ i 6= j
(v) zGLb,α = Com(rGLα ;ωα) ∀ α ∈ [val] (vi) rj ∈ GL(rGL1 , . . . , rGLval)

Output: If the proof verification accepts (rwi1, rwi2, rwi3), then both players output {ri, r′i}i∈[n].

Figure 2: Pairwise Independent Coin Flipping − PairwiseCFn

Proof. Let τ1 =
(
c; {zGL0,α, z

GL
1,α}α∈[λ]; {zi}i∈[n]; rwi1

)
. Let rGLb,α and rhoni be the committed strings inside

zGLb,α and zi, respectively. LetN denote the modulus part of the committed string inside c. The soundness
of RWI ensures that, except with probability 2−Ω(λ), the values {ri} sent by C∗ in the final round must
be such that ri = rhoni for all i except for possibly i = i∗ where it might be that

ri∗ ∈ LEGAL := GL(rGL0,1, . . . , r
GL
0,val) ∪ GL(rGL1,1, . . . , r

GL
1,val)

where val = 2 log(λ) + 3 log(N) + 2. We assume N ≤ 4/δ, since if not, ri = rhoni must hold for all i,
unless either s+s′ ≡ 0 (modN ) (occurs with probability at most δ/2), or if C∗ proves a false statement
in RWI (occurs with probability 2−Ω(λ)). Thus, in this case, LEGAL has size 1, consisting only of the
strings {rhoni }i∈[n]. However, if N ≤ 4/δ, then |LEGAL| ≤ 8nλ3N3 ≤ 512nλ3/δ3 =: Mδ. The Claim
follows.
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Simulation Guarantees. We present a simulator which will be critical to the proof of hiding in Sec-
tion 5, and synchronizing non-malleability in Appendix B.

Lemma 3. Assume one-to-one one-way functions exist, and let RWI be secure against B = 2 rewinds.
There exists a simulator algorithm, SIMCF, satisfying the following syntax, running time, simulation
and pairwise independence guarantees.

• Syntax: SIMCF takes as input a triple (1λ, 1n, 1N) for integer parameters (λ, n,N) defining the
value val = 2 log(λ) + 3 log(N) + 2. Additionally, SIMCF, gets oracle access to a (possibly
malicious) R∗, and outputs strings rGLα ∈ {0, 1}λ for α = 1, . . . , val, one first and two sec-
ond round messages τ1, τ2, τ̂2, as well as many third messages {τ3(i∗, r), τ̂3(i∗, r)}i∗,r, where for
each i∗ ∈ [n] and r ∈ GL(rGL1 , . . . , rGLval),

(
τ1, τ2, τ3(i∗, r)

)
is a transcript with sub-transcript

(rwi1, rwi2, rwi3) which proves the ‘OR’ part of the statement using i∗ and r; the τ̂3(i∗, r) are
analogous.

• Running Time: The expected running time of SIMCF is poly
(
λ,TR∗ , n,N

)
.

• Simulation: For all PPT R∗, n,N = poly(λ) and j ∈ [n], the following distributions are
computationally indistinguishable:

− REALR∗

PairwiseCFn: honest C plays PairwiseCFn twice against R∗, where R∗ is allowed to rewind
C one time, the transcript (τ1, τ2, τ3, τ̂2, τ̂3) is output.

− SIMR∗

CF(j): SIMCF(1λ, 1n, 1N) is run with oracle access to R∗, obtaining {rGLα }α∈[val], and(
τ1, τ2, {τ3(i∗, r)}i∗,r, τ̂2, {τ̂3(i∗, r)}i∗,r

)
; then a string r← GL(rGL1 , . . . , rGLval) is chosen and(

τ1, τ2, τ3(j, r), τ̂2, τ̂3(j, r)
)

is output.

• Computational Pairwise Independence: For non-empty S ⊂ {1, . . . , val} and t ∈ [λ], let Σj
S,t

denote the output of the process which runs SIMCF
R∗(1λ, 1n, 1N), sets r = et ⊕

(⊕
α∈S r

GL
α

)
and

outputs
(
τ1, τ2, τ3(j, r), τ̂2, τ̂3(j, r)

)
. For all PPTs D and j ∈ [n]

PrSIMR∗
CF

[
∃ s, t ∈ [λ] st

∣∣∣∣PrS

[
D
(
Σj
S,s

)
= 1
]
− PrS

[
D
(
Σj
S,t

)
= 1
]∣∣∣∣ ≥ 1

N

]
<

1

N
. (3)

Remark. Rackoff’s proof of the Goldreich-Levin theorem makes crucial use of a concentration bound
derived from pairwise independence. The final condition in the Lemma above is a computational ver-
sion of this concentration bound.

We prove Lemma 3 in Appendix A. The simulator SIMCF is described in Figure 3.

4 Our New Commitment Scheme
In this section we describe our main construction− a new commitment scheme obtained by composing
a basic commitment with an interactive version of Blum’s non-interactive commitment. The random
string used in the second part is jointly computed by C and R using PairwiseCF from Section 3.4.
Specifically, our new commitment scheme consists of the following parts (see Figure 4).
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Parameters: Integers n,N ∈ N, val = 2 log(λ) + 3 log(N) + 2.

Continue or Abort: Prepare τ1, a first message of PairwiseCFn honestly and feed τ1 to R∗; if R∗

aborts, output τ1 and halt. Otherwise, continue.

Main Loop: While true

− Prepare First Message: Generate τ1 =
(
c, {zGL0,α, z

GL
1,α}α∈[λ], {zi}i∈[n], rwi1

)
as follows:

· draw s←
[
2λ
]
, η ← $ set c = Com(s ◦N ; η);

· draw rGLb,α ← {0, 1}λ, ωb,α ← $ set zb,α = Com(rGLb,α, ωb,α);

· draw ri ← {0, 1}λ, ρi ← $ set zi = Com(ri; ρi);

· draw rwi1 ← RWI1 (statement will be chosen in third round).

− Break or Continue: Feed τ1 to R∗. If R∗ aborts continue. Otherwise, R∗ responds with
τ2 =

(
s′, {r′i}i∈[n], rwi2

)
. If s+ s′ 6≡ 0 (mod N ), continue. Otherwise, break out of the main

loop.

Generate the Rewind Thread: Feed R∗ once again with τ1 until R∗ responds with another valid
second message τ̂2 such that s+ ŝ′ ≡ 0 (mod N ).

Output: Output
(
{rGLα }α∈[val], {ri}i∈[n]; τ1, τ2, {τ3(i∗, r)}i∗,r; τ̂2, {τ̂3(i∗, r)}i∗,r

)
,

· the ri and rGLα are from the first message, rGLα = rGLb,α for a random b← {0, 1}.

· for each i∗ ∈ [n] and r ∈ GL(rGL1 , . . . , rGLval), τ3(i∗, r) =
(
{r̃i}i∈[n], rwi3

)
, the third message for

PairwiseCFn where r̃i∗ = r and r̃i = ri for all i 6= i∗, and (rwi1, rwi2, rwi3) proves the ‘OR’ part
of the statement specified in the protocol. The τ̂3(i∗, r) are analogous.

Figure 3: The Simulator − SIMCF

Building Blocks: Let Com = (Com1,Com2,Com3) be a commitment scheme with 3 (or fewer)
rounds whose decommitment information is fixed after the first round. Let F1−1 owf be a fam-
ily of one-to-one one-way functions.

Input: C has input, m ∈ {0, 1}λ, a message to commit to; R has no input.

1. C and R run Com(m) producing a transcript (σ1, σ2, σ3). Let c = (c1, . . . , cn) ∈ {0, 1}n be the
decommitment information.

2. C and R run PairwiseCFn (Section 3.4) obtaining transcript (τ1, τ2, τ3) with output {ri, r′i}i∈[n].

3. Additionally:
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− in the first round C chooses fi ← F1−1 owf and xi ← {0, 1}λ for i ∈ [n] and sends
{fi,yi}i∈[n] to R where yi = fi(xi);

− in the third round C sends {vi}i∈[n] to R where vi = 〈xi, ri ⊕ r′i〉 ⊕ ci.

Theorem 4. Assume that one-to-one one-way functions exist. If Com is a 3−round (or fewer) perfectly
binding commitment scheme where the decommitment information is fixed after the first message, and
PairwiseCFn is a pairwise independent coinflip protocol, then 〈C,R〉 is a three-round, perfectly binding,
distributionally extractable commitment scheme that is non-malleable against a sequential MIM.

We prove Theorem 4 over the next three sections. We prove hiding, distributional extraction, and
sequential non-malleability in Sections 5, 6, and 7, respectively. Note that perfect binding follows
immediately from the perfect binding of Com and the injectivity of the functions in F1−1 owf .

Theorem 5. Assume that one-to-one one-way functions exist, let Com be the main component of the
commitment scheme from [GPR16], and let PairwiseCFn be a pairwise independent coinflipping proto-
col. Then 〈C,R〉 is a three-round, perfectly binding, non-malleable commitment scheme.

The main component of the GPR scheme is a 3-round perfectly binding commitment scheme whose
decommitment only depends on the first message, so Theorem 4 applies. All that is needed for The-
orem 5 beyond Theorem 4 is non-malleability against a synchronizing MIM. The main component of
GPR is non-malleable against a synchronizing MIM, and moreover the security reduction in the proof
rewinds the left execution just one time. Because of the rewind-security of PairwiseCFn, the reduction
from GPR goes through even when the main component is composed with PairwiseCFn. This observa-
tion was already made in GPR. For this reason, the remainder of the main body of this paper is devoted
to proving Theorem 4; non-malleability against a synchronizing MIM (i.e., proving Theorem 5) is
treated briefly in Appendix B.

5 Hiding
In this section we prove the following lemma.

Lemma 4. Assume Com is a commitment scheme whose decommitment information depends only on
the first message, F1−1 owf is a family of one-to-one, one-way functions, and PairwiseCFn a secure
pairwise independent coin-flipping protocol. Then 〈C,R〉 is computationally hiding.

