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Abstract

Recent works on distributed garbling have provided highly efficient solutions for constant-round
MPC protocols tolerating an arbitrary number of malicious corruptions. In this work, we improve upon
state-of-the-art protocols in this paradigm for further performance gain.

We improve the protocol for generating authenticated AND triples, which plays a crucial role in
many recent works.
– We propose a multi-party authenticated bit protocol from bare IKNP OT extension, allowing us to

1) reduce the communication by ≈ 24% with a small harmless leakage, and 2) eliminate many
computation-heavy procedures like bit-matrix multiplications and consistency checks. This improve-
ment also applies to the two-party setting.

– We reduce the cost of consistency check for multi-party authenticated shares by ρ times where ρ is
the statistical security parameter, and also cut the number of hash function calls per party by a factor
of 2× when computing leaky authenticated AND triples.

We further improve the state-of-the-art multi-party authenticated garbling protocol.
– We take the first step towards applying half-gates in the multi-party setting, which enables us to reduce

the size of garbled tables by 2κ bits per AND gate per garbler, where κ is the computational security
parameter. This optimization is also applicable in the semi-honest multi-party setting.

– We further reduce the size of garbled tables by about 4ρ bits per AND gate, by using an almost
universal hash function to perform the circuit authentication in a batch. Prior solution with similar
efficiency is only applicable in the two-party setting.

Along with other optimization, we reduce the communication complexity of the whole protocol (in-
cluding both function-independent and function-dependent preprocessing phases that require the most
resources) by ≈ 24% and significantly improve the overall computational efficiency.

1 Introduction

Secure multi-party computation (MPC) protocols [Yao86, GMW87] allow a set of parties with private inputs
to compute a joint function without revealing anything more than the output of the function. A variety
of adversarial models have been considered regarding the adversarial behaviors, the threshold of corrupt
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parties, etc. In this paper, we focus on statically secure MPC protocols tolerating an arbitrary number of
corruptions in the presence of malicious adversaries.

Distributed garbling [BMR90, DI05] allows a set of parties to jointly generate a garbled circuit in a
distributed manner. It is a core tool to construct constant-round MPC protocols. Recent advances on dis-
tributed garbling have led to a set of efficient protocols [CKMZ14, LPSY15, LSS16, WRK17a, WRK17b,
HSS17, HIV17, KRRW18, ZCSH18] for constant-round MPC tolerating an arbitrary number of malicious
corruptions. For example, Wang et al. [WRK17b] demonstrated an implementation that can securely com-
pute AES-128 among 32 parties in about one second, something unimaginable a few years ago. As a brief
overview, these protocols all follow a similar paradigm consisting of three phases:

1. Function-independent phase (Ind.): The parties need not know the function to be evaluated or their
inputs, besides an upper bound on the number of gates.

In many state-of-the-art protocols, the primary job of this phase is to generate random multi-party au-
thenticated AND triples (to be discussed later). It requires the most computation and communication
resources.

2. Function-dependent phase (Dep.): The parties now know the function being computed, but need not
know their inputs.

This phase usually involves generating a multi-party garbled circuit, which may be either asymmet-
ric [WRK17b] or symmetric [HSS17] depending on the number of parties who can evaluate the garbled
circuit.

3. Online phase: The parties evaluate the function on their inputs.

Although this paradigm has significantly improved the efficiency of constant-round maliciously secure MPC
protocols, we find that inefficiencies still exist in many key building blocks that, if optimized, can potentially
lead to huge improvements. See below.

1. The communication overhead to obtain malicious security is still high. For example, the best-known
constant-round maliciously secure two-party computation (2PC) protocol [KRRW18] still requires send-
ing ≈ 310 bytes per gate, even with amortization. This is about 10× more communication than the best
semi-honest garbled-circuit protocol [ZRE15] sending only about 32 bytes per gate.

2. The computational overhead of existing maliciously secure protocols is surprisingly higher than com-
monly thought. For example, the most efficient implementation [WRK17a] for 2PC can generate about
833K authenticated AND triples per second under the 10 Gbps bandwidth network and a 36-core CPU.
However, if the network was fully used, we would expect at least 4, 250K authenticated AND triples to
be generated per second,1 which is a 5× performance gap due to high computation cost!

The problem is more prominent in the multi-party setting, where additional checks for consistency need
to be performed between all pairs of the parties. For example, with eight parties, the implementation from
Wang et al. [WRK17b], which was benchmarked using the same hardware as above, can compute about
68K multi-party authenticated AND triples per second. The speed would be 510K authenticated AND
triples per second, if the 10 Gbps bandwidth network was fully utilized, a performance gap of 7.5×.

One of the goals of this work is to figure out the source of these inefficiencies and to fix them with
enhanced protocols. See Section 2 for our observation and analysis.
1Since every authenticated AND triple in their protocol takes ≈ 294 bytes of communication, 10 Gbps bandwidth can support

around 4.25× 106 triples.
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These computation and communication overhead become increasingly prominent as the need of malicious
security emerges in real life. However, as numerous prior works have extensively studied approaches to op-
timize this paradigm recently [WRK17a, WRK17b, HSS17, HIV17, KRRW18, ZCSH18], any improvement
requires novel insights and careful analysis of the protocol.

1.1 Our Contributions

In this paper, we present a set of improvements to the authenticated garbling paradigm for constant-round
multi-party computation in the malicious setting, tolerating an arbitrary number of corruptions. To fully
explore potential improvements, we start from the most basic building blocks, even within the protocols for
maliciously secure OT extension. We summarize our contribution below and provide an intuition of our
ideas in Section 2.

First, we design a new authenticated AND triple (aAND) protocol from scratch with improved effi-
ciency. Our improvements can be directly applied right out of the box to many MPC protocols that need
authenticated bits/shares/AND triples [WRK17a, WRK17b, HSS17, KRRW18, ZCSH18, RW19, AOR+19,
DEF+19]. In detail, we improve three key components in the protocol.

– Improved multi-party authenticated bit. The state-of-the-art protocol [NST17] for each authenticated
bit (aBit) requires (κ+ ρ)-bit communication and a high computational cost due to the use of bit-matrix
multiplication and multiple consistency checks for malicious security and input consistency. As an evi-
dence, two-party authenticated bit is about 3× slower than ordinary maliciously secure OT extension even
when running locally [Rin].

We propose a new multi-party authenticated bit protocol directly based on the IKNP OT extension [IKNP03]
with a small harmless leakage. Our new protocol reduces the communication per aBit from (κ+ ρ) bits
to κ bits and eliminates all sources of slowdown mentioned above. See Section 2.1 for more elaboration.

– Improved multi-party authenticated share. Multi-party authenticated share (aShare) is another key
building block towards aAND (See Section 2.2). The previous protocol [WRK17b] for multi-party au-
thenticated shares needs to repeat a checking procedure by ρ times, to boost the soundness error from 1/2
to 1/2ρ. We propose an improved checking procedure based on the re-randomization idea by Hazay et
al. [HSS17] where a single check is sufficient.

– Improved multi-party leaky AND triple. Leaky authenticated AND triple (LaAND) is yet another
important building block towards fully secure AND triples. We reduce the number of hash function calls
by a factor of 2× when computing leaky AND triples and show that the security preserves even given the
leakage introduced in aBit as above. See Section 2.3 for more details.

By applying the above optimizations, we can reduce the communication cost of authenticated AND triple
generation by ≈ 24% when ρ = 40 (≈ 28% if ρ = 64), where this cost dominates the communication cost
of the whole MPC protocol. The computational cost is also improved significantly.

Our next bundle of optimizations are specific to the WRK multi-party authenticated garbling proto-
col [WRK17b] with an emphasize on the function-dependent phase and the online phase.

– Towards multi-party half-gates. Although it is known how to distributively compute half-gates scheme
in the two-party setting [KRRW18], multi-party setting is completely open. We partially apply the idea
of half-gates [ZRE15] in the multi-party setting and reduce the size of garbled tables from each garbler
by 2κ bits per AND gate. Our technique here is also applicable in the semi-honest setting [BLO16]. See
Section 2.4 for a high-level description.

– Improved circuit authentication. Katz et al. [KRRW18] proposed an efficient way to authenticate dis-
tributed garbled circuits by using amortized MAC checks. However, it does not directly apply to settings
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with more than two parties. To obtain similar efficiency in the multi-party setting, we design a new batch
circuit authentication procedure based on almost universal linear hash functions [CDD+16]. The result-
ing solution improves the communication from 4ρ bits to 1 bit per AND gate. See Section 2.5 for more
discussion.

– Other optimization. We also reduce the cost of input processing by a factor of n, where n is the number
of parties.

As a result, for example in the three-party setting, our optimizations result in more than 1.5× improvement
in communication for function-dependent phase.

1.2 Organization

In Section 2, we introduce important concepts and building blocks needed for our main constructions. We
also present the intuitions about how our improvements work. Then in Section 3 and Section 4, we describe
in detail the improved protocol for authenticated AND triples and the improved multi-party authenticated
garbling protocol, respectively. Finally, in Section 5, we discuss the concrete efficiency gain of the protocol.
We defer basic concepts and some protocols/proofs to Appendix.

2 Background and Technical Overview

In this section, we introduce some background information on the state-of-the-art protocols for authenticated
AND triples and authenticated garbling. Alongside, we also provide high-level ideas on how our work
improves these protocols. We describe in Section A more commonly known preliminaries, including the
communication model that our protocols work, two useful functionalities FCom and FRand for commitments
and coin-tossing respectively, almost universal linear hash functions, and the amortized opening procedure
of authenticated bits/shares.

Notation. Throughout this paper, we use κ and ρ to denote the computational and statistical security param-
eters respectively. We use := to denote assignment, and a ← A to denote sampling a uniformly at random
from a set A. We will use [n] to denote the set {1, . . . , n}. For a bit-string x, we use lsb(x) to denote the
least significant bit of x, and x[k] to denote the k-th bit of x. Sometimes, we view bit-strings in {0, 1}k as
vectors in Fk2 and vice versa, and denote exclusive-or by “⊕” or “+”. We denote by x ∈ Fk2 a vector, and
by 0 ∈ Fk2 a zero vector. By x[k], we denote the k-th component of vector x. We also view vectors in Fk2 as
elements in F2k , and vice versa. We will use a hash function H : {0, 1}∗ → {0, 1}κ modeled as a random
oracle.

A boolean circuit C is represented as a list of gates of the form (α, β, γ, T ), which denotes a gate with
input wires indices α and β, output wire index γ and gate type T ∈ {⊕,∧}. By |C|, we denote the number of
AND gates for a circuit C. We denote by P1, . . . , Pn the parties. We use Ii to denote the set of circuit-input
wire indices with the input from party Pi,W to denote the set of output wire indices for all AND gates, and
Oi to denote the set of circuit-output wire indices associated with the output of Pi. Without loss of generality,
we assume that the input and output of all parties have the same length, i.e., |I1| = · · · = |In| = |I| and
|O1| = · · · = |On| = |O|.

In this paper, we consider a static, malicious adversary who can corrupt up to n − 1 out of n parties.
We use M ⊂ [n] to denote the set of all corrupt parties, and H = [n]\M to denote the set of all honest
parties. All our protocols allow abort, and are provably secure in the stand-alone simulation-based security
model [Gol04].
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2.1 Multi-Party Authenticated Bits

Authenticated bits (or equivalently information-theoretic MACs) were firstly proposed for maliciously se-
cure two-party computation by Nielsen et al. [NNOB12], and can also be extended to the multi-party set-
ting [BDOZ11, LOS14]. Every party Pi holds a uniform global key ∆i ∈ {0, 1}κ. We say that a party Pi
holds a bit x ∈ {0, 1} authenticated by Pj , if Pj holds a random local key Kj [x] ∈ {0, 1}κ and Pi holds
the MAC Mj [x] = Kj [x] ⊕ x∆j . We write [x]ji = (x,Mj [x],Kj [x]) to represent a two-party authenti-
cated bit where x is known to Pi and authenticated to only one party Pj . In the multi-party setting, we let
[x]i = (x, {Mj [x]}j 6=i, {Kj [x]}j 6=i) denote a multi-party authenticated bit, where the bit x is known by Pi
and authenticated to all other parties. In more detail, Pi holds (x, {Mj [x]}j 6=i), and Pj holds Kj [x] for j 6= i.

We note that [x]i is XOR-homomorphic. That is, for two authenticated bits [x]i and [y]i held by Pi, it
is possible to locally compute an authenticated bit [z]i with z = x ⊕ y by each party locally XOR their
respective values. That is, Pi computes z := x ⊕ y and {Mj [z] := Mj [x] ⊕ Mj [y]}j 6=i; Pj computes
Kj [z] := Kj [x] ⊕ Kj [y] for each j 6= i. We use [z]i := [x]i ⊕ [y]i to denote the above operation. As such,
[x]ji is also XOR-homomorphic.

With a slight abuse of the notation, we can also authenticate a constant bit b: Pi sets {Mj [b] := 0}j 6=i;
Pj sets Kj [b] := b∆j for each j 6= i. Similarly, let [b]i = (b, {Mj [b]}j 6=i, {Kj [b]}j 6=i). Now we can write
[x]i ⊕ b = [x]i ⊕ [b]i, and let b[x]i be equal to [0]i if b = 0 and [x]i otherwise.

The above representation assumes that Pi uses a single global key ∆i. When other global key Φi is
used, we will explicitly add a subscript to the representation. That is, we will use Ki[x]Φi and Mi[x]Φi =
Ki[x]Φi ⊕ xΦi to denote the local key and MAC respectively in this case.

Prior solution. Prior solution for multi-party authenticated bits is very complicated, involving the following
steps to generate a bit known by Pi and authenticated to all other parties:

1. First, using the maliciously secure KOS OT extension [KOS15], Pi computes random correlated strings
with Pj , e.g., Mj [x] and Kj [x] such that Mj [x] ⊕ Kj [x] = x∆j . This includes an IKNP OT exten-
sion [IKNP03] followed by a KOS correlation check [KOS15] for consistency. The correlation check is
leaky in which it allows the adversary to guess a few bits of Pj’s global key ∆j .

2. To establish two-party authenticated bits between two parties, Nielsen et al. [NST17] proposed a way to
eliminate the above leakage. We can execute the first step to obtain random correlated strings of length
(κ + ρ) bits. Then, we can use a random bit matrix to compress the bit string to κ bits and at the same
time eliminate the leakage.

3. To generate multi-party authenticated bits for Pi, we can execute the above two steps between Pi and each
other party, where the KOS correlation check and bit-matrix multiplication compression are executed
n− 1 times for each authenticated bit.

4. The above procedure for multi-party authenticated bits is not fully secure, as a malicious Pi may use
inconsistent bits when executing the two-party authenticated bit protocol with different parties. Wang et
al. [WRK17a] designed an extra consistency check that allows honest parties to catch such inconsistent
behavior with probability 1/2. The check needs to be repeated by ρ times to ensure a cheating probability
of 1/2ρ.

In practice, the above steps are very costly in computation. Different layers of consistency checks and com-
pression cause heavy computation and require the data to flow through the CPU cache back and forth. The
computation of bit-matrix multiplication is particularly expensive, even after carefully optimized. For ex-
ample, libOTe [Rin] shows that two-party authenticated bit is about 3× slower than the ordinary maliciously
secure OT extension even when running on the same machine.
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Our solution. Towards improving the efficiency of the above protocol, we make the following crucial
observations:

1. The leakage caused by the KOS correlation check in the first step is harmless in our setting because, intu-
itively, the resulting correlated strings will be used either for authentication or for constructing distributed
garbled circuits, where learning all bits of a global key is required to break the security. In particular,
an adversary can guess a few bits of honest parties’ global keys but get caught if any guess is incorrect.
Therefore, the probability that the protocol does not abort and the adversary learns the whole global key
is bounded by maxc{2−c × 2−(κ−c)} = 2−κ, which is the same with the case without such leakage.

2. The two consistency checks are of similar goals and thus one may already achieve the goal of the other.
In detail, both checks aim to ensure that a malicious receiver uses consistent choice bits: the first KOS
consistency check is to ensure that a unique choice-bit vector is used among all columns of the extension
matrix within one execution between two parties such that the unique choice-bit vector can be extracted
by the simulator; while the second multi-party check is to ensure that a consistent choice-bit vector is
used across two or more executions between multiple parties.

As a result, we propose an improved multi-party authenticated bit protocol that allows the adversary to guess
a small number of bits of the global keys of honest parties with the risk of being caught if any guess is wrong.
The protocol consists of only two steps: 1) Pi executes the IKNP OT extension protocol [IKNP03] with
every party Pj for j 6= i; 2) All parties jointly execute a single check that serves both purposes of correlation
check and consistency check in the prior work. The check works similarly with the KOS correlation check,
except that it is done jointly by all parties in a batch.

Compared with prior solutions, we improve the communication overhead and computation cost per
authenticated bit as follows: 1) reduce the communication from κ + ρ bits to κ bits; 2) reduce the number
of base OTs between each pair of parties from κ+ ρ to κ; 3) eliminate the need of bit-matrix multiplication,
as well as the multi-party consistency check. The detailed protocol and proof of security can be found in
Section 3.1.

2.2 Multi-Party Authenticated Shares

In most cases, authenticating a bit known to one party is not sufficient. We would like a way to authenticate
a bit unknown to all parties, which can be done by secret sharing together with authenticating each share.
In detail, to generate an authenticated secret bit x, we generate XOR shares of x (i.e., shares {xi}ni=1 such
that

⊕n
i=1 x

i = x), and then ask every party to authenticate to every other parties about their shares. We use
〈x〉 =

(
[x1]1, . . . [x

n]n
)

to denote an authenticated share of bit x, i.e., 〈x〉 means that every party Pi holds(
xi, {Mj [x

i],Ki[x
j ]}j 6=i

)
. It is straightforward to see that authenticated shares are also XOR-homomorphic.

For a constant bit b ∈ {0, 1}, we let 〈x〉 ⊕ b =
(
[x1]1 ⊕ b, [x2]2, . . . , [x

n]n
)
, and define b〈x〉 to be equal to

〈0〉 = ([0]1, . . . , [0]n) if b = 0 and 〈x〉 otherwise.

Prior solution. In prior works, authenticated shares are constructed by letting each party execute the au-
thenticated bit protocol with their only shares of the secret bit. However, since every party participates in
multiple authentication process, it is possible that a malicious party uses different global keys in multiple
executions of the authenticated bit protocol with different parties, and thus causes the inconsistency. In
WRK [WRK17b], they proposed a protocol to check the consistency of global keys by making use of the
XOR-homomorphic property of authenticated bits. Their checking protocol requires each party to compute
2ρ+ 1 commitments.

