
LockDown: Balance Availability Attack against
Lightning Network Channels

Cristina Pérez-Solà*†, Alejandro Ranchal-Pedrosa ‡

Jordi Herrera-Joancomart́ı?†, Guillermo Navarro-Arribas?†,
Joaquin Garcia-Alfaro�

*Universitat Oberta de Catalunya
‡University of Sydney

? Universitat Autònoma de Barcelona,
† CYBERCAT-Center for Cybersecurity Research of Catalonia

� Institut Polytechnique de Paris, CNRS Samovar

Abstract. The Lightning Network (LN) is a payment network running
as a second layer on top of Bitcoin and other Blockchains. This paper
presents the possibility of performing a balance lockdown in the LN due
to misbehaving nodes associated to a given channel. We formalize and
introduce a practical attack, minimizing the economic cost of the attack.
We present results that validate our claims, and provide experimental
results and potential countermeasures to handle the problem.

Keywords: Bitcoin; Blockchain; Network Security; Off-chain payments
channels; Lightning Network (LN); Denial of Service.

1 Introduction

The Lightning Network (LN) is a peer-to-peer (P2P) payment network running
as a second layer on top of Bitcoin and other Blockchains. Two nodes in the net-
work can create a payment channel with a fixed capacity and use it to exchange
payments between them with low fees. Nodes can route payments through other
nodes when no direct channel exists between a payer and a payee. To preserve
some degree of privacy, the LN uses an onion-routing protocol for multihop pay-
ments. Nodes only publish the minimum information needed to establish the
payment routes. Besides the capacity of a channel, its balance determines how
this capacity is balanced between two nodes (i.e., the bandwidth of the channel
in each direction). A node with 0 balance is not able to perform a payment in
the channel, since all the capacity is held by the other node.

In this paper, we uncover the possibility of balance lockdown due to misbe-
having nodes associated with a given channel. The attack affects the payment
channels of the LN nodes. More specifically, an adversary can block LN mid-
dle nodes in multipath payments. If successful, the attack gives the adversary
a dominant position in the LN, which can be later exploited either for data
gathering information or for increasing the benefits of particular LN gateway
nodes. We formalize and elaborate some practical evidence of our attack while
minimizing the economic cost of the adversary. We present experimental results
that validate our claims and discuss potential countermeasures.



Section 2 introduces the necessary background to understand the proposed
attack. Section 3 describes the threat model and the attack. Section 4 provides
the experimental results. Section 5 discusses countermeasures. Section 6 surveys
related work. Section 7 concludes the paper.

2 Lightning Network Background

The LN is a separated P2P network, connected to the main Bitcoin P2P network
with nodes that run a LN software client [4,16,5]. Each client maintains a P2P
connection with other nodes of the LN and also a connection with a node in the
Bitcoin main P2P network. When nodes establish connections with other peers
in the Lightning P2P Network, they can open a payment channel in which they
exchange Bitcoin transactions without the need for such transactions to be set
down in the blockchain. Such payment channels are the core elements of the LN.
Details of the LN specification can be found in [15]. High level introductions
about the LN exist in the literature [11,10,3]. The background key point for
our proposal is the multihop approach, that allows two users without a direct
channel to perform a payment.

In the multihop approach, payments at each individual payment channel
cannot be performed exactly in the same way that with a single hop. An inter-
mediate user has to enforce he would receive the payment from the preceding
node once he has performed the payment to the next one, otherwise he would
lose the amount of the payment. The enforcement of this type of atomic exchange
between all the nodes of the path (i.e., all simple one-hop payments have to be
completed or none can be processed) is performed using Hashed Timelock Con-
tracts (HTLCs) [2]. In an HTLC between the sender A and the receiver B, A can
deposit Bitcoins that can be redeemed by B if B can perform a digital signature
and provide a preimage of a hash value. Furthermore, the deposit performed by
A has an expiration date after which A can retrieve the deposit providing a digi-
tal signature. For a two-hop payment, A↔ B ↔ C, the idea is that C generates
a random value x and sends h(x) to A. A performs the single hop payment to
B with an HTLC based on h(x) and B also performs the single hop payment to
C with an HTLC based on the same value h(x). In that way, since C knows x,
he can redeem the transaction from B, but redeeming the transaction implies
revealing the value of x. This implies that B may also redeem the payment from
A.

When node B1 performs a payment to node Bm in the LN using the route
B1 → B2 → · · · → Bm, the atomicity needed in such operation implies that
all route payments cannot be executed until the last node of the route, Bm,
provides the corresponding preimage x of the h(x) included in the HTLC. In a
normal scenario, Bm reveals this preimage as soon as he receives the payment
in his channel since he wants to collect the payment. However, in case that the
payment gets stuck for any reason in node Bi, all payments from node B1 to
node Bi will be locked. To bound the locking time, B1 sets a total timelock.
Such time frame for the payment, determined as an absolute blockheight value,
and known as its expiration blockheight, θ, limits the time that money will
be locked in case the payment does not succeed. Then, when the payment is
being routed every node of the route also decreases such value θ. Each node

2



of the LN advertises for each of its channels, the value δ that will be used for
decreasing θ at each hop. With such public information, the payer creates the
route with an initial θ ensuring that after subtracting each δ of each intermediate
node, the last node will obtain a not expired time, that is (θ −

∑m
i=2 δi) > 0.