Proof. Consider an adversary R∗ playing against a challenger C in the hiding game for 〈C,R〉. Their
interaction goes as follows:

1. R∗ sends m0,m1 ∈ {0, 1}λ to C.

2. C chooses b ← {0, 1}, then C and R∗ play an execution of 〈C,R〉 where C commits to mb.
The transcript of this step is T =

(
σ1, σ2, σ3, τ1, τ2, τ3, {fi,yi, vi}i∈[n]

)
, where (σ1, σ2, σ3) is a

transcript of Com(mb), (τ1, τ2, τ3) a transcript of PairwiseCFn with output {ri, r′i}i∈[n] and where
vi = 〈xi, ri ⊕ r′i〉 ⊕ ci for xi such that fi(xi) = yi and (c1, . . . , cn) ∈ {0, 1}n the decommitment
of (σ1, σ2, σ3).

3. R∗ sends b′ ∈ {0, 1} and wins if b′ = b.
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Subroutines and Parameters: Let Com = (Com1,Com2,Com3) be a three-round (or fewer)
perfectly binding commitment scheme supporting commitments of λ−bit strings, with n−bit
decommitments. Moreover, assume that the decommitment information of Com depends only on the
first message. Let PairwiseCFn be the pairwise independent coin flipping protocol of Section 3.4. Let
F1−1 owf be a family of one-to-one, one-way functions.

Input: C has a message m ∈ {0, 1}λ; R uses no input.

Commit Phase:

1. C −→ R: C sends
(
σ1; {fi,yi}i∈[n]; τ1

)
to R, prepared as follows:

(a) σ1 = Com1(m;ω);
(b) fi ← F1−1 owf and yi = fi(xi) for xi ← {0, 1}λ;
(c) τ1 is the first round of PairwiseCFn.

2. R −→ C: R sends (σ2, τ2) to C, second rounds of Com and PairwiseCFn.

3. C −→ R: C sends
(
σ3, τ3; {vi}i∈[n]

)
to R where:

(a) σ3 = Com3(σ1, σ2;m;ω); let (c1, . . . , cn) = Decom(σ1, σ2, σ3;ω) ∈ {0, 1}n.
(b) τ3 is the third round of PairwiseCFn; let {ri, r′i}i∈[n] be the output of (τ1, τ2, τ3);
(c) vi = 〈xi, ri ⊕ r′i〉 ⊕ ci.

Decommit Phase: C sends {xi}i∈[n] to R.

Output: R computes ĉi = vi ⊕ 〈xi, ri ⊕ r′i〉, and checks whether (ĉ1, . . . , ĉn) is a valid decommitment
of (σ1, σ2, σ3). If not, R outputs ⊥, if so R recovers and outputs m.

Figure 4: A New Three-Round Commitment Scheme 〈C,R〉

Let G0(b) denote the above game where C has chosen the bit b. We show that G0(0) ≈ G0(1) via a
hybrid argument. The main steps are:

G1(0) same as G0(0) except that vi = 〈xi, ri ⊕ r′i〉;

G1(1) same as G1(0) except (σ1, σ2, σ3) is a transcript of Com(m1);

G0(1) same as G1(1) except that the vi are switched back to 〈xi, ri ⊕ r′i〉 ⊕ ci, where (c1, . . . , cn)
is the decommitment information for the new (σ1, σ2, σ3).

Suppose for contradiction that a PPT D and non-negligible ε > 0 are such that

∣∣D(G0(0),G0(1)
)∣∣ :=

∣∣∣∣PrT←G0(0)

[
D(T) = 1

]
− PrT←G0(1)

[
D(T) = 1

]∣∣∣∣ > ε.

21



We prove below that
∣∣D(G0(0),G1(0)

)∣∣ ≤ ε/3. Proving
∣∣D(G0(1),G1(1)

)∣∣ ≤ ε/3 is similar. It follows
that

∣∣D(G1(0),G1(1)
)∣∣ > ε/3, which contradicts the hiding of Com. To prove

∣∣D(G0(0),G1(0)
)∣∣ ≤

ε/3, we use n+ 1 sub-hybrids, H0, . . . ,Hn. Hybrid Hk is the same as G0(0) except that:

vi =

{
〈xi, ri ⊕ r′i〉 ⊕ ci, i > k
〈xi, ri ⊕ r′i〉, i ≤ k

Note that H0 = G0(0) and Hn = G1(0). We analyze the change from Hk−1 to Hk. The Lemma follows
immediately from the next Claim.

Claim 2. Assume the hypotheses of Lemma 4. Then for all k = 1, . . . , n:∣∣∣∣PrT←Hk−1

[
D(T) = 1

]
− PrT←Hk

[
D(T) = 1

]∣∣∣∣ ≤ ε

3n
.

Proof of Claim 2. Let N ∈ N be so that 8/N = ε/3n, and let δ := 1/N ; this will simplify notations.
Assume for contradiction that D

(
Hk−1,Hk

)
> 8δ. Notice that the only difference between Hk−1 and

Hk is that vk = 〈xk, rk ⊕ r′k〉 ⊕ ck in Hk−1 and vk = 〈xk, rk ⊕ r′k〉 in Hk. If ck = 0 we are done, so we
assume ck = 1. Let H′k−1 and H′k be identical to Hk−1 and Hk except for how C prepares (τ1, τ2, τ3). In
H′k−1 and H′k, C draws(

{rGLα }α∈[val], τ1, τ2, {τ3(i∗, r)}i∗,r, τ̂2, {τ̂3(i∗, r)}i∗,r
)
← SIMR∗

CF(1λ, 1n, 1N),

r ← GL(rGL1 , . . . , rGLval) and sets τ3 = τ3(k, r). By the simulation property of PairwiseCFn, we have
that D

(
H′k−1,H

′
k

)
> 8δ − negl(λ) > 7δ. We now describe an inversion algorithm A which inverts the

one-way function, thus arriving at our contradiction.

• Input: A receives (f,y) as input.

• Random Choices: A prepares
(
σ1, σ2, σ3, τ1, τ2, {τ3(r)}r, {fi,yi, vi}i∈[n]

)
as follows:

· a commitment (σ1, σ2, σ3) = Com(m0), with decommitment (c1, . . . , cn) ∈ {0, 1}n;

· f1, . . . , fn ← F1−1 owf , x1, . . . ,xn ← {0, 1}λ and sets yi = fi(xi) for all i ∈ [n] and then
replaces (fk,yk) with (f,y);

·
(
{rGLα }α; τ1, τ2, {τ3(i∗, r)}i∗,r, τ̂2, {τ3(i∗, r)}i∗,r

)
← SIMR∗

CF(1λ, 1n, 1N), where τ2, contains
{r′i}i; and all τ3(k, r) contain {ri}i 6=k; for each r ∈ GL(rGL1 , . . . , rGLval), let τ3(r) = τ3(k, r);

· vi = 〈xi, ri ⊕ r′i〉 ⊕ ci for i > k; vi = 〈xi, ri ⊕ r′i〉 for i < k;

· a guess g′ ∈ {0, 1} for 〈xk, r′k〉.

• The Prediction Subroutine: A will utilize the following subroutine Pred:

· on input r ∈ GL(rGL1 , . . . , rGLval), Pred chooses a random guess g ∈ {0, 1} for 〈xk, r〉 and sets
vk = g ⊕ g′, thus obtaining a transcript T;

· if D(T) = 1, Pred outputs g, otherwise Pred outputs a random bit.

• The Inversion Algorithm: A works as follows:

· Choose guesses b1, . . . , bval ← {0, 1} for 〈xk, rGL1 〉, . . . , 〈xk, rGLval〉.
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· For S ⊂ {1, . . . , val} set bS =
⊕

α∈S bi.

· For each non-empty S ⊂ {1, . . . , val} and t ∈ [λ], let rS,t = et ⊕
⊕

α∈S r
GL
α , and let

xS,t = Pred(rS,t)⊕ bS; we think of xS,t as S’s guess for the t−th bit of x.

· For each t ∈ [λ], let xt = MAJORITYS{xS,t}.
· If x = (x1, . . . , xλ) ∈ {0, 1}λ is such that f(x) = y, output x, otherwise output ⊥.

We say that the random choices
(
σ1, σ2, σ3, τ1, τ2, {τ3(r)}r, {fi,yi, vi}i∈[n], g

′
)

are good if the follow-
ing three events occur:

E1: Prr,g

[
D(T) = 1

∣∣∣g = 〈xk, r〉
]
≥ Prr,g

[
D(T) = 1

∣∣∣g 6= 〈xk, r〉] + 4δ, where the probabilities are

over r← GL(rGL1 , . . . , rGLval) and g ← {0, 1} (i.e., over the randomness of Pred);

E2: For all s, t ∈ [λ], |Pt − Ps| < δ, where Pt := PrS
[
Pred(rS,t) = 〈xk, rS,t〉

]
, where the probability

is over non-empty S ⊂ {1, . . . , val}.

E3: g′ = 〈xk, r′k〉;

Note that E1 occurs with probability at least 3δ, since D
(
H′k−1,H

′
k

)
> 7δ. This is because when

g = 〈xk, r〉, T is distributed according to Hk, while if g 6= 〈xk, r〉, T is distributed according to Hk−1.
Also, E2 occurs with probability at least 1−δ by the “pairwise-independence” property of PairwiseCFn;
and E3 occurs with probability 1/2 independently of E2 and E3. Therefore, the probability that the
random choices made by A are good is at least δ.

We conclude by showing that whenever the choices are good, A outputs x with probability at least
2−val. To see this, note that if E1 and E3 hold, then

PrS,t

[
Pred(rS,t) = 〈xk, rS,t〉

]
≥ 1

2
+ δ,

where the probability is over non-empty S ⊂ {1, . . . , val} and t ← [λ]. If E2 also holds, then
PrS
[
Pred(rS,t) = 〈xk, rS,t〉

]
> 1/2 for all t ∈ [λ]. Note also that with probability 2−val, all guesses

b1, . . . , bval made byA are correct (i.e., equal to 〈xk, rGL1 〉, . . . , 〈xk, rGLval〉). In this case, 〈xk,
⊕

α∈S r
GL
α 〉 =

bS for all S ⊂ {1, . . . , val}, so PrS
[
xS,t is t-th bit of x

]
> 1

2
holds for all t ∈ [λ], and A outputs x.