Our solution. Based on the re-randomization technique by Hazay et al. [HSS17], we improve the WRK
consistency check for authenticated shares by reducing the number of commitments from 2ρ + 1 to 1. In
particular, we use a linear map that maps κ random shares of a party Pi to a random field element yi in F2κ .
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Then we use a random zero-share to re-randomize each element yi. To prevent the collusion, each party
needs to make only a single commitment. Note that the inconsistency may occur only when there are at
least two honest parties. In this case, yi is kept secret from the re-randomization based on zero-share, which
guarantees the consistency of global keys.

The checking procedure can also be efficiently implemented given hardware support for finite field
multiplication. See Section 3.2 for the detailed protocol.

2.3 Improved Authenticated AND triples

The protocol for leaky authenticated AND triples is to generate a random authenticated AND triple
(
〈x〉, 〈y〉,

〈z〉
)

with one caveat that the adversary can choose to guess the share xi of an honest party. A correct guess
remains undetected, while an incorrect guess will be caught.

Prior solution. The multi-party leaky AND triple protocol by Wang et al. [WRK17b] consists of two steps:
1) the parties execute a protocol to generate AND triples without correctness guarantee; 2) all parties run
a checking procedure to ensure correctness, which also introduce some potential leakage to the adversary.
Recently, Katz et al. [KRRW18] proposed an efficient checking protocol reducing the number of H calls by
half in the two-party setting. The key idea is to apply the point-and-permute technique [BMR90] for garbled
circuits to the context of AND triple generation. They integrated the above two steps into one as the least
significant bit can represent the underlying share.

Our solution. We extend their idea from two-party setting to the multi-party setting. The extension of the
protocol is fairly straightforward; nevertheless, we believe it is an important task to figure out all details of
the security proof. We give the protocol description and a full proof that the protocol is still provably secure
given the leakage of global keys introduced as above in Section C.1.

2.4 Improved Distributed Garbling with Partial Half-Gates

Classical and half-gates garbling. The classical garbling with point-and-permute [BMR90] and free-
XOR [KS08] requires 4 garbled rows per AND gate. Let P2 and P1 be the garbler and evaluator respectively.
Each wire w is associated with a random garbled label Lw,0 ∈ {0, 1}κ and a wire mask λw ∈ {0, 1} both
known only to the garbler. The garbled label for a bit b is defined as Lα,b = Lα,0 ⊕ b∆2, where ∆2 is a
random global offset only known to P2. The garbled table computed by P2, namely {Guv}u,v∈{0,1} , for an
AND gate (α, β, γ,∧) consists of four garbled rows in the following form

Guv := H(Lα,u, Lβ,v)⊕ Lγ,0 ⊕ ruv∆2,

where ruv = (u ⊕ λα) ∧ (v ⊕ λβ) ⊕ λγ , and we omit γ in H for simplicity. Half-gates by Zahur et
al. [ZRE15] is the state-of-the-art garbling scheme that only requires 2 garbled rows per AND gate. In this
case, the garbled table can be written as:

G0 :=H(Lα,0)⊕ H(Lα,1)⊕ λβ∆2,

G1 :=H(Lβ,0)⊕ H(Lβ,1)⊕ Lα,0 ⊕ λα∆2.

P2 can compute the 0-label for the output wire as:

Lγ,0 := H(Lα,0)⊕ H(Lβ,0)⊕ (λαλβ ⊕ λγ)∆2.

Classical and half-gates two-party distributed garbling. Following the observation by Katz et al. [KRRW18],
we can conceptually divide the authenticated garbling protocol into two parts: 1) jointly generate a dis-
tributed garbled circuit among all parties; 2) authenticate the correctness of the garbled circuit for the
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evaluator. Here we only consider the first part about distributed garbling. The WRK distributed gar-
bling [WRK17a] in the two-party setting can be written as:

P2 : G2
uv := H(Lα,u, Lβ,v)⊕

(
Lγ,0 ⊕ K2[r1

uv]⊕ r2
uv∆2

)
P1 : G1

uv := M2[r1
uv],

where r1
uv⊕r2

uv = ruv is defined as above. The correctness can be checked given the fact that G1
uv⊕G2

uv =
Guv as in the classical garbling.

Recently, Katz et al. [KRRW18] showed that the half-gate technique can be applied to the above two-
party distributed garbling. Although P2 cannot compute G0, G1 and Lα,0 as in the half-gates garbling
(because P2 does not know the wire masks, and thus cannot compute the terms λβ∆2, λα∆2 and (λαλβ ⊕
λγ)∆2), both parties P1 and P2 hold the authenticated shares, say, R1⊕R2 = λβ∆2, S1⊕S2 = λα∆2, and
T1 ⊕ T2 = (λαλβ ⊕ λγ)∆2. Thus, they can conceptually “shift” the entire garbling procedure by R1, S1

and T1. In detail, P2 can compute

G2
0 := H(Lα,0)⊕ H(Lα,1)⊕R2

G2
1 := H(Lβ,0)⊕ H(Lβ,1)⊕ Lα,0 ⊕ S2

Lγ,0 := H(Lα,0)⊕ H(Lβ,0)⊕ T2.

Evaluator P1 can recover G0 and G1 by computing G0 := G2
0 ⊕ R1 and G1 := G2

1 ⊕ S1. Then P1 can
perform the standard half-gates evaluation, and adds T1 as a correction value, so as to compute the garbled
label for output wire γ.

Applying half-gates for multi-party authenticated garbling. Applying half-gates to the multi-party set-
ting has been an open problem proposed by multiple prior works [BLO16, WRK17b, BLO17, KRRW18,
BJPR18]. We present how to partially use half-gates in the multi-party distributed garbling.

Let’s first recall the classical multi-party distributed garbling [WRK17b]. For each wire w, every garbler
Pi (i ≥ 2) has a pair of garbled labels Liw,0, L

i
w,1 such that Liw,0⊕ Liw,1 = ∆i, where ∆i is a free-XOR offset

only known to Pi. For each AND gate (α, β, γ,∧) and u, v ∈ {0, 1}, the distributed garbling is constructed
in the following form:

Pi, i ≥ 2 : Giuv := H(Liα,u, L
i
β,v)⊕

(
{Mj [r

i
uv]}j 6=i,1, Liγ,0 ⊕ (

⊕
j 6=iKi[r

j
uv])⊕ riuv∆i

)
P1 : G1

uv := {Mj [r
1
uv]}j 6=1,

where
⊕

i∈[n] r
i
uv = ruv is defined as above.

As we can see above, the multi-party garbling is very complicated and difficult to analyze. Our first step
is to further split the distributed garbled table into two parts as below:

Aiuv := H(Liα,u, L
i
β,v)⊕

(
Liγ,0 ⊕ (

⊕
j 6=iKi[r

j
uv])⊕ riuv∆i

)
Bi
uv := H′(Liα,u, L

i
β,v)⊕

(
{Mj [r

i
uv]}j 6=i,1

)
Essentially, we can view Giuv as (Aiuv, B

i
uv). Now we can see that Aiuv is very similar to the two-party

distributed garbling. Thus we can attempt to apply the half-gates optimization on this portion:

Ai0 := H(Liα,0)⊕ H(Liα,1)⊕Ri
Ai1 := H(Liβ,0)⊕ H(Liβ,1)⊕ Liα,0 ⊕ Si
Liγ,0 := H(Liα,0)⊕ H(Liβ,0)⊕ Ti,
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where
⊕

i∈[n]Ri = λβ∆i,
⊕

i∈[n] Si = λα∆i and
⊕

i∈[n] Ti = (λαλβ ⊕ λγ)∆i. Unlike the two-party
setting, here P1 cannot recover H(Liα,0)⊕H(Liα,1)⊕ λβ∆i and H(Liβ,0)⊕H(Liβ,1)⊕ Liα,0⊕ λα∆i, and then
perform the standard half-gates evaluation, since it does not get the other parties’ shares for λβ∆i and λα∆i.
By a careful evaluation, we show that evaluator P1 can still compute the garbled label for output wire γ in the
following way. If P1 holds public values Λα,Λβ and the corresponding garbled labels {Liα,Λα , L

i
β,Λβ
}i 6=1,

then for each i 6= 1, it computes as follows:

1. Evaluate the half-gates portion:

H(Liα,Λα)⊕ H(Liβ,Λβ )⊕ Λα ·Ai0 ⊕ Λβ · (Ai1 ⊕ Liα,Λα)

= H(Liα,0)⊕ H(Liβ,0)⊕ ΛαRi ⊕ ΛβSi ⊕ ΛαΛβ∆i.

2. Evaluate classical garbling portion. Let u = Λα and v = Λβ . Then, the evaluator P1 can compute{
Mj [r

i
uv]
}
j 6=i,1 := H′(Liα,Λα , L

i
β,Λβ

)⊕Bi
uv,

where Mj [r
i
uv] is Pi’s share of Λγ∆j for j 6= i.

3. P1 can compute its share Mi[r
1
uv] of Λγ∆i for each i 6= 1. Then, P1 combines them with the above

results as follows:(
H(Liα,0)⊕ H(Liβ,0)⊕ ΛαRi ⊕ ΛβSi ⊕ ΛαΛβ∆i

)
⊕
(⊕

j 6=iMi[r
j
uv]
)

= H(Liα,0)⊕ H(Liβ,0)⊕ Ti ⊕ Λγ∆i = Liγ,0 ⊕ Λγ∆i = Liγ,Λγ .

The correctness holds because

Λγ∆i = ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ (λαλβ ⊕ λγ)∆i

= ΛαΛβ∆i ⊕ Λα

(⊕
i∈[n]Ri

)
⊕ Λβ

(⊕
i∈[n] Si

)
⊕
(⊕

i∈[n] Ti

)
= (ΛαΛβ∆i ⊕ ΛαRi ⊕ ΛβSi ⊕ Ti)⊕

(⊕
j 6=i(ΛαRj ⊕ ΛβSj ⊕ Tj)

)
= (ΛαΛβ∆i ⊕ ΛαRi ⊕ ΛβSi ⊕ Ti)⊕

(⊕
j 6=iMi[r

j
uv]
)
,

where Λγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ) ⊕ λγ and Mi[r
j
uv] = ΛαRj ⊕ ΛβSj ⊕ Tj is Pj’s share of Λγ∆i.

As a result, we can reduce the communication per AND gate from each garbler by 2κ bits in the function-
dependent phase. We refer the reader to Section 4 for the detailed construction.

2.5 Circuit Authentication in the Multi-Party Setting

In this section, we focus on the circuit authentication part, which is used to authenticate the correctness of a
garbled circuit. Specifically, this part roughly works as follows:

– In the preprocessing phase, for each AND gate (α, β, γ,∧), every party Pi holds authenticated shares of
λα, λβ , λγ and λαβ = λα · λβ .

– After evaluating the distributed garbled circuit in the online phase, for each wire w, the evaluator P1

obtains a public value Λw, which is the XOR of the actual value on the wire (based on the input) and a
wire mask λw. P1 would like to check correctness of all public values by using the above authenticated
shares. In particular, it will guarantee that for each AND gate, the actual values on the wires form an
AND relationship.
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Prior solution. For each AND gate (α, β, γ,∧) and u, v ∈ {0, 1}, we define ruv = (u ⊕ λα) ∧ (v ⊕
λβ) ⊕ λγ . In the original WRK protocol [WRK17b], the circuit authentication was essentially done by
encrypting authenticated bits of the form (riuv,M1[riuv]) in each garbled row, where riuv is Pi’s share of ruv.
This because the garblers do not know the public values at the stage of garbling. When incorporating the
optimization [WRK17a] into the protocol, their solution requires 4ρ bits of communication per AND gate
in the function-dependent phase.

Katz et al. [KRRW18] observed that in the two-party setting, such circuit authentication can be done in a
batch, which reduces the communication to 1 bit per AND gate. In particular, evaluator P1 needs to send the
public values on the output wires of all AND gates to P2, as P2 cannot evaluate the circuit. For each AND
gate (α, β, γ,∧), for correctness of Λγ , it suffices to show that tγ = (Λα⊕λα)∧(Λβ⊕λβ)⊕(Λγ⊕λγ) = 0.
Two parties compute the authenticated shares t1γ and t2γ of tγ by using the authenticated shares of λα, λβ ,
λγ and λα · λβ . Then P2 sends M1[t2γ ] to P1, who checks its validity by comparing it with K1[t2γ ] ⊕ t1γ∆1,
where tγ = 0 if and only if t1γ = t2γ . This authentication procedure can be made in a batch for all AND
gates by checking whether H({M1[t2w]}w∈W) = H({K1[t2w]⊕ t1w∆1}w∈W). A malicious P1 may flip some
public values, and reveals some secret shares held by P2 from such authentication, which may break the
privacy. To prevent the attack, P1 needs to send H({M2[t1w]}w∈W) to P2 who checks that it is equal to
H({K2[t1w] ⊕ t2w∆2}w∈W). This solution does not extend to the multi-party setting directly, because when
there are multiple garblers, P1 only knows t1γ but not individual tiγ for i 6= 1.

Our solution. For each wire w ∈ W , we let P1 check that tw =
⊕

i∈[n] t
i
w = 0, after P1 sends {Λw}w∈W

to all other parties, where tw is defined as above. In a naive approach, each garbler Pi sends (tiw,M1[tiw]) to
P1, who checks that M1[tiw] = K1[tiw]⊕ tiw∆1. This requires |C| · (κ+ 1) bits of communication per garbler.
By optimizing the approach with batched MAC check, the communication is reduced to |C|+ κ bits.

We propose a new circuit authentication procedure in the multi-party setting based on an almost-universal
linear hash function H, which further reduces the communication per garbler to κ bits. Specifically, each gar-
bler Pi (i 6= 1) sends ci = H({M1[tiw]}w∈W) ∈ Fκ2 to P1, and P1 computes M1[t1w] :=

⊕
i 6=1 K1[tiw]⊕t1w∆1

for each wire w ∈ W . For each w ∈ W , tw = 0 if and only if⊕
i∈[n] M1[tiw] = t1w∆1 ⊕

⊕
i 6=1(K1[tiw]⊕M1[tiw]) =

⊕
i∈[n] t

i
w∆1 = tw∆1 = 0.

Then, P1 computes c1 := H({M1[t1w]}w∈W), and checks that
⊕

i∈[n] ci = 0. By the XOR-homomorphic
property of H, we have⊕

i∈[n] ci =
⊕

i∈[n] H({M1[tiw]}w∈W) = H({
⊕

i∈[n] M1[tiw]}w∈W) = 0.

From the almost-universal property, we have that
⊕

i∈[n] M1[tiw] = 0 for w ∈ W . We can use a polynomial
hash based on GMAC to instantiate the linear hash function H. In particular, the parties use a random seed
χ ∈ F2κ to define H. For i ∈ [n], ci = H({M1[tiw]}w∈W) = H(M1[tiw1

], . . . ,M1[tiw|C| ]) can be computed

as
∑|C|

k=1 χ
k · M1[tiwk ] ∈ F2κ , where w1, . . . , w|C| ∈ W denote the output wires of all AND gates in the

circuit C. When κ = 128, the finite field multiplication over F2κ can be performed very efficiently using the
native instructions [KOS15, NST17].

To prevent the attack mentioned above, we let P1 send hi = H({Liw,Λw}w∈W) to every garbler Pi who
checks that hi = H({Liw,0⊕Λw∆i}w∈W). Through the approach, every garbler Pi can check the correctness
of the public values sent by P1, because evaluator P1 can learn only one garbled label for each wire and
garbled label Liw,Λw can be viewed as an MAC on bit Λw. After the circuit authentication procedure, all
parties can obtain the correct public values, which allows our protocol to support multi-output functions in
a straightfoward way. We give the detailed protocol in Section 4 and the full proof in Section D.

10



Functionality Fprep

Honest Parties:
1. Upon receiving (init) from all parties, for each i ∈ [n], sample ∆i ← {0, 1}κ and send ∆i to Pi.

2. Upon receiving (aBit, i) from all parties, sample a random bit λ← {0, 1} and generate a random authenticated
bit [λ]i = (λ, {Mj [λ]}j 6=i , {Kj [λ]}j 6=i). Then send (λ, {Mj [λ]}j 6=i) to Pi and Kj [λ] to Pj for each j 6= i.

3. Upon receiving (aShare) from all parties, sample a random bit λ ← {0, 1} and generate a random au-
thenticated share 〈λ〉 =

(
[λ1]1, . . . , [λ

n]n
)

with
⊕

i∈[n] λ
i = λ. Distribute 〈λ〉 to all parties, i.e., send

(λi, {Mj [λ
i],Ki[λ

j ]}j 6=i) to Pi for each i ∈ [n].

4. Upon receiving (aAND) from all parties, sample random bits a, b← {0, 1}, compute c := a∧b, and generate a
random authenticated AND triple (〈a〉, 〈b〉, 〈c〉). Distribute the authenticated shares 〈a〉, 〈b〉, 〈c〉 to all parties.

Corrupt Parties: Corrupt parties can choose their own randomness used to define the outputs that they receive
from the functionality.
Leakage of global keys: The adversary may input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, the functionality does
the following:
– If there exists some k ∈ S such that ∆′[k] 6= ∆i[k], the functionality outputs fail to all parties and aborts.

– Otherwise, it outputs success to the adversary and proceeds as if nothing has happened.

Figure 1: The multi-party preprocessing functionality with weak global keys

2.6 Other Optimization

In the WRK protocol [WRK17b], the input bits are masked with authenticated shares. However we observe
that this is not necessary and that an extended form of authenticated bits is already sufficient. Intuitively,
since every party can arbitrarily choose its input, and thus the shares from all other parties can be set to 0.
We define a useful operation called Bit2Share. Specifically, Bit2Share([λ]i) takes as input an authenticated
bit [λ]i =

(
λ, {Mk[λ]}k 6=i, {Kk[λ]}k 6=i

)
with bit λ known by Pi, and extends it to an authenticated share

〈λ〉 as follows:

– Set [λi]i := [λ]i: Pi sets λi := λ and
{
Mk[λ

i] := Mk[λ]
}
k 6=i, Pk sets Kk[λi] := Kk[λ] for each k 6= i;

– Set [λj ]j := [0]j for each j 6= i: Pj sets λj := 0 and {Mk[λ
j ] := 0}k 6=j , and Pk defines Kk[λj ] := 0 for

each k 6= j.