Notice that this mechanism allows the payer to bound the time a payment will
be locked but, without any other mechanism, a malicious payer could lock the
funds of intermediate nodes by setting a large initial value θ. To avoid such
situation, each node sets his own Tmax value that bounds the locking time of a
payment. Then, when a node receives a payment as an intermediate node route,
if θ > Tmax the node will refuse to route the payment and the payer will have
to choose another route.

3 LockDown Attack

The proposed attack is focused on a target victim A, a node of the LN. The
goal of the adversary is to block the victim A as a middle node in multipath
payments. By achieving such goal, an adversary may obtain a dominant position
in the LN since blocking some selected nodes may let the adversary be the main
gateway to route payments allowing him to have a dominant position that can be
exploited either for data gathering information or just for increasing the benefits
as a LN gateway node.

To simplify the description of the attack, we omit some of the maximum
values that LN implementations introduce. However, we discus how such values
impact the cost of real attacks in Section 4. Regarding the notation, and for
the rest of the paper, we assume that the victim node is A, the adversary is
M and A has open channels with a list of n different nodes, denoted by Bi for
i = 1, · · · , n. Furthermore, we denote by CABi

the capacity of the channel that
A and Bi have open and by balanceABi

(resp. balanceBiA) the balance that A
(resp. Bi) has in this channel. We denote Cattack the capacity that M has to
hold in channels in the LN to perform the attack.

3.1 Attack Design

The atomicity needed in a multihop payment enforces that the intermediate pay-
ments in a multihop route should be held until the complete route is constructed
and all payments can be performed together. During the time the route is being
constructed, nodes in the route lock the balance of the payment until such pay-
ment takes place. With such underlying mechanism, a malicious user can lock
a total amount of p balance in a channel ABi, during the time a payment is
being constructed, by sending a payment of value p through that channel ABi.
However, such action, that we label as a naive attack, has two main drawbacks
from an adversarial point of view. The first one is related to the cost of the
attack and the second one is related to the time the balance is locked.

Regarding the cost, in a naive attack, to block p balance in channel ABi, the
adversary needs to perform a payment of value p so the adversary needs to hold
the same capacity that the attack is locking. In that sense, we can define the
Attack Effort Ratio.

3



Definition 1. The Attack Effort Ratio (AER) is the ratio between the ca-
pacity needed to perform the attack and the capacity that the attack blocks, i.e.,

AER =
Cattack

Cblocked

The naive attack achieves AER = 1 and such attack can be considered
a brute force attack since it always can be performed by design of multihop
payments. Notice that AER measures the profitability of the attack, and in case
an adversary can reduce the AER then, more efficient is the attack, in economic
terms, and higher can be the incentive for the adversary to perform such attack.

Regarding the time during which the balance is locked, in a naive attack the
adversary only locks the balance during the time the whole payment is being
constructed and, in regular conditions, such period is often very short since the
final receiver of the payment in a multihop route “executes” the payment as soon
as the payment arrives. For more powerful attacks we can define the ∆ function.

Definition 2. The ∆(b) function is a time based decreasing function that mea-
sures the total capacity blocked w.r.t. the time during which the attack has been
conducted. The block generation time, b, is used as the time unit for this function.

For instance, ∆(0) = Cblocked since it provides the total capacity blocked
at the initial time of the attack. Eventually, ∆(b) = 0 for a large b since the
blocking effectiveness of the attack decreases over the time. In a naive attack,
∆(1) = 0 since the capacity is unblocked almost instantly after the payment,
long before the appearance of the first block (b = 1) after the attack execution.

As we will detail later, an attack is performed through multiple payments. For
that reason, the ∆(b) function is computed taking into account the expiration
values of each payment that forms the attack. If we define ∆i(b) as the capacity
blocked by payment i during b blocks, then ∆(b) =

∑
i∆i(b),∀i ∈ attack.

For comparison purposes, we can represent in a single value the Total Block-
ed Time (TBT ) of the attack with the following expression

TBT =

∞∑
b=0

∆(b)

Once we have described how to perform a naive attack to a single channel, we
now describe how to improve the efficiency of the attack, both minimizing the
AER and maximizing TBT . We focus the attack goal to block the victim A as a
middle node in multipath payments. In that case, the value Cblocked is the total
capacity of node A in the LN, that is Cblocked = CA =

∑n
i=1 CABi . Notice that

regarding the attack goal, for blocking a middle node in a payment route it is
sufficient to block all incoming balances to A or all outgoing balances from A. In
any of both situations, A cannot route any payment. Then, the naive attack over
a single node A achieves Cattack = min{

∑n
i=1 balanceABi

,
∑n

i=1 balanceBiA}.
Clearly, Cattack ≤ CA. The AER for such an attack is reduced with respect to
the naive attack of a single channel. Notice that, with this approach, the AER
reduction cannot be determined by the adversary, i.e., the adversary cannot

4



directly control the balances. However, the AER can be also reduced when the
same payment is used more than once to block different channels. In fact, in a
multihop payment, a single payment p blocks up to m · p capacity being m the
number of hops of the payment route. Another strategy to reduce AER is to
construct the largest possible route. However, if the attack is focused on a victim
A, not only the length of the route has to be computed but also the route should
be kept close to A to ensure all blocking capacity obtained for that route is able
to block incoming or outgoing channels of A. As we will see, the best strategy
to keep the payment route close to the victim is to perform routes through A
with loops as short as possible that return to A. Such possibility will depend on
the topology of the payment network in which A is connected.