6 Distributional Extraction
In this section we prove the following lemma.

Lemma 5. Assume Com is a 3−round perfectly binding commitment scheme with decommitment fixed
after the first message. Then for all ε > 0 there exists an extractor Extε satisfying the following syntax,
running time and extraction guarantees.

• Syntax: Extε is parametrized by ε > 0, gets oracle access to a possibly unbounded cheating
C∗, takes a transcript T of 〈C,R〉 as input and outputs a message m or the symbol ⊥.

• Running Time: The running time of Extε is poly
(
λ,TC∗ , 1/ε

)
.

• Extraction: For any cheating, unbounded C∗, ∆
(
valC

∗
,ExtC

∗

ε

)
≤ ε, where valC

∗
and ExtC

∗

ε de-
note the distributions which generate a transcript T by running 〈C,R〉 between an honest R and
C∗ and output m = val(T) (the committed message inside T) and m = ExtC

∗

ε (T), respecitvely.
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Notation. The input to our extractor is the transcript T of an execution of 〈C,R〉 between a cheating
committer C∗ and honest R. Concretely, T =

(
σ1, σ2, σ3, τ1, τ2, τ3, {fi,yi, vi}i∈[n]

)
, where:

1. (σ1, σ2, σ3) is a transcript of Com;

2. (τ1, τ2, τ3) is a transcript of PairwiseCFn containing the strings {ri, r′i}i∈[n];

3. for each i ∈ [n], fi : {0, 1}λ → {0, 1}poly(λ), yi ∈ {0, 1}poly(λ) and vi ∈ {0, 1}.

We say T is valid if (τ1, τ2, τ3) is valid (which recall means that the RWI proof inside (τ1, τ2, τ3) passes
verification). We say T is correct if for all i ∈ [n], vi = 〈xi, ri ⊕ r′i〉 ⊕ ci where (c1, . . . , cn) ∈ {0, 1}n
is a valid decommitment of (σ1, σ2, σ3), and where xi ∈ {0, 1}λ is such that fi(xi) = yi. Note the
committed value inside T is ⊥ unless T is valid and correct. Note that whether or not T is valid can be
efficiently checked, whereas whether T is correct or not cannot. We say that i ∈ [n] is correct in T (or
just that i is correct if T is clear from context) if vi = 〈xi, ri ⊕ r′i〉 ⊕ ci.

6.1 Extractor Overview
Intuitively, we think of our extractor Extε as having two parts, denoted Ext1 and Ext2. The job of Ext1
is to extract as many of the xi as possible. We show that if T is a valid commitment, then with very high
probability, Ext1 can extract all but at most logarithmically many. The rough idea is the following. First,
note that if T is a valid commitment, then C∗, if rewound and replayed with a new second message,
will produce another valid commitment T̂ with non-negligible probability, say ε > 0. In particular,
this means that with probability at least ε, every i ∈ [n] is correct in T̂. Using a Goldreich-Levin-type
argument, one can show that if i ∈ [n] is such that i is correct in T̂ with probability at least 1/2 + ε,
then xi can be recovered by designing a GL-prediction algorithm with advantage ε, and running the
corresponding GL-inverter. Thus the main task is to show how to transform the guarantee of “global
correctness with probability ε” into a guarantee of “local correctness with probability 1/2 + ε.” The
key point is that for large enough t = O(log λ),(

1

2
+ ε

)t
≤ ε ≤ Pr

[
i cor. in T̂ ∀ i = 1, . . . , t

]
=

t∏
i=1

Pr
[
i cor. in T̂

∣∣∣j cor. in T̂ ∀ j < i
]
. (4)

It follows that Pr
[
i cor. in T̂

∣∣j cor. in T̂ ∀ j < i
]
≥ 1/2 + ε holds for some i ∈ [t]. Thus, any set of

t sessions will have at least one session which is correct with large probability conditioned on other
sessions also being correct. We take advantage of this guarantee by rewinding in such a way so that
correctness in those other sessions can be efficiently checked by comparing against T.

By the time Ext1 finishes, we have xi for all but at most logarithmically many, say ` = O(log λ),
of the i ∈ [n]. Moreover, for the ` values of i which remain, we know that C∗ plays so that i is
correct/incorrect in T̂ with roughly 1/2 probability each, else we would have recovered these values
in Ext1. We could use the values of xi we have already recovered to compute the corresponding ci,
then brute force search through all n−bit strings which agree with the recovered ci in search of the
decommitment of (σ1, σ2, σ3). If this decommitment is found, we could recover m and output m with
probability 2−`, ⊥ with probability 1 − 2−`. However, this would not necessarily produce the correct
distribution since there still can be correlations among the ` outstanding sessions. For example, C∗

might flip a coin and if heads, play so that T̂ is fully correct; if tails, play so that every outstanding i is
incorrect in T̂. The purpose of Ext2 is to remove all such correlations from the remaining sessions, by
extracting from an outstanding session any time a correlation exists. Procedurally, Ext2 operates very
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much like Ext1, so we do not explain further here. After Ext2 is finished (and ` the number of remaining
sessions is adjusted), the output strategy of outputting m with probability 2−` and ⊥ with probability
1− 2−` gives the correct distribution.

6.2 Extractor Subroutines
The following claim is proved in Section 6.4.

Claim 3 (Inner Extractor). For all ε > 0 there exists an extractor InnerExtε satisfying the following
syntax, running time and extraction guarantees.

• Syntax: InnerExtε is parametrized by ε > 0, gets oracle access to a possibly unbounded cheat-
ing C∗, takes ξ1 =

(
σ1, τ1, {fj,yj}j∈[n]

)
and a set

FOUND =
{

(j,xj) : j ∈ F & fj(xj) = yj
}
⊂ [n]× {0, 1}λ

for some F ⊂ [n], and outputs either (i,xi) ∈ [n]× {0, 1}λ or ⊥.

• Running Time: The running time of InnerExtε is poly
(
λ,TC∗ , 1/ε

)
.

• Extraction: Suppose (ξ1,FOUND) with |FOUND| = n− ` are such that either of the following
hold:

· ` ≥ t and Prξ2
[
T correct and T valid

∣∣ξ1

]
≥ ε/3; or

· ` < t and Prξ2
[
F correct in T & T valid

∣∣ξ1

]
≥ ε/3 and∣∣∣Prξ2

[
T correct

∣∣ξ1 & F correct in T & T valid
]
− 2−`

∣∣∣ ≥ ε

3
.

Then with probability at least 1− 2−Ω(λ), InnerExtC
∗

ε (ξ1,FOUND) outputs (i,xi) such that i /∈ F
and fi(xi) = yi.

The Reconstruction Procedure. The extractors in this and the next section both work by extracting
the xi one at a time until enough have been obtained to recover the committed message m. The fol-
lowing message recovery procedure, RecoverMsg will be a useful subroutine in the remainder of the
paper.

Input: RecoverMsg takes as input a transcript T =
(
σ1, σ2, σ3, τ1, τ2, τ3, {fi,yi, vi}i∈[n]

)
and a set

FOUND =
{

(i,xi) : i ∈ F & fi(xi) = yi
}
⊂ [n]× {0, 1}λ, where F ⊂ [n] has size |F| = n− `.

− For each i ∈ F, let ci = vi ⊕ 〈xi, ri ⊕ r′i〉, where the strings {ri, r′i}i∈[n] are from (τ1, τ2, τ3).
Brute force search through the set

{
s ∈ {0, 1}n : si = ci ∀ i ∈ F

}
(this set has size 2`), in search

of the decommitment information of (σ1, σ2, σ3). If the decommitment information is not found,
output ⊥ and halt, otherwise let m be the committed message inside (σ1, σ2, σ3).

Output: Output m with probability 2−`, output ⊥ with probability 1− 2−`.
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6.3 Extractor Construction
Let ε > 0 be a parameter and set t ∈ N so that (2/3)t = ε/3. Let InnerExtε be the inner extractor of
Claim 3, and let RecoverMsg be the message recovery subroutine.

• Input and Parameters: Extε takes a transcript T = (ξ1, ξ2, ξ3) as input and gets oracle access to C∗.

• Initialize: If T is not valid, Extε outputs ⊥ and halts. Otherwise, a set FOUND ⊂ [n] × {0, 1}λ is
initialized to ∅. Let F ⊂ [n] be the set of i which appear as the first coordinate of an element of
FOUND; so F is also initialized to ∅.

•Main Loop: While |FOUND| < n do the following:

· run InnerExtC
∗

ε (ξ1,FOUND); if (i,xi) is output, update FOUND = FOUND ∪ {(i,xi)} and
F = F ∪ {i} and continue; if ⊥ is output, break out of the loop.

• Output: If |FOUND| ≥ n− t, Extε outputs RecoverMsg(T,FOUND); otherwise ⊥.

Proof of Lemma 5 Assuming Claim 3. It is clear that Extε has the required syntax. The running time
of the main loop is dominated by n = poly(λ) times the running time of InnerExtε, which by Claim 3
is poly

(
λ,TC∗ , 1/ε

)
. The running time of RecoverMsg is poly(λ, 2t) = poly(λ). Therefore, the total

runtime is poly
(
λ,TC∗ , 1/ε

)
, and so it remains to show that ∆

(
valC

∗
,ExtC

∗

ε

)
≤ ε.

Note that if T is not valid, then val(T) = ⊥, and ExtC
∗

ε (T) outputs ⊥ during initialization. There-
fore, the statistical distance in this case is 0 and we can assume that ExtC

∗

ε (T) enters the main loop.
There are three possible reasons for ExtC

∗

ε (T) to exit the main loop:

1. |FOUND| = n;

2. |FOUND| < n− t and InnerExtC
∗

ε (ξ1,FOUND) = ⊥;

3. |FOUND| ≥ n− t and InnerExtC
∗

ε (ξ1,FOUND) = ⊥.