In our protocol, the circuit-input wires are processed using the above procedure instead of a full-fledged
authenticated shares. This is partially effective when the input is large (See Section 5). A similar idea is
used in the semi-honest MPC protocol [BLO16], where the MACs need not to be considered.

3 Improved Multi-Party Preprocessing Protocols

In this section, we present the details of our optimizations for faster authenticated AND triple generation.
Since we have discussed the key insights and high-level ideas of the protocols in Section 2, here we will
focus on detailed description of the protocols and their security proofs.

In Section 3.1, we will present our improved multi-party authenticated bit protocol with a detailed proof
of security. Then in Section 3.2, we will show the authenticated share protocol with an improved global-key
consistency check. Due to space limitation, we present our improved protocol for leaky authenticated AND
triples in Section C.1, and that the bucketing technique [NNOB12] for eliminating leakage of partial shares
can still be applied in our setting in Section C.2.
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Functionality FCOTe

The functionality is run by a sender PS and a receiver PR, and executes as follows:
Initialize: Upon receiving (init,∆) from PS where ∆ ∈ {0, 1}κ, and (init) from PR, store ∆. Ignore any
subsequent init command.
Extend: Upon receiving (extend, `,x1, . . . ,x`) from PR where xi ∈ Fκ2 , and (extend, `) from PS , the function-
ality does the following:
– Sample K[xi]← Fκ2 and compute M[xi] := K[xi] +xi ∗∆ ∈ Fκ2 for each i ∈ [`], where ∗ denotes component-

wise product.

– For each i ∈ [`], send M[xi] to PR and K[xi] to PS .
For each i ∈ [`], a corrupt party can choose its own randomness received from the functionality as follows:
– If PS is corrupted, it gets to choose K[xi], and the functionality sets M[xi] := K[xi] + xi ∗∆.

– If PR is corrupted, it gets to choose M[xi], and the functionality sets K[xi] := M[xi] + xi ∗∆.

Figure 2: Functionality for correlated OT with errors

Our protocols for authenticated bits, shares and AND triples jointly implement the preprocessing func-
tionality Fprep as shown in Figure 1. In Fprep, we allow the adversary to make multiple leak queries on
the same index i ∈ H. Each bit guess of ∆i made by the adversary will be caught with probability 1/2.
For each leak query, the adversary needs to provide a set S ⊂ [κ] representing the coordinates in which the
guessed bits locate. Our MPC protocol with improved multi-party authenticated garbling as shown in next
section will work in the Fprep-hybrid model.

3.1 Improved Multi-Party Authenticated Bits

We propose a new protocol ΠaBit to generate authenticated bits. Our protocol uses a correlated OT with
errors functionality FCOTe [KOS15] shown in Figure 2. In FCOTe, if a receiver PR is honest, it will input
a “monochrome” vector xi = xi · (1, . . . , 1) for i ∈ [`], which results in the correct correlation, i.e.,
M[xi] = K[xi] + xi ·∆. If PR is malicious, it will input a “polychromatic” vector xi 6= xi · (1, . . . , 1) for
i ∈ [`], which results in M[xi] = K[xi] + xi ∗ ∆, where xi ∗ ∆ = (xi[1] · ∆[1], . . . ,xi[κ] · ∆[κ]). We
can rewrite xi = xi · (1, . . . , 1) + ei, and get M[xi] = K[xi] + xi ·∆ + ei ∗∆, where ei ∈ Fκ2 is an error
vector counting the number of positions in which PR cheated. An efficient protocol, which implements the
functionality FCOTe, is described in [Nie07, KOS15]. The protocol is the same as the original IKNP OT
extension protocol [IKNP03], except that it terminates before hashing the output with the random oracle to
break the correlation and executing the final round of communication. Nielsen [Nie07] has shown that the
protocol securely realizes the functionality FCOTe.

We present the details of our protocol ΠaBit in Figure 4, where ΠaBit works in the (FCOTe,FRand)-hybrid
model. Note that the bits sampled by Pi in our protocol are authenticated by weak global keys, where the
adversary may guess a few bits of the honest parties’ global keys. We use a functionality FaBit shown in
Figure 3 to abstract and define authenticated bits with weak global keys. In the init command of FaBit, an
honest party Pj will input a uniformly random global key ∆j , while a corrupt Pj allows to send an arbitrary
string ∆j ∈ {0, 1}κ. By the leak command of FaBit, the adversary may guess a few bits of global key ∆j

for j ∈ H. A correct guess keeps undetected, while an incorrect guess will be caught. While the adversary
succeeds to leak cj bits of ∆j with probability 2−cj , the other κ − cj bits of ∆j remain uniformly random
in its view.

Analysis of Correlation Check: For the security analysis of correlation check, we recall an important
lemma by Keller et al. [KOS15]. Here we consider that Pi is corrupted by the adversary. Without loss of

12



Functionality FaBit

The functionality runs with parties P1, . . . , Pn, and generates random bits known by a party Pi and authenticated
to all other parties.
Honest Parties:
– Upon receiving (init, i) from all parties, the functionality receives ∆j ∈ {0, 1}κ from Pj for each j 6= i and

stores ∆j .

– Upon receiving (aBit, i, `) from all parties, sample x1, . . . , x` ← {0, 1} and generate random authenticated
bits {[xk]i}k∈[`], and then send them to the parties. In detail, for each j 6= i, the functionality samples
random {Kj [xk]← {0, 1}κ}k∈[`] and compute {Mj [xk] := Kj [xk]⊕ xk∆j}k∈[`]. Then, for each k ∈ [`], then
functionality sends (xk, {Mj [xk]}j 6=i) to Pi and Kj [xk] to Pj for j 6= i.

Corrupt Parties: For each k ∈ [`], corrupt parties can choose their own randomness used to compute the values
that they receive from the functionality:
– If Pi is corrupted, it gets to choose (xk, {Mj [xk]}j 6=i), and then the functionality sets Kj [xk] := Mj [xk]⊕xk∆j

for each j 6= i.

– If Pj is corrupted where j 6= i, Pj gets to choose Kj [xk], and then the functionality defines Mj [xk] :=
Kj [xk]⊕ xk∆j .

Leakage of Global Keys: If Pi is corrupted, the adversary may input (leak, j, S, {∆′[k]}k∈S). If Pj is honest,
the functionality does the following:
– If there exists some k ∈ S such that ∆′[k] 6= ∆j [k], the functionality outputs fail to all parties and aborts.

– Otherwise, it outputs success to the adversary and proceeds as if nothing has happened.

Figure 3: Functionality for multi-party authenticated bits with weak global keys

generality, we fix an honest party Pj to analyze the correlation check. When acting as a receiver in the
extend command of FCOTe, a corrupt party Pi may send a vector xjk for k ∈ [`′] to FCOTe, and receives an
MAC M′j [x

j
k] := Kj [x

j
k] + xjk ∗∆j for k ∈ [`′]. We take Pi’s inputs xj1, . . . ,x

j
`′ ∈ Fκ2 to be the rows of a

`′ × κ matrix. Let x1
j , . . . ,x

κ
j ∈ F`′2 be the columns of the same matrix. If Pi is semi-honest, then xjk for

k ∈ [`′] is monochrome, and x1
j , . . . ,x

κ
j are all equal.

Lemma 1 ([KOS15]). Let S∆j ⊆ Fκ2 be the set of all ∆j for which the correlation check passes, given the
view of receiver Pi. Except with probability 2−κ, there exists dj ∈ N such that

1. |S∆j | = 2dj .

2. For each s ∈ {xlj}l∈[κ], let Hs = {l ∈ [κ] | s = xlj}. Then one of the following holds:

– For all l ∈ Hs and any ∆
(1)
j ,∆

(2)
j ∈ S∆j , ∆

(1)
j [l] = ∆

(2)
j [l].

– |Hs| ≥ dj and |{∆j [Hs]}∆j∈S∆j
| = 2dj , where ∆j [Hs] denotes the vector consisting of the bits

{∆j [l]}l∈Hs . In other words, S∆j restricted to the bits corresponding to Hs has entropy at least dj .
Furthermore, there exists ŝ such that |Hŝ| ≥ dj .

According to the analysis by Keller et al. [KOS15], we give some intuition about the meaning of the
above lemma. The probability of passing the correlation check is |S∆j |/2κ, as ∆j is sampled uniformly at
random by Pj . For a semi-honest Pi, Hs is always the set {1, . . . κ}. So the size of Hs reflects the number
of deviation in the protocol for a given s. Furthermore, the precise indices in Hs correspond to a subset of
the bits of ∆j . The second part of Lemma 1 implies that for any s, either the bits of ∆j corresponding to
the indices in Hs are known, or the size of Hs is at least d. In the first case, the bits of ∆j are revealed by
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Protocol ΠaBit

Let `′ = `+ (κ+ ρ). A party Pi generates ` bits authenticated by all other parties.
Initialize: All parties initialize the protocol as follows:
1. For each j 6= i, Pj picks a random global key ∆j ← {0, 1}κ.

2. For each j 6= i, Pi acting as a receiver sends (init) to FCOTe, and Pj acting as a sender sends (init,∆j) to
FCOTe.

Generate Authenticated Bits: The parties execute as follows:
3. Pi picks random bits x1, . . . , x`′ ← {0, 1}, and then sets a monochrome vector xk := xk · (1, . . . , 1) ∈ Fκ2

for each k ∈ [`′].

4. For each j 6= i, Pj and Pi call FCOTe, where Pj sends (extend, `′) to FCOTe and Pi sends
(extend, `′,x1, . . . ,x`′) to FCOTe. From the functionality, Pi gets the MACs {Mj [xk]}k∈[`′], and Pj gets
the local keys {Kj [xk]}k∈[`′].

Check Correlation and Consistency: The parties check the correlation of their outputs from FCOTe and the
consistency of Pi’s inputs in multiple calls of FCOTe.
5. The parties call FRand to obtain `′ random field elements χ1, . . . , χ`′ ∈ F2κ .

6. Pi locally computes over F2κ the following values:

yi :=
∑`′

k=1χk · xk, Mj [y
i] :=

∑`′

k=1χk ·Mj [xk] for each j 6= i

and broadcasts yi to all parties. For each j 6= i, Pi also sends Mj [y
i] to Pj .

7. For each j 6= i, Pj computes Kj [yi] :=
∑`′

k=1χk · Kj [xk], and checks that Mj [y
i] = Kj [y

i] + yi ·∆j . If any
check fails, Pj aborts.

Figure 4: Protocol for generating multi-party authenticated bits with weak global keys

the adversary corrupting Pi by guessing the bits and observing whether the correlation check passes. In the
second case, we have a bound on the amount of information that the adversary can learn. In particular, the
total amount of the bits of ∆j learned by the adversary is bounded by cj = κ − dj , since |S∆j | = 2dj and
S∆j restricted to the bits corresponding to Hŝ has entropy at least dj .

Let xj1, . . . , x
j
`′ be the bits of ŝ. Then, for j ∈ H, k ∈ [`′], we can write the MAC (with an error)

received by a malicious Pi as M′j [x
j
k] = Kj [x

j
k] + xjk ·∆j + ejk ∗∆j , where ejk = (xjk, . . . , x

j
k) + xjk ∈ Fκ2

is an adversarially chosen error vector. For each k ∈ [`′], by the definition of Hs and ejk, we have that
ejk[l] = ejk[l

′] for all l, l′ ∈ Hs, for any s ∈ {x1
j , . . . ,x

κ
j }. Note that ejk[l] = 0 for all l ∈ Hŝ, as xjk[l] = xjk

for all l ∈ Hŝ. This implies that ejk[l] · ∆j [l] = 0 for all l ∈ Hŝ. Lemma 1 implies that there exists only
one s = ŝ such that the second case happens, except with probability 2−κ.2 That is, for s 6= ŝ, the first case
occurs in Lemma 1, except with probability 2−κ. In this case, for all k ∈ [`′] and l ∈ Hs, e

j
k[l] · ∆j [l] is

known by the adversary by the fact that ∆j ∈ S∆j . Therefore, for k ∈ [`′], the adversary knows ejk ∗ ∆j ,
and thus the correct MAC Mj [x

j
k] = Kj [x

j
k] + xjk ·∆j .

Analysis of Consistency Check: When acting as a receiver in the extend command of FCOTe, a malicious
Pi may use inconsistent inputs xk for k ∈ [`′] with two different honest parties. In particular, we define
{xjk}k∈[`′] to be the actual bits used by Pi when calling FCOTe with an honest party Pj . Without loss of
generality, we choose an honest party Pj0 and fix xk = xj0k for each k ∈ [`′]. For each j ∈ H and k ∈ [`′],

2One can easily prove if there are two different s satisfying the second case of Lemma 1, then the correlation check will not
pass.
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xjk can be denoted as xjk = xk+δjk, where δj0k = 0. Based on Lemma 1, we prove that a malicious Pi cannot
use inconsistent values xjk to different honest parties.

Lemma 2. For a corrupt party Pi and every honest party Pj ∈ H, Pi and Pj holds a secret sharing of
xk ·∆j for each k ∈ [`′]. In other words, for each k ∈ [`′] and j ∈ H, δjk = 0.

Proof. For each j ∈ H, we define Pi’s MAC on
∑`′

k=1 χk · x
j
k as Mj [y

i] =
∑`′

k=1 χk ·Mj [x
j
k], and Pj’s

local key on the same value as Kj [yi] =
∑`′

k=1 χk · Kj [x
j
k]. According to Lemma 1 and the above related

analysis, for each j ∈ H, k ∈ [`′], Mj [x
j
k] = Kj [x

j
k] + xjk · ∆j is known by the adversary who corrupts

Pi . In Step 6 of protocol ΠaBit, Pi may broadcast an incorrect value ŷi = yi + ei to other parties where
yi =

∑`′

k=1 χk ·xk, and send an incorrect MAC M̂j [y
i] = Mj [y

i]+Ei,j to every honest party Pj . If Pj ∈ H
does not abort, then M̂j [y

i] = Kj [y
i] + ŷi ·∆j . Thus, we have:

Mj [y
i] + Ei,j = Kj [y

i] + yi ·∆j + ei ·∆j

⇔ Ei,j + yi∆j + ei∆j = Mj [y
i] + Kj [y

i] =
( `′∑
k=1

χk · xjk
)
·∆j

⇔ Ei,j =
(
yi + ei +

`′∑
k=1

χk ·
(
xk + δjk

))
·∆j

⇔ Ei,j =
(
ei +

`′∑
k=1

χk · δjk
)
·∆j

For each j ∈ H, a corrupt Pi has the following two possible ways to cheat Pj , but succeeds with negligible
probability in both cases.

1. If Ei,j 6= 0, then (ei +
∑`′

k=1 χk · δ
j
k) 6= 0, and thus the adversary corrupting Pi can learn ∆j . The Pj’s

check passes with probability |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. Therefore, the probability, that honest
party Pj does not abort and the adversary learns ∆j , is (2dj−κ + 2−κ) · 2−dj = 2−κ + 2−(κ+dj).

2. If Ei,j = 0, then ei =
∑`′

k=1 χk · δ
j
k unless ∆j = 0 with probability 2−κ. As δj0k = 0 for each k ∈ [`′],

this implies that ei = 0. Thus, for each j ∈ H\{j0}, we have that
∑`′

k=1 χk · δ
j
k = 0. This happens with

probability 2−κ, as {δjk}k∈[`′] are independent of {χk}k∈[`′] and χ1, . . . , χ`′ are uniformly random.

In addition, we will use the following lemma.

Lemma 3 ([KOS15]). Let A be a random (t + m) × t matrix over F2 where m > 0. Then A has rank t
except with probability less than 2−m.

Based on the above three lemmas, we prove the following theorem.

Theorem 1. Protocol ΠaBit shown in Figure 4 securely realizes the functionalityFaBit in the (FCOTe,FRand)-
hybrid model.

Proof. LetA be a probabilistic polynomial time (PPT) adversary, who corrupts a subset of partiesM∈ [n].
Let H be the set of honest parties, i.e., H = [n]\M. We construct a PPT simulator S that has access to the
functionality FaBit and simulates A’s view.

Case 1 (Pi ∈ H): S interacts with A and simulates as follows:
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1. For each Pj ∈M, S emulates the functionality FCOTe, and receives ∆j and Kj [x1], . . . ,Kj [x`′ ] fromA.
Then S sends these values to FaBit.

2. For the call of FRand from A, S samples random χ1, . . . , χ`′ , and then sends them to A.

3. Acting as honest party Pi, for each j ∈ M, S computes Kj [y
i] :=

∑`′

k=1 χk · Kj [xk], picks random
yi ← F2κ , and sends yi and Mj [y

i] = Kj [y
i] + yi ·∆j to A. For each j ∈ H\{i}, S samples a random

Mj [y
i]← F2κ and sends it to dummy party Pj .

Case 2 (Pi ∈M): S interacts with A and simulates as follows:

1. For each corrupt party Pj ∈M\{Pi}, S receives ∆j fromA for FCOTe, and then sends ∆j to FaBit. For
each j ∈ H, S emulates the functionality FCOTe and receives xj1, . . . ,x

j
`′ and M′j [x

j
1], . . . ,M′j [x

j
`′ ] from

A acting as Pi.

2. For each j ∈ H, let ŝ and Hŝ be as in Lemma 1, i.e., |Hŝ| ≥ d and xlj = xl
′
j for all l, l′ ∈ Hŝ. This

implies xjk[l] = xjk[l
′] for all l, l′ ∈ Hŝ and k ∈ [`′]. For each k ∈ [`′], S sets xjk := xjk[l] for some

l ∈ Hŝ. For each j ∈ H, S computes ejk := (xjk, . . . , x
j
k) + xjk for k ∈ [`′]. Simulator S defines a set

Sj = {l ∈ [κ] | ∃k ∈ [`′] s.t. ejk[l] = 1} and cj := |Sj |.

3. Upon receiving (Rand, `′) from A, S emulates the functionality FRand, samples χk ← F2κ for each
k ∈ [`′], and sends these random elements to A.

4. For each j ∈ H, S computes yi :=
∑`′

k=1 χk · x
j
k, and receives ŷi from A over a broadcast channel.

Then, S computes ei,j := ŷi + yi. If ei,j 6= 0, S aborts. Additionally, S receives M̂j [y
i] from A, and

then computes Ej := M̂j [y
i] +

∑`′

k=1 χk ·M′j [x
j
k] ∈ F2κ . If Sj = ∅, S outputs whatever A outputs and

halts if Ej 6= 0, and sets ejk ∗∆j = 0 for k ∈ [`′] otherwise. Otherwise, S writes Ej ∈ F2κ as a vector
in Fκ2 .

