
Variable Elimination - a Tool for Algebraic Cryptanalysis

Bjørn Greve1, Øyvind Ytrehus2, and H̊avard Raddum2

1Norwegian Defence Research Establishment, Kjeller, Norway
2Simula UiB, Bergen, Norway

Abstract

Techniques for eliminating variables from a system of nonlinear equations are used to find
solutions of the system. We discuss how these methods can be used to attack certain types of
symmetric block ciphers, by solving sets of equations arising from known plain text attacks.
The systems of equations corresponding to these block ciphers have the characteristics that
the solution is determined by a small subset of the variables (i.e., the secret key), and also that
it is known that there always exists at least one solution (again corresponding to the key which
is actually used in the encryption). It turns out that some toy ciphers can be solved simpler
than anticipated by this method, and that the method can take advantage of overdetermined
systems.

1 Introduction

The goal of algebraic cryptanalysis is to exploit the algebraic structure of a cipher in order to
retrieve the secret key. This is achieved by expressing the encryption transformation as a large
system of nonlinear equations over a finite field, and then solving this system of equations. Al-
gebraic cryptanalysis received renewed attention recently, and attacks such as the XL and XSL
algorithms were introduced [13, 14, 16], although these attacks were shown to be infeasible in
practice [21, 20, 22]. Approximately at the same time, direct constructions of Gröbner bases were
considered [4]. We also note that the algebraic approach may be combined with other cryptanalytic
methods [27].

As a consequence of these results, researchers instead started to consider reduced block ciphers
with a behaviour resembling that of real block ciphers, in order to perform experiments in practice
and to to gain insight into the behaviour and the effectiveness of algebraic attacks. In [8] the
authors performed experiments for solving systems of equations arising from small-scale versions
of AES by using Gröbner basis methods via the F4 algorithm [17]. The results showed that even
for small-scale versions of AES, the computations became unfeasible at an early stage. The results
on small scale variants of the AES cipher were improved in [5], where the authors conclude that
Gröbner basis methods are unlikely to solve a full system of equations for AES.

The ideas presented in this paper are motivated by the recent papers [24, 25], where the authors
develop efficient algorithms for eliminating variables systems of Boolean equations. Our aim is to
eliminate the auxiliary variables introduced when describing reduced block ciphers as systems of
equations over F2, while still limiting the degree of the polynomial equations that arise during the
elimination process, in contrast to other related methods such as Gröbner bases. The downside
of this approach is that during the elimination algorithm, higher degree polynomials have to be
discarded, with the implication that false solutions (keys) will be introduced in the system. In
order to deal with this problem, the concept of information loss is introduced. Using this concept,
we generalize the elimination algorithm from [24] into a dynamical elimination algorithm. We
perform experiments on several types of small scale block ciphers, and in particular demonstrate
how the suggested algorithm can eliminate many of the auxiliary variables from block ciphers while

1

keeping the degrees at minimum without losing any information about the user selected key. In
particular it is also demonstrated how the algorithm in some cases actually succeeds in eliminating
all the auxiliary variables and find polynomials of low degree in only the key variables.

The paper is structured as follows: Section 2 introduces how to construct quadratic systems
of Boolean equations representing block ciphers, as well as basic notation used in the paper. In
Section 3 we describe the dynamical elimination algorithm. Section 4 connects the algorithm to
information theory and introduces the information measure as well as the concept of information
loss. Section 5 presents experimental results, while Section 6 contains a conclusion and sketches
some issues for further research.

2 Background, notation and preliminaries

For reference, we start by listing up some of the notation that will be used throughout the paper.

Term Meaning
k Length of key, plain text and cipher text
n Number of variables of the set of equations
r Number of rounds in the cipher
m Number of polynomials or equations
P Message space
C Cipher text space
K Key space

x0, . . . , xn�1 The variables of the set of equations
B[xj , . . . , xn�1] F2[xj , . . . , xn�1]/(x2i + xiji = j, . . . , n� 1)

t Monomial term
f i Polynomial of degree i
F Set of polynomials, or equations on the form f = 0

F i, F�i Set of polynomials, or equations, all of degree = i, resp. � i
Li, L�i Set of all monomials of degree = i, resp. � i
hF i The linear span of the polynomials in F

Fxi
, Fxi

Set of polynomials in which all (resp. no) polynomials depend on xi

Z(F) Set of zero points for all polynomials in F
I(F) The ideal generated by F

πi Projection omitting coordinates 0, . . . , i, that is, πi : Fn
2 ! Fn�i�1

2

M(F) or Md(F) Macaulay matrix corresponding to F

A block cipher is described by an invertible encryption function E : K � P ! C that takes
the plaintext P 2 P and the key K 2 K as input, and outputs E(K,P) = C 2 C, the resulting
ciphertext. The decryption function E�1(K,C) = P 2 P yields the corresponding plaintext. Here
the sets P, C and K are the message space, cipher text space, and the key space respectively. In
this paper, for convenience, we will focus on the (common) case where C = P = K = Fk

2 .

2.1 Block ciphers and systems of polynomial equations

We consider modern block ciphers which are designed as a sequence of r rounds, exemplified in
Figures 2 and 8. Each round consists of a confusion operation executed by an S-box, and a
diffusion operation, which is typically a linear transformation acting on all current variables. S-
boxes in practical ciphers are selected so that there are no linear relations between the input and
the output symbols of the S-box. From an algorithmic point of view, given a key K 2 K, the
encryption algorithm produces a unique ciphertext for a given plaintext input, and the decryption
algorithm produces a unique plaintext for a given ciphertext input.