In case 1, ExtC
∗

ε (T) outputs val(T) with probability 1, and so the statistical distance is 0 in this case. In
case 2, ExtC

∗

ε (T) outputs ⊥ and so p2 := PrT
[
Case 2 occurs & val(T) 6= ⊥

]
is the statistical distance

in this case. Let us say that ξ1 is good if Prξ2
[
T correct & T valid

∣∣ξ1

]
≥ ε/3. We have

p2 ≤ PrT
[
val(T) 6= ⊥ & ξ1 not good

]
+ PrT

[
Case 2 occurs

∣∣ξ1 good
]
< ε/3 + 2−Ω(λ),

using the first extraction guarantee of InnerExtC
∗

ε in Claim 3. Finally, consider case 3. In this case
ExtC

∗

ε (T) outputs ⊥ if F is not correct in T and otherwise outputs m with probability 2−`, ⊥ with
probability 1− 2−`, where m is the committed message inside (σ1, σ2, σ3). If F is not correct in T then
val(T) = ⊥ and the statistical distance is 0. Now, we identify two types of good ξ1:

1. say ξ1 ∈ G1 if Prξ2
[
F correct in T & T valid

∣∣ξ1

]
≥ ε/3;

2. say ξ1 ∈ G2 if
∣∣∣Prξ2

[
T correct

∣∣ξ1 & F correct in T & T valid
]
− 2−`

∣∣∣ ≥ ε/3.
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By the second extraction guarantee of Claim 3, Pr
[
Case 3 occurs

∣∣ξ1 ∈ G1 ∩ G2

]
= 2−Ω(λ), so we must

bound the statistical distance in Case 3 when F is correct in T and when ξ1 /∈ G1 ∩ G2. Let E be
shorthand for the event “F is correct in T and T is valid”. The statistical distance in Case 3 when E
occurs is

PrT
[
E
]
·
∣∣∣PrT

[
val(T) 6= ⊥

∣∣E]− PrT
[
ExtC

∗

ε (T) 6= ⊥
∣∣E]∣∣∣ = PrT

[
E
]
·
∣∣∣PrT

[
T correct

∣∣E]− 2−`
∣∣∣,

since when E occurs, the only possibile values for val(T) are ⊥ and the decommitment of (σ1, σ2, σ3).
However, this means the statistical distance we want is upper bounded by ε/3, since when ξ1 /∈ G1,
PrT
[
E
]
< ε/3, and when ξ1 /∈ G2,

∣∣PrT
[
T correct

∣∣E] − 2−`
∣∣ < ε/3. Putting everything together,

∆
(
valC

∗
,ExtC

∗

ε

)
≤ ε/3 + ε/3 + 2−Ω(λ) < ε.

6.4 Inner Extractor Construction
• Input and Parameters: InnerExtε is parameterized by ε > 0. Let t ∈ N be such that

(
2/3
)t

= ε/3,
and let N = poly(λ) ∈ N and non-negligible η = η(λ) > 0 be parameters which we will fix
later. InnerExtε takes (ξ1,FOUND) as input where ξ1 =

(
σ1, τ1, {fj,yj}j∈[n]

)
and

FOUND =
{

(j,xj) : j ∈ F & fj(xj) = yj
}
⊂ [n]× {0, 1}λ,

for a set F ⊂ [n] of size n− `. InnerExtε gets oracle access to C∗.

• Construct I: If ` > t, let T ⊂ [n] \ F be a set of size t; if ` ≤ t, let T = [n] \ F. Let

I =
{

(i, S) : i ∈ T & S ⊂ T \ {i}
}
.

Note |I| ≤ t · 2t holds regardless of whether ` > t or ` ≤ t.

• Outer Loop: For each (i, S) ∈ I:

• Inner Loop: Do the following N times, or until xi is recovered.

· Set the Main Thread: Choose ξ2 =
(
σ2, τ2

)
honestly where τ2 contains {r′j}j∈[n], send

ξ2 to C∗ and receive ξ3 =
(
σ3, τ3, {vj}j

)
, where τ3 contains {rj}j . Let T = (ξ1, ξ2, ξ3);

if T is not valid, continue.
· Define the GL-Predictor: Let Pred be the GL-predictor which, on input s ∈ {0, 1}λ:

(a) rewinds C∗ and sends ξ̂2 = (σ2, τ̂2) where the only difference between τ̂2 and τ2 is
the distribution of the strings {r̂′j}j∈[n]:

r̂′j =


s, j = i
r′j, j ∈ S
random← {0, 1}λ, j /∈ S ∪ {i}

(b) receive ξ̂3 = (σ̂3, τ̂3, {v̂j}j∈[n]) from C∗ where τ̂3 contains {r̂j}j , and output v̂i if
the following checks pass, otherwise output a random bit. The conditions checked
are: 1) T̂ = (ξ1, ξ̂2, ξ̂3) is valid; 2) r̂j = rj for all j ∈ [n]; 3) v̂j = vj for all j ∈ S;
4) v̂j ⊕ vj = 〈xj, r′j ⊕ r̂′j〉 for all j ∈ F.

· Run the GL-Inverter and Give Output: Run the GL-inverter Inv corresponding to Pred
and advantage η. If Inv recovers xi ∈ {0, 1}λ such that fi(xi) = yi, output (i,xi);
otherwise continue.
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• Inner Loop Fail: This instruction is reached if the inner loop has been executed N times and
(i,xi) has not been output; in this case continue to the next element of I.

• Outer Loop Fail: This instruction is reached if InnerExtε fails to output (i,xi) for any of the (i, S) ∈
I; in this case, output ⊥.

Proof of Claim 3. It is clear that InnerExtε satisfies the syntax requirements, and that the running time is
poly

(
λ, 2t, N,TC∗ , 1/η

)
= poly

(
λ,TC∗ , 1/ε

)
. We establish the extraction guarantee. Fix an ε > 0 and

cheating, unbounded C∗. Let us say that the input to InnerExtε, (ξ1,FOUND) with |FOUND| = n− `,
is good if either of the following hold:

· ` > t and Prξ2
[
T correct and valid

∣∣ξ1

]
≥ ε/3; or

· ` ≤ t and Prξ2
[
F correct in T & T valid

∣∣ξ1

]
≥ ε/3 and∣∣∣Prξ2

[
T correct

∣∣ξ1 & F correct in T & T valid
]
− 2−`

∣∣∣ ≥ ε

3
.

We must show that whenever (ξ1,FOUND) is good, InnerExtC
∗

ε (ξ1,FOUND) outputs a one-way preim-
age (i,xi) with high probability 1 − 2−Ω(λ). Towards this end, we define notions of good for the
intermediate values which arise during the execution of InnerExtε. The intuition is that good inputs
give rise to good intermediate values which enable successful extraction. To begin, let δ = (ε/3) · 2−t,
and say that (i, S) ∈ I is good if both of the following hold:

1. Prξ2
[
S ∪ F correct in T & T valid

∣∣ξ1

]
≥ δ; and

2.
∣∣∣Prξ2

[
i correct in T

∣∣S ∪ F correct in T & T valid & ξ1

]
− 1

2

∣∣∣ ≥ δ.

Claim 4. If (ξ1,FOUND) is good then some (i, S) ∈ I is good.

We prove Claim 4 below, outside of the current proof. For now, we finish the proof of Claim 3 by
showing that when (i, S) is good, one of the executions of the inner loop will recover xi with high
probability. For this purpose, we let η = δ10, and we say that a main thread T = (ξ1, ξ2, ξ3) (cho-
sen during the first step of an inner loop execution) containing the strings {rj, r′j}j∈[n] is good if the
following all hold:

1. F ∪ S is correct in T and T is valid;

2. Prξ̂2
[
S ∪ F correct in T̂ & T̂ valid & r ∈ ξ̂3

∣∣r′S ∈ ξ̂2

]
≥ η; and

3.
∣∣∣Prξ̂2

[
i correct in T̂

∣∣S ∪ F correct in T̂ & T̂ valid & r′S ∈ ξ̂2 & r ∈ ξ̂3

]
− 1

2

∣∣∣ ≥ η;

where the probabilities are over ξ̂2 = (σ2, τ̂2) where τ̂2 is drawn randomly such that it contains {r′j}j∈S
(the events r′S ∈ ξ̂2 and r ∈ ξ̂3 indicate that τ̂2 and τ̂3 contain the strings {r′j}j∈S and {rj}j∈[n]).

Claim 5. If (i, S) ∈ I is good, then with probability 1 − 2−Ω(λ), at least one of the ξ2’s drawn during
the inner loops is good.
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We prove Claim 5 below, also outside of the current proof. We complete the proof of Claim 3 by
observing that whenever ξ2 is good, the GL-prediction function Pred has advantage η2. By Lemma 1,
this means that the GL-inversion algorithm Inv recovers xi with probability 1− 2−Ω(λ).

Recall Pred is parametrized with a transcript T which includes the quantities {rj, r′j, vj}j∈[n], and
rewinds C∗ obtaining a new transcript with quantities {r̂j, r̂′j, v̂j}j∈[n]. Then Pred checks whether the
four conditions hold: 1) T̂ valid; 2) r̂j = rj for all j ∈ [n]; 3) v̂j = vj for all j ∈ S; 4) vj ⊕ v̂j =
〈xj, r′j ⊕ r̂′j〉 for all j ∈ F. If all checks pass, Pred outputs v̂i, otherwise Pred outputs a random bit. We
show that if T is good, then:

1. Prξ̂2
[
all checks pass

∣∣r′S ∈ ξ̂2

]
≥ η; and

2.
∣∣∣Prξ̂2

[
v̂i = 〈xi, r̂i〉

∣∣all checks pass & r′S ∈ ξ̂2

]
− 1

2

∣∣∣ ≥ η.

Together these imply Pred has advantage η2, and the result follows. By definition, since T is good,
F ∪ S is correct in T. Therefore, j ∈ [n] is correct in T̂ if and only if vj ⊕ v̂j = 〈xj, rj ⊕ r̂j ⊕ r′j ⊕ r̂′j〉.
If rj = r̂j for all j ∈ [n], then the above condition simplies to vj ⊕ v̂j = 〈xj, r′j ⊕ r̂′j〉. If j ∈ S,
then r′j = r̂′j in which case the condition simplifies even further to vj = v̂j . Thus, whenever F ∪ S is
correct in T̂, conditions (3) and (4) will pass, and so point 1 above follows from the second point in the
definition of good T. Similarly, point 2 above follows from the third point of the definition since when
i is correct in T̂, v̂i = 〈xi, r̂′i〉⊕

(
vi⊕〈xi, r′i〉

)
. Note, the term in parentheses depends only on T and so

does not affect the absolute value of Pred’s advantage.