5. For each j ∈ H, if Sj 6= ∅, S can re-write
∑`′

k=1 χk · (e
j
k ∗ ∆j) as Xj · tj , where Xj is a random

κ × |Sj | matrix determined by {ejk}k∈[`′] and {χk}k∈[`′], and tj is an unknown column vector such that
tj [l] = ∆j [l] for each l ∈ Sj . Then, S establishes the equation Xj · tj = Ej , and does the following:

– If there is no solutions for the equation, S outputs whatever A outputs and halts.

– If there is an unique solution for the equation (i.e., Xj has rank cj), S computes the solution tj , and
thus obtains a guess {∆′j [l]}l∈Sj from A.

– If there are at least two solutions for the equation, S aborts.

6. For each j ∈ H, if Sj 6= ∅, S sends (leak, j, Sj , {∆′j [l]}l∈Sj ) to FaBit. If S receives fail from FaBit,
S outputs whatever A outputs and halts. Otherwise, S receives success from FaBit and is confirmed
∆j [l] = ∆′j [l] for each l ∈ Sj .

7. For each j ∈ H, if Sj 6= ∅, S computes ejk ∗∆j for each k ∈ [`′], where ejk[l] ·∆j [l] = 0 for all l ∈ Hŝ,
and S knows ejk[l] and ∆j [l] for each l ∈ Sj . Then, S computes Mj [x

j
k] := M′j [x

j
k]+ejk ∗∆j for k ∈ [`′].

8. If there exists two different j, j′ ∈ H such that xjk 6= xj
′

k for some k ∈ [`], then S aborts. Otherwise, for
each k ∈ [`], S sets xk := xjk for some j ∈ H.

9. S sends x1, . . . , x` and Mj [x1] := Mj [x
j
1], . . . ,Mj [x`] := Mj [x

j
` ] to FaBit.
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In both cases, if S does not abort, S outputs what A outputs.

Analysis of Simulation for Case 1. It is easy to see that the correlation and consistency checks pass. For
j ∈ H\{i}, Mj [y

i] sampled by S has the same distribution as the one in the real-world protocol execution,
as Kj [yi] =

∑`′

k=1 χk · Kj [xk] is uniformly random in F2κ and kept secret. Below, all we need to do is to
prove that yi and Mj [y

i] for j ∈ M sent by S are statistically indistinguishable from the values sent by Pi
in the real-world protocol execution.

Recall that in the real-world protocol execution Pi sends the following value:

yi =

`′∑
k=1

χk · xk =
∑̀
k=1

χk · xk +

`+κ+ρ∑
k=`+1

χk · xk.

The second summation corresponds to the image of a linear map ψ : Fκ+ρ
2 7→ Fκ2 . From Lemma 3, we know

that the map ψ has full rank with probability 1 − 2−ρ. In this case,
∑`+κ+ρ

k=`+1 χk · xk is uniformly random
in F2κ , since (x`+1, . . . , x`+κ+ρ) are sampled uniformly at random by honest Pi. Thus yi in the real world
is statistically indistinguishable from the value simulated by S. Finally, Mj [y

i] has the same distribution in
both worlds, since there is only one Mj [y

i] satisfying the equation Mj [y
i] = Kj [y

i] + yi ·∆j .

Analysis of Simulation for Case 2. Without loss of generality, we first fix an honest party Pj ∈ H and
analyze the simulation of S. In the real protocol execution, if Pj does not abort, then M̂j [y

i] = Kj [y
i] +

ŷi ·∆j = Kj [y
i] + yi ·∆j + ei,j ·∆j , where Kj [y

i] =
∑`′

k=1 χk · Kj [x
j
k]. Besides, we have

M′j [y
i] =

`′∑
k=1

χk ·M′j [x
j
k] =

`′∑
k=1

χk ·
(
Kj [x

j
k] + xjk ·∆j + ejk ∗∆j

)

=
`′∑
k=1

χk · Kj [xjk] +
( `′∑
k=1

χk · xjk
)
·∆j +

`′∑
k=1

χk ·
(
ejk ∗∆j

)

= Kj [y
i] + yi ·∆j +

`′∑
k=1

χk ·
(
ejk ∗∆j

)
From Ej = M̂j [y

i]+
∑`′

k=1 χk ·M′j [x
j
k] = M̂j [y

i]+M′j [y
i], we have Ej =

∑`′

k=1 χk ·
(
ejk ∗∆j

)
+ei,j ·∆j .

Since A knows ejk ∗∆j for k ∈ [`′] and Ej , we have that ei,j = 0 unless A learns the global key ∆j . The
probability that the Pj’s check passes is |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. By Lemma 1, we have that
S∆j restricted to the bits corresponding to Hŝ has entropy at least dj . Therefore, with probability at most
2−dj , A guesses successfully the bits {∆j [l]}l∈Hŝ

. Overall, the probability that ei,j 6= 0 and the Pj’s check
passes is 2−dj · (2dj−κ + 2−κ) = 2−κ + 2−(κ+dj). Therefore, the probability, that S aborts in Step 4 of
the simulation but the real protocol execution does not abort, is 2−κ + 2−(κ+dj), which is negligible in κ.
As a result, if the protocol does not abort, we have that Ej =

∑`′

k=1 χk ·
(
ejk ∗ ∆j

)
in both worlds with

overwhelming probability.
If Sj = ∅, i.e., ejk = 0 for all k ∈ [`′], then it is easy to see that the simulation of S is statically

indistinguishable from the real protocol execution. Below, for each j ∈ H, we only consider the case that
Sj 6= ∅. If the equation Xj · tj = Ej has no solutions, this means that the real protocol execution will abort,
which is the same as the simulation. If this equation has an unique solution (i.e., Xj has rank cj = |Sj |), then
S can extract a guess made by A about global key ∆j , and forwards a decision from FaBit to A. Clearly,
in this case, the simulation of S is indistinguishable from the real protocol execution. If this equation has
at least two different solutions, it means that matrix Xj has rank < cj . By Lemma 3, we know that this
happens with probability at most 2−dj . In the real protocol execution, the probability that Pj does not abort
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is |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. In all, the probability, that S aborts in Step 5 of the simulation but
the real protocol execution will not abort, is bounded by 2−dj · (2dj−κ + 2−κ) = 2−κ + 2−(κ+dj), which
is negligible in κ. Therefore, in the third case, the simulation of S is statistically indistinguishable from the
real protocol execution.

From Lemma 2, the probability that S aborts in Step 8 of the simulation is negligible in κ. In all, we
complete the proof.

3.2 Improved Multi-Party Authenticated Shares

Functionality FaShare

Running with parties P1, . . . , Pn, the functionality operates as follows:
Honest Parties:
– Upon receiving (init) from all parties, for each i ∈ [n], sample ∆i ← {0, 1}κ and send it to Pi.

– Upon receiving (aShare, `) from all parties, sample x1, . . . , x` ← {0, 1} and generate random authenticated
shares {〈xk〉 = ([x1

k]1, . . . , [x
n
k ]n)}k∈[`], and then send them to the parties.

In detail, for each k ∈ [`], pick x1
k, . . . , x

n
k ← {0, 1} such that

⊕
i∈[n] x

i
k = xk. For each i ∈ [n], k ∈ [`],

sample Kj [x
i
k] ← {0, 1}κ and compute Mj [x

i
k] := Kj [x

i
k] ⊕ xik∆j for j 6= i. For each i ∈ [n], send

(xik, {Mj [x
i
k],Ki[x

j
k]}j 6=i) to Pi.

Corrupt Parties: Corrupt parties can choose their own randomness used to compute the outputs they receive
from the functionality.
Leakage of global keys: The adversary may input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, the functionality does
the following:
– If there exists some k ∈ S such that ∆′[k] 6= ∆i[k], the functionality outputs fail to all parties and aborts.

– Otherwise, it outputs success to the adversary and proceeds as if nothing has happened.

Figure 5: Functionality for multi-party authenticated shares with weak global keys

We propose an efficient protocol ΠaShare, which allows n parties to generate authenticated shares of a
secret bit. One straightforward approach is to call FaBit n times, where in the j-th call, the parties obtain
a random authenticated bit [xj ]j for a random bit xj known only by Pj . However, a malicious party Pi
may use inconsistent global keys in multiple calls of FaBit. This results in that two authenticated bits
[xj0 ]j0 and [xj1 ]j1 are authenticated by two different global keys ∆i and ∆′i respectively. Based on a similar
observation [WRK17b], we note that the two-party functionality FCOTe has already guaranteed that Pi uses
the same global key ∆i, when Pi and Pj generate the MACs on multiple bits. Therefore, if one authenticated
share has the consistent global keys, then all authenticated shares have the consistent global keys. In our
construction, we let all parties additionally generate κ authenticated shares, and then open them to check the
consistency of global keys.

The details of our protocol ΠaShare are described in Figure 6. We know that F2κ
∼= F2[X]/(Xκ+X+1).

Let X ∈ F2κ be a root of the irreducible polynomial Xκ + X + 1 ∈ F2[X]. If every party Pi picks
ri1, . . . , r

i
κ ← {0, 1} at random, then yi =

∑κ
h=1 X

h−1 · rih is uniformly random over F2κ . Protocol ΠaShare

aims to securely realize a functionality FaShare for authenticated shares with weak global keys as shown in
Figure 5. The detailed security proof can be found in Section B.
Implementing the aBit command of Fprep. In the preprocessing functionality Fprep shown in Figure 1,
all parties can call the aBit command to generate authenticated bits in which the bits are known by n
different parties. The parties can invoke the protocol ΠaBit described in Figure 4 by n times to implement
the aBit command of Fprep. In this case, a malicious party Pi may use inconsistent global keys in n different
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Protocol ΠaShare

Initialize: All parties initialize the protocol as follows:
1. For each i ∈ [n], Pi picks a random global key ∆i ← {0, 1}κ.

2. For each i ∈ [n], for each j 6= i, Pj sends (init, i,∆j) to FaBit.
Generate Authenticated Shares: All parties generate ` + κ authenticated shares by calling authenticated bit
functionality FaBit.
3. For each i ∈ [n], all parties send (aBit, i, `+ κ) to FaBit, which samples xi1, . . . , x

i
`, r

i
1, . . . , r

i
κ ← {0, 1} and

sends multi-party random authenticated bits
{

[xik]i
}
k∈[`]

and
{

[rih]i
}
h∈[κ]

to the parties.

Check Consistency: The parties check the consistency of global keys as follows:
4. Each party Pi locally computes over F2κ the following values:

yi :=

κ∑
h=1

Xh−1 · rih, Mj [y
i] :=

κ∑
h=1

Xh−1 ·Mj [r
i
h] for each j 6= i,

Ki[y
j ] :=

κ∑
h=1

Xh−1 · Ki[rjh] for each j 6= i

5. Every party Pi obtains a random zero-share ui ∈ F2κ such that
∑n
i=1 u

i = 0 by exchanging random elements
over a private channel as follows:

– For each i ∈ [n] and j 6= i, Pi picks a random element ui,j ← F2κ and privately sends it to Pj .

– Every party Pi computes ui :=
∑
j 6=i
(
ui,j + uj,i

)
over F2κ .

6. Every party Pi computes ỹi := yi + ui, and then broadcasts it to all parties. Then, for each i ∈ [n], Pi
computes y :=

∑n
i=1 ỹ

i.

7. Each party Pi computes zii :=
∑
j 6=i Ki[y

j ] + (yi + y) ·∆i, and commits to({
zij := Mj [y

i]
}
j 6=i , z

i
i

)
∈ Fn2κ

by the Commit command of FCom.

8. After all commitments have been made, all parties open their commitments by the Open command of FCom,
and then check the following holds:

for each i ∈ [n],

n∑
j=1

zji = 0.

If the check fails, abort.

Figure 6: Protocol for generating multi-party authenticated shares with weak global keys

executions of ΠaBit. Nevertheless, we note that if one authenticated share has the consistent global keys,
then all multi-party authenticated bits have also the consistent global keys. Therefore, by the execution of
protocol ΠaShare, we have already guaranteed that all authenticated bits from n executions of ΠaBit have the
consistent global keys. In a very special case that ΠaShare is not executed by the parties when the circuit
does not include any AND gate, the parties still need to perform the consistency check shown in protocol
ΠaShare so as to guarantee the consistency of global keys.
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4 Improved Multi-Party Authenticated Garbling in Fprep

In this section, we present our MPC protocol Πmpc in the Fprep-hybrid model. Since we have already
discussed the main ideas of our improvements in Section 2, we directly show the complete description
of the protocol in Figure 7 and Figure 8. In protocol Πmpc, we use an amortized opening process for
authenticated bits/shares described in Section A.4, which has been used in the previous protocols such
as [NNOB12, KRRW18]. Specifically, every party can send the bits/shares along with a hash value of the
corresponding MACs to the other parties, which implements the amortized opening procedure denoted by
Open.

We outline each step in the protocol Πmpc as follows:

1. In the function-independent phase, each party Pi obtains its own private global key ∆i from Fprep (Step
1). All parties generate authenticated bits, shares and AND triples via calling Fprep (Steps 2-4). Each
garbler Pi (i 6= 1) samples random garbled labels on 0-bit for all circuit-input wires (Step 5).

2. Using the authenticated Beaver triple technique [Bea92, BDOZ11], the parties can compute the authenti-
cated share of the product of two wire masks using a random authenticated AND triple (Step 6-7). Based
on the authenticated shares, all parties compute a distributed garbled circuit (Step 8).

3. Every party masks their input bits with the wire masks, and then broadcasts the public values to all other
parties (Step 9(a)). Evaluator P1 also receives the garbled labels for all circuit-input wires from each
garbler (Step 9(b)).

4. P1 locally evaluates the circuit following the topological order (Step 10). Then, P1 checks the correctness
of public values on the output wires of all AND gates (Steps 11-12).

5. For each circuit-output wire associated with Pi’s output, all parties reveal the wire mask to Pi, who can
unmask the public value and obtain its output bit (Step 13).

Note that if there are two parties that obtain the same output such as Pi and Pj (i.e.,Oi = Oj), then for each
w ∈ Oi the wire masks λiw and λjw need to be revealed over a private channel.

In Section D, we give a detailed security proof of protocol Πmpc. In particular, we are able to prove the
following result.

Theorem 2. Let f : {0, 1}n|I| → {0, 1}n|O| be an n-party functionality. Then the protocol Πmpc shown in
Figures 7 and 8 securely computes f in the presence of a static malicious adversary corrupting up to n− 1
parties in the Fprep-hybrid model, where H is a random oracle.

5 Performance Evaluation

In this section, we discuss the performance improvement of our MPC protocol compared to state-of-the-
art constant-round maliciously secure 2PC protocol [KRRW18] (KRRW) and MPC protocol [WRK17b]
(WRK) tolerating arbitrary number of corruptions. Hazay, Ishai and Venkitasubramaniam [HIV17] proposed
constant-overhead protocols for maliciously secure two-party computation. However, since their protocol
with full security is not concretely efficient, we do not compare with it. Hazay, Scholl and Soria-Vazquez
(HSS) [HSS17] also proposed a constant-round MPC protocol with performance mostly similar to WRK,
and thus our comparison to WRK also applies to HSS. For all protocols, we choose the computational se-
curity parameter κ = 128 and statistical security parameter ρ = 40. We also include some discussion when
ρ = 64 in Section E of the Supplementary Material, where we are able to observe a better improvement. We
didn’t implement our protocol; all numbers below are either obtained from prior work or calculated given
the protocol description.
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Protocol Πmpc, preprocessing phases

Inputs: In the function-independent phase, all parties know |C| and |I|. In the function-dependent phase, the
parties agree on a circuit C for a function f : {0, 1}I1 × · · · × {0, 1}In → {0, 1}O1 × · · · × {0, 1}On . In the
online phase, Pi holds an input xi ∈ {0, 1}Ii for every i ∈ [n], where xiw denotes the bit of input xi associated
with a wire w ∈ Ii.
Function-independent phase:
1. All parties send (init) toFprep, which sends a random ∆i ∈ {0, 1}κ to Pi for each i ∈ [n] such that lsb(∆i) = 1

if i = 2.

2. For each i ∈ [n] and w ∈ Ii, the parties send (aBit, i) to Fprep, which samples a random authenticated
bit [λw]i, and sends (λw, {Mj [λw]}j 6=i) to Pi and Kj [λw] to Pj for each j 6= i. Then the parties define an
authenticated share 〈λw〉 via running Bit2Share([λw]i).

3. For each wire w ∈ W , the parties send (aShare) to Fprep, which generates a random authenticated share
〈λw〉 = ([λ1

w]1, . . . , [λ
n
w]n), and sends (λiw, {Mj [λ

i
w],Ki[λ

j
w]}j 6=i) to Pi for each i ∈ [n].

4. For each wire w ∈ W , the parties send (aAND) to Fprep, which sends a random authenticated AND triple
(〈a〉, 〈b〉, 〈c〉) to the parties.

5. For each circuit-input wire w ∈ I1 ∪ · · · ∪ In, Pi picks Liw,0 ← {0, 1}κ for i 6= 1.

Function-dependent phase:
6. For each XOR gate (α, β, γ,⊕), the parties compute 〈λγ〉 := 〈λα〉 ⊕ 〈λβ〉. For every i 6= 1, Pi also computes

Liγ,0 := Liα,0 ⊕ Liβ,0.

7. For all AND gates (α, β, γ,∧), the parties execute the following in parallel:

(a) Take a fresh unused authenticated AND triple (〈a〉, 〈b〉, 〈c〉) from the previous phase, and then compute
〈d〉 := 〈λα〉 ⊕ 〈a〉 and 〈e〉 := 〈λβ〉 ⊕ 〈b〉.

(b) Compute d := Open(〈d〉) and e := Open(〈e〉).

(c) Compute 〈λαβ〉 = 〈λα · λβ〉 := 〈c〉 ⊕ d · 〈b〉 ⊕ e · 〈a〉 ⊕ d · e.