2

Mathematically, these block ciphers can be viewed in terms of a family of equations that relate
the key K 2 K to a plaintext and a corresponding ciphertext. That is, in a known plaintext
attack, we may substitute the plaintext and the corresponding ciphertext produced for a specific
key K 2 K into this general family of equations, to derive a set F of nonlinear equations that
restrict the set of possible keys used for the encryption. Thus solving this set of equations in
practice breaks the cipher.
Constructing systems of equations for block ciphers over F2: The essential set of variables
corresponds to the encryption key, denoted by K = (x0, . . . , xk�1). In accordance with Figures 2
and 8, let X0 be the bitwise XOR of K and P , then X0 is the input to the first round of the cipher.
For the `’th round, for ` = 1, . . . , r�1, we introduce new output variables, X‘ = (xk‘, . . . , xk(‘+1)�1)
representing the “internal state” of the cipher after execution of the `th round. Thus X‘ is the
output of round ` and the input to round ` + 1. The auxiliary variables produced at the output
variables of the r’th round can be immediately eliminated since they can be described as linear
combinations of the key and ciphertext. The significance of this structured way of designing the
set of equations is that if the S-box can be represented by relations of degree 2, then the entire
set of equations have degree 2. This restriction of degrees comes at the expense of expanding the
set of variables by the introduction of the auxiliary variables xk, . . . , xkr�1. The total number
of variables is n = kr. (Alternatively, the set of variables could be confined to the original key
variables, but this would lead to extremely complex equations in fx0, . . . , xk�1g.)

Thus we can construct r disjoint sets F1, . . . , Fr of quadratic equations over F2 as follows. Each
polynomial f 2 F‘ is a sum of some monomials of degree � 2 monomials, relating variables in the
set V‘ [V‘+1.

For schematic demonstrations on how ciphers are constructed we refer to Section 5. To get a
feeling on how the equations look like, the following equations are the first equations describing
the toy cipher considered in Section 5.3.

x1 + x2 + 1 + x16 + x19 + x0x1 + x0x3 + x0x16 + x0x17 + x0x18 = 0
x1 + x2 + 1 + x16 + x19 + x0x1 + x0x2 + x0 + x0x16 + x0x19 = 0

x2 + x16 + x17 + x19 + x0x1 + x0x3 + x0x16 + x1x2 + x1 + x1x16 = 0
x2 + x3 + x16 + x18 + x19 + x0x1 + x0x2 + x0 + x0x16 + x1x2 + x1 + x1x17 = 0
x2 + x3 + x16 + x18 + x19 + x0x1 + x0x2 + x0 + x0x16 + x1x3 + x1x18 = 0

...
...

The resulting set of equations F = [r
j=0Fj describes the complete block cipher encryption. The

set of equations forms the basis for an ideal of the multivariate polynomial ring B[x0, . . . , xn�1],
whose zero set is denoted by

Z(F) = fa 2 Fn
2 jf(a) = 0,8f 2 Fg.

2.2 Algorithms for eliminating variables and solving systems of Boolean
equations

The work in this paper is inspired by the algorithms and a framework for eliminating variables
from a system of Boolean equations developed in [24, 25]. In the following we will give a brief
introduction to the tools developed in these papers, starting with [24]. For more details, we refer
the reader to the papers.

A standard technique for computing elimination ideals is to use Gröbner bases, which eliminate
one monomial at the time. In fact, to compute elimination ideals in practice via Gröbner bases one
has to compute the full Gröbner basis before performing elimination. This is because the orders
with the elimination property are usually not the most optimal choice during computations [4, 26].
In addition Gröbner bases are computationally heavy because the degrees of the polynomials grow
rapidly over the iterations.

3

In an attempt to avoid these problems, the authors of [24] propose an alternative algorithm
for eliminating variables from systems of Boolean equations, which also restricts the degree of the
polynomials. Roughly speaking, the idea is to produce only new polynomials of restricted degree,
with the benefit that the elimination process has much lower complexity. Adapting the notation
from [24], an ideal where the degree is restricted to some d is denoted by Jd, where J1 means
that we allow all degrees.

The disadvantage of not using all polynomials is that one has to discard polynomials of
degree > d, which gives an ideal Jd that is only contained in the elimination ideal J1 =
I(F) \ B[xj , . . . , xn�1]. It follows that Z(Jd) of the eliminated system contains all the projected
solutions of the original set of equations, but it may also contain “false” solutions which will not fit
the ideal I(F) when lifted back to the original vector space, regardless of which values we assign
to the eliminated variables. Thus there is a trade-off between the maximum degree d allowed, and
the proximity between the “practical” ideal Jd and the true elimination ideal J1.

Throughout the paper we focus on only eliminating the variable x0 from F . In practice, all
procedures are iterated to eliminate any number of variables we choose. As part of the variable
elimination process it will be necessary to split a set of polynomials according to dependency on
x0 and possibly according to degree. The procedures for this can be implemented in terms of row
reduction on the Macaulay matrix of the given set. This is a matrix in which the columns are
indexed by the monomials according to the total order we use, and the rows are indexed by the
polynomials in our set. Each matrix entry is the coefficient of the corresponding monomial in the
corresponding polynomials. We shall need two types of total orders on the monomials in a Boolean
ring.

1. An x0-elimination order: If t1 and t2 are monomials where t1 contains x0 while t2 does not,
then t1 > t2. An example is the lexicographic order.