6.5 Proofs of the Supporting Claims
Proof of Claim 4. Let δ = (ε/3) · 2−t. Suppose (ξ1,FOUND) is good with |FOUND| = n − `. If
` ≥ t, then δ ≤ ε/3 ≤ Pr

[
T correct & T valid

∣∣ξ1

]
≤ Pr

[
S ∪ F correct in T & T valid

∣∣ξ1

]
holds for all

S ⊂ [n]. Moreover, if T = {i1, . . . , it}, then(
1

2
+ δ

)t
≤ Prξ2

[
{i1, . . . , it} correct in T

∣∣∣F correct in T & T valid & ξ1

]
=

t∏
α=1

Prξ2

[
iα correct in T

∣∣∣F ∪ {iβ : β < α} correct in T & T valid & ξ1

]
,

since
(
1/2 + δ

)t ≤ ε/3. Therefore, some α ∈ [t] is such that

Prξ2

[
iα correct in T

∣∣∣F ∪ {iβ : β < α} correct in T & T valid & ξ1

]
≥ 1

2
+ δ.

Therefore, (i, S) is good where i = iα and S = {iβ : β < α}.
The situation is similar when ` < t. In this case, Prξ2

[
F correct in T & T valid

∣∣ξ1

]
≥ ε/3 and also∣∣∣Prξ2

[
T correct

∣∣F correct & T valid & ξ1

]
− 2−`

∣∣∣ ≥ ε/3. If the quantity inside the absolute value is

positive then Prξ2
[
F∪S correct in T & T valid

∣∣ξ1

]
≥ ε

3
·
(
2−`+ ε

3

)
≥ δ holds for all S ⊂ T . Moreover,(

1

2
+ δ

)`
≤ Prξ2

[
{i1, . . . , i`} correct in T

∣∣∣F correct in T & T valid & ξ1

]
=

∏̀
α=1

Prξ2

[
iα correct in T

∣∣∣F ∪ {iβ : β < α} correct in T & T valid & ξ1

]
,
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where T = {i1, . . . , i`}. We have used
(
1/2 + δ

)` ≤ 2−` + ε/3. As above, this implies there exists
(i, S) ∈ I such that Prξ2

[
i correct in T

∣∣F ∪ S correct in T & T valid & ξ1

]
≥ 1/2 + δ.

Finally, when ` < t and the quantity inside the absolute value is negative,(
1

2
− δ
)`
≥ Prξ2

[
T correct in T

∣∣F correct in T & T valid & ξ1

]
=

∏̀
α=1

Prξ1
[
iα correct in T

∣∣F ∪ {iβ : β < α} correct in T & T valid & ξ1

]
,

since
(
1/2− δ

)` ≥ 2−` − ε/3. Let α be minimal such that

Prξ2
[
iα correct in T

∣∣F ∪ {iβ : β < α} correct in T & T valid & ξ1

]
≤ 1/2− δ,

and let i = iα, S = {iβ : β < α}. Then Prξ2
[
F ∪ S correct in T & T valid

∣∣ξ1

]
≥ ε

3
·
(
1/2 − δ

)` ≥ δ.
Claim 4 follows.

Proof of Claim 5. Let η = δ10 and suppose (i, S) is good; recall there is a pair (ξ1,FOUND) underlying
the good pair (i, S). This means that a second message ξ2, when fed to C∗ specifies an entire transcript
T = (ξ1, ξ2, ξ3). Recall when ξ2 and ξ̂2 are both chosen, specifying transcripts T and T̂, we write
r′S ∈ ξ̂2 and r ∈ ξ̂3 to indicate that the strings {r′j}j∈S and {rj}j∈[n] from ξ2 and ξ3 appear in ξ̂2 and ξ̂3.
Recall, ξ2 is good if the following three conditions hold:

1. F ∪ S is correct in T and T is valid;

2. Prξ̂2
[
S ∪ F correct in T̂ & T̂ valid & r ∈ ξ̂3

∣∣r′S ∈ ξ̂2

]
≥ η; and

3.
∣∣∣Prξ̂2

[
i correct in T̂

∣∣S ∪ F correct in T̂ & T̂ valid & r′S ∈ ξ̂2 & r ∈ ξ̂3

]
− 1

2

∣∣∣ ≥ η.

Given r ∈ {0, 1}λ·n and r′S ∈ {0, 1}λ·|S|, we define the values

• Xr(r
′
S) := Prξ̂2

[
S ∪ F correct in T̂ & T̂ valid & r ∈ ξ̂3

∣∣∣r′S ∈ ξ̂2

]
;

• Yr(r
′
S) := Prξ̂2

[
S ∪ {i} ∪ F correct in T̂ & T̂ valid & r ∈ ξ̂3

∣∣∣r′S ∈ ξ̂2

]
.

We think of Xr(r
′
S) and Yr(r

′
S) as random variables over r′S ← {0, 1}λ·|S| for r fixed. We show that

whenever (i, S) is good, there exists r ∈ {0, 1}λ·n such that the quantity

pr := Prr′S←{0,1}λ·|S|

[
Xr(r

′
S) ≥ η &

∣∣∣∣Yr(r
′
S)− Xr(r

′
S)

2

∣∣∣∣ ≥ η · Xr(r
′
S)

]
is at least δ8/(212nλ3). Claim 5 follows from this observation. To see this, note that if ξ2 is such that:
(a) S∪F is correct in T and T is valid; and (b) Xr(r

′
S) ≥ η and

∣∣Yr(r
′
S)− 1

2
·Xr(r

′
S)
∣∣ ≥ η ·Xr(r

′
S) where

r is the value from T; then ξ2 is good. The observation says that with probability at least δ8/(212nλ3),
there is some r for which (b) holds. By definition of Xr(r

′
S), whenever (b) holds, the probability that

(a) holds and r ∈ ξ3 is at least η. Therefore, the probability that ξ2 is good is at least ηδ8/(212nλ3),
and so the expected number of good ξ2 which appear during the N executions of the inner loop is at
least Nηδ8/(212nλ3). So choose N ≥ (212nλ4)/δ18, so that the expected number of good ξ2 is at least
λ. Then by the Chernoff-Hoeffding inequality, the probability that no good ξ2 occur during the loop is
at most 1 − 2−Ω(λ). This completes the proof of Claim 5, and so it remains to lower bound maxr{pr}
when (i, S) is good.

By definition, if (i, S) is good then the following both hold:

30



•
∑

r Er′S

[
Xr(r

′
S)
]
≥ δ; and

•
∣∣∣∑r Er′S

[
Yr(r

′
S)
]
− 1

2
·
∑

r Er′S

[
Xr(r

′
S)
]∣∣∣ ≥ δ ·

∑
r Er′S

[
Xr(r

′
S)
]
.

Let E :=
∑

r Er′S

[∣∣Yr(r
′
S)− 1

2
· Xr(r

′
S)
∣∣− η · Xr(r

′
S)
]

be shorthand. We have

E ≥
∣∣∣∣∑

r

Er′S

[
Yr(r

′
S)− Xr(r

′
S)

2

]∣∣∣∣− δ ·∑
r

Er′S

[
Xr(r

′
S)
]

+ (δ − η) ·
∑
r

Er′S

[
Xr(r

′
S)
]
≥ (δ − η) · δ.

On the other hand,

E ≤ δ2

2
+M ·max

r

{
Er′S

[∣∣∣Yr(r
′
S)− Xr(r

′
S)

2

∣∣∣− η · Xr(r
′
S)

]}
,

follows from Claim 1, where M := Mδ2/2. Moreover, as 0 ≤ Yr(r
′
S) ≤ Xr(r

′
S) holds for all (r, r′S),

Er′S

[∣∣Yr(r
′
S)− 1

2
· Xr(r

′
S)
∣∣− η · Xr(r

′
S)
]
≤ pr +

(
1
2
− η
)
· η holds for all r, . We get

(δ − η)δ ≤ E ≤ δ2

2
+M ·

[
η/2− η2 + max

r
{pr}

]
,

which rearranges to give maxr{pr} ≥ δ2/3M = δ8/(212nλ3) completing the proof of Claim 5.

7 Sequential Non-malleability
In this section we prove Lemma 6 below. Together with Lemmas 4 and 5, this proves Theorem 4. We
first set some notation.

Notation. Suppose a PPT MIM M plays two sequential executions of 〈C,R〉. First M plays on the left
against C who commits honestly to m; let TL be the transcript of this interaction. Then M plays on the
right against an honest R producing the transcript TR =

(
σ1, σ2, σ3, τ1, τ2, τ3, {vi}i∈[n]

)
, where τ2 and

τ3 contain the strings {ri, r′i}i∈[n]. Let m̃ denote the committed value inside TR. Let MIMM(m) denote
the distribution which runs the above experiment and outputs (TL,TR, m̃). Proving non-malleability
against M ammounts to showing that that for every non-negligible ε > 0, there exists a PPT simulator
SIMM

ε which outputs (TL,TR, m̃) such that for all m ∈ {0, 1}λ, and polytime distinguishers D:∣∣∣PrMIMM(m)

[
D(TL,TR, m̃) = 1

]
− PrSIMM

ε

[
D(TL,TR, m̃) = 1

]∣∣∣ ≤ ε. (5)

Lemma 6. Assume Com is perfectly binding. Then for all non-negligible ε > 0 there exists a PPT
simulator SIMε which, given oracle access to M, outputs (TL,TR, m̃). Moreover, for all PPT sequential
MIMs, (5) holds.