8. For every AND gate (α, β, γ,∧), for each i 6= 1, Pi computes Liα,1 := Liα,0 ⊕∆i and Liβ,1 := Liβ,0 ⊕∆i, and
then computes the following values:

Giγ,0 := H(Liα,0, γ, 0)⊕ H(Liα,1, γ, 0)⊕ (
⊕

j 6=i Ki[λ
j
β ])⊕ λiβ∆i

Giγ,1 := H(Liβ,0, γ, 1)⊕ H(Liβ,1, γ, 1)⊕ Liα,0 ⊕ (
⊕

j 6=i Ki[λ
j
α])⊕ λiα∆i

Liγ,0 := H(Liα,0, γ, 0)⊕ H(Liβ,0, γ, 1)⊕ (
⊕

j 6=i Ki[λ
j
αβ ])⊕ λiαβ∆i ⊕ (

⊕
j 6=i Ki[λ

j
γ ])⊕ λiγ∆i

bγ := lsb(Liγ,0) if i = 2

For u, v ∈ {0, 1},
{
Mj [r

i
uv] := u ·Mj [λ

i
β ]⊕ v ·Mj [λ

i
α]⊕Mj [λ

i
αβ ]⊕Mj [λ

i
γ ]
}
j 6=i,1

Gi,jγ,00 := H(Liα,0, L
i
β,0, γ, j)⊕Mj [r

i
00] for each j 6= i, 1

Gi,jγ,01 := H(Liα,0, L
i
β,1, γ, j)⊕Mj [r

i
01] for each j 6= i, 1

Gi,jγ,10 := H(Liα,1, L
i
β,0, γ, j)⊕Mj [r

i
10] for each j 6= i, 1

Gi,jγ,11 := H(Liα,1, L
i
β,1, γ, j)⊕Mj [r

i
11] for each j 6= i, 1

For each w ∈ W , garbler Pi sends
(
Giw,0,Giw,1,

{
Gi,jw,00, G

i,j
w,01, G

i,j
w,10, G

i,j
w,11

}
j 6=i,1

)
to P1. Additionally P2

sends {bw}w∈W to P1.

Figure 7: The preprocessing phases of our MPC protocol in the Fprep-hybrid model

21



Protocol Πmpc, online phase

Input processing:
9. For each i ∈ [n] and w ∈ Ii, the parties execute as follows:

(a) Pi computes Λw := xiw ⊕ λw, and then broadcasts Λw to all parties.

(b) For each j 6= 1, Pj computes and sends Ljw,Λw := Ljw,0 ⊕ Λw∆j to P1.

Circuit evaluation:
10. P1 evaluates the circuit following the topological order. For each gate (α, β, γ, T ), P1 holds (Λα, {Liα,Λα}i6=1)

and (Λβ , {Liβ,Λβ}i 6=1), and computes as follows:

– If T = ⊕, compute Λγ := Λα ⊕ Λβ and
{
Liγ,Λγ := Liα,Λα ⊕ Liβ,Λβ

}
i 6=1

.

– If T = ∧, let u = Λα and v = Λβ , and compute the following:

(a) For each j 6= 1, Mj [r
1
uv] := Λα ·Mj [λ

1
β ]⊕ Λβ ·Mj [λ

1
α]⊕Mj [λ

1
αβ ]⊕Mj [λ

1
γ ].

(b) For i 6= 1 and j 6= i, 1, Mj [r
i
uv] := H(Liα,Λα , L

i
β,Λβ

, γ, j)⊕Gi,jγ,uv.
(c) For each i 6= 1, compute the garbled label on the output wire

Liγ,Λγ := H(Liα,Λα , γ, 0)⊕ H(Liβ,Λβ , γ, 1)⊕ ΛαGiγ,0 ⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ (
⊕

j 6=iMi[r
j
uv]).

(d) Compute the public value Λγ := bγ ⊕ lsb(L2
γ,Λγ

).

Check public values:
11. P1 computes hi := H({Liw,Λw}w∈W) for each i 6= 1, and samples a seed χ← F2κ . For each i 6= 1, P1 sends
{Λw}w∈W and hi along with χ to Pi. Then, Pi checks that hi = H({Liw,0 ⊕ Λw∆i}w∈W). If the check fails,
Pi aborts.
For each XOR gate (α, β, γ,⊕) and i 6= 1, Pi computes locally Λγ := Λα ⊕ Λβ .

12. For all AND gates (α, β, γ,∧), P1 checks that tγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ (Λγ ⊕ λγ) = 0 in a batch, by
interacting with all other parties as follows:

(a) For each AND gate (α, β, γ,∧) and i 6= 1, Pi computes

M1[tiγ ] := Λα ·M1[λiβ ]⊕ Λβ ·M1[λiα]⊕M1[λiαβ ]⊕M1[λiγ ].

(b) For each AND gate (α, β, γ,∧), P1 computes the following values:

t1γ := Λα · Λβ ⊕ Λγ ⊕ Λα · λ1
β ⊕ Λβ · λ1

α ⊕ λ1
αβ ⊕ λ1

γ

K1[tiγ ] := Λα · K1[λiβ ]⊕ Λβ · K1[λiα]⊕ K1[λiαβ ]⊕ K1[λiγ ] for each i 6= 1

M1[t1γ ] := (
⊕

i 6=1 K1[tiγ ])⊕ t1γ∆1

(c) Let H be an almost universal linear hash function defined by χ. For each i 6= 1, Pi computes ci :=
H({M1[tiw]}w∈W) ∈ Fκ2 , and then sends ci to P1.

(d) P1 computes c1 := H({M1[t1w]}w∈W) ∈ Fκ2 , and then checks
∑n
i=1 ci = 0. If the check fails, P1 aborts.

Output processing:
13. For each i ∈ [n], Pi computes its output as follows:

(a) For each wire w ∈ Oi and j 6= i, Pj and Pi compute λjw := Open([λjw]ij).

(b) Pi computes yiw := Λw ⊕ (
⊕

j∈[n] λ
j
w).

Figure 8: The online phase of our MPC protocol
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#Parties Protocol
Ind. (MB) Dep. Online Total (MB)

#1 #1024 (MB) (KB) #1 #1024

n = 2
KRRW [KRRW18] 2.5 1.9 0.2 5.0 2.7 2.1

Ours 1.9 1.4 0.2 4.2 2.1 1.6

n = 3
WRK [WRK17b] 4.8 3.6 1.0 6.3 5.8 4.6

Ours 3.7 2.8 0.66 6.2 4.4 3.5

n = 5
WRK [WRK17b] 9.7 7.2 1.9 10.4 11.6 9.1

Ours 7.5 5.7 1.5 10.3 9.0 7.2

Table 1: Comparison between our MPC protocol and the best known protocol in terms of communication
overhead for secure AES evaluation. The columns for “#1” and “#1024” denote the communication cost
over a single execution and the amortized communication cost over 1024 executions respectively.

Comparing communication based on AES circuit. An AES circuit consists of 6800 AND gates and
128 bits of input. In the multi-party setting, we assume that all parties hold XOR shares of the input and
the circuit will first XOR all input shares before the AES computation. Table 1 reports communication
complexity for secure AES evaluation, where all numbers are the maximum amount of data sent by any
one party per execution. We do not consider the cost of base OTs as it is very small and the same for all
protocols discussed here. To make the comparison fair, we incorporate the optimization to reduce the size
of the MACs (authenticated to the evaluator) from κ bits to ρ bits [WRK17a] in the multi-party setting. This
reduces the size of the distributed garbled circuit in WRK from 4nκ bits per AND gate to 4(n − 1)κ + 4ρ
bits per AND gate. In addition, the online communication cost of WRK is obtained by optimizing the online
phase of their protocol using the amortized opening of authenticated bits. From the description of the online
phase of the WRK protocol, the original online communication cost is much more than the one shown in the
Table 1.

For a single execution, our protocol leads to an 1.3× improvement in the function-independent phase,
compared to KRRW and WRK. In terms of the amortized communication cost of 1024 executions, our
protocol provides 1.26× ∼ 1.36× improvement in the function-independent phase. Compared to WRK,
our protocol gives about 1.52× improvement for three-party case and 1.27× improvement for five-party
case in the communication of the function-dependent phase. While reducing the communication in both
preprocessing phases, we do not increase the communication cost in the online phase. Overall, our protocol
results in ≈ 1.3× improvement for both a single execution and 1024 executions.

#Parties Protocol
Hamming Distance Sorting

Ind. Dep. Online Ind. Dep. Online

n = 2
KRRW [KRRW18] 586.4 67.9 67.9 2649.4 327.8 5.5

Ours 454.3 67.9 67.4 2134.9 327.8 4.2

n = 3
WRK [WRK17b] 1352.2 311.4 101.5 5319.7 1518.1 6.4

Ours 942.2 202.6 100.9 4269.8 987.8 6.3

n = 5
WRK [WRK17b] 3056.6 580.9 169.1 10661.5 2831.8 10.6

Ours 1884.3 472.1 168.0 8539.5 2301.5 10.5

Table 2: Communication cost of our and prior best protocols for computing Hamming distance and sorting.
All numbers are in megabytes (MB) with a single execution.

23



Comparing communication based on other circuits. In Table 2, we also compare our protocol with the
best known protocols for circuits of other shapes, including hamming distance and sorting. As described
in [WRK17a], these two circuits provide the following functionality:

– Hamming Distance. In the multi-party setting, every party inputs an XOR-share of two bit-strings of
length 1048576 bits. The circuit first XORs the shares to recover the underlying two bit-strings, and then
output a 22-bit number containing the hamming distance of the two bit-strings. In the two-party setting,
every party directly inputs a bit string of length 1048576 bits rather than XOR-share.

– Sorting. Each party inputs an XOR-share of 4096 32-bit numbers. The circuit first XORs them to recover
the underlying numbers, and then sorts the numbers.

Here, we only compare the cost of a single execution, as the circuits are large enough to take advantage
of amortization within the circuit. In the function-independent phase of secure hamming distance evalua-
tion, our optimizations result in 1.3× improvement for secure two-party computation, and 1.44× and 1.62×
improvements for three-party and five-party cases respectively. For sorting circuit, our protocol gives a
1.24× ∼ 1.25× improvement in the function-independent phase. In the function-dependent phase, our pro-
tocol gets a 1.54× improvement in the communication for three-party case, and a 1.23× improvement for
five-party case. In particular, compared to KRRW (resp., WRK), our protocol reduces the total communica-
tion by more than 130 MB (resp., 500 MB when n = 3 and 1 GB if n = 5) for hamming distance and 500
MB (resp., 1.5 GB when n = 3 and 2.5 GB if n = 5) for sorting.
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A More Background

A.1 Communication Model

We assume that all parties are connected via authenticated channels, as well as point-to-point channels
and a broadcast channel. The default method of communication in our protocols is authenticated channel,
unless otherwise specified. In practice, these channels can be implemented using standard techniques. In
particular, a broadcast channel can be efficiently implemented using a standard 2-round echo-broadcast
protocol [GL05], as we allow abort. When each party needs to broadcast m messages of `-bit length, the
communication overhead of this broadcast protocol can be improved from nm` bits to m`+ρ bits using the
optimized technique [DPSZ12] and almost universal linear hash functions [CDD+16].

A.2 Commitment and Coin-tossing Functionalities

Functionality FCom

Commit phase: On input (Commit, i, x, τx) from Pi, record (i, x, τx) and output (Receipt, i, τx) to all parties.
Ignore any future Commit messages with the same session identifier τx from Pi.

Open phase: On input (Open, i, τx) from Pi, if a tuple (i, x, τx) was previously recorded, then output
(Open, i, x, τx) to all parties.
If Pi is corrupted and (NoOpen, i, τx) is given by the adversary, output (NoOpen, i,⊥, τx) to all parties.

Figure 9: The functionality for commitments

Commitment. We will use a commitment functionality shown in Figure 9. This functionality can easily be
implemented in the random oracle model [HSS17] via executing as follows:

Commit phase: A party Pi picks a random r ← {0, 1}κ and computes Cix = Commit(i, x) := H(i, x, r),
and then broadcasts Cix to all parties, where H : {0, 1}∗ → {0, 1}2κ is a hash function modeled as a random
oracle [BR93].

Open phase: Pi sends (x, r) to all parties, who check if Cix = H(i, x, r).

Coin tossing. We will use a standard coin-tossing functionality FRand shown in Figure 10, which can be
securely realized with commitments to random seeds. In particular, every party commits to a seed via FCom,
and then opens the seed and uses the XOR of the seeds from all parties to seed a pseudorandom generator
PRG, which is secure in the random oracle model.

Functionality FRand

FRand runs with parties P1, . . . , Pn as follows:
– Upon receiving (Rand, `) from all parties, sample r ← {0, 1}`, and then send r to all parties.

Figure 10: Coin-tossing functionality
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A.3 Almost Universal Linear Hash Functions

We will use a family of almost universal linear hash functions [CDD+16] over F2 defined as follows:

Definition 1 (Almost Universal Linear Hashing). We say that a familyH of linear hash functions Fm2 → Fs2
is ε-almost universal, if it holds for every non-zero x ∈ Fm2 such that

Pr
H←H

[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the familyH.

Efficient constructions for a family of almost universal linear hash functions have been proposed such
as [DPSZ12, CDD+16, NST17]. In this paper, we adopt the following practical construction, which is a
polynomial hash based on GMAC and also used in [NST17, HSS17]:

– Sample a random seed χ← F2s .

– Let ` = m/s. Here we assume that s divides m for the sake of simplicity.

– Use χ to define the following linear hash function H:

H : F`2s → F2s , H(x1, x2, . . . , x`) = x1 · χ+ x2 · χ2 + · · ·+ x` · χ`

The seed χ ∈ F2s is short, but the computational complexity is O(m · s). When s = 128 is adopted, the
finite field multiplication over F2s can be performed very efficiently in hardware on modern CPUs by using
the Intel SSE instruction PCLMULQDQ [NST17]. This construction described as above provides an almost
universal family with ε = ` · 2−s = m

s · 2
−s, as χ is uniformly random in F2s and independent of the input

x = (x1, x2, . . . , x`). This can be improved to 2−s, at the cost of a larger seed, by using ` different elements
χi ∈ F2s .

A.4 Amortized Opening of Authenticated Bits and Shares

A party Pi can open [x]ji to Pj via just sending x and Mj [x] to Pj . Party Pj is able to verify the validity of x
by checking that Mj [x] = Kj [x]⊕ x∆j . As observed in previous work [NNOB12], the validity of multiple
authenticated bits can be checked in an amortized way, i.e., it is possible to open ` authenticated bits with
less than ` times the communication. Specifically, we have the following amortized opening process.

– For each i ∈ [n], j 6= i, Pi can open ` two-party authenticated bits [x1]ji , . . . , [x`]
j
i to Pj as follows:

1. Pi sends x1, . . . , x` along with τj := H(“open”,Mj [x1], . . . ,Mj [x`]) to Pj .

2. Pj checks that τj = H(“open”,Kj [x1]⊕ x1∆j , . . . ,Kj [x`]⊕ x`∆j). If the check fails, Pj aborts.

We use Open([xk]
j
i ) for each k ∈ [`] to denote the above amortized opening process for two-party au-

thenticated bits. Pi can also open `multi-party authenticated bits [x1]i, . . . , [x`]i to all parties via opening
[x1]ji , . . . , [x`]

j
i to Pj for each j 6= i.

– All parties can open ` authenticated shares 〈x1〉, . . . , 〈x`〉 by letting every party Pi open its portion in the
following amortized way.

1. For each j 6= i, Pi sends xi1, . . . , x
i
` along with τi,j := H(“open”,Mj [x

i
1], . . . ,Mj [x

i
`]) to Pj

2. For each j 6= i, Pj checks that τi,j = H(“open”,Kj [xi1]⊕xi1∆j , . . . ,Kj [x
i
`]⊕xi`∆j), and aborts if the

check fails.

Let Open(〈xk〉) for each k ∈ [`] denote the above amortized opening process for authenticated shares.
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Below, we prove that the above opening process in a batch is secure in the random oracle model, even if
the adversary leaks a few bits of global keys such that each bit leaked of global keys will be caught with
probability 1/2. We focus on the case of two-party authenticated bits, where the security proof is easy to be
generalized to multi-party authenticated bits and authenticated shares.

Lemma 4. If H is a random oracle, then the opening process in the above amortized way for two-party
authenticated bits guarantees that either an honest party Pj aborts, or Pj receives the correct bits from a
malicious party Pi except with probability (q + 1)/2κ, where q is an upper bound of the number of queries
to H.
The PPT adversary A corrupting Pi is allowed to leak c bits of ∆j , but Pj will abort with probability 1/2c.

Proof. Let x1, . . . , x` be the correct bits that will be sent by semi-honest Pi. In the opening process, adver-
sary A on behalf of Pi sends the bits x′1, . . . , x

′
` along with τ ′j to honest party Pj . If Pj does not abort, then

τ ′j = H(“open”,K[x1] ⊕ x′1∆j , . . . ,K[x`] ⊕ x′`∆j). If A makes a query z to H such that H(z) = τ ′j but
z 6= (“open”,K[x1]⊕ x′1∆j , . . . ,K[x`]⊕ x′`∆j), then A finds a target collision for random oracle H, which
happens with probability q/2κ.

Below, we assume that A does not find a target collision, and then analyze the probability that there
exists some k ∈ [`] such that x′k 6= xk. The probability that A forges an information-theoretic MAC
Mj [x

′
k] = Kj [xk] ⊕ x′k∆j is 1/2κ−c. Note that Pj will abort except with probability 1/2c, due to the

c leaked bits of ∆j . Together, the probability that Pj does not abort and A forges an MAC Mj [x
′
k] is

1/2c · 1/2κ−c = 1/2κ.
Overall, except with probability (q + 1)/2κ, Pj will receive the correct bits, if it does not abort.

B Security Proof of Our Authenticated Share Protocol

First we can see that ΠaShare is correct when all parties are honest, because

n∑
j=1

zji = zii +
∑
j 6=i

zji = (yi + y) ·∆i +
∑
j 6=i

(
Ki[y

j ] + Mi[y
j ]
)

= (yi + y) ·∆i +
∑
j 6=i

yj ·∆i = y ·∆i + y ·∆i = 0.

In the init command of FaBit, a corrupt party Pi may deviate the protocol by providing inconsistent inputs
∆i with two different honest parties. We define ∆i,j to be actual inputs used by corrupt Pi, i.e., Pi sends
(init, j,∆i,j) to FaBit. Without loss of generality, we pick an honest party Pj0 and fix ∆i = ∆i,j0 . We define
Ri,j := ∆i,j + ∆i for j 6= i, and thus Ri,j0 = 0. Note that Ri,j is fixed in the initialization phase. In the
following lemma, we prove that a corrupt party Pi is impossible to provide inconsistent global keys ∆i,j

with different honest parties Pj ∈ H.

Lemma 5. If all honest parties do not abort in protocol ΠaShare, then for every corrupted party Pi ∈ M,
all the global keys ∆i,j are consistent with probability 1− 1/2κ, i.e., Ri,j = 0 for each j ∈ H.