The improvement of the attack can also be measured regarding the time
during which the attack takes place. The objective is to maximize the TBT
value. To that end, the adversary can be placed at the end of the route, to
hold the payment as much time as possible before the funds of the route are
unlocked. As we will see in detail in the next section, this strategy increases the
value Cattack needed for the adversary.

3.2 Adversarial Knowledge

To implement the ideas described in the previous section, the adversary needs
precise knowledge of the network. To construct payments routes which pass
through victim A, the adversary needs to know the topology of the network to
construct such paths. This information is available using any LN implementation,
since it is needed to perform standard payments. Additionally to the topology
of the network, the detailed information about balances of every channel are
needed to perform the attack. This information can be derived from existing
attacks in the literature [6].

Furthermore, to minimize AER, the number of hops of a payment route has
to be maximized. Although payment routes in the LN are bounded to 20 hops
[17], the exact number of hops that a route may contain is also limited by values
Tmax and δ of each node of that route. Notice that a node does not accept a
payment that locks its funds more than Tmax time and such time is fixed by the
adversary but decreased in each hop by the δ of each node. Then depending on
the values Tmax and δ of each node of the route, the total number of hops in a
route could be lower than 20. For that reason, the adversary also needs to know
the values Tmax and δ of each node of the network.

3.3 Attack Description

To describe our attack we use a simple scenario where the victim A is a hub
between two users, B1 and B2, as depicted in Figure 1. Capacity values are
CAB1

= p1 + p4 and CAB2
= p2 + p3 being pi the balances in each direction

for each channel. The objective of the adversary Mallory, M , is to disrupt the
availability of A, by either blocking the availability of incoming links or outgoing
links, that is rendering p1 = 0 and p3 = 0 or either p2 = 0 and p4 = 0.

5



AB1 B2

p1

p4

p2

p3

Fig. 1. Simple scenario

AB1 B2

M

p1

p4

p2

p3
p5 p6

(a)

AB1 B2

M

D

p1

p4

p2

p3
p5 p6

p7p8

(b)

Fig. 2. (a) Simple scenario with adversary. (b) Simple scenario with external node

To perform the attack, M opens a channel with A as depicted in Figure 2(a).
The attack complexity depends on the balances between A and Bi and we can
distinguish the two following cases:

Shorter loop – The first case is when p1 ≤ p4 and p3 ≤ p2. Notice that with
this conditions, p1 + p3 ≤ p2 + p4 so M would prefer to block incoming paths to
A since Cattack is lower than blocking outgoing connections. Then, M can block
all incoming path by performing two single payments with a short loop. The
first payment will follow the route M → A→ B1 → A→ M with value p1 and
the second payment will follow the route M → A → B2 → A → M with value
p3. With these payments balanceB1A = balanceB2A = 0. Notice that with this
scenario the channel that M has to open with A to perform the attack needs a
capacity1 Cattack = CMA = 2(p1 + p3).

Longer loop – In case either p1 > p4 or p3 > p2, then the adversary needs to
proceed in a different way.2 Without lost of generality, assume that p1 > p4 and
p3 ≤ p2 and also that p1 + p3 ≤ p2 + p4 so M would prefer to block incoming
paths to A. With this balance distribution, M can perform a short loop as
before to block the incoming path from B2 by performing the payment of value
p3 following the route M → A → B2 → A → M . However, since p1 > p4, M
cannot perform a payment route M → A → B1 → A → M with value p1 since
the channel AB1 has balanceAB1

= p4 < p1. At most, M can perform a payment

1 The capacity that M has to open with A is the double of the payment value since
the payment is performed by M but also has to return to M to extend the time that
the payment is blocked.

2 Notice that if both inequations hold, then p1 + p3 > p2 + p4 and M would prefer to
block outgoing paths as in the “Shorter loop” case.

6



with value p4 through the path M → A → B1 → A → M . Such payment locks
p4 but some balance is still available in the channel, precisely p4 − p1. For M to
lock that capacity of the channel, since the path A → B1 is already exhausted,
M needs another path from A to B1 with capacity p4 − p1 with such exact
direction. Figure 2(b) shows a simple example in which there exists a node D
with opened channels with A and B1 and such that balanceAD = p7 ≥ p4 − p1
and balanceDB1

= p8 ≥ p4 − p1. In that case, M can perform a second payment
with value p4 − p1 with route M → A → D → B1 → A → M . This payment
will lock the remaining funds of B1 → A.

The hard assumption of the existence of node D can be relaxed with the
existence of multiple possible paths that all together can route the total p4 − p1
value. Notice, however, that the payment graph topology hardly determines the
existence of such paths.

3.4 AER Minimization

The attack described in the previous section can be improved in terms of AER.
For instance, regarding the shorter loop case example, the AER value depends
on the difference between p1 + p3 and p2 + p4. In the extreme case in which,
p1 + p3 = p2 + p4, such attack has the worst possible AER since CA = (p1 +
p3) + (p2 + p4) = 2(p1 + p3) and Cattack = CMA = 2 · (p1 + p3), so AER = 1.
However, the adversary can reduce such value by relooping the nearer part of
each route next to A. Then, if each payment route can be m hops, each original
path can be transformed into M → A → B1 → A → B1 → A → · · · → M
and M → A → B2 → A → B2 → A → · · · → M . With those loops, the
total amount that has to be routed is reduced to 2p1

m−2 and 2p3

m−2 respectively, so

Cattack = 4(p1+p3)
m−2 and AER = 2

m−2 . Notice that such relooping strategy can
also be implemented in the longer loop scenario.