2. A degree order: If t1 has degree larger than t2 then t1 > t2.

In this paper we adopt the following non-standard notation from [24]: For a polynomial f i,
the superscript i indicates that f has degree i, and does not mean f raised to the power i. The
reason for this choice of notation is that since the idea is to bound the degree of polynomials we
work with, it is important to keep in mind which degree the various polynomials and monomials
have. Similarly, F i for a set of polynomials indicates that all polynomials in F have degree i. This
means that we can split the initial system F into d sets according to degree:

F = F d [F d�1 [. . . [F 2 [F 1. (1)

For any cipher worth studying, we may assume that in the initial system F 1 = ;.
It will be convenient to use a formal procedure SplitV ariable(F, x0). This procedure is essen-

tially Gaussian elimination on the Macaulay matrixM(F) on all the columns indexed by monomials
containing x0, using the x0-elimination order. When M(F) is in row-reduced echelon form, the
set F is naturally split into polynomials that contain terms depending on x0, and polynomials
with no terms depending on x0. The outputs of SplitV ariable(F, x0) are sets of polynomials Fx0

consisting of the polynomials which contain x0-terms (the upper rows of the resulting matrix), and
Fx0

consisting of polynomials not containing x0-terms (the remaining lower rows of the resulting
matrix).

The tools used to construct the elimination framework from [24] are resultants, coefficient
constraints, and syzygies, accompanied with the concept of normalization. Consider the projection
which omits the first coordinate:

π0 : Fn
2 ! Fn�1

2

(a0, a1, . . . , an�1) 7! (a1, . . . , an�1),

4

and denote by B[x1, . . . , xn�1] the ring of Boolean polynomials where x0 has been omitted. We
may in a similar fashion consider a sequence of i projections

Fn
2 ! Fn�1

2 ! � � � ! Fn�i
2 ,

that we denote as πi�1 : Fn
2 ! Fn�i

2 . When eliminating x0 from an ideal I � B[x0, . . . , xn�1], we
compute the elimination ideal I \ B[x1, . . . , xn�1]. The advantage of the algorithm from [24] is
that the number of variables decreases in each iteration, and in particular it is shown to be more
efficient than the Gröbner base approach.

The resultant eliminates x0 from a pair of polynomials. Formally, let f1 = a1x0 + b1 and
f2 = a2x0 + b2 be two polynomials in B[x0, . . . , xn�1] where the variable x0 has been factored out
so the polynomials ai and bi are in B[x1, . . . , xn�1]. The resultant is then given by Res(f1, f2, x0) =
a1b2 +a2b1, and hence lies in B[x1, . . . , xn�1]. This can of course be computed with respect to any
variable, as well as in an iterative manner. When restricting the degree to � d, we can take the
resultant of all polynomial pairs from the sets F i, F j , where i+ j � d+ 1 as

Res(F i, F j) = fRes(f, g, x0)jf 2 F i, g 2 F j , i+ j � d+ 1g.

For a set F of polynomials of differing degree, we can split F into F d, . . . , F 2 and denote the set
of all resultants by

Res(F) = [i+j�d+1Res(F
i, F j) � I(F) \ B[x1, . . . , xn�1].

Note that the last inclusion is in general strict, where in order to close the gap the concept of
Coefficient constraints was introduced in [24].

For coefficient constraints, again write fi as fi = aix0 + bi where neither ai nor bi depends on
x0. The set of coefficient constraints Co(F) is then defined as

Co1(F) = fb1(a1 + 1), b2(a2 + 1), . . . , bm(am + 1)g.

An important fact from [24] is that the zero set of Co(F) is in the projection of the zero
set of I(F) onto Fn

2 , and together with the resultants describes exactly the full elimination ideal
I(F) \ B[x1, . . . , xn�1]. This can be iterated by computing resultants and coefficient constraints
iteratively with respect to any variable. Algorithm 1 restricts the degree to d, but allowing all
degrees it will compute the full elimination ideal.

As demonstrated in [24], these objects link naturally to the notion of syzygies which are con-
nected to Gröbner bases in the literature in relation to optimizations of Buchberger’s algorithm.
The most known approaches to Gröbner bases (as for example [17, 18]), reduce to computing the
module of syzygies over the polynomial ring K[x0, . . . , xn�1] for some field K. The approach in
[24] is not to compute Gröbner bases, but rather find ways to eliminate variables from the system
of polynomials, without using Gröbner bases ([6, 7]). The idea from [24] is to find more efficient
ways of computing the vector space

hF d [L�1F d�1 [L�2F d�2 [� � � [L�d�2F 2i \ B[x1, . . . , xn�1],

where L�i consists of all monomials of degree � i, and L�jF i consists of all products l�jf i where
l�j 2 L�j and f i 2 F i, (i = 2, . . . , d� 1). Since we are bounding the maximal degree to be d, we
can be certain to form any such product provided that i + j � d. In this regard the construction
from [24] differs from Gröbner bases in the following sense.

1. In [24] the syzygies are computed directly in the Boolean ring B[x1, . . . , xn�1], which means
that the field equations are encoded into the computations in contrary to Gröbner bases
which are computed over the polynomial ring F2[x1, . . . , xn�1] and thus needing the field
equations to be added to the system.

5

Algorithm 1 ResAndCo(F = F d [F d�1 [. . . [F 2 [F 1, x0)

In: Set F = F d [F d�1 [. . . [F 2 [F 1 of polynomials in B[x0, . . . , xn�1]
Out: Set R of polynomials where π0(Z(F)) � Z(R) and no polynomial in R depends on x0

for 1 � i � d do
for f i

k in F i do
f i

k = akx0 + bk

end for
end for
R = ;
for 1 � i � d do

for 1 � j � d+ 1� i do
for (f i

k, f
j
l) 2 F i � F j do

R R [fakbl + albkg . Resultants
end for

end for
end for
for 1 � i � (d+ 1)/2 do

for f i
k 2 F i do

R R [fbk(ak + 1)g . Coefficient constraints
end for

end for
Return R

2. In the approach of [24] its only needed to compute syzygies on the ai�1
j terms, and these

have degree one less than the f i’s.

3. The approach is ”straight to the point” in the sense that we eliminate variables throughout
the algorithm, in contrast to first computing the full Gröbner basis and then doing the
elimination. We also avoid precise term orderings apart from the elimination order x0 >
x1 > . . ., and we eliminate one variable in each iteration, instead of only one monomial.