Proof. In Step 6 of protocol ΠaShare, if all corrupt parties are semi-honest, then every party Pi broadcasts ỹi

and computes y :=
∑n

i=1 ỹ
i. However, every malicious party Pi ∈ M may broadcast an adversarial value

ŷi, such that ŷ :=
∑

i∈M ŷi+
∑

i∈H ỹi = y+e, where e is an additive error of the adversary’s choice. We
define zji to be the value committed by a party Pj when Pj behaves honestly. The corrupt parties may deviate
the protocol by committing the values ẑki for k ∈M, in such a way that

∑
k∈M ẑki =

∑
k∈M zki +Ei, where

Ei is an adversarially chosen error.
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If a malicious party Pi tries to cheat, then it has to pass the check in Step 8 of protocol ΠaShare. Therefore,
we have the following holds:

0 =
∑
j∈H

zji +
∑
j∈M

ẑji = zii +
∑
j 6=i

zji + Ei

=
(∑
j 6=i

Ki[y
j ] +

(
yi + y + e

)
·∆i

)
+
∑
j 6=i

Mi[y
j ] + Ei

=
∑
j 6=i

(
Ki[y

j ] + Mi[y
j ]
)

+
(
yi + y + e

)
·∆i + Ei

=
∑
j 6=i

yj ·∆i,j +
(
yi + y + e

)
·∆i + Ei

=
∑
j 6=i

yj ·Ri,j +
(
yi + y + e +

∑
j 6=i

yj
)
·∆i + Ei

=
∑
j 6=i

yj ·Ri,j + e ·∆i + Ei

If a malicious party Pi provides inconsistent global keys, then there exists j0, j1 ∈ H such thatRi,j0 6= Ri,j1 .
Therefore, the attack requires the adversary to set Ei + e · ∆i = yj0 · Ri,j0 + yj1 · Ri,j1 . Due to the re-
randomization by random zero-sharing, from the view of the adversary, yj0 and yj1 are uniformly random
additive shares of y. Thus, the adversary succeeds to cheat with probability 2−κ.

Based on Lemma 5, we easily prove the following theorem:

Theorem 3. The protocol ΠaShare shown in Figure 6 securely realizes the functionality FaShare in the
(FaBit,FCom)-hybrid model.

Proof. It is easy to construct a simulator S, since all parties only communicate to each other in the phase of
consistency check and S is allowed to know the shares ri1, . . . , r

i
κ for each i ∈ H. Specifically, for any PPT

adversary A, we construct a PPT simulator S as follows:

1. In the initialization phase, S receives ∆i,j for each i ∈M and j 6= i from A. On behalf of every corrupt
party Pi ∈M, S defines and sends ∆i := ∆i,j for some j ∈ H to FaShare.

2. In the generation phase of authenticated shares, S plays the role of FaBit and records all the values
received fromA and sent toA. For each i ∈ H, S also samples ri1, . . . , r

i
κ ← {0, 1}, and for each h ∈ [κ],

computes Mj [r
i
h] using the keys Kj [r

i
h] and ∆j,i from A if j ∈ M and samples Mj [r

i
h] ← {0, 1}κ

otherwise.

3. When S plays the role of FaBit, upon receiving the leak queries from A, S forwards these queries to
FaShare, and returns the decision results from FaShare to A. If FaShare aborts, S outputs whatever A
outputs and halts. Otherwise, S continues to the simulation.

4. For each i ∈ H, S samples a dummy global key ∆i ← {0, 1}κ such that ∆i is consistent with the real
global key of Pi on the bits that have been leaked. For each i ∈ H and h ∈ [κ], S defines Ki[r

j
h] using

the corresponding Mi[r
j
h] and ∆i.

5. S uses the values obtained in previous steps to perform the consistency check honestly on behalf of all
honest parties. If the check fails, then S sends abort to FaShare, and outputs whatever A outputs and
halts.
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Functionality FLaAND

Honest Parties: Upon receiving (LaAND) from all parties, generate random 〈x〉, 〈y〉, 〈z〉 such that (
⊕

i∈[n] x
i)∧

(
⊕

i∈[n] y
i) =

⊕
i∈[n] z

i, and send them to the parties.

Corrupt Parties:

– Corrupt parties can choose their own randomness specifying the outputs received from the functionality.

– The adversary can send (Q, q, {Ri}i∈H) ∈ {0, 1}κ × {0, 1} × {0, 1}|H|κ to FLaAND, which checks

Q⊕ (
⊕

i∈H x
iRi) = (q ⊕

⊕
i∈H x

ilsb(Ri))(
⊕

i∈H∆i).

If the check fails, the functionality sends fail to all parties and aborts. Otherwise, the functionality
proceeds as if nothing has happened, and the adversary will know its guess is correct.

Leakage of global keys: The adversary may input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, the functionality
does the following:

– If there exists some k ∈ S such that ∆′[k] 6= ∆i[k], the functionality outputs fail to all parties and
aborts.

– Otherwise, it outputs success to the adversary and proceeds as if nothing has happened.

Figure 11: Functionality for leaky authenticated AND triples with weak global keys

6. If there are two honest parties j0, j1 ∈ H such that ∆i,j0 6= ∆i,j1 for some i ∈M, then S aborts.

7. On behalf of every corrupt party Pi, S sends the corresponding shares, MACs and local keys received
from A in the functionality FaBit, to FaShare.

By Lemma 5, we guarantee the probability that S aborts in Step 5 is negligible in κ. Therefore, it is easy to
see that the simulation of S is statistically indistinguishable from the real protocol execution. Note that S
does not know the real global keys of honest parties in the ideal world. S samples a dummy global key for
every honest party to just perform the consistency check, and never uses these keys in any other place. In all,
the real-world execution is statistically indistinguishable from the ideal-world execution, which completes
the proof.

C Efficient Protocol for Authenticated AND Triples

C.1 Improved Protocol for Leaky AND Triples

We first describe the functionality FLaAND for leaky authenticated AND triples in Figure 11. Similar to prior
works, the adversary is allowed to guess a share xi

∗ ∈ {0, 1} from an honest party Pi∗ . An incorrect guess
will be caught immediately, while a correct guess keep undetected. In more detail, an adversary A does not
directly learn the share xi

∗
, but instead is allowed to make a query on some linear combination of the values

xi
∗

and ∆i∗ . In this special way, A cannot obtain more information than making a query on xi
∗

and ∆i∗

directly. Moreover, A cannot learn any information on yi
∗

or zi
∗
.

We present a protocol ΠLaAND shown in Figure 12 that securely computes FLaAND. In the protocol,
we assume that FaShare generates global keys {∆i}i∈[n] such that

⊕n
i=1 lsb(∆i) = 1, e.g., lsb(∆i) = 1

if i 6= 1 and lsb(∆i) = n mod 2 if i = 1. Note that we add a tweak i‖j‖t to the computation of H in
the t-th execution of protocol ΠLaAND. It aims to prevent the attack in [GKWY20] that a malicious party
Pj may send the same share and MAC in multiple protocol executions. Besides, we do not let the parties
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Protocol ΠLaAND

In the t-th protocol execution, the parties generate a leaky AND triple as follows:
1. All parties send (aShare, 3) to FaShare, which returns three random authenticated shares 〈x〉, 〈y〉, 〈r〉 to the

parties, where 〈x〉 =
(
[x1]1, . . . , [x

n]n
)
, 〈y〉 =

(
[y1]1, . . . , [y

n]n
)

and 〈r〉 =
(
[r1]1, . . . , [r

n]n
)
.

2. For each i ∈ [n], Pi locally computes Φi := yi∆i ⊕
(⊕

k 6=i(Ki[y
k]⊕Mk[yi])

)
.

3. For each ordered pair (Pi, Pj) where i 6= j, Pi computes

Ki[x
j ]Φi := H(Ki[x

j ], i‖j‖t) and Ui,j := Ki[x
j ]Φi ⊕ H(Ki[x

j ]⊕∆i, i‖j‖t)⊕ Φi,

and then sends Ui,j to Pj . Upon receiving Ui,j from Pi, Pj computes

Mi[x
j ]Φi := xj · Ui,j ⊕ H(Mi[x

j ], i‖j‖t).

4. For each i ∈ [n], Pi executes as follows:

(a) Compute the following value

Si := xiΦi ⊕
(⊕

k 6=i(Ki[x
k]Φi ⊕Mk[xi]Φk)

)
⊕ ri∆i ⊕

(⊕
k 6=i(Ki[r

k]⊕Mk[ri])
)
.

(b) Commit to di := lsb(Si) by the Commit command of FCom.

(c) After receiving all commitments, open its commitment via the Open command of FCom, and then com-
pute d :=

⊕n
i=1 di.

5. For each i ∈ [n], Pi computes and commits to Ti := Si ⊕ d∆i by the Commit command of FCom.

6. For each i ∈ [n], after all commitments have been made, all parties open their commitments by the Open
command of FCom, and then check

⊕
i∈[n] Ti = 0. If the check fails, the parties abort.

7. For each i 6= 1, the parties define [zi]i := [ri]i. The parties also compute [z1]1 := [r1]1 ⊕ d.

Figure 12: Protocol for leaky authenticated AND triples with weak global keys

straightforwardly broadcast a bit di, and instead make them commit to di. This because in the security proof,
the simulator needs to know the bits from the adversary, before sending a bit di on behalf of Pi ∈ H.

For the sake of simplicity, we only describe one leaky AND triple generation in protocol ΠLaAND. When
` leaky authenticated AND triples need to be generated, we can run ` times the ΠLaAND protocol in parallel,
where all parties send (aShare, 3`) to FaShare. In this case, we can further reduce the communication com-
plexity by combining ` commitments into one commitment. In particular, let di,t be the bit committed by Pi
in Step 4(b), and Ti,t be the value committed by Pi in Step 5, in the t-th protocol execution. Then every party
Pi can commit to di,1, . . . , di,` by making a single Commit request to FCom, and commit to Ti,1, . . . , Ti,`
via a single Commit request of FCom. When using a random oracle H to implement FCom as shown in
Section A.2, this means that Pi only needs to compute and broadcast a single value H(i, {di,t}t∈[`], ri) in
Step 4(b) and H(i, {Ti,t}t∈[`], r

′
i) in Step 5, where ri, r′i ∈ {0, 1}κ are two randomness sampled by Pi.

C.1.1 Proof of Security for ΠLaAND.

To prepare for the security proof of our main protocol, we first show that: 1) our protocol is correct if
all parties are honest; and 2) if the protocol execution does not abort, then the parties generate a correct
authenticated AND triple with overwhelming probability. See below.
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Lemma 6. Protocol FLaAND in Figure 12 is correct, when all parties are honest.

Proof. According to the definition of Φi, we have:⊕
i∈[n] Φi =

⊕
i∈[n]

(
yi∆i ⊕

⊕
k 6=i
(
Ki[y

k]⊕Mk[y
i]
))

=
⊕

i∈[n]

(
yi∆i ⊕

⊕
k 6=i
(
Ki[y

k]⊕Mi[y
k]
))

=
⊕

i∈[n]

(
yi∆i ⊕

⊕
k 6=i y

k∆i

)
=
(⊕

i∈[n] y
i
)(⊕

i∈[n] ∆i

)
.

Note that

Ki[x
j ]Φi ⊕Mi[x

j ]Φi = H(Ki[x
j ], i‖j‖t)⊕ H(Mi[x

j ], i‖j‖t)⊕ xj · Ui,j
= H(Ki[x

j ], i‖j‖t)⊕ H(Ki[x
j ]⊕ xj∆i, i‖j‖t)

⊕ xj ·
(
H(Ki[x

j ], i‖j‖t)⊕ H(Ki[x
j ]⊕∆i, i‖j‖t)⊕ Φi

)
= H(Ki[x

j ], i‖j‖t)⊕ H(Ki[x
j ], i‖j‖t)⊕ xj · Φi = xjΦi.

Taking the above two equations, we have the following equation holds:⊕
i∈[n] Si =

⊕
i∈[n]

(
xiΦi ⊕

⊕
k 6=i(Ki[x

k]Φi ⊕Mk[x
i]Φk)⊕ ri∆i ⊕

⊕
k 6=i(Ki[r

k]⊕Mk[r
i])
)

=
⊕

i∈[n]

(
xiΦi ⊕

⊕
k 6=i(Ki[x

k]Φi ⊕Mi[x
k]Φi)

)
⊕
⊕

i∈[n]

(
ri∆i ⊕

⊕
k 6=i(Ki[r

k]⊕Mi[r
k])
)

=
⊕

i∈[n]

(
xiΦi ⊕

⊕
k 6=i x

kΦi

)
⊕
⊕

i∈[n]

(
ri∆i ⊕

⊕
k 6=i r

k∆i

)
=
(⊕

i∈[n] x
i
)(⊕

i∈[n] Φi

)
⊕
(⊕

i∈[n] r
i
)(⊕

i∈[n] ∆i

)
=
((⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
))(⊕

i∈[n] ∆i

)
.

Since lsb(
⊕

i∈[n] ∆i) = 1, it holds that

d = lsb(
⊕

i∈[n] Si) =
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
)
.

From zi = ri and z1 = r1 ⊕ d, we have
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)

= d⊕
(⊕

i∈[n] r
i
)

=
⊕

i∈[n] z
i.

Lemma 7. If the honest parties do not abort, then (
⊕

i∈[n] x
i) ∧ (

⊕
i∈[n] y

i) =
⊕

i∈[n] z
i, where {zi :=

ri}i 6=1 and z1 := r1 ⊕ d′, the bit d′ is computed in Step 4(c) of protocol ΠLaAND, and {xi, yi, ri}ni=1 are
defined from 〈x〉, 〈y〉, 〈r〉 which are output by FaShare.

Proof. Let U ′i,j , d
′, S′i, T

′
i denote the values computed by a party Pi in the protocol ΠLaAND when some

malicious parties deviate the protocol, and Ui,j , d, Si, Ti be the values that Pi would have computed when
all parties are honest. For each i ∈ M, we define Ri,j := U ′i,j ⊕ Ui,j for each j ∈ H and Qi := T ′i ⊕ Ti.
For each j ∈ H, we also define Rj :=

⊕
k∈MRk,j . Firstly, we show that if d′ = d = (

⊕
i∈[n] x

i) ∧
(
⊕

i∈[n] y
i) ⊕ (

⊕
i∈[n] r

i), then
⊕

i∈[n] z
i = (

⊕
i∈[n] x

i) ∧ (
⊕

i∈[n] y
i) holds with probability 1. Since

zi = ri for i 6= 1 and z1 = r1 ⊕ d′, we have:⊕
i∈[n] z

i =
(⊕

i∈[n] r
i
)
⊕ d′

=
(⊕

i∈[n] r
i
)
⊕
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
)

=
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
.
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Below, we assume that d′ 6= dwhile at the same time that the check passes, and we will derive a contradiction
from this. For each i ∈ M, an honest party Pj ∈ H would compute M′i[x

j ]Φi := xj · U ′i,j ⊕ H(Mi[x
j ]) =

xj ·Ui,j⊕H(Mi[x
j ])⊕xj ·Ri,j = Mi[x

j ]Φi⊕xj ·Ri,j . Then Pj will compute S′j = Sj⊕
(⊕

k∈M xjRk,j
)

=

Sj ⊕ xj ·Rj . Note that we have
⊕

i∈[n] Ti = 0. Thus, we know that⊕
i∈[n] T

′
i =

⊕
i∈M T ′i ⊕

⊕
i∈H T

′
i

=
⊕

i∈M (Ti ⊕Qi)⊕
⊕

i∈H (S′i ⊕ d′∆i)

=
⊕

i∈M (Ti ⊕Qi)⊕
⊕

i∈H
(
Si ⊕ xiRi ⊕ d∆i ⊕∆i

)
=
⊕

i∈[n] Ti ⊕
⊕

i∈MQi ⊕
⊕

i∈H x
iRi ⊕

⊕
i∈H∆i

=
⊕

i∈MQi ⊕
⊕

i∈H x
iRi ⊕

⊕
i∈H∆i

To make
⊕

i∈[n] T
′
i be equal to 0, the adversary needs to find errors such that⊕

i∈MQi ⊕
⊕

i∈H x
iRi =

⊕
i∈H∆i (1)

We here consider the case that |H| = 1, because if |H| ≥ 2, the adversary A will have lower probability to
guarantee the above equation (1) holds. We assume that Pi∗ ∈ H is the unique honest party. If A succeeds
to guess c bits of ∆i∗ via the leak command of FaShare, then the protocol will abort except with probability
1/2c. If A makes at most q queries to random oracle H, then it will learn ∆i∗ from {Ui∗,j}j 6=i∗ sent by Pi∗
with probability at most q/2κ−1−c. Therefore, the probability, that the protocol does not abort and the above
equation (1) holds, is bounded by q/2κ−1−c · 1/2c = q/2κ−1.

Below, we prove the security of ΠLaAND in the following theorem.

Theorem 4. Assume that H is a random oracle, then protocol ΠLaAND from Figure 12 securely realizes
FLaAND in the (FaShare,FCom)-hybrid model.

Proof. Let A be a PPT adversary who corrupts a subset of parties M. We construct a PPT simulator S,
which runs A as a subroutine, simulates A’s view, and has access to the functionality FLaAND.

Description of the simulation.
1. S emulates the functionalityFaShare, and for each i ∈M, S receives global key ∆i andPi’s authenticated

shares of 〈x〉, 〈y〉, 〈r〉 from A. S samples a random bit d ← {0, 1}, and then defines [zi]i := [ri]i for
each i 6= 1 and [z1]1 := [r1]1 ⊕ d. For each i ∈ M, S sends ∆i and Pi’s authenticated shares for
(〈x〉, 〈y〉, 〈z〉) to FLaAND.

2. For all leak queries from A against FaShare, S forwards these queries to FLaAND, and then sends the
decision results to A. If FLaAND aborts, S outputs whatever A outputs and aborts.

3. For each i ∈ H, S picks a random Ui,j ← {0, 1}κ as a message sent from Pi to Pj for each j 6= i. For
each i ∈ M, using global key ∆i and the Pi’s authenticated shares of 〈x〉, 〈y〉, 〈r〉, S computes locally
Ui,j for each j ∈ H, j 6= i, di := lsb(Si) and Ti := Si ⊕ d∆i, which will be sent by a semi-honest party
Pi, where Si is the value computed by a semi-honest Pi with its authenticated shares and the messages
{Uj,i}j 6=i.