7.1 Proof Strategy
Fix a non-negligible ε = ε(λ) > 0. We describe a family ofN = poly(λ) simulators SIM(1)

ε , . . . , SIM(N)
ε

such that for one of the SIM(k)
ε , (5) holds for all m ∈ {0, 1}λ and PPT sequential M. Each simulator

SIM(k)
ε is built using an extractor NM.Ext(k)

ε which takes TR as input and outputs m̃. Given NM.Ext(k)
ε
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and m ∈ {0, 1}λ, let SIM(k)
ε (m) be the distribution which generates (TL,TR, m̃) as follows: 1) obtain

TL by playing as an honest C committing to m in an execution of 〈C,R〉 against M; 2) generate TR by
playing as an honest R in an execution of 〈C,R〉 against M; 3) run Ext(k)

ε (TR) to get m̃. The simulator
SIM(k)

ε outputs a sample from SIM(k)
ε (0λ). The extractor NM.Ext(k)

ε uses oracle access to M and also to
{D`}`<k where each D` is a PPT distinguisher such that for some m ∈ {0, 1}λ,

PrMIMM(m)

[
D`(TL,TR, m̃) = 1

]
> Pr

SIM
(`)
ε

[
D`(TL,TR, m̃) = 1

]
+ ε. (6)

If no such D` exists for some ` < k, then SIM(`)
ε is the simulator we are looking for. The NM.Ext(k)

ε

are very similar to the extractor Extε from Section 6. Like Extε, the NM.Ext(k)
ε make use of an inner

extractor NM.InnerExtε and the message recovery subroutine RecoverMsg from Section 6.2.

Description of NM.Ext(k)
ε . Given TR = (ξ1, ξ2, ξ3) as input and oracle access to M and {D`}`<k:

1. If TR is not valid, output ⊥; otherwise, initialize FOUND ⊂ [n]× {0, 1}λ and F ⊂ [n] to ∅.

2. For all ` < k, do the following:

• Inner Extraction Loop: run NM.InnerExtM,D`ε (ξ1,FOUND); if it outputs (i,xi), update the
sets F = F ∪ {i}, FOUND = FOUND ∪ {(i,xi)}; continue.

3. If |FOUND| ≥ n− t for t =???, output RecoverMsg(TR,FOUND); otherwise ⊥.

The design and analysis of NM.InnerExtε are given in Section 7.2, but roughly speaking, the extraction
guarantee is that whenever D` is such that (6) holds, NM.InnerExtM,D`ε (ξ1,FOUND) has a good chance
of recovering (i,xi). If k is large enough, with high probability every (i,xi) will be recovered. In this
case, SIM(k)

ε (m) and MIMM(m) are nearly identical, and so a distinguisher for MIMM(m) and SIM(k)
ε

breaks the hiding of 〈C,R〉. The formal proof of Lemma 6 is given in Section 7.3.

7.2 The Inner Extractor
The next claim enumerates the important properties of the inner extractor. The extractor construction
and analysis are very similar to the inner extractor from Section 6.4.

Claim 6. For all ε > 0 there exists an extractor NM.InnerExtε satisfying the following syntax, running
time and extraction guarantees.

• Syntax: NM.InnerExtε is parametrized by ε > 0; it takes as input ξ1 =
(
σ1, τ1, {fj,yj}j∈[n]

)
and a set

FOUND =
{

(j,xj) : j ∈ F & fj(xj) = yj
}
⊂ [n]× {0, 1}λ

for some F ⊂ [n]; gets oracle access to M and D and outputs either (i,xi) ∈ [n]× {0, 1}λ or ⊥.

• Running Time: The running time of InnerExtε is poly
(
λ,TM,TD, 1/ε

)
.

• Extraction: Suppose (ξ1,FOUND) with |FOUND| = n− ` are such that ` > 0 and either of the
following hold:

· ` > t and Prξ2
[
T correct and T valid

∣∣ξ1

]
≥ ε/4; or
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· ` ≤ t and Prξ2
[
E
∣∣ξ1

]
≥ ε/4, E the event “T valid & F correct in T”, and

Prξ2
[
D(T) = 1 & T correct

∣∣E] ≥ 2−` · Prξ2
[
D(T) = 1

∣∣E]+
ε

2
.

Then with probability at least 1− 2−Ω(λ), NM.InnerExtM,Dε (ξ1,FOUND) outputs (i,xi) such that
i /∈ F and fi(xi) = yi.

Construction of NM.InnerExtε. Let ε > 0 be a parameter. Just as in the inner extractor of Section 6.4,
this specifies t = O

(
log 1/ε

)
, N ′ = poly

(
λ, 1/ε

)
, and η = poly

(
λ, ε
)
.

• Input: NM.InnerExtε takes (ξ1,FOUND) as input where ξ1 =
(
σ1, τ1, {fj,yj}j∈[n]

)
and

FOUND =
{

(j,xj) : j ∈ F & fj(xj) = yj
}
⊂ [n]× {0, 1}λ,

for a set F ⊂ [n] of size n − `. InnerExtε gets oracle access to a sequential MIM M and a
distinguisher D.

1. Let I =
{

(i, S) : i ∈ T & S ⊂ T \ {i}
}

where T ⊂ [n] \ F is a set of size t if ` > t; T = [n] \ F
if ` ≤ t.

2. For each (i, S) ∈ I, do the following N ′ times or until xi is recovered:

· Choose ξ2 =
(
σ2, τ2

)
honestly, send ξ2 to M and receive ξ3 =

(
σ3, τ3, {vj}j

)
. Let {rj, r′j}j∈[n]

be the strings contained in (τ1, τ2, τ3). Let T = (ξ1, ξ2, ξ3); if T is not valid, continue.

· Define two GL-predictors, Pred1,Pred2, which take input s ∈ {0, 1}λ, and work as follows:

(a) both predictors rewind M and sends ξ̂2 = (σ2, τ̂2) where the only difference between τ̂2

and τ2 is the distribution of the strings {r̂′j}j∈[n]:

r̂′j =


s, j = i
r′j, j ∈ S
random← {0, 1}λ, j /∈ S ∪ {i}

(b) both predictors receive ξ̂3 = (σ̂3, τ̂3, {v̂j}j∈[n]) from C∗ where τ̂3 contains {r̂j}j , and
output v̂i if a set of checks pass, otherwise they output a random bit. The checks for
Pred1 are: 1) T̂ = (ξ1, ξ̂2, ξ̂3) is valid; 2) r̂j = rj for all j ∈ [n]; 3) v̂j = vj for all
j ∈ S; 4) v̂j ⊕ vj = 〈xj, r′j ⊕ r̂′j〉 for all j ∈ F. Pred2 uses checks (1)-(4) and also an
additional 5) D(T̂) = 1.

· Run the GL-inverter Inv1 corresponding to Pred1 and advantage η2. If ` ≤ t, run the
GL-inverter Inv2 corresponding to Pred2 for advantage η3. If either Inv1 or Inv2 recover
xi ∈ {0, 1}λ such that fi(xi) = yi, output (i,xi); otherwise continue.

3. This instruction is reached if the above loop has been executed N ′ times for each (i, S) ∈ I and
nothing has ever been output; in this case output ⊥.

Proof of Claim 6. It is clear that NM.InnerExtε has the required syntax for Claim 6. Moreover, the
running time is poly

(
λ, 2t, N ′,TM,TD, 1/η

)
= poly

(
λ,TM,TD, 1/ε

)
. Therefore, it suffices to estab-

lish the extraction guarantee. Suppose (ξ1,FOUND) with |FOUND| = n − ` is such that ` > t and
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Prξ2
[
T correct and valid

∣∣ξ1

]
≥ ε/4. As Pred1 is the same GL-predictor used by InnerExtε, the proof of

Claim 3 shows that NM.InnerExtε(ξ1,FOUND) outputs (i,xi) with high probability 1−2−Ω(λ). Suppose
instead that (ξ1,FOUND) is such that ` ≤ t, Prξ2

[
E
∣∣ξ1

]
≥ ε/4, and

Prξ2
[
D(T) = 1 & T correct

∣∣E] ≥ 2−` · Prξ2
[
D(T) = 1

∣∣E]+
ε

2
.

It follows that there exists some (i, S) ∈ I and some main thread T generated during the loop for (i, S)
such that the following hold for η = poly

(
λ, 1/ε

)
:

(a) F ∪ S is correct in T and T is valid;

(b) Prξ̂2
[
ÊS

∣∣r′S ∈ ξ̂2

]
≥ η; and

(c) Prξ̂2
[
D(T̂) = 1 & i correct in T̂

∣∣ÊS

]
≥ 1

2
· Prξ̂2

[
D(T̂) = 1

∣∣ÊS

]
+ η;

where ÊS denotes the event: “T̂ is valid & F ∪ S is correct in T̂ & the strings {r′j}j∈S and {rj}j∈[n]

appear in ξ̂2 and ξ̂3”, where {r′j}j∈S and {rj}j∈[n] are from T. This follows from the arguments used to
prove Claims 4 and 5. So assume points (a), (b) and (c) above all hold. We prove:

1. Prξ̂2
[
all checks pass

∣∣r′S ∈ ξ̂2

]
≥ η2; and

2.
∣∣∣Prξ̂2

[
v̂i = 〈xi, r̂i〉

∣∣all checks pass & r′S ∈ ξ̂2

]
− 1

2

∣∣∣ ≥ η,

where the checks refer to the conditions checked by Pred2. Together these imply that Pred2 has ad-
vantage η3 and so Inv2 recovers xi with high probability 1 − 2−Ω(λ) as desired. The probability on
the left hand side of the first point is at least Prξ̂2

[
ÊS

∣∣r̂′S ∈ ξ̂2

]
· Prξ̂2

[
D(T̂) = 1

∣∣ÊS

]
≥ η2. For the

second point, let val :=
∣∣Prξ̂2

[
v̂i = 〈xi, r̂i〉

∣∣all checks pass & r′S ∈ ξ̂2

]
− 1/2

∣∣ be the quantity we want
to bound. We have

val =

∣∣∣∣Prξ̂2

[
i correct in T̂

∣∣∣ÊS & D(T̂) = 1
]
− 1

2

∣∣∣∣
≥

∣∣∣∣Prξ̂2

[
i correct in T̂ & D(T̂) = 1

∣∣∣ÊS

]
− 1

2
· Prξ̂2

[
D(T̂) = 1

∣∣∣ÊS

]∣∣∣∣ ≥ η.