3.5 TBT Maximization

We recall that, to make the attack more effective, the TBT value should be
maximized. To that end, the adversary takes the advantage of being at the
beginning and end of each payment.

As a first node, the adversary can determine the maximum ∆i for a particular
payment i since such value depends on values δ and Tmax of each node and the
node position in the route. The first one, Tmax, is the maximum amount that a
node allows an outgoing payment in a channel to be locked. And the second one
indicates the difference, in blocks, that each hop in the route requires. When a
node receives a payment, he sets an expiration time3, θ, for the payment, and
subtracts his δ. In case that the resulting value is lower than his Tmax, then
he will keep forwarding the payment, in other case, the node will refuse the
payment, the route will be discarded and the payer will need to find another
route. Then, the best strategy for an adversary to maximize ∆i is to simulate
the route assuming that each node, instead of discarding the payment, will set
the new θ as his Tmax (see Appendix A for a detailed example).

3 For simplicity, we assume θ as a relative block height value.

7



As a last node of the payment, the adversary can hold the payment during
the received θ = ∆i value, being sure that the previous node does not cancel
the payment before that time —since it fits the proper waiting values of the
implementation.

4 Experimental Results

To analyze the feasibility of the proposed attack and provide a proof-of-concept,
we need to ensure that nodes in the LN behave in a particular way. Firstly, to
minimize AER we need to test if the type of routes with cycles used in our
attack can be routed through the nodes of the LN. Secondly, to maximize TBT ,
we need to verify if the payee of a multihop route is able to retain a payment
during a certain period of time before the payment is finally processed locking
channels involved in the payment route. Furthermore, we are also interested to
implement a mechanism for which the payee can cancel the payment without
paying any fee to the routing nodes.

We perform a test in a simnet controlled environment to validate that our
claims are correct and that the routes generated in our attack can effectively been
deployed in the three most relevant available implementations of the Bitcoin LN,
namely LND (lnd), C-lightning (c-lightning) and Eclair (eclair). Results can be
found in Appendix A.

Once the feasibility of the attack has been proved from an implementation
point of view, we have performed some attack simulations for the LN of the
Bitcoin mainnet in order to measure the AER of the attack, the function ∆(b),
and its economic cost. Notice that there is no technical reason that stops us
from effectively executing the simulated attacks in the Bitcoin mainnet. How-
ever, for ethical reasons, we have not performed the attack on the Mainnet and,
instead, we have performed a responsible disclosure to the developers of the LN
implementations.

Our simulations will assess the effectiveness of the attack given the actual
topology of the network. We base our simulations on the attack algorithm de-
scribed in Section 3, but in order to provide accurate results, we have taken into
account different restrictions that actual LN implementations take over their
parameters.

Firstly, we bound to 20 the maximum hops that a payment route may have
in the LN as described in [15]. Regarding the length of routes, we assume that
the expiration time for a route θ at each hop cannot be lower than zero.

Secondly, all existing LN implementations fix the maximum value of a channel
at 16777215 satoshis4. Such value may impact the channel that M has to open
with the victim A. Since such payment channel needs to have a total capacity
of Cattack, in case Cattack > 16777215 then M needs to open more than one
channel with A.

4 This bound is just an implementation parameter. There are already channels in the
LN with larger values. The availability of larger channels reduces the number of
channels for the attack, as well as total fees to pay for every open channel and the
total cost of the attack.

8



Once such values have been taken into account, to perform our simulations,
we take a snapshot of the topology of the LN5 of the bitcoin mainet on July,
9th, 2019 at 12:00.

4.1 Simulation Assumptions

To execute the attack algorithm described in Section 3, the adversary needs
to complement the information of the network graph with further data. The
information needed is: the balance of each channel and the values Tmax for each
node of the network.

Regarding the balances, they can be obtained executing the attack described
in [6]. However, instead of performing such attack, we have assigned the balances
of each channel using different statistical distributions, trying to reproduce the
different scenarios that could be found in the network. In order to assign balances
to channels, we proceed in the following way: for each channel, first the balance of
one of the nodes is randomly selected using one of the selected distributions, and
taking the capacity of the channel as the maximum possible value to generate.
Then, the balance of the other node in the channel is set as the remaining balance
(that is, the capacity minus the balance). Five different distributions are used
to assign balances to channels: deterministic, uniform, normal, exponential, and
beta. The deterministic distribution always assigns half of the capacity of the
channel to each of the nodes; the normal distribution is used with µ = 0.5
and σ = 0.2; the exponential distribution uses λ = 1; and the beta distribution
α = β = 0.25.

The value Tmax is a network node parameter that is not publicly available
since it is not advertised by the nodes. However, such value is implementation
dependent6 Hence, by inferring the LN implementation of each node, we can
obtain the values of Tmax for that node. To infer the LN client implementation
run by each node, we take into account the fee rate, the fee base rate, and
the δ values announced in the nodes’ channels policies. As shown in Table 1,
default values for the fee rate and δ parameters allow to uniquely identify the LN
implementation. We use those values to infer node implementation. Moreover,
the default value for the fee base rate is always 1000. We use this third value to
further validate that the node is using default values in its policies.

lnd (old) lnd (new) c-lightning eclair

Fee rate 1 1 10 100
Fee base rate 1000 1000 1000 1000
δ 144 40 14 144

Table 1. Values that help infer the implementation a node is running.