4. For each i ∈ H, S acts as honest party Pi and sends Ui,j sampled in previous step to Pj for each j 6= i.
For each i ∈ M, for every j ∈ H, j 6= i, S acts as honest party Pj and receives U ′i,j from A, and then
computes Ri,j := U ′i,j ⊕ Ui,j . For each i ∈ H, S computes Ri :=

⊕
k∈MRk,i.
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5. S emulates FCom and receives d′i for each i ∈ M from A. Then, S computes qi := d′i ⊕ di and
q :=

⊕
i∈M qi. By Lemma 7, we know that d′ =

⊕
i∈[n] d

′
i is equal to d =

⊕
i∈[n] di in the real

protocol execution with overwhelming probability. Therefore, S sets d′ := d. For each i ∈ H, S samples
d′i ← {0, 1} such that

⊕
i∈[n] d

′
i = d′. Then, S emulates FCom and opens d′i for each i ∈ H to all parties.

6. S plays the role of FCom, and receives T ′i from every corrupt party Pi ∈M. S computes Qi := T ′i ⊕ Ti
for each i ∈ M, and then computes Q :=

⊕
i∈MQi. Then, S sends (Q, q, {Ri}i∈H) to FLaAND as a

selective failure attack query. If FLaAND aborts, S outputs whatever A outputs and aborts. Otherwise,
for each i ∈ H, S picks T ′i ← {0, 1}κ such that lsb(T ′i ) = d′i ⊕ d′ · lsb(∆i) and

⊕
i∈[n] T

′
i = 0, and then

opens it to all parties.

For each i ∈ H, we assume that A guesses ci bits of ∆i with probability of aborting 1 − 1/2ci . Since
H is a random oracle, the probability that (Mi[x

j ] ⊕ ∆i, i‖j‖t) for j 6= i has been queried is bounded
by q/2κ−1−ci , where q is the number of queries to H. Therefore, for each i ∈ H, j 6= i, Ui,j simulated
by S is indistinguishable from the value in the real protocol execution, except with probability at most
1/2ci · q/2κ−1−ci = q/2κ−1, which is negligible in κ. In the FaShare-hybrid model, the shares of all honest
parties for 〈y〉, 〈r〉 are kept secret. Therefore, {d′i}i∈H simulated by S have the same distribution as the bits
sent in the real protocol execution.

Below, we show that the probability of aborting due to the selective failure attack in the real world is the
same as the one in the ideal world. By the proof of Lemma 7, we have that S′i = Si⊕xi ·Ri. Thus, for each
i ∈ H, d′i = di ⊕ xi · lsb(Ri). Due to d′i = di ⊕ qi for each i ∈M, we know that

d′ =
⊕

i∈[n] d
′
i =

⊕
i∈H d

′
i ⊕
⊕

i∈M d′i

=
⊕

i∈[n] di ⊕
⊕

i∈H x
i · lsb(Ri)⊕

⊕
i∈M qi

= d⊕
⊕

i∈H x
i · lsb(Ri)⊕ q.

Based on the above equation, we have the following:⊕
i∈[n]

T ′i =
⊕
i∈M

T ′i ⊕
⊕
i∈H

T ′i

=
⊕
i∈M

(Ti ⊕Qi)⊕
⊕
i∈H

(
S′i ⊕ d′∆i

)
=
⊕
i∈M

(Ti ⊕Qi)⊕
⊕
i∈H

(
Si ⊕ xiRi ⊕ d∆i ⊕

(⊕
j∈H

xj · lsb(Rj)
)
∆i ⊕ q∆i

)
=
⊕
i∈[n]

Ti ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

xiRi ⊕
(
q ⊕

⊕
i∈H

xilsb(Ri)
)(⊕

i∈H
∆i

)
= Q⊕

(⊕
i∈H

xiRi

)
⊕
(
q ⊕

⊕
i∈H

xilsb(Ri)
)(⊕

i∈H
∆i

)
Therefore,

⊕
i∈[n] T

′
i = 0 if and only if the following holds:

Q⊕
(⊕

i∈H x
iRi
)

=
(
q ⊕

⊕
i∈H x

ilsb(Ri)
) (⊕

i∈H∆i

)
,

which implies the same probability of aborting for both two worlds.
In the simulation of S, if FLaAND does not abort, for each i ∈ H, T ′i is chosen at random except

for the least significant bit. We need to show that if the protocol does not abort, then {T ′i}i∈H simulated
by S is indistinguishable from the values opened in the real protocol execution. Firstly, we prove that⊕

i∈[n] lsb(T ′i ) = 0 with probability at least 1 − q/2κ−1, where q is an upper bound of the number of
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H queries. From a similar analysis of the proof of Lemma 7, we have that Q =
⊕

i∈H x
iRi and q =⊕

i∈H x
ilsb(Ri), except with probability at most q/2κ−1. Thus, with probability at least 1 − q/2κ−1,

FLaAND does not abort, lsb(Q) = q and d′ = d ⊕ q ⊕
⊕

i∈H x
ilsb(Ri) = d. From S’s simulation, we

have: ⊕
i∈[n]

lsb(T ′i ) =
⊕
i∈H

(
d′i ⊕ d′ · lsb(∆i)

)
⊕
⊕
i∈M

(lsb(Ti)⊕ lsb(Qi))

=
⊕
i∈H

d′i ⊕ d′ ·
⊕
i∈H

lsb(∆i)⊕
⊕
i∈M

(di ⊕ d · lsb(∆i))⊕
⊕
i∈M

lsb(Qi)

=
⊕
i∈H

d′i ⊕ d′ ·
⊕
i∈H

lsb(∆i)⊕
⊕
i∈M

(d′i ⊕ qi)⊕ d ·
⊕
i∈M

lsb(∆i)⊕ lsb(Q)

= d′ ⊕ d ·
⊕
i∈[n]

lsb(∆i)⊕ (q ⊕ lsb(Q)) = d′ ⊕ d = 0

Below, we prove if the protocol execution does not abort, then T ′i computed by honest party Pi is uniformly
random under the condition that

⊕
i∈[n] T

′
i = 0 and lsb(T ′i ) = d′i⊕d′ · lsb(∆i) in the real protocol execution.

When |H| = 1 (i.e., only one party is honest), it is obvious that T ′i with i ∈ H is defined by the equation⊕
i∈[n] T

′
i = 0. In the following, we focus on the case that |H| ≥ 2. In particular, for each i ∈ H, we define

Fi :=
⊕
k 6=i

(
Ki[r

k]⊕Mk[r
i]
)
.

We show that for any proper subset S ⊂ H,
⊕

i∈S Fi is perfectly indistinguishable from a random value in
{0, 1}κ. We use e to denote an honest party such that e ∈ H and e /∈ S. Such e always exists, as S is a
proper subset ofH. We have the following equation holds:⊕

i∈S
Fi =

⊕
i∈S

⊕
k 6=i

(
Ki[r

k]⊕Mk[r
i]
)

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
i∈S

⊕
k 6=i

Mk[r
i]

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
k∈S

⊕
i 6=k

Mi[r
k]

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
i∈[n]

⊕
k∈S,k 6=i

Mi[r
k]

From the above equation, it is easy to see that for i ∈ S, Ke[ri] is not in the computation, while Me[r
i] =

Ke[r
i]⊕ ri∆e is. Since Ke[ri] is picked uniformly at random by FaShare, and is kept unknown forA as both

i, e ∈ H,
⊕

i∈S Fi is random and unknown for A. Therefore, for any proper subset S ⊂ H,
⊕

i∈S S
′
i is

indistinguishable from a random value, except that the least significant bit is revealed, where S′i is the value
computed by honest party Pi in Step 4 for i ∈ S. We have that for any proper subset S ⊂ H,

⊕
i∈S T

′
i is

indistinguishable from a random value except that lsb
(⊕

i∈S T
′
i

)
is fixed.

According to Lemma 7, if
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
6=
⊕

i∈[n] z
i, then the real protocol execution

will abort with overwhelming probability. Therefore, if honest parties do not abort, then protocol ΠLaAND

will output a correct authenticated AND triple with overwhelming probability, while functionality FLaAND

always output a correct AND triple. In conclusion, we complete the proof.

C.2 From Leaky authenticated AND Triples to Authenticated AND Triples

Similar to all prior works, we can eliminate the triple leakage based on bucketing. Based on the techniques
in [NNOB12, WRK17b], we present an efficient protocol ΠaAND for authenticated AND triples, which se-
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Functionality FaAND

Honest Parties: Upon receiving (aAND, `) from all parties, generate random {(〈xk〉, 〈yk〉, 〈zk〉)}k∈[`] such that(⊕
i∈[n] x

i
k

)
∧
(⊕

i∈[n] y
i
k

)
=
⊕

i∈[n] z
i
k for each k ∈ [`], and send them to all parties.

Corrupt Parties: Corrupt parties can choose their own randomness received from the functionality.
Leakage of global keys: The adversary may input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, the functionality does
the following:
– If there exists some k ∈ S such that ∆′[k] 6= ∆i[k], the functionality outputs fail to all parties and aborts.

– Otherwise, it outputs success to the adversary and proceeds as if nothing has happened.

Figure 13: Functionality FaAND for authenticated AND triples with weak global keys

curely computes a functionalityFaAND shown in Figure 13. The details of ΠaAND are described in Figure 14.
Our protocol is essentially the same as the one by Wang et al. [WRK17b], except that a) opening authenti-
cated shares in an amortized way rather than directly sending the MACs; b) calling the functionality FLaAND

for leaky AND triples with weak global keys. Given prior works [NNOB12, WRK17b], the security proof
of protocol ΠaAND follows immediately, and thus is omitted. Note that although the adversary may leak a
few bits of global keys with a certain probability, this has no impact on the security, by following the proof
in Lemma 4.

Protocol ΠaAND

1. All parties set `′ := B · ` where B is the bucket size, and then call FLaAND `′ times and obtains `′ leaky
authenticated AND triples {(〈xk〉, 〈yk〉, 〈zk〉)}k∈[`′].

2. All parties call FRand to sample a random permutation π on {1, . . . , `′}. Then the parties randomly partition
all leaky AND triples into ` buckets of size B accordingly, i.e., for j ∈ {0, 1, . . . , ` − 1}, the B triples
{(〈xπ(k)〉, 〈yπ(k)〉, 〈zπ(k)〉)}j·B+B

k=j·B+1 are defined to be in the j-th bucket.

3. For each bucket, the parties combine the B leaky AND triples into one non-leaky AND triple. We describe
how to combine two leaky AND triples, calling them (〈x1〉, 〈y1〉, 〈z1〉) and (〈x2〉, 〈y2〉, 〈z2〉), into one calling
the result (〈x〉, 〈y〉, 〈z〉). In particular, the parties execute as follows:

(a) Compute d := Open(〈y1〉 ⊕ 〈y2〉).

(b) Set 〈x〉 := 〈x1〉 ⊕ 〈x2〉, 〈y〉 := 〈y1〉, and 〈z〉 := 〈z1〉 ⊕ 〈z2〉 ⊕ d〈x2〉.

To combine allB leaky AND triples in the same bucket, the parties just iterate by taking the result and combine
it with the next element in the bucket.

4. All parties output the ` non-leaky AND triples.

Figure 14: The protocol ΠaAND for authenticated AND triples with weak global keys

D Security Proof of Protocol Πmpc

In this section, we give a full proof of security to the protocol Πmpc described in Section 4.
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D.1 Related Lemmas

Prior to proceeding the main proof, we present four related lemmas. The first lemma addresses the correct-
ness of our distributed garbling scheme in the honest case. The second lemma shows that malicious party
P1 can learn only one label generated by an honest party for each wire. The third lemma addresses the
correctness of P1’s output when other parties are corrupted. The fourth lemma addresses the correctness
of the output of honest party Pi with i 6= 1, when P1 and other parties are corrupted. We omit the proof
of correctness for generating authenticated shares of multiplication of two wire masks by using random
authenticated AND triples (Step 7 in Πmpc), when some parties are corrupted. Recall that Step 7 adopts
a standard technique (i.e., authenticated Beaver triples [Bea92, BDOZ11]), and uses a hash function H to
perform the amortized opening of authenticated shares in which the security is proved in Section A.4.

Lemma 8. When all parties follow the protocol description honestly, then after Step 10, for each wire w in
the circuit, evaluator P1 can obtain the correct public value Λw and garbled labels {Liw,Λw}i 6=1.

Proof. We prove this lemma by induction on the gates in the circuit.

Base step. It is easy to verify that the lemma holds for all circuit-input wires after input processing has been
executed (Step 9).

Induction step. We can see that the lemma trivially holds for XOR gates. Thus, we focus on every AND
gate (α, β, γ,∧). By the induction hypothesis, P1 holds the correct (Λα, {Liα,Λα}i 6=1) and (Λβ, {Liβ,Λβ}i 6=1).
Let u = Λα and v = Λβ , P1 evaluates the circuit as follows:{

Mj [r
1
uv] := Λα ·Mj [λ

1
β]⊕ Λβ ·Mj [λ

1
α]⊕Mj [λ

1
αβ]⊕Mj [λ

1
γ ]
}
j 6=1{

Mj [r
i
uv] := H(Liα,Λα , L

i
β,Λβ

, γ, j)⊕Gi,jγ,uv{
Liγ,Λγ := H(Liα,Λα , γ, 0)⊕ H(Liβ,Λβ , γ, 1)⊕ ΛαGiγ,0 ⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ (

⊕
j 6=iMi[r

j
uv])
}
i 6=1

Observe that for each i 6= 1

Liγ,Λγ :=
(
H(Liα,Λα , γ, 0)⊕ ΛαGiγ,0 ⊕ Λα(

⊕
j 6=iMi[λ

j
β])
)

⊕
(
H(Liβ,Λβ , γ, 1)⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ Λβ(

⊕
j 6=iMi[λ

j
α])
)

⊕
(⊕

j 6=iMi[λ
j
αβ]
)
⊕
(⊕

j 6=iMi[λ
j
γ ]
)
.

It is easy to verify that the following holds:

H(Liα,Λα , γ, 0)⊕ ΛαGiγ,0 ⊕ Λα(
⊕

j 6=iMi[λ
j
β])

= H(Liα,Λα , γ, 0)⊕ Λα
(
H(Liα,0, γ, 0)⊕ H(Liα,1, γ, 0)

)
⊕ Λα(

⊕
j 6=i Ki[λ

j
β]⊕ λiβ∆i ⊕

⊕
j 6=iMi[λ

j
β])

= H(Liα,0, γ, 0)⊕ Λα(
⊕

j 6=i Ki[λ
j
β]⊕

⊕
j 6=iMi[λ

j
β]⊕ λiβ∆i)

= H(Liα,0, γ, 0)⊕ Λαλβ∆i

and

H(Liβ,Λβ , γ, 1)⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ Λβ(
⊕

j 6=iMi[λ
j
α])

= H(Liβ,Λβ , γ, 1)⊕ Λβ
(
H(Liβ,0, γ, 1)⊕ H(Liβ,1, γ, 1)

)
⊕ Λβ(Liα,0 ⊕ Liα,Λα)

⊕Λβ(
⊕

j 6=i Ki[λ
j
α]⊕

⊕
j 6=iMi[λ

j
α]⊕ λiα∆i)

= H(Liβ,0, γ, 1)⊕ ΛαΛβ∆i ⊕ Λβ(
⊕

j 6=i Ki[λ
j
α]⊕

⊕
j 6=iMi[λ

j
α]⊕ λiα∆i)

= H(Liβ,0, γ, 1)⊕ ΛαΛβ∆i ⊕ Λβλα∆i.
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Each garblerPi locally computes the 0-label Lγ,0 as: Liγ,0 := H(Liα,0, γ, 0)⊕H(Liβ,0, γ, 1)⊕(
⊕

j 6=i Ki[λ
j
αβ])⊕

λiαβ∆i ⊕ (
⊕

j 6=i Ki[λ
j
γ ])⊕ λiγ∆i. Thus, we conclude:

Liγ,0 ⊕ Liγ,Λγ = ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ (
⊕

j 6=i Ki[λ
j
αβ]⊕

⊕
j 6=iMi[λ

j
αβ]⊕ λiαβ∆i)

⊕(
⊕

j 6=i Ki[λ
j
γ ]⊕

⊕
j 6=iMi[λ

j
γ ]⊕ λiγ∆i)

= ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ λαβ∆i ⊕ λγ∆i

= ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ λαλβ∆i ⊕ λγ∆i

=
(
(Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ λγ

)
∆i = Λγ∆i,

where it is easy to verify that λαβ = λα · λβ according to the Beaver triples. This means that according
to Pi’s definition of Lγ,Λγ , the label evaluated by P1 is always correct. The public value is correct, since
lsb(∆2) = 1 and

bγ ⊕ lsb(L2
γ,Λγ ) =lsb(L2

γ,0)⊕ lsb(L2
γ,Λγ )

=lsb(L2
γ,0 ⊕ L2

γ,Λγ )

=lsb(Λγ∆2) = Λγ .

Lemma 9. For every PPT adversary A which corrupts a set of parties such that P1 ∈ M is corrupted,
with probability at most q/2κ−1, the protocol execution does not abort andA learns both garbled labels for
some wire generated by some honest party Pi, where q is an upper bound of the number of queries to H.

Proof. Clearly, A learns both garbled labels from honest party Pi for some wire if and only if A learns the
global key ∆i. Thus, we only need to prove the probability that the protocol execution does not abort andA
learns ∆i is at most q/2κ−1. If A succeeds to guess ci bits of ∆i via the leak command of Fprep, then the
protocol execution will abort except with probability 1/2ci .

It is clear that the opening process of authenticated bits/shares does not reveal any information of ∆i,
since all MACs received byA from Fprep do not include any information on ∆i. Therefore, only the garbled
tables generated by Pi may include the information of ∆i. In the half-gates garbled rows, ∆i is encrypted
by both garbled labels, and thus is known by A if and only if A has queried both garbled labels to H.
Therefore, the only way thatA learns ∆i is to make queries to random oracle H. As a result, the probability,
that both garbled labels for some wire have been queried to H byA (i.e., ∆i is learned byA), is bounded by
q/2κ−1−ci , where ∆i has entropy at least κ− 1− ci if i = 2 and κ− ci otherwise.

Overall, with probability at most 1/2ci · q/2κ−1−ci = q/2κ−1, the protocol does not abort and A learns
∆i (thus both garbled labels for some wire).

Lemma 10. For each i ∈ [n], let xiw
def
= Λw ⊕ λw for each w ∈ Ii, where Λw is what Pi sends in Step 9(a)

and λw is defined by Fprep. If any PPT adversary A corrupts a set of parties such that P1 ∈ H is honest,
then either P1 aborts, or P1 outputs y1 = f1(x1, . . . , xn) with probability at least 1− (ε+ q+2

2κ ), provided
that H is ε-almost universal and A makes at most q queries to H, where f1 denotes the P1’s output of f .