7.3 Proof of Lemma 6
Proof. Fix non-negligible ε = ε(λ) > 0, a PPT sequential MIM M which breaks the non-malleability
of 〈C,R〉, and let N = poly(λ) ∈ N be such that N > 12n2/ε2. Let SIM(1)

ε , . . . , SIM(N)
ε be the

simulators described in Section 7.1. Let NM.Ext(k)
ε and Dk be the PPT extractor and PPT distinguisher

corresponding to SIM(k)
ε . So

PrMIMM(m)

[
Dk(TL,TR, m̃) = 1 & m̃ 6= ⊥

]
≥ Pr

SIM
(k)
ε

[
Dk(TL,TR, m̃) = 1 & m̃ 6= ⊥

]
+ ε,

holds for all k = 1, . . . , N (the m̃ 6= ⊥ clause is without loss of generality, since otherwise a trivial
simulator which outputs (TL,TR,⊥) would simulate MIMM(m)). Consider the following adversary A
who plays the hiding game of 〈C,R〉:
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1. A sends (m0,m1) = (m, 0λ) to C and receives TL, a commitment to mb (A plays as M for
generating TL). If TL is invalid, A outputs a random bit.

2. A generates TR by playing as M against an honest R in another execution of 〈C,R〉. If TR is
invalid, A outputs a random bit.

3. A computes m̃ = NM.Ext(N)
ε (TR), except that A sets m̃ = ⊥ if |FOUND| < n by the end of the

extractor execution.

4. Finally, if DN(TL,TR, m̃) = 1, A outputs 0, otherwise A outputs a random bit.

Note A runs in time poly
(
λ,N,TM,maxk{TDk}, 1/ε

)
= poly(λ). If b = 1, then (TL,TR, m̃) is a

sample from SIM(N)
ε . We prove that m̃ = val(TR) with probability at least 1 − ε/2. It follows that

that when b = 0, (TL,TR, m̃) is ε/2−close to a sample from MIMM(m), and so DN has at least an ε/2
advantage in distinguishing b = 0 from b = 1. Thus A breaks the hiding of 〈C,R〉, so it remains to
show that m̃ = val(TL) with probability at least 1− ε/2.

So let TR = (ξ1, ξ2, ξ3) and consider the execution of NM.Ext(N)
ε (TR) which runs the inner extractor

NM.InnerExtM,D̂kε (ξ1,FOUND) for k = 1, . . . , N , where D̂k(TR) outputs Dk(TL,TR, m̃), where m̃ is the
decommitment of (σ1, σ2, σ3), the Com transcript in TR (note InnerExtM,D̂kε only makes use of D̂k when
|FOUND| ≥ n− t, in which case m̃ is available. Each time the inner extractor succeeds in recovering a
one-way function preimage, a pair (i,xi) is added to FOUND. LetXk := |FOUND| after the k−th inner
extractor execution. We think of Xk as a random variable with randomness ξ1. Clearly, if all n OWF
preimages are recovered (i.e., when XN = n), then Ext(N)

ε (TR) = val(TR). Also, whenever XN < n,
Ext(N)

ε (TR) = ⊥. Therefore, it suffices to show that Pr
[
XN < n & val(TR) 6= ⊥

]
≤ ε/2. Say ξ1 is

good if Prξ2
[
TR correct & TR valid

∣∣ξ1

]
≥ ε/4. Clearly, Pr

[
val(TR) 6= ⊥ & ξ1 not good

]
< ε/4. Thus,

it suffices to show that p := Prξ1
[
XN < n

∣∣ξ1 good
]
< ε/4.

Note the result follows from the expectation bound: E[Xk+1] ≥ min
{
E[Xk] + ε2/12n, n − ε/4

}
for all k = 1, . . . , N − 1, (expectations over good ξ1). Indeed, this implies

n− ε

4
≤ E[XN ] ≤ p · n+ (1− p) · (n− 1),

which rearranges to p ≥ 1 − ε/4, as desired (we have used N > 12n2/ε2). If Pr
[
Xk < n

]
< ε/4n,

then E[Xk+1] can be bounded directly: E[Xk+1] ≥ E[Xk] ≥ n− ε/4. Otherwise, let

q := Pr
[
NM.InnerExtM,Dkε recovers a OWF preimage

∣∣Xk < n
]
.

Then, E[Xk+1] = E[Xk] + Pr
[
Xk < n

]
· q ≥ E[Xk] +

(
ε/4n

)
· q, and so it suffices to show that

q ≥ ε/3. Recall the probability in q is over good ξ1. By Claim 6, NM.InnerExtM,Dk(ξ1,FOUND)
succeeds in extracting a OWF preimage with high probability 1 − 2−Ω(λ) whenever ξ1 is good and
either |FOUND| < n− t, or n− t ≤ |FOUND| < n and

δ := Prξ2

[
D̂k(TR) = 1 & TR correct

∣∣∣E]− Prξ2

[
D̂k(TR) = 1

∣∣∣E] ≥ ε

2
,

where E is shorthand for the event “TR is valid and F is correct in TR”. We have

ε ≤ PrMIMM(m)

[
Dk(TL,TR, m̃) = 1 & m̃ 6= ⊥

]
− Pr

SIM
(k)
ε

[
Dk(TL,TR, m̃) = 1 & m̃ 6= ⊥

]
≤ Eξ1

[
Prξ2

[
D̂k(TR) = 1 & TR correct

∣∣∣E]− Prξ2

[
D̂k(TL,TR, m̃) = 1

∣∣∣E]] = Eξ1 [δ].

Therefore, Prξ1
[
δ ≥ ε/2

]
≥ ε/2, and so q ≥

(
ε/2
)
· (1− 2−Ω(λ)) ≥ ε/3, and we are done.
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A Proof of Lemma 3
Proof. It is clear that SIMCF satisfies the syntax requirement. We now prove the running time and
simulation requirements together using one hybrid argument, the coordinate hiding using another, and
computational pairwise independence using a third.

Running Time and Simulation. We describe hybrid simulators.

• SIM0: this simulator plays honestly with R∗ and outputs the transcript (τ1, τ2, τ3, τ̂2, τ̂3):(
c, {zGL0,α, z

GL
1,α}α∈[λ], {zi}i∈[n], rwi1; s′, {r′i}i, rwi2; {ri}i, rwi3; ŝ′, {r̂′i}i, ˆrwi2; {r̂i}i, ˆrwi3

)
,

where c = Com(s ◦N$) for random s,N$ ←
[
2λ
]
, zGLb,α = Com(rGLb,α) for random rGLb,α ← {0, 1}λ,

zi = Com(rhoni ) for random rhoni ← {0, 1}λ, ri = rhoni for all i, and (rwi1, rwi2, rwi3) is proved
using the witness which involves the decommitment information for the zi, but not c or the
zGLb,α. The rewind messages are similar. Note, SIM0 runs in time poly

(
λ,TR∗

)
and has output

distribution identical to REALR∗

PairwiseCFn .

• SIM1: this simulator has output identical to SIM0; we make some procedural changes which
mimic SIMCF. Specifically, SIM1 works as follows.

− Continue or Abort: SIM1 feeds R∗ with an honest τ1, if R∗ aborts, SIM1 outputs τ1 and halts.

−Main Loop: Otherwise, SIM1 rewinds R∗ repeatedly, sending independent honestly gener-
ated τ1 to R∗, each time SIM1 either receives τ2 or R∗ aborts. SIM1 rewinds until R∗ has
responded with τ2, λ · N times. Then SIM1 picks one of the partial transcripts (τ1, τ2) at
random and completes it to a full transcript (τ1, τ2, τ3). Again, (rwi1, rwi2, rwi3) is proved
using the decommitment information of zi only.

− Generate Rewind Transcript: Feed R∗ repeatedly with τ1 until R∗ responds with another
valid τ̂2 (τ̂2 = τ2 is ok). Generate another response τ̂3, as above.

− Output: Output (τ1, τ2, τ3, τ̂2, τ̂3).

Note that the output of SIM1 is identical to the output of SIM0. To analyze the running time, let
p denote the probability over τ1 that R∗ returns τ2 instead of aborting. Note the probability that
SIM1 enters the main loop is p, and the expected time required to get through the main loop and
to generate the rewind transcript is poly

(
λ,TR∗ , n,N

)
/p.
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• SIM2: this simulator is identical to SIM1 except that in each τ1 drawn during the main loop, the
commitment c = Com(s ◦ N) is prepared using the parameter N instead of N$ ←

[
2λ
]

(s is
still drawn randomly). Moreover, after SIM2 has received λ · N responses τ2, it aborts unless
s + s′ ≡ 0 (mod N ) holds for at least one of them. If continuing, SIM2 chooses a τ2 at random
for which s + s′ ≡ 0 (mod N ) holds and prepares τ3 in the same way as SIM1. Do the same for
τ̂2 and τ̂3.

Since the only difference between SIM1 and SIM2 are the committed values inside c used in
the main loop, and the deocmmitment information is not used anywhere else in the protocol,
the hiding of Com ensures that the running times of SIM1 and SIM2 are negligibly close to one
another. Thus the expected runtime of SIM2 is poly

(
λ,TR∗ , n,N

)
. Moreover, conditioned on

R∗ returning τ2 instead of aborting, the probability that s + s′ ≡ 0 (mod N ) holds is negligibly
close to 1/N . Again, this follows from the hiding of Com. Indeed, suppose this probability
were noticeably greater than 1/N . Then an adversary A could receive a commitment c to either
(s0◦N) or (s1◦N) from outside, generate the remaining quantities itself and send τ1 to R∗. Upon
receiving s′ as part of R∗’s response, A simply outputs 0 if s0 + s′ ≡ 0 (mod N ), and outputs a
random bit if not, or if R∗ aborts. Therefore, it is expected that of the λ · N times R∗ responds
with τ2 instead of aborting, roughly λ of them will satisfy s + s′ ≡ 0 (mod N ); the chance that
none of them satisfy this constraint is 2−Ω(λ) by the Chernoff-Hoeffding inequality.

• SIM3: This is the same as SIM2 except that prior to beginning the main loop, SIM3 fixes j ∈ [n]
arbitrarily and chooses b← {0, 1}. Then each τ1 during the main loop is generated as follows: c
is prepared as in SIM2; zi = Com(ri) for random ri ← {0, 1}λ; zGL0,α and zGL1,α are commitments
to random rGL0,α, r

GL
1,α ← {0, 1}λ such that rj ∈ GL(rGLb,1, . . . , r

GL
b,val). The rewind values τ̂2, τ̂3 are

generated as in SIM2.