5 Such information can be obtained, for instance, with the instruction describegraph
of the lnd implementation.

6 One may assume users changing some LN implementation parameters. However, the
Tmax value is not expected to be one of those easily modifiable parameters.

9



However, users may indeed change channel policies, or even use different
policies for different channels. On the one hand, if a node is not announcing any
policy with the fee rate, fee base rate, and delta values corresponding to any of
the described implementations, we assume the implementation of that node is
unknown. On the other hand, whenever a node announces different policies in
its channels but only one of them corresponds to a default behavior, the node
is tagged with this implementation. Finally, if multiple policies are announced
and multiple default policies are identified, then again the node is tagged as
unknown.

Taking this approach, using the selected snapshot of the network, we end up
with a small percentage of unknown nodes (11.3%), for which we are not able
to properly infer the implementation. In that case, we randomly tag those nodes
with one of the three main implementations, with the same percentage distribu-
tion than those nodes already tagged. Using such approach network nodes for
the analyzed graph have been classified as shown in Table 2.

nodes (number) (percentage)
lnd 2196 91.04%
c-lightning 183 7.59%
eclair 33 1.37%
Total 2412 100%

Table 2. Number of nodes, with at least one channel, classified in one of the main
implementations for the snapshot graph used in our analysis.

4.2 Attack Simulation Results

To perform the simulation, we focus the attack on one of the most relevant nodes
in the network. Such node has 600 opened active channels with a total capacity
slightly above 43 BTC. Then, we test the effectiveness of the attack in case such
node runs one of the three main implementations, lnd, c-lightning or eclair. For
each implementation we also test each of the balance distributions. In order to
present more representative results, being the balance distribution a probability
distribution, we execute the experiments 10 times and take the mean values.

For each implementation and for each balance distribution, we have per-
formed the attack and measured the AER value of the attack, the percentage of
the capacity of the victim that has been blocked, the total channels needed to

perform the attack, and the normalized Total Blocked Time, T̃BT 7 (cf. Table 3).
Furthermore, we also have analyzed the ∆ function of the attack (see Figure 3).

7 The normalized TBT , T̃BT , is defined as T̃BT = TBT
Cblocked·max{Tmax} , where

max{Tmax} is the maximum default value of Tmax seen in any implementation.

Therefore, 0 < T̃BT ≤ 1, and the ideal attack with T̃BT = 1 would be blocking
Cblocked capacity during 5000 blocks, that is, more than 34 days.

10



Blocked Channels

Distibution Implementation AER capacity needed T̃BT
Beta lnd 0.291 86.86 % 67.8 0.31

c-lightning 0.203 82.23 % 49.7 0.07
eclair 0.584 86.30 % 133.8 0.05

Deterministic lnd 0.200 100.00 % 52.0 0.44
c-lightning 0.100 80.40 % 26.0 0.13
eclair 0.500 100.00 % 129.0 0.09

Exponential lnd 0.229 92.55 % 55.1 0.36
c-lightning 0.135 80.22 % 34.0 0.09
eclair 0.512 92.30 % 123.4 0.07

Normal lnd 0.230 96.79 % 62.5 0.39
c-lightning 0.149 84.26 % 39.0 0.11
eclair 0.479 96.89 % 134.9 0.08

Uniform lnd 0.268 93.05 % 69.4 0.35
c-lightning 0.149 82.87 % 45.6 0.09
eclair 0.557 93.02 % 140.3 0.07

Table 3. Attack results for the different balance distributions.

Table 3 shows that the attack is effective in all scenarios (implementations
and balance distribution) since the AER is lower than 2 which was the value for
a naive attack. Notice that in the worst attack, for a Beta distribution in which
the node runs an eclair implementation, the AER is 0.584, which is half of the
capacity of the victim to block its 86.30% capacity. In fact, the percentage of
the victim capacity blocked is high for all the scenarios, never below the 80%.

Moreover, the T̃BT also shows that lnd implementations are the ones allowing
the adversary to block more capacity over time (as can also be observed in
Figure 3).

Figure 3 plots the ∆ function which shows which is the amount of time
locking the funds. As expected, graphics show that the value of Tmax of each
implementation determines the length of the time. When the victim runs an
lnd implementation, 80% of the capacity of the victim can be locked during 287
blocks (almost two days) in any balance distribution tested. But if we look at the
50%, such value is increased to 2407 blocks (more than 16 days). Even for the
eclair implementation which has the lowest Tmax value of all three implemen-
tations (Tmax = 1008), 50% of the capacity can be blocked during 287 blocks
(almost two days) for all tested balance distributions.

Besides the effectiveness of the attack showed so far, we also measure the
economic cost of the attack. For such measure, we take the same methodology
than in [6] in which the total cost of the attack can be divided between the
entrance barrier cost and the economic cost. On the one hand, the entrance
barrier cost takes into account the economic resources that the adversary has
to control to be able to perform the attack. Such resources will be completely
recovered after the attack has been finished. On the other hand, the economic
cost of the attack is the amount of money that the adversary will lose due to
the execution of the attack.