In [24], the non-trivial syzygies are also treated, but for computational purposes we avoid those
here. For more details we refer to [24]. The next fundamental tool used for elimination from [24],
is normalization.

2.3 Normalization

The purpose of normalization is to eliminate many monomials containing x0 from a given poly-
nomial, using a set of lower-degree polynomials depending on x0 as a basis. Suppose we have an
x0-elimination ordering. Let f i 2 F i

x0
be given, and let G�i

x0
= fg1, . . . , gsg be a set of polynomials

where each gj depend on x0. In general we say that f i is normalized with respect to Gx0
if no

term in f i is divisible by any leading term of the polynomials in Gx0 , and we write f i;norm when
we need to stress that f i is normalized (with respect to some basis).

Without restriction on the degree, it is easy to create f i;norm from f i and Gx0
. Simply run

through the polynomials in Gx0
and check if some monomial mf in f i is divisible by an initial term

of some gj 2 Gx0
. If mf = q � in(gj), eliminate mf by adding qgj to f i. Doing this successively

for all polynomials in Gx0
will produce f i;norm.

Since we need to restrict the degree of the polynomials we work with to be at most d, extra
care has to be taken. The leading term in(gj) of some gj may not be of the highest degree among
the monomials in gj , for instance if gj = x0x3 +x1x3x4. When this happens we can only eliminate

6

the mf in f i where deg(q) + deg(gj) � d, since we forbid introducing terms of degree larger than
d. We therefore give the following definition of what normalization means in this paper.

De�nition 1. Let f i 2 F i
x0

and d � i be given, and let Gx0
be a set of polynomials all depending

on x0 with an x0-elimination ordering. We say that f i is normalized with respect to Gx0
if no

term mf in f i can be written as mf = q � in(g) for any g 2 Gx0
where deg(q) + deg(g) � d. When

writing F i;norm for a set of polynomials we mean that every polynomial in F i is normalized with
respect to Gx0 , and that all the polynomials have distinct initial terms.

In our algorithm we combine normalization and Gaussian reduction to get polynomials with
distinct initial terms. We start with F 2

x0
and perform Gaussian reduction. Denote the new set of

polynomials F 2;norm
x0

. The general procedure for normalizing all of F is as follows.

Normalize(F i
x0

)

1. The polynomials of F i
x0

are put into the rows of a Macaulay matrix. Perform SplitVariable(F i
x0
, x0)

to get new set F i
x0

where the x0-part is in row-reduced echelon form. If there are polynomials
without x0-terms, put these into F i

x0
.

2. For each f i in F i
x0

normalize it with respect to [i�1
j=2F

j;norm
x0

.

3. Again perform SplitV ariable(F i
x0
, x0) to get the x0-part in row-reduced echelon form. The

polynomials containing x0 form the set F i;norm
x0

. If any polynomials do not contain x0, then
add these polynomials to the set F i

x0
.

The output of the normalization procedure will be the two sets F i;norm
x0

and F i
x0

.

2.4 An algorithm for solving systems of Boolean equations [25]

In [25] it is studied how to solve Boolean equation systems by eliminating variables, building on
the work in [24]. It is shown that for systems not containing any cross-terms between variables
being eliminated, the solution space of new equation systems produced stays intact if we allow
increasing the degree by one for every variable eliminated. This insight allows to set bounds on the
number of monomials occurring in the systems as they evolve, and gives an accurate estimate on
how many variables that need to be eliminated before the system can be solved by re-linearization.
We note that it is also shown that if we allow the degree to run freely, the maximal degree of the
polynomials when running the algorithm is upper bounded by n/2.

The estimate in [25] gives a surprisingly low number of needed elimination before a system
can be solved. The complexity depends on how much the initial system is overdetermined, and
decreases with the degree of overdeterminedness. This is also verified experimentally, although
only for relatively small values of n.

3 Dynamical elimination algorithms

In this section we develop a ”dynamical” elimination algorithm to be applied on systems of Boolean
equations describing block ciphers, based on the algorithms and ideas from [24, 25]. Dynamical
elimination in this setting means that we restrict the degree of the polynomials when eliminating
variables, and only allow the degree to grow after a number of eliminations have already occurred.
We select an initial degree bound d, and discard polynomials of degree > d that arise during
each elimination. Thus, at some point we obtain an ideal Jd that is only contained in the true
elimination ideal J1 = I(F) \ B[xj , . . . , xn�1]: That is, Z(Jd) of the eliminated system contains
all the projected solutions of the original set of equations, in addition to “false” solutions which will
not fit the ideal I(F) when lifted back to Fn

2 , regardless of which values we assign to the eliminated
variables.

7

Hence, we need a device that can help us to detect when this expansion in solution space
happens. In Section 4 we introduce the information theoretic concept of information measure and
information loss, which is a tool used for detecting false solutions. The idea of the hybrid algorithm
is to eliminate variables respecting the degree limit, until some given point, and then increase the
degree in order to keep more information about the solutions in the system. Several strategies for
when to increase the degree bound can be envisioned, and in Section 5 we try out several of them
and see how they differ.

3.1 The main elimination algorithm

Restricting the degrees means that the objective of the algorithm is to find as many polynomials
in the ideal I(F) generated by F d, F d�1, . . . , F 2 as possible computing only with polynomials of
degrees � d. The overall goal and benefit of this algorithm is the limiting of both storage and
computational complexity, and following the ideas from [24, 25] the goal is to find more efficient
ways of computing the vector space

hF d [L1F d�1 [L2F d�2 [� � � [Ld�2F 2i \ B[xk, . . . , xn�1].