The decommitment information for the zGL0,α and zGL1,α is not used in the rest of the protocol (the
‘EITHER’ witness is still used in the WI proof), so the hiding of Com immediately ensures that
SIM3 runs in expected time poly

(
λ,TR∗ , n,N

)
and has output indistinguishable from SIM2. Note

both the ‘EITHER’ and ‘OR’ parts of the statements proven are now true.

• SIM4: This is the same as SIM3 except that the ‘OR’ witness is used to complete the WI proofs
in all transcripts generated during the main loop and during generation of τ̂2 and τ̂3. Witness
indistinguishability against a rewinding adversary ensures SIM4 is indistinguishable from SIM3.
Note, the output of SIM4 is very similar to SIMR∗

CF(j); the only difference is that the committed
value inside zj is contained in GL(rGLb,1, . . . , r

GL
b,val), rather than being uniformly random.

• SIM5: This is the same as SIM4 except that now zj is a commitment to a random rj ∈ {0, 1}λ
instead of to a random string in GL(rGLb,1, . . . , r

GL
b,val). The decommitment information of zj is not

used anywhere else in the protocol, so indistinguishability and running time follow immediately
from the hiding of Com. Note that the distribution output by SIM5 is identical to SIMR∗

CF(j). This
establishes the running time and simulation guarantees of Lemma 3.

Computational Pairwise Independence. Fix PPTs R∗ and D and j ∈ [n]. Let Pt denote the random
variable which draws from SIMR∗

CF(1λ, 1n, 1N) and outputs PrS
[
D(Σj

S,t) = 1
]
, probability over non-

empty S ⊂ {1, . . . , val}. We prove that ESIMR∗
CF

[
P2
t − Pt · Ps

]
< 1/2λ2N3 for all s, t ∈ [λ]. The bound
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(3) follows via Markov’s inequality:

PrSIMR∗
CF

[∣∣Pt − Ps
∣∣ ≥ 1/N

]
≤ N2 · ESIMR∗

CF

[
P2
t + P2

s − 2PtPs
]
<

1

λ2N
.

Note Pt = (2val − 1)−1 ·
∑

S 11S,t where the sum is over non-empty S ⊂ {1, . . . , val} and where
11S,t = D(Σj

S,t) is shorthand. It follows that

ESIMR∗
CF

[
P2
t − PtPs

]
< 2−val + max

S 6=T

{
ESIMR∗

CF

[
11S,t · 11T,t − 11S,s · 11T,t

]}
,

and so it suffices (since val = 2 log(λ) + 3 log(N) + 2) to show that S(S, t, T, t) ≈c S(S, s, T, t) for
all s, t ∈ [λ] and non-empty S 6= T ⊂ {1, . . . , val} where S(S, s, T, t) denotes the distribution which
draws from SIMR∗

CF(1λ, 1n, 1N) and outputs
(
τ1, τ2, τ3(j, rS,s), τ̂2, τ̂3(j, rT,t)

)
. For this we use one final

hybrid argument.

• H0: this hybrid outputs a sample from S(S, t, T, t). Specifically, it outputs(
τ1, τ2, τ3(j, rS,t), τ̂2, τ̂3(j, rT,t)

)
.

Just as in G0, τ1 contains commitments {zGL0,α, z
GL
1,α}α∈[val] and {zi}i∈[n], to strings rGLb,α where for a

random b ∈ {0, 1}, the committed string inside zGLb,α is rGLα and where rS,t = et ⊕
(⊕

α∈S r
GL
α

)
,

and likewise for rT,t. The decommitments of the zGL1−b,α do not appear in the output of H0.

• H1: this is the same as H0 except that the committed strings sGLα inside the zGL1−b,α are drawn
randomly such that

et ⊕
(⊕
α∈S

rGLα
)

= es ⊕
(⊕
α∈S

sGLα
)
; and et ⊕

(⊕
β∈T

rGLβ
)

= et ⊕
(⊕
β∈T

sGLβ
)
.

Note that since the decommitment information of the zGL1−b,α are not used to complete the RWI
proof, H1 ≈c H0 follows immediately from the hiding of Com. Note that the 1− b witness is now
active.

• H2: this is the same as H1 except that now the 1 − b witness is used to complete the proofs,
instead of the b witness. H2 ≈c H1 follows immediately from the 2−rewind secure witness
indistinguishability of RWI. Notice now that the decommitments of the zb,α do not appear in the
output of H2.

• H3: This hybrid is the same as H2 except that the commitment strings inside the zb,α are chosen
randomly. H3 ≈c H2 follows from the hiding of Com. Since the samples output by H3 are
identical to S(S, s, T, t), so computational pairwise independence is established.

B Non-Malleability Against a Synchronizing MIM
In this section we discuss the ideas behind the proof of the following lemma. Roughly speaking, the
lemma is proved using the argument from [GPR16] and the proof of hiding from Section 5.

Lemma 7. Assume that one-to-one one-way functions exist, let Com be the main component of the
commitment scheme from [GPR16], and let PairwiseCFn be a pairwise independent coinflipping proto-
col. Then 〈C,R〉 is non-malleable against a synchronizing MIM.
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Notation. In this section, a synchronizing MIM plays two executions of 〈C,R〉 obtaining a transcript

T =
(
σ1, ξ1;σ′1, ξ

′
1;σ′2, ξ

′
2; ξ2, σ2; ξ3, σ3; ξ′3, σ

′
3),

where (σ1, σ2, σ3) and (σ′1, σ
′
2, σ

′
3) are the GPR components on the left and right executions, respec-

tively; and where (ξ1, ξ2, ξ3) =
(
τ1, {fi,yi}; τ2; τ3, {vi}

)
are the remaining left messages and likewise

(ξ′1, ξ
′
2, ξ
′
3) are the remaining right messages. The ordering of the messages in the tuple T above rep-

resents the chronological ordering in which the messages would appear when M is a synchronizing
MIM. Typically, for notational simplicity, we will write T =

(
σ1, ξ1;σ′2, ξ

′
2;σ3, ξ3

)
, since the remaining

messages are implicitly defined from these as they are outputs of M.

Synchronizing NM of the GPR Main Component. We begin by recalling the high level proof of
synchronizing NM when the main component from GPR is played by itself. In this case, only the σ
messages appear in T. The GPR main component used a non-malleable code (Enc,Dec) as a subroutine
and the proof of synchronizing NM was by reduction to the non-malleability of the code. The obser-
vation was that one could use the data params := (σ1, σ

′
2, σ3, σ̂

′
2) to define a function fparams mapping

Enc(m) to Enc(m′) (m′ the committed value in the right execution). The params consist of a synchro-
nizing transcript T = (σ1, σ

′
2, σ3) and a partial rewind transcript (σ1, σ̂

′
2). The function fparams takes

Enc(m) as input, generates σ̂3 so completing the partial rewind transcript to a full rewind transcript,
and recovers Enc(m) from (σ′1, σ

′
2, σ

′
3, σ̂

′
2, σ̂

′
3). The assumption that M mauls 〈C,R〉 means that there

exists m ∈ {0, 1}λ, a PPT distinguisher D and non-negligible ε > 0 such that

Prparams

[
Pr
[
D
(
Tampermfparams

)
= 1
]
≥ Pr

[
D
(
Tamper0

λ

fparams

)
= 1
]

+ 2ε

]
≥ 2ε, (7)

where Tampermf is the distribution (Dec ◦ f ◦ Enc)(m). As written, it looks as though (7) means that
the non-malleability of the code is broken. However, the function fparams does not belong to the class of
functions that (Enc,Dec) is secure against. Essentially, the problem is that fparams depends on some of
the random choices made during computing Enc(m) as some of these choices appear in the transcript
(σ1, σ2, σ3). This problem is overcome by exhibiting an indistinguishable distribution D on params
where for all params ∈ Supp(D), fparams ∈ F , the family of tampering functions that (Enc,Dec) is
non-malleable against. It is then shown that

Prparams←D

[
Pr
[
D
(
Tampermfparams

)
= 1
]
≥ Pr

[
D
(
Tamper0

λ

fparams

)
= 1
]

+ ε

]
≥ ε (8)

holds, which does break the non-malleability of (Enc,Dec). Proving (8) uses a hybrid argument. The
idea is that since D, fparams and the original sampling procedure of params are all polytime, if (7) holds
but (8) does not, then we can break the security of some cryptographic subroutine.

Synchronizing NM of 〈C,R〉. The proof that 〈C,R〉 is non-malleable against a synchronizing MIM
is very similar. Essentially the only difference from the above is that params includes more information:

params =
(
σ1, τ1, {fi,yi};σ′2, τ ′2;σ3, τ3, {vi}; σ̂′2, τ̂ ′2; τ̂3, {v̂i}

)
.

In addition to requiring a transcript and the second message of a rewind transcript, params requires
the non-GPR part of the third message of the rewind transcript. These allow fparams to use Enc(m) to
generate σ̂3 and get a full rewind transcript to recover Enc(m′). As above, the idea is to describe an
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indistinguishable distribution on params so that fparams ∈ F breaks the non-malleability of (Enc,Dec).
Note that {vi} and {v̂i} in params are generated as vi = 〈xi, ri ⊕ si〉 ⊕ ci and v̂i = 〈xi, r̂i ⊕ ŝi〉 ⊕ ci,
where si, ri, ŝi, r̂i are the strings contained in τ2, τ3, τ̂2, τ̂3 (we have changed r′i to si here so that primes
only appear on messages of the right execution); xi is such that fi(xi) = yi, and (c1, . . . , cn) is the
GPR decommitment information in σ1. We change the distribution of params in two phases. First, we
change params so that vi = 〈xi, ri ⊕ si〉 and v̂i = 〈xi, r̂i ⊕ ŝi〉 (i.e., we remove the dependence on
Decom(σ1, σ2, σ3) from {vi} and on Decom(σ1, σ̂2, σ̂3) from {v̂i}). Then we change the GPR part of
params to being drawn from D as above. Just as in the proof of hiding in Section 5, if the first change
is noticeable, then an efficient adversary can be constructed to invert some fi.
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