11



0 1000 2000 3000 4000

Delta (number of blocks)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

ap
ac

ity
 b

lo
ck

ed c-lightning
eclair
lnd

(a)

0 1000 2000 3000 4000

Delta (number of blocks)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

ap
ac

ity
 b

lo
ck

ed c-lightning
eclair
lnd

(b)

0 1000 2000 3000 4000

Delta (number of blocks)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

ap
ac

ity
 b

lo
ck

ed c-lightning
eclair
lnd

(c)

0 1000 2000 3000 4000

Delta (number of blocks)
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 c
ap

ac
ity

 b
lo

ck
ed c-lightning

eclair
lnd

(d)

0 1000 2000 3000 4000

Delta (number of blocks)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

ap
ac

ity
 b

lo
ck

ed c-lightning
eclair
lnd

(e)

Fig. 3. ∆(p) function results for every tested distribution: (a) Beta, (b) Deterministic,
(c) Exponential, (d) Normal, (e) Uniform.

12



Regarding the entrance barrier cost, the proposed attack needs to fund
one or multiple LN channels with the capacity Cattack. Such amount is repre-
sented by the channels needed value of Table 3. For instance, the attack for the
uniform distribution over c-lightning has an entrance barrier cost of 46 channels
(or 7.71753546 BTC) to block 84.25% of the capacity of the node.

With regard to the economic cost of the attack, two values have to
be taken into account: (i) the fee corresponding to the funding transaction of
the channel; (ii) the fee corresponding to the transaction that closes the channel.
Regarding the fees of the funding transactions, such cost depends on the number
of channels needed to perform the attacks. The cost in fees for each channel
depends on the size in bytes of the funding transaction. However, such size
mostly depends on its inputs that will vary for each particular transaction, but
a funding transaction with a single input can cost as low as 0.00001527 BTC8.
Secondly, and regarding the closing transaction, it is also difficult to estimate
the exact fee for a generic closing transaction, since again multiple parameters
may affect such a value. A cost rounding 0.00000909 BTC can be achieved, as
can be seen in different existing closing transactions9.

Notice that we have not included the Lightning fees as a cost because they
are never applied (since the payments never succeed). For that reason, the total
number of payments needed to perform the attack does not affect the economic
cost of the attack.

With such values, we can estimate the economic cost of an attack. For in-
stance, an attack based on a normal distribution assuming an lnd node blocks
the 96.79% of the capacity of the node with 63 channels, that means 0.00153468
BTC in fees for opening and closing the channels, around 15 Eur.

5 Countermeasures to Handle the Attack

The main countermeasures are focused on increasing the AER in order to make
the attack less profitable. As discussed in Section 3, AER is reduced thanks to
the possibility that a single payment performs a route with multiple hops. Fur-
thermore, if the adversary may maintain the route near the victim, the AER is
even more reduced. So to not allow the adversary perform such strategy different
measures can be adopted.

First of all, loops in a payment route should be minimized or forbidden. In
particular, cycles of length two (the ones of the form A → B → A) should be
completely forbidden since are the ones that most reduce AER and keep the
route close to a possible victim. We argue that imposing such restriction does
not damage any possible functionality of the LN. Notice that lightning payments,

8 See, for instance, transaction:
11b68b276453ac54c23ee49186df78d9895fbfd47071ced6371364abbddcfc6f It is the
funding transaction corresponding to the Channel Id 645513381196136448 opened
on July 26, 2019, by node
021607cfce19a4c5e7e6e738663dfafbbbac262e4ff76c2c9b30dbeefc35c00643

9 For instance, Channel Id 624629257244573696 with total capac-
ity 0.05 BTC has been closed with the following close transaction
362235c844533ff7ae0e2fca078b956e82093b92f86010bed51e990d52af6679

13

https://blockstream.info/tx/11b68b276453ac54c23ee49186df78d9895fbfd47071ced6371364abbddcfc6f
https://1ml.com/channel/645513381196136448
https://1ml.com/node/021607cfce19a4c5e7e6e738663dfafbbbac262e4ff76c2c9b30dbeefc35c00643
https://1ml.com/channel/624629257244573696
https://blockstream.info/tx/362235c844533ff7ae0e2fca078b956e82093b92f86010bed51e990d52af6679


even those in a multihop route, are designed to be performed atomically in the
sense that they are executed completely or not executed at all. A payment with
a subpath of the form A → B → A, once executed it lefts the state between A
and B exactly as it was previous to the payment. The implementation of such
measure is straightforward even assuming that routing in the LN is performed
through onion routing. Notice that in the onion routing approach, every node is
aware of the previous and next node in the route so he can reject a route in case
both nodes are the same.

Regarding cycles of length larger than two, it is clear that its restriction also
increases AER and hinders the attack. Again, although the LN currently routes
using onion packets and nodes are only aware of the previous and next hop in
the route, additional information transferred between routes and shared by all
nodes, such as the hash used in the HTLC can be used to detect that a cycle
is passing through a node and reject such possibility. However, in contrast with
cycles of length two, longer cycles do not keep the same state of the channel
and it can be used for legitimate purposes, like spontaneous payments10, whose
restrictions could impact future LN features.

Besides cycles, increasing the length of a payment route also reduces AER
so a possible countermeasure for the proposed attack is the reduction of the
maximum length of a route. Such value is set to 20 in the LN specification
and it could be reduced to increase the AER of an attack. However, such value
directly impacts in the performance of the network since its reduction could
potentially discard possible routes for legitimate payments. More testing should
be performed before implementing this type of countermeasure.