The ideas and algorithms from [24] iteratively eliminate one variable at the time. However,
when considering higher degree polynomials, one has to take the non-trivial syzygies into account.
For simplicity and avoiding these difficulties, the algorithm proposed in this paper is a subversion
of the setup from [24], not containing the extra component of computing non-trivial syzygies. This
means that the algorithm referred to as eliminate(), is designed for eliminating variables from
a system of Boolean equations by only considering the syzygies corresponding to resultants and
coefficient constraints, along with normalization.

The main reason for proposing a subversion of the setup in [24] is that when performing exper-
iments, we experienced that the simplified algorithm performed well and rarely needed to compute
resultants and coefficient constraints. Based on this, we believe that the non-trivial syzygies also
occur rarely, and the reason lies in the normalization, which seems to remove most monomials con-
taining the variable to be eliminated. We therefore believe that our implementation is quite close
to h[d

j=1L
d�jF ji\B[xk, . . . , xn�1], despite the fact that the algorithm theoretically only produces

a subset of h[d
j=1L

d�jF ji \B[k + 1, n]. More precisely, eliminate() is explained as follows:

1. We start by using SplitVariable(F, x0) to divide each of the sets F d�1, . . . , F 2, F 1 into subsets
F d�1

x0
, . . . , F 2

x0
, F 1

x0
containing x0 and F d�1

x0
, . . . , F 2

x0
, F 1

x0
not containing x0. This is performed

by putting the polynomials of F into the rows of the Macaulay matrix M(F) and doing Gauss
elimination on terms depending on x0.

2. We increase the input by adding for each i = 1, 2, . . . , d� 1, the sets x0F
i�1
x0

, (x0 + 1)F i�1
x0

to

F i. Note that we multiply each set F i�1 with only one variable (x0, to be eliminated), and
avoid multiplying with all of L�i�1. The reason for this multiplication is to generate more
polynomials of degree i, see [24].

3. For the new increased sets F d, F d�1, . . . , F 3, F 2, F 1, we split each of them into F i
x0

containing
x0 and F i

x0
not containing x0, again by using SplitVariable(F i, x0).

4. For each i = 2, . . . , d we normalize each f i in F i
x0

, Normalize(F i
x0

) with respect to [i�1
j=2F

j;norm
x0

.
Normalizing removes many monomials containing x0 from F . We note that this will impose
a chain reaction, removing monomials in an iterative manner from the sets F i

x0
as i increases.

Again perform SplitV ariable(F i
x0
, x0) to get the x0-part in row-reduced echelon form. The

polynomials containing x0 form the set F i;norm
x0

. If any polynomials do not contain x0, then
add these polynomialst to the set F i

x0
.

8

5. From the current sets F i;norm
x0

we compute resultants and coefficient constraints, potentially
producing more polynomials without x0. We create sets R of polynomials in B[x1, . . . , xn�1]
by using Algorithm 1 satisfying the degree constraint � d. This produces as many polyno-
mials without x0 as possible for each degree � d. All of these are added to the sets F i

x0
, and

we remove any linearly dependent polynomials in F i
x0

before returning.

The new sets F d
x0
, F d�1

x0
, . . . , F 2

x0
, F 1

x0
are returned from eliminate(), as described in Algorithm

2. Note that when F 1 = ; (as is normally the case), the lowest set of equations considered would
be F 2.

Algorithm 2 eliminate(F d, F d�1, . . . , F 2, F 1, x0)

In: Sets F d, F d�1, . . . , F 2, F 1, where each F i = (f i
1i
, . . . , f i

mi
) is a set of polynomials of degree i

in B[x0, . . . , xn�1] for 1 � i � d and x0 the variable to be eliminated
Out: Sets F d

x0
, F d�1

x0
, . . . , F 2

x0
, F 1

x0
of polynomials where x0 62 [d

i=1F
i
x0

for 1 � i < d do
F i�1

x0
, F i�1

x0
 SplitV ariable(F i�1, x0) . f i�1

j 2 F i�1
x0

will have unique leading monomials
containing x0

F i (x0 + 1)F i�1
x0
[x0F i�1

x0
[F i

F i
x0
, F i

x0
 SplitV ariable(F i, x0)

F i
x0
, F i;norm

x0
 Normalize(F i

x0
) with respect to [i�1

j=1F
j
x0

F i
x0
 ResAndCo([i�1

j=1F
j;norm
x0

, x0) [F i
x0

end for
Return F d

x0
, F d�1

x0
, . . . , F 2

x0
, F 1

x0

3.2 Extensions of the elimination algorithm

We briefly explain how the general elimination algorithm can be improved by adding the following
procedure:

It happens that the vector space h[d
i=2L

�d�iF ii contains more linearly independent polynomials
in each respective degree � d� 1, beyond the ones found initially in each of the sets F d�1, . . . , F 2.
Hence we may search for new polynomials of degree � d�1, and exploit those also for elimination.
This can be done in an iterative way by ordering the monomials according to degree. Formally,
the procedure may be performed as follows.

Let F i;(1) = F i and assume that the sets F j for j < i are already as large as possible. We then
compute

hF i;(2)i = h[Ld�iF i;(1) [([i�1
j=1L

d�jF j)i \ B[x1, . . . , xn�1].

If now hF i;(2)i is strictly larger than hF i;(1)i, we continue to compute the intersections

hF i;(k+1)i = h[Ld�iF i;(k) [([i�1
j=1L

d�jF j)i \ B[x1, . . . , xn�1],

until it stabilizes, and we get hF i;(k+1)i = hF i;(k)i for some k � 1.
Following this procedure we can create more polynomials of allowed degree than just by multi-

plying monomials on the initial system once. This procedure allows us to work with polynomials
that would be discarded because of the degree restriction if they were generated in the first multi-
plication process: After a Gaussian elimination with respect to degree produces new lower-degree
polynomials, we can multiply those with a new set of monomials and still remain within the degree
d. These new polynomials can not be reached after one run of multiplication of monomials on the

9

initial system, without violating the degree bound. This procedure can easily be implemented in
eliminate(), by adding a while-loop searching for lower degree polynomials when normalizing. The
reason for implementing the search for additional low degree polynomials in this way is the fact
that it may increase the number of low degree polynomials in the basis for normalization, and thus
improve the normalization procedure. In Section 5 we perform experiments with this improved
version of the algorithm.