Proof. After Step 10, P1 obtains a set of public values for all wires in the circuit C. In the following, we
will prove that if these public values are not correct, then P1 will abort with probability 1− 1/2κ− ε, where
ε = |C|/2κ if a polynomial hash is used to instantiate H.
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We first prove that for each w ∈ W , we have tw = 0. For each AND gate (α, β, γ,∧), from the
definition of tiγ for i ∈ [n], we have⊕

i∈[n] t
i
γ = Λα · Λβ ⊕ Λγ ⊕ Λα · (

⊕
i∈[n] λ

i
β)⊕ Λβ · (

⊕
i∈[n] λ

i
α)⊕ (

⊕
i∈[n] λ

i
αβ)⊕ (

⊕
i∈[n] λ

i
γ)

= Λα · Λβ ⊕ Λγ ⊕ Λα · λβ ⊕ Λβ · λα ⊕ λα · λβ ⊕ λγ
= (Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ (Λγ ⊕ λγ) = tγ .

According to the definition of {M1[tiw]}i 6=1 and M1[t1w] for w ∈ W , we have:

n∑
i=1

M1[tiw] =
∑
i 6=1

K1[tiw] + t1w∆1 +
∑
i 6=1

M1[tiw]

=
∑
i 6=1

(K1[tiw] + M1[tiw]) + t1w∆1

=

n∑
i=1

tiw∆1 = tw∆1

For each i 6= 1, we use ci to denote the correct value computed with H and the MACs held by Pi, and ĉi to
denote the value sent by malicious Pi. Thus,

∑
i 6=1 ĉi =

∑
i 6=1 ci + e, where e is some additive error ofA’s

choice. Note that c1 is correct, as P1 is honest. Since H is additively homomorphic, we have

n∑
i=1

ci =

n∑
i=1

H({M1[tiw]}w∈W)

= H

({
n∑
i=1

M1[tiw]

}
w∈W

)
= H

(
{tw∆1}w∈W

)
= H({tw}w∈W) ·∆1

Therefore, H({tw}w∈W) ·∆1 = e, as
∑

i 6=1 ĉi = 0 if P1 does not abort.
Below, we analyze the probability that H({tw}w∈W) 6= 0. We assume that the adversary A leaks c1

bits of ∆1 by the leak command of Fprep. In this case, the protocol will abort with probability 2−c1 . Then
the remaining κ− c1 bits of ∆1 are uniformly random in A’s view. Thus, e and {tw}w∈W are independent
of the unknown κ − c1 bits of ∆1. As P1 is honest, linear hash function H defined by a random seed
χ is independent of ∆1. Therefore, under the condition that c1 bits of ∆1 have already been leaked, the
probability that ∆1 =

(
H({tw}w∈W)

)−1 · e is at most 2c1−κ. Overall, with probability 2−c1 · 2c1−κ = 2−κ,
P1 does not abort and H({tw}w∈W) 6= 0.

As a result, if P1 does not abort, we have H({tw}w∈W) = 0 with probability 1− 2−κ. Since {tw}w∈W
are independent of H and H is ε-almost universal, the probability that there exists aw ∈ W such that tw 6= 0
is at most ε. Overall, with probability at least 1− 1/2κ − ε, tw = 0 for all w ∈ W .

Below, we prove by induction that for each wire w, public value Λw is correct.

Base step: The public values for all circuit-input wires are correct, according to how xiw is defined for each
i ∈ [n], w ∈ Ii.

Induction step: It is easy to verify that the public values for the output wires of XOR gates are correct. So,
we will focus on each AND gate (α, β, γ,∧). According to the induction hypothesis, we have that P1 holds
correct public values Λα and Λβ . Recall that the correctness of public value Λγ is checked by computing
the following value:

tγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ (Λγ ⊕ λγ).
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From tγ = 0, we have Λγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ) ⊕ λγ . According to the correctness of Λα and Λβ ,
Λα ⊕ λα and Λβ ⊕ λβ are the correct actual values for input wires α and β respectively. Therefore, Λγ is
correct.

If P1 does not abort in Step 13, the probability that there exists a corrupt party Pj flips its share λjw′ for some
w′ ∈ O1 is (q + 1)/2κ, according to Lemma 4. From the above proof by induction, we have that public
value Λw is correct for each w ∈ O1, except with probability 1/2κ + ε. In conclusion, if P1 does not abort,
then y1

w = Λw ⊕ λw is correct for each w ∈ O1, except with probability (q + 2)/2κ + ε.

Lemma 11. For every PPT adversaryA corrupting a subset of parties, every honest party Pi either aborts,
or outputs yi = fi(x

1, . . . , xn) with probability at least 1 − 6q/2κ, where fi denotes the output of f to Pi
and q is an upper bound of the number of queries to H.

Proof. We first prove that Pi ∈ H either aborts or obtains the correct public values in Step 11 of protocol
Πmpc, even if P1 is corrupted by A. Let {Λ′w}w∈W be the public values received by Pi in Step 11 when
P1 is corrupted, and {Λw}w∈W be the correct public values that should be sent by an honest P1. Below,
we analyze the probability that there exists some w ∈ W such that Λ′w 6= Λw. In Step 11, A on behalf of
P1 sends a value h′i to Pi. If Pi does not abort, then h′i = H({Liw,0 ⊕ Λ′w∆i}w∈W). We can construct an
algorithm that controls the random oracle H and extracts {Liw,Λ′w}w∈W from h′i and the query/response pairs
of H. Since H is a random oracle, the probability that A finds a target collision is q/2κ. Therefore, with
probability 1 − q/2κ, Liw,Λ′w = Liw,0 ⊕ Λ′w∆i for each w ∈ W is learned by A. In addition, A has learned
Liw,Λw = Liw,0 ⊕ ∆w∆i by evaluating the circuit on behalf of P1. If Λ′w 6= Λw for some w ∈ Oi, then A
learns both garbled labels Liw,0 and Liw,1 for the wire w. By Lemma 9, this happens with probability at most
q/2κ−1. Overall, except with probability at most 3q/2κ, the public values on all wires inW received by Pi
are correct, if Pi does not abort.

For each w ∈ Oi, let λ̂jw be the share sent by a malicious party Pj in Step 13(a), and λjw be the correct
share from Fprep. In the Open process of Step 13(a), we analyze the probability that there exists some
j ∈ M and w ∈ Oi such that λ̂jw 6= λjw. If Pi does not abort, then the value τ ′i sent by A on behalf of
Pj is equal to H(“open”, {Ki[λjw] ⊕ λ̂jw∆i}w∈Oi). If A makes a query z to H such that τ ′i = H(z) and
z 6= (“open”, {Ki[λjw] ⊕ λ̂jw∆i}w∈Oi), A finds a target collision for random oracle H, which occurs with
probability q/2κ. Now, we assume that A does not find a target collision. We construct an algorithm that
controls H and extracts {Mi[λ̂

j
w]}w∈Oi from τ ′i and the records of H queries. By the assumption, we have

that Mi[λ̂
j
w] = Ki[λ

j
w]⊕ λ̂jw∆i. If λ̂jw 6= λjw for some w ∈ Oi, then A learns ∆i := Mi[λ̂

j
w]⊕Mi[λ

j
w], as A

also holds the MAC Mi[λ
j
w] = Ki[λ

j
w] ⊕ λjw∆i. However, from the proof of Lemma 9, the probability that

A learns ∆i is at most q/2κ−1 in the random oracle model. Therefore, Pi will obtain a correct wire mask
λw for each w ∈ Oi, except with probability 3q/2κ.

In conclusion, if Pi does not abort, then yiw = Λw ⊕ λw is correct for each w ∈ Oi, except with
probability 6q/2κ.

D.2 Main Proof of Security

Theorem 2. Let f : {0, 1}n|I| → {0, 1}n|O| be an n-party functionality. Then the protocol Πmpc shown in
Figures 7 and 8 securely computes f in the presence of a static malicious adversary corrupting up to n− 1
parties in the Fprep-hybrid model, where H is a random oracle.

Given the above Lemmas 8−11, the proof of Theorem 2 is relatively easy. Below, we present the details
of the proof.
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Proof. Let A be a PPT adversary who corrupts a subset of parties M. Recall that H is a set of honest
parties such thatH = [n]\M. We construct a PPT simulator S, which runsA as a subroutine, simulates the
adversary’s view, and has access to an ideal functionality Fmpc that implements f . Whenever any honest
party simulated by S aborts or A aborts, S outputs whatever A outputs and aborts. The simulator S is
defined as below.

Description of the simulation.
– INITIALIZATION: AfterA corrupted a subset of partiesM, S corrupts the same parties in the ideal world,

and then internally emulates an execution of the honest parties running Πmpc with A.

– PREPROCESSING: S emulates the functionality Fprep, and records the inputs of A and all the outputs. S
acts as every honest party Pi ∈ H and simulates honestly the execution of Pi in function-(in)dependent
phases.

– ONLINE: S simulates honestly the execution of honest parties, with the following exceptions:

– For every honest party Pi ∈ H, S adopts xi := 0 as Pi’s input, and broadcasts Λw := λw to all parties
for each circuit-input wire w ∈ Ii.

– For each corrupt party Pi ∈M, for every w ∈ Ii, S receives a public value Λw from A, and computes
xiw := Λw ⊕ λw as an input bit of Pi.

– For every corrupt party Pi ∈ M, S sends (input, xi) on behalf of Pi to Fmpc, and receives an output
yi. S computes (ỹ1, . . . , ỹn) := f(x̃1, . . . , x̃n), where

{
x̃i := 0

}
i∈H and

{
x̃i := xi

}
i∈M. Then S

chooses a j∗ ∈ H, and then for each i ∈ M, w ∈ Oi, defines λ̃j
∗
w := λj

∗
w ⊕ yiw ⊕ ỹiw and computes

Mi[λ̃
j∗
w ] := Mi[λ

j∗
w ]⊕ (λ̃j

∗
w ⊕ λj

∗
w )∆i. For each i ∈M, S acts as Pj∗ and opens {λ̃j

∗
w }w∈Oi to corrupt

party Pi in the amortized way.

Based on Lemmas 8–11, we prove that the protocol execution in the Fprep-hybrid model is indistinguishable
from the ideal world execution by a sequence of games.

Hybrid0. This is the same as the protocol execution shown in Figures 7 and 8, where the actual inputs
{xi}i∈H are used for honest parties.

Hybrid1. This is the same as Hybrid0, except that S plays the role of honest parties {Pi}i∈H.

Hybrid1 is essentially the same as Hybrid0.

Hybrid2. This is the same as Hybrid1, except that a) for each i ∈ M, w ∈ Ii, S receives a public value
Λw from A and computes xiw := Λw ⊕ λw; b) for each i ∈M, S sends (input, xi) on behalf of Pi to Fmpc

and receives an output yi.

The distributions on the view of adversary A in Hybrid1 and Hybrid2 are identical. If P1 is honest,
then the outputs obtained by P1 in two hybrids are the same except with negligible probability from Lemma 8
and Lemma 10. If Pi is honest for each i ∈ H\{1}, then the outputs obtained by Pi in two hybrid games
are the same except with negligible probability by Lemma 11. Therefore, the distributions in Hybrid1 and
Hybrid2 are indistinguishable.

Hybrid3. This is the same as Hybrid2, except that S executes as follows:

1. Use {xi = 0}i∈H as the inputs of honest parties in Step 9.

2. Compute (ỹ1, . . . , ỹn) := f(x̃1, . . . , x̃n), where x̃i := 0 for each i ∈ H and x̃i := xi for each i ∈M.

3. Choose a j∗ ∈ H; for each i ∈M, w ∈ Oi, define λ̃j
∗
w := λj

∗
w ⊕ yiw ⊕ ỹiw; and then compute Mi[λ̃

j∗
w ] :=

Mi[λ
j∗
w ]⊕ (λ̃j

∗
w ⊕ λj

∗
w )∆i;
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4. For each i ∈M, act as honest party Pj∗ and open {λ̃j
∗
w }w∈Oi to Pi.

We first prove that for every honest party Pi, its share λiw for each wire w in the circuit are kept secret
in A’s view, before these shares are revealed in the phases of input and output processing. Here we do not
include the circuit-input wires associated with other parties’ inputs, as the corresponding shares are set as 0.
If i = 1, it is easy to see that the P1’s shares for all wires are kept secret in the information-theoretic sense.
If i ≥ 2, we show that Pi’s shares are computationally hidden, even if P1 is corrupted. For each XOR gate
(α, β, γ,⊕), λiγ = λiα⊕λiβ is kept unknown forA, if at least one of λiα and λiβ is kept secret. Thus, we focus
on each AND gate (α, β, γ,∧). The half-gates garbled rows Giγ,0 and Giγ,1 are encrypted by both garbled
labels for input wires. Therefore, A are still unknown for Pi’s shares λiα and λiβ on input wires α and β,

unless it learns ∆i. From Lemma 9, this occurs with negligible probability. Besides, each garbled rowGi,jγ,uv
for each u, v ∈ {0, 1} and j 6= i, 1 is encrypted using different combinations of Liα,0, L

i
α,1 and Liβ,0, L

i
β,1. To

open two garbled rows,A needs to learn both garbled labels for some input wire. By Lemma 9, this happens
with negligible probability. Therefore, A does not learn the shares λiα and λiβ for the input wires. In the
phase of checking public values, if Pi does not abort, the public values on the output wires of all AND gates
are correct with overwhelming probability, according to the proof of Lemma 11. Therefore, the value ci
sent by Pi does not reveal its shares for each AND gate (α, β, γ,∧), as λiαβ is uniformly random and masks
Pi’s shares.

For each i ∈ H, w ∈ Ii, we have proved that λiw is uniformly random and unknown for A. Therefore,
the distributions of the public values {Λw}w∈⋃i∈H Ii in Hybrid2 and Hybrid3 are both independently
random, and thus are exactly the same. For each wire w associated with the outputs of corrupt parties, A
does not know the share λj

∗
w of Pj∗ ∈ H, and both λj

∗
w and λ̃j

∗
w are uniformly random. Therefore, for each

i ∈ M, w ∈ Oi, λ̃j
∗
w sent by S in Hybrid3 has the same distribution as λj

∗
w sent by honest party Pj∗ in

Hybrid2.

For each w ∈ W , the public value Λw is uniformly random and has the same distribution in Hybrid2

and Hybrid3, as {λiw}i∈H are uniformly random and not known to A. If P1 ∈ M, P1 is able to learn
only one garbled label for each wire, according to Lemma 9. Thus, P1 can open only one of four garbled
rows Gi,jγ,00, G

i,j
γ,01, G

i,j
γ,10, G

i,j
γ,11 for each i ∈ H and j 6= i, 1. In two hybrids, the distribution of garbled

rows evaluated by corrupt party P1 is indistinguishable, as the distribution of public values {Λw}w∈W is the
same. Moreover, garbled labels obtained by P1 are indistinguishable in two hybrids.

By Lemma 10, if P1 ∈ H does not abort in Step 12, then Λw = ỹiw ⊕ (
⊕

j∈[n] λ
j
w) for each w ∈ Oi

with overwhelming probability. Therefore, for each i ∈ M and w ∈ Oi, Λw ⊕ (
⊕

j 6=j∗ λ
j
w) ⊕ λ̃j

∗
w =

Λw ⊕ (
⊕

j∈[n] λ
j
w)⊕ yiw ⊕ ỹiw = yiw, which means that A will obtain the correct output. If P1 ∈M, A will

also get the correct output for each i ∈M, due to the setting of the shares {λ̃j
∗
w }w∈Oi of honest party Pj∗ .

In conclusion, Hybrid3 is indistinguishable from Hybrid2.

E More Efficiency Comparison

In this section, we further compare our protocol with the state-of-the-art actively secure constant-round two-
party/multi-party computation protocols for computation security parameter κ = 128 and statistical security
parameter ρ = 64.

From Table 3, we see that our protocol significantly improves both preprocessing phases, while it does
not increase the online communication. Specifically, in the function-independent phase, our protocol gives
an ≈ 1.4× improvement for both single execution and 1024 executions. In the function-dependent phase,
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#Parties Protocol
Ind. (MB) Dep. Online Total (MB)

#1 #1024 (MB) (KB) #1 #1024

n = 2
KRRW [KRRW18] 3.8 2.6 0.2 5.0 4.0 2.8

Ours 2.7 1.9 0.2 4.2 2.9 2.1

n = 3
WRK [WRK17b] 7.6 5.2 1.1 6.3 8.7 6.3

Ours 5.5 3.7 0.66 6.2 6.2 4.4

n = 5
WRK [WRK17b] 15.2 10.4 2.0 10.4 17.2 12.4

Ours 11.0 7.5 1.5 10.3 12.5 9.0

Table 3: Comparison between our MPC protocol and the best known protocols in terms of communication
overhead for secure AES evaluation.

our protocol provides 1.67× improvement for n = 3 and 1.33× improvement for n = 5. Overall, our
optimizations result in ≈ 1.4× improvement in terms of communication cost.

#Parties Protocol
Hamming Distance Sorting

Ind. Dep. Online Ind. Dep. Online

n = 2
KRRW [KRRW18] 840.7 67.9 67.9 3859.1 327.8 5.5

Ours 589.0 67.9 67.4 2791.7 327.8 4.2

n = 3
WRK [WRK17b] 1886.9 336.6 101.5 7744.9 1640.8 6.4

Ours 1211.6 202.6 100.9 5583.4 987.8 6.3

n = 5
WRK [WRK17b] 4176.5 606.1 169.1 15515.0 2954.5 10.6

Ours 2423.3 472.1 168.0 11166.8 2301.5 10.5

Table 4: Communication cost of our and prior best protocols for computing hamming distance and sorting.
All numbers are in megabytes (MB) with a single execution.

In Table 4, we provide the comparison of communication cost for evaluating large circuits. In the
function-independent phase of secure hamming distance evaluation, our protocol provides about 1.43×
improvement for two-party case, 1.56× improvement for three-party setting, and 1.72× improvement for
five-party case. For sorting, our protocol achieves ≈ 1.4× improvement in the function-independent phase.
In the function-dependent phase, our protocol obtains 1.66× improvement for three-party case, and 1.28×
improvement for five-party case. In particular, our protocol reduces the total communication by about
251 MB ∼ 1.8 GB for evaluating hamming distance and 1 ∼ 5 GB for secure sorting evaluation, when
there are 2 ∼ 5 parties running the protocol.
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