Another straightforward countermeasure that can be performed to reduce
the effectiveness of the attack is the fine tuning of some lightning parameters
that, until that moment, are not properly addressed. Such parameters are Tmax

and δ, which have two different implications for our attack. On one hand, despite
the maximum hop value (set to 20) Tmax and δ can effectively determine a lower
bound for the number of hops in a route.11 Since reducing the maximum number
of loops increases AER, setting the proper values could potentially prevent the
attack. On the other hand, the time value during which a channel or victim
can be blocked without the adversary needing to perform any action is also
dependent on those two parameters. So reducing the actual values of Tmax and
δ is a countermeasure for our attack since it reduces the time during which the
adversary may lock the funds. However, assessing the correct values for Tmax

and δ deserves a detailed and exhaustive analysis and test.

6 Related Work

Recent literature on the security of LN and payment channels mentions channel
exhaustion and payments griefing attacks [12,7]. Rohrer et al. [13] suggest an
adversarial combination of both techniques, to build an attack that resembles

10 SPSP, Simple Protocol for Spontaneous Payments, https://lists.
linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html

11 For instance, a payment route in which all nodes run an eclair implementation can
be at most 7 hops.

14

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html


the naive attack reported in Section 3.1. Rohrer et al. refer to the combination
of channel exhaustion and payments griefing as an attack which ‘requires E to
first open a channel with a capacity that is equal or greater than the total balance
of A’s outbound channels’. This is equivalent to the naive scenario reported in
our work (cf. Section 3.1, naive attack). While Rohrer et al.’s attack has always
an AER higher than one (i.e., AER = 2 if we consider that their attack requires
an outbound channel), our work builds upon optimization techniques to obtain
attacks with lower AER (cf. Section 4, reduction from AER = 2 to AER = 0.1).
Recall that attacks with an AER higher than one must be considered as brute
forcing, with marginal adversarial incentives, in economic terms.

Other differences with Rohrer et al.’s work include the experimental setup
reported in [13]. Instead of five independent lnd instances, we report in Sec-
tion 4 experimental work using three different implementations, including lnd,
c-lightning or eclair. Some other improvements included in our work is the use of
extended network measurements. Previous work (cf. [13], Section II.B and cita-
tions thereof) only uses the properties of the topology edges, without taking into
account the balance of every node associated to the edges. This is important,
since without processing this information, an adversary can estimate the use of
routes that may not be used, in the end (i.e., the estimated diameter is wrong).

Privacy issues are also reported in recent literature of payment channels.
Tang et al. address in [18] the impact of using payment channels w.r.t. privacy
preservation. Since users need to route their transactions using other nodes, they
must find paths through the payment network, and with enough pre-allocated
funds to route their transactions. This poses the problem of hiding the balance
of each payment channel node. Joancomarti et al. show in [6] the difficulty of
hiding such balances. Their work uncovers a balance discovery attack that can be
used to deanonymize the precise balance of each network payment node, hence
leading to the de-anonymization of the network transactions, in the end. Tang
et al. and Malavolta et al. assume in [18,9] that the adversary is passive, i.e., the
adversary observes only the public information released in the network, whereas
prior work by Malavolta et al. and Ross et al. [8,14] considers active adversaries
acting as corrupt relay nodes, trying to learn the destination of other nodes
transactions.

7 Conclusion

We have addressed the possibility of availability attacks affecting the bandwidth
of payment channels of the Lightning Network (LN). We show that an adversary
can take advantage of misbehaving nodes associated with a given victim in order
to block its ability to act as an intermediate node in multihop payments. The at-
tack can achieve a lockdown during a reasonable time with a low economic cost.
We have formalized the attack and provided a practical implementation show-
ing its performance in the LN from the Bitcoin mainnet. The results validate
our claims showing the relatively low cost required to lock down an important
percentage of the total capacity of a victim. We have discussed potential coun-
termeasures to handle the problem by making the attack less profitable, or less
cost-effective attractive for adversaries.

15



References

1. G. Ausiello and M.Editors Lucertini, editors. volume 109 of North-Holland Math-
ematics Studies, page 27–45. North-Holland, 1985.

2. Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3–18. Springer, 2015.

3. Giovanni Di Stasi, Stefano Avallone, Roberto Canonico, and Giorgio Ventre. Rout-
ing payments on the lightning network. In 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pages 1161–1170. IEEE, 2018.

4. Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi Herrera-Joancomart́ı.
The bitcoin p2p network. In International Conference on Financial Cryptography
and Data Security, pages 87–102. Springer, 2014.

5. Elements Project. c-lightning – a lightning network implementation in C. https:
//github.com/ElementsProject/lightning, 2019.

6. Jordi Herrera-Joancomart́ı, Guillermo Navarro-Arribas, Alejandro Ranchal-
Pedrosa, Cristina Pérez-Solà, and Joaquin Garcia-Alfaro. On the difficulty of hid-
ing the balance of lightning network channels. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, Asia CCS ’19, pages
602–612, New York, NY, USA, 2019. ACM.

7. Akash Khosla, Evan Schwartz, and Adrian Hope-Bailie. Interledger RFCs, 0018
DRAFT 3, Connector Risk Mitigations. Github, 2019. http://j.mp/2m2OvfP.

8. Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silen-
twhispers: Enforcing security and privacy in decentralized credit networks. In
NDSS, 2017.

9. Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-
san Ravi. Concurrency and privacy with payment-channel networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 455–471. ACM, 2017.

10. Patrick McCorry, Malte Möser, Siamak F Shahandasti, and Feng Hao. Towards
bitcoin payment networks. In Australasian Conference on Information Security
and Privacy, pages 57–76. Springer, 2016.

11. Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments, 2016.