4 Information measure and information loss

The aim of this section is to connect the problem of solving systems of equations representing block
ciphers to information theoretical aspects. In the setting of information theory, we can associate
the information that F 2 contains in terms of the number of solutions of the system.

Let X be a discrete random variable that takes values v1, . . . , vM with probabilities pi = P (X =
vi), i = 1, . . . ,M . The (binary) entropy of X is defined as

H(X) = �
MX

i=1

pi log2 pi. (2)

If X is uniformly distributed, i.e. pi = 1/M, i = 1, . . . ,M , then H(X) = log2M . Given X and
another random variable Y that assumes values y1, . . . , yM ′ , the conditional entropy of X given
that we observe that Y takes a specific value y is

H(XjY = y) = �
MX

i=1

P (X = xijY = y) log2 P (X = xijY = y), (3)

and the information that we get about X by observing Y = y is H(X)�H(XjY = y).
The application of the concept of entropy in the context of solving systems of equations can

then be described as follows.

1. General equation system: We wish to recover a solution e = (e1, . . . , en) 2 Z(F 2). We
assume that the solution e is drawn uniformly from the space of all solutions Fn

2 . Then it
follows that the entropy of the solution before working on the system is H(e) = n. The
system F 2 that e must satisfy will reduce the entropy of e since not all possible solutions
satisfy all equations in F 2. We can then think of F 2 as containing the information about
the solution e and define

i(F 2) = n� log2(jZ(F 2)j) (4)

For example, if F 2 has a unique solution we say that F 2 has n bits of information about the
solution, and if half of the points in the space Fn

2 satisfy the polynomials in F 2 we say the
system contains 1 bit of information.

2. Cipher equation system: When F 2 is constructed from a plaintext/ciphertext pair of a
particular block cipher, we are interested in finding the secret key, i.e. we are only interested
in finding the values for x0, . . . , xk�1 in a solution to the system. To be able to describe the
cipher in terms of quadratic equations, several auxiliary variables xk . . . , xn�1 are needed.
In this case F 2 contains n variables where n > k. If we fix a key and assign values to
x0, . . . , xk�1, the known plaintext will dictate the values for all remaining variables. In
this setting, the secret key is ”controlling” the whole system of equations and the auxiliary
variables are uniquely determined by the given plaintext pair along with the key, resulting
in a ciphertext that may or may not be equal to the given one.

For a given plaintext/ciphertext pair there will typically only be one or very few keys that fit
the system. For equation systems created from ciphers it therefore makes more sense to say

10

that initially we have k bits of entropy on the secret key, and that the system F 2 contains

i(F 2) = k � log2(Number of keys in Fk
2 that satisfy F 2), (5)

bits of information on the secret key.

We note that this definition of information does not tell us anything about how to solve a
system of equations. It only provides us with a measure of how much information about the secret
key, or a solution, a system contains.

4.1 Information loss

Algorithm 2 eliminates one variable from a set of polynomials and creates a new set of polynomials
not containing the eliminated variable. This is done without increasing the degree of the polyno-
mials in the new set to more than d. Let F0 = F 2, the initial system of equations. Repeatedly
eliminating one variable using Algorithm 2 leads to a sequence of polynomial sets

F0 ! F1 ! . . .! Fj ,

where Fj consists of polynomials in B[xj , . . . , xn�1].
In order to keep the degree bounded, we cannot compute the polynomials of too high degree

that otherwise should have been in the Fj ’s, from some index j and onwards. Omitting these
polynomials means that constraints given by some polynomials in Fj�1 are not present in Fj . In
terms of zero sets, we get the following chain of inclusions

Z(F0) � Z(F1) � . . . � Z(Fj).

This sequence is in line with information theory’s data processing lemma, that says that we can
not get more information from processing some input than the input initially had. In other words,
the sequence i(F0), i(F1), i(F2), . . . is strictly non-increasing, since we can only lose information
when we have to limit the degree in order to control the computational resources (complexity).
At some point we can expect the sequence to start decreasing, which means that we start to lose
information. In the case of systems created from a cipher this translates to having false keys as
solutions, keys that fit in some Fj without being part of a solution for F0.

If for some j the set Fj becomes empty, the whole space becomes the solution space and we
have lost all information (i(Fj) = 0) about the original equation system. In the case of systems
constructed from ciphers it is also possible to lose all information before Fj is empty. Even if there
are polynomials left in some Fj , it may happen that all assignments of x0, . . . , xk�1 will produce
assignments of the auxiliary variables that fit the system.

As noted above, the notion of information loss does not tell us anything about how to solve a
system of equations, it just enables us to detect when the degree restriction is too strict. If we can
find an efficient algorithm to compute the function i(F) for some arbitrary set of equations F , or
an estimate of the function, the result could be applied towards guiding the dynamic adjustment
of the degree bound in the elimination process. However, so far we do not know such an algorithm,
and formally we may assume that an oracle can provide the evaluation of i(F). We leave for future
research the problem of computing i(F) efficiently. For the purpose of testing the elimination
approach in Section 5, we implement the evaluation of i(F) by brute force.