12. Daniel Robinson. HTLCS-considered-harmful. Stanford Blockchain Conference,
Stanford, CA, USA, January 2019. http://j.mp/2m7BsKf.

13. Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged payment chan-
nels: Quantifying the lightning network’s resilience to topology-based attacks.
CoRR, abs/1904.10253, 2019.

14. Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling
payments fast and private: Efficient decentralized routing for path-based transac-
tions. arXiv preprint arXiv:1709.05748, 2017.

15. Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. Basis of lightning
technology (BOLTs), 2018.

16. Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. The lightning net-
work daemon, 2018.

17. Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. Lightning network
in-progress specifications. bolt 4: Onion routing protocol, 2018.

18. Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. Privacy-Utility
Tradeoffs in Routing Cryptocurrency over Payment Channel Networks. CoRR,
abs/1909.02717, 2019.

16

https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
http://j.mp/2m2OvfP
http://j.mp/2m7BsKf


A Simnet Network

To perform our experiments, we create a Lightning simnet network with eleven
nodes, M,A,B1, · · · , B9. Node M will be the adversary and A the victim. Nodes
B1, · · · , B9 will represent victim’s neighbors. To test all implementations in our
simnet, we run different implementations for different nodes. More precisely,
the following configuration has been taken. Nodes M,A,B1, B2, B3 run the
LND implementation with version 0.5.2-99-beta, nodes B4, B5, B6 the c-lightning
with version v0.7.0 and nodes B7, B8, B9 run eclair with version version=0.2-
SNAPSHOT. Over this configuration, we have created 10 payment channels, as
shown in Figure 4(a).

With this settlement, M performs a payment to himself, following the route
M → A → B1 → A → B2 → A → B3 → A → B4 → A → B5 → A → B6 →
A→ B7 → A→ B7 → A→ B9 → A→M .

The correct execution of such experiment proves that the payment has been
processed by all nodes and that routes can effectively contain loops. Notice that
the loops tested in this experiment are the shortest possible which validates the
shorter loop case of our attack (see Section 3). Notice that the implementation
selected for each node ensures that such behavior is equivalent in all implemen-
tations.

Figure 4(b) shows a new scenario where we have added a payment channel
between nodes B6 and B9. With this scenario, M performs a payment to himself,
following the route M −A−B6 −B9 −A−B6 −B9 −A−M .

Again, the test shows that the payment is correctly processed by all nodes
and it proves that all implementations can also accept the longer loop case, since
we have chosen A, B6 and B9 all with different implementations.

AM

B1

B2

B3

B4

B5

B6

B7

B8

B9

(a) First scenario

AM

B1

B2

B3

B4

B5

B6

B7

B8

B9

(b) Second scenario

Fig. 4. Simnet scenarios

Once we have ensured that routes with cycles are possible to execute in any
implementation, we would like to study how to maximize ∆p, the time that a
payee can lock a payment p. Such value can be estimated using information of

17



the nodes that are included in a route. More precisely, values δ and Tmax of
each node and the node position in the route determines the maximum time a
payment can be blocked.

In our scenario, the adversary controls both the first and the last node of the
route. We first describe how, as a first node, the adversary can determine the
maximum ∆p for a particular route. Then, we will detail how the adversary, as
the last node of the route, may block the payment during ∆p and how, after that
time, he can cancel the payment without paying any fee to the routing nodes
and, furthermore, leaving all the channels in the same setting than the initial
phase of the attack being able to reexecute the attack without any cost.

As pointed out in Section 2, the parameters that determine the actions of each
node of the route are Tmax and δ. The first one, Tmax, is the maximum amount
that a node allows an outgoing payment in a channel to be locked. And the second
one indicates the difference, in blocks, that each hop in the route requires. Such
parameters are different for every lightning implementation as Table 4 shows.
When a node receives a payment, he sets an expiration time12, θ, for the payment,
and subtracts his δ. In case that the resulting value is lower than his Tmax, then
he will keep forward the payment, in other case, the node will refuse the payment,
the route will be discarded and the payer will need to find another route. Then,
the best strategy for an adversary to maximize ∆p is to simulate the route
assuming that each node, instead of discarding the payment, will set the new θ
as his Tmax. For instance, suppose the following route M − Bi − Bj − Bk −M
and assume that Bi is a lnd implementation, Bj is an eclair implementation and
Bk is a c-lightning implementation. Assuming the default values of Table 4, the
simulation performed by M will start with θ = ∞. When processing the first
hop, Bi has a lnd implementation which means Tmax = 5000 and δ = 144 so for
that hop, we can compute θ = 5000− 144 = 4856. In the next hop, Bj runs an
eclair implementation, hence Tmax = 1008 and δ = 144. In that case, since the
received θ = 4856 is greater than 1008 we will set θ = 1008 − 144 = 864. Then
Bk runs a c-lightning with Tmax = 2016 and δ = 14 and the received θ = 864
is lower than 2016, we can calculate θ = 864 − 14 = 850. Since this is the last
hop, θ = 850 is the time during which the channel can be blocked. With this
procedure, M can compute the optimal θ value that he will include in the first
hop to maximize ∆p. In that case θ = 850 + 14 + 144 + 144 = 1152 will provide
a maximum ∆p, in that case 850

lnd c-lightning eclair

δ 144 14 144
Tmax 5000 2016 1008

Table 4. Default parameters for different implementations.

12 Although the θ is an absolute block height value, here we will refer as a relative
value to simplify the explanation.

18


	LockDown: Balance Availability Attack against Lightning Network Channels