5 Experimental results

We have implemented Algorithm 2 as the function eliminate() and done some experiments to see
how it performs in practice. We have used reduced versions of some ciphers specified below. We

11

combined our algorithm with the information measure and information loss from Section 4. One
expected finding that was confirmed by our experiments is that increasing the maximal allowed
degree helps in keeping information in the system longer. In this section we report on these
experiments.

5.1 Low degree polynomials in reduced LowMC cipher

LowMC is a family of block ciphers proposed by Martin Albrecht et al. [1]. The cipher family is
designed to minimize the number of AND-gates in the critical path of an encryption, while still
being secure. The cipher itself is a normal SPN network, with each round consisting of an S-box
layer, an affine transformation of the cipher block and addition with a round key. All round keys
are produced as affine transformations of the user-selected secret key.

Two features of the LowMC ciphers are interesting with respect to algebraic cryptanalysis.
First, the S-box used is as small as possible without having linear relations among the input and
output bits. LowMC uses a 3 � 3 S-box, where the ANF of each output bit only contains one
multiplication of input bits, making the three output polynomials of the S-box quadratic. We can
search for other quadratic relations in the six input/output variables, and we then find 14 linearly
independent quadratic polynomials.

Second, the S-boxes in one round do not cover the whole state, so a part of the cipher block is
not affected by the S-box layer. The number of S-boxes to use in each round is a parameter that
varies within the cipher family, and some variants are proposed with only one S-box per round.

The cipher parameters we have used for the reduced LowMC version of our experiments are:

� Block size: 24 bits

� Key size: 32 bits

� 1 S-box per round

� 12, 13 or 14 rounds

As will become clear below, the number of rounds is degree dependent when eliminate() is
successful in breaking the reduced cipher, and the degree is lower than anticipated.

5.1.1 Constructing equation system.

The attack is a known plaintext attack, where we assume we are given a plaintext/ciphertext pair
and the task is to find the unknown key. We use the 14 quadratic polynomials describing the S-box
as the base equations. The bits in the unknown key are assigned as the variables x0, . . . , x31, and
the output bits from each S-box used in the cipher are the variables x32, All other operations
in LowMC are linear, so the input and output bits of every S-box can be written as a linear
combination of the variables defined and the constants from the plaintext and ciphertext.

Inserting the actual linear combination for each input/output bit of the S-box in one round
will produce 14r equations in total, where r is the number of rounds. These equations describe a
complete LowMC encryption. The initial number of variables is 32 + 3r, but this can be reduced
by using the known ciphertext. The bits of the cipher block output from the last round are linear
combinations of variables. These linear combinations are set to be equal to the known ciphertext
bits, giving 24 linear equations that can be used to eliminate 24 variables by direct substitution.
After this the final number of variables is 8 + 3r. See Figure 1 for the equation setup.

5.1.2 Experimental results.

The goal of our experiment is to try to eliminate all the variables xi for i � 32, and find some
polynomials of degree at most 3, only in variables representing the unknown user-selected key. If
we are able to find at least one polynomial only in x0, . . . , x31 for one given plaintext/ciphertext

12

Figure 1: Setup of equation system representing reduced LowMC. All l(.)’s only indicate some
linear combination, and are not equal.

pair, we can repeat for other known plaintext/ciphertext pairs and build up a set of equations that
can be solved by re-linearization when the set has approximately

�
32
3

�
independent polynomials.

12 rounds: The system initially contains 44 variables and 168 quadratic equations.
We applied the eliminate() algorithm on the system, limiting the degree to d = 3. As the

algorithm proceeds, eliminating one variable at the time, the sizes of the output sets change. The
number of degree 3 polynomials grows at first before starting to decrease before the last variables
are eliminated. We note in particular that the size of the output was never above the 168 input
polynomials which means that the computational complexity is low. In the end, after eliminating
all the xi for i � 32 we where left with 9 cubic polynomials in only key variables x0, . . . , x31.

13 rounds: The initial system contains 47 variables and 182 quadratic equations.
When applying eliminate() algorithm on the system and limiting the degree to d = 3, we did

not find any cubic polynomials in only x0, . . . , x31 for any 13-round systems we tried. However, if
we increase the allowed degree to 4 after eliminating all but the two last variables, we found two
polynomials of degree 4 in only the key variables x0, . . . , x31. So we see that increasing the degree
at certain stages improves the result of the algorithm.

14 rounds: The initial system contains 50 variables and 196 quadratic equations.
When applying eliminate() algorithm on the system, and limiting the degree to either d = 3

or d = 4, we did not find any polynomials in only x0, . . . , x31 for any 14-round systems we tried.
However, if we applied eliminate() restricting the degree to d = 4 and then extended the degree to
5 after eliminating all but the last auxiliary variable x32, we found 102 polynomials of degree 5 in
only the key variables x0, . . . , x31. This verifies that the effect of extending the degree at certain
stages improves the result of the algorithm, and also improves the number of rounds we expect
can be attacked by our algorithm.

The above results can also be described in terms of information loss, since the information
measure function i(Fj) is strictly non-increasing for increasing j. This means that all information
is lost when we get the empty set of polynomials since i(;) = 0. In the cases studied above we
obtain some polynomials in only key variables, and our interpretation of this is that the resulting
system of equations contains information about the user selected key. However, because of the key
length of 32 bits we were not able to do the necessary exhaustive search to perform information
loss experiments on this cipher with the current tools available.

For the various systems we have repeated the experiments using different plaintext/ciphertext
pairs. Different independent polynomials were produced for different p/c-pairs, as expected. How-
ever, we also found that in the 12-round cases we looked at, much fewer than

�
32
3

�
polynomials were

13

Figure 2: Cipher variant with 3 S-boxes per round

needed in order to solve for the unknown key. After collecting polynomials from approximately 20
different p/c-pairs, Gauss elimination on the resulting set started to produce linear polynomials in
the key bits. We also verified that the true key actually satisfied this polynomial set.

5.2 Small scale ciphers with LowMC S-box

Next we defined some small block ciphers and constructed equation systems representing the ciphers
with some given plaintext/ciphertext pairs. The ciphers were made as ordinary SPN networks,
based on the 3� 3 S-box found in LowMC [1] and linear transformations of the whole block. See
Figure 2 for details of one variant with 3 S-boxes per round and four rounds, including the labelling
of variables.

We have run experiments on 3-, 4- and 5-round variants of this cipher, with 3 or 4 S-boxes per
round for testing the performance of eliminate() together with measurements of the information
loss on the key. When running eliminate(), we did two types of experiments in order to get a
better comparison of the results:

1. The first type of experiments we limit the degree first to d = 3, then right before eliminations
where we know information loss occurs we extend the degree to d = 4 and so on. That is,
we try to keep the degree low for as long as possible.

2. In the second type of experiments we set the maximal allowed degree in the polynomials
during elimination be d = 3 or d = 4 from the start and never change it, and measure the
information loss.

5.2.1 3, 4 and 5 rounds with 9-bit key

These cipher variants consists of 27, 36 and 45 variables together with 126, 168 and 210 quadratic
polynomials for the 3, 4 and 5 round versions, respectively. Here x0, . . . , x8 represent the unknown
key. When the other variables were eliminated we measured how quickly the information on the
key-variables were lost in the resulting systems. All these experiments are of type 1. Figures 3a
and 3b show the results for 3 and 4 rounds, and Figure 4a shows the results for 5 rounds.

As can be seen in Figures 3 and 4a, all information is kept in the systems for many eliminations.
For the case d = 3, all information gets lost while eliminating the eleventh to fifteenth variables.
When we increase the allowed degree to d = 4 or d = 5 at the point where we start to lose
information, we see that no information is lost in the 3-round case and that some, but not all,
information gets lost in the 4-round case. For the 5-round case all information is eventually lost,
even when increasing to d = 5.

14

(a) Information loss for 3-round system (b) Information loss for 4-round system

Figure 3: Information loss with 9-bit key. Degree only increased when information loss is about to
occur.

(a) 9-bit key. (b) 12-bit key.

Figure 4: Information loss for 5-round systems. Degree only increased when information loss is
about to occur.

15

(a) Information loss for 4-round system. (b) Information loss for 5-round system.

Figure 5: Information loss with d = 3 and d = 4 from start

(a) Information loss for 3-round system. (b) Information loss for 4-round system.

Figure 6: Information loss with 12-bit key. Degree only increased when information loss is about
to occur.

We also did experiments of type 2, and measured how quickly the information on the key-
variables are lost in the resulting systems when we start with d = 4 and keep the degree bound
fixed throughout. These information plots are shown in Figure 5. We observe that information is
kept longer than for d = 4 in Figures 3b and 4a.

We note a few observations from this. First, increasing the degree certainly helps in keeping
the information in the systems longer. Secondly, increasing the degree bound earlier also helps
in keeping the information in a system longer. Finally, there is a degree bound for which no
information is lost even when eliminating all auxiliary variables. These plots are the ones shown
as straight lines. This indicates there exists some degree bound allowing all auxiliary variables
in a system to be safely eliminated, without losing any information. In all cases where we have
some information left after eliminating all auxiliary variables, we can break the associated cipher
by collecting more polynomials in only key variables using other plaintext/ciphertext pairs.

5.2.2 3, 4 and 5 rounds with 12-bit key

These cipher variants consists of 36, 48 and 60 variables together with 168, 224 and 280 quadratic
polynomials for the 3-, 4- and 5-round versions, respectively. Here the 12 variables x0, . . . , x11 are
the unknown key. We did the same experiments as in the case for 9-bit keys, measuring when and
how quickly information on the key-variables are lost in the resulting systems.

Figures 6 and 4b show the results for Experiment 1 for 3, 4 and 5 rounds, respectively. Figure 7
shows how the information on key-variables are lost in Experiment 2 during elimination for degree
bounds d = 3 and d = 4.

We see the same pattern as in the 9-bit key case. Increasing the allowed degree has a significant

16

(a) Information loss for 4-round system. (b) Information loss for 5-round system.

Figure 7: Information loss with d = 3 and d = 4 from start.

Figure 8: Setup of equation system representing 4-round toy cipher. All l(.)’s and l0(.)’s indicate
some linear combination of variables.

impact on keeping information in the systems longer, but more rounds make it harder to eliminate
all variables without losing all information on the key. We also see in these experiments that it
matters exactly when we increase the allowed degree to d = 4. Having the allowed degree set to 4
from the beginning keeps information in the systems longer than if we increase the degree bound
to d = 4 right before d = 3 starts to lose information.

5.3 Toy cipher based on PRINCE

For these experiments we made a small 4-round toy cipher for testing, where we have increased
the size of the S-box. The toy cipher has a 16-bit block and a 16-bit key, and is built as a normal
SPN network. Each round consists of an S-box layer with four 4 � 4 S-boxes (the same S-box as
used in PRINCE), followed by a linear transformation and a key addition. The same key is used
in every round, and the equation system representing the toy cipher is constructed similarly to
the reduced LowMC systems. Each output bit of the PRINCE S-box has degree 3 when written
as a polynomial of the input bits, but there exist 21 quadratic relations in input/output variables
describing the S-box. The number of quadratic equations in the 4-round toy cipher is therefore
336, in 64 variables, where x0, . . . , x15 represent the secret key. See Figure 8 for the setup of the
equations.

We have run experiments on this cipher with two different plaintext/ciphertext pairs. For the
first p/c-pair there are 3 distinct keys that fit the initial system, and for the second there is 1
unique key that fits the initial system. Because of computational restrictions, we limit ourselves to

17

