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Abstract. In the article we propose a new compression method (to 2dlog2(q)e+ 3 bits)
for the Fq2-points of an elliptic curve Eb : y2 = x3 + b (for b ∈ F∗q2) of j-invariant 0. It is based
on Fq-rationality of some generalized Kummer surface GKb. This is the geometric quotient
of the Weil restriction Rb := R Fq2/Fq(Eb) under the order 3 automorphism restricted from Eb.

More precisely, we apply the theory of conic bundles
(
i.e., conics over the function field Fq(t)

)
to obtain explicit and quite simple formulas of a birational Fq-isomorphism between GKb and
A2. Our point compression method consists in computation of these formulas. To recover (in
the decompression stage) the original point from Eb(Fq2) = Rb(Fq) we find an inverse image of
the natural map Rb → GKb of degree 3, i.e., we extract a cubic root in Fq. For q 6≡ 1 (mod 27)
this is just a single exponentiation in Fq, hence the new method seems to be much faster than
the classical one with x-coordinate, which requires two exponentiations in Fq.

Key words: pairing-based cryptography, elliptic curves of j = 0, point compression, Weil
restriction, generalized Kummer surfaces, rationality problems, conic bundles, cubic roots,
singular cubic surfaces.

Introduction

Nowadays, no doubt, elliptic cryptography is widely used in practice [1]. In many of
its protocols one needs a compression method for points of an elliptic curve E over a finite
field Fq of characteristic p. This is done for quick transmission of the information over a
communication channel or for its compact storage in a memory. There exists a classical
method, which considers an Fq-point on E ⊂ A2

(x,y) as the x (or y [2]) coordinate with 1

(resp. 2) bits to uniquely recover the another coordinate by solving the quadratic (resp.
cubic) equation over Fq. See variations of this method for p = 2 in [3], [4].

Consider an elliptic curve of the form Eb : y2 = x3 + b for b ∈ F∗q (of j-invariant 0). As is
known, it is ordinary if and only if p ≡ 1 (mod 3). Despite the insignificant acceleration [5] of
Pollard rho method, these curves have become very popular in elliptic cryptography. This is
confirmed by the standards WAP WTLS [6, Table 8], SEC 2 [7, §2] and different technologies
such as cryptocurrencies (e.g., the curve Secp256k1 [8] is used in Bitcoin).

The main reason for this is the existence on Eb of the order 3 automorphism [ω] : (x, y) 7→
(ωx, y), where ω := 3

√
1 ∈ Fp, ω 6= 1, that is ω2 + ω + 1 = 0. Therefore for the faster scalar

1web page: https://www.researchgate.net/profile/Dimitri Koshelev
email: dishport@yandex.ru

This work was supported by a public grant as part of the FMJH project

1



multiplication on the curve Eb we can apply the so-called GLV decomposition [9]. At the
same time, in [10] it is suggested to also consider curves Eb over Fp2 , because for such fields
we can apply the GLS decomposition [11] (an improvement of GLV one). It is worth noting,
however, that the GLS decomposition is also applied to elliptic curves with j 6= 0. The most
famous example is the curve FourQ [12] proposed by Microsoft. See [13, §8] for a comparison
of the efficiency of the GLV-GLS approaches implemented for several curves, including some
with j = 0.

Because of many interesting applications such as identity-based cryptography [14] or short
signature schemes and breakthroughs in pairing computation [15] pairing-based cryptography
[16] is becoming a more and more popular alternative to classical elliptic cryptography.
Indeed, see documents of the organizations IEEE [17], ISO/IEC [18], [19], FIDO [20], W3C
[21] and products of famous companies such as ZECC [22], Intel [23], Ethereum Foundation
[24] (more information is represented in [25]).

As usual in cryptography, an elliptic curve E/Fq (in practice always q = p) is assumed
to have a subgroup G ⊂ E(Fq) of large prime order ` 6= p. The embedding degree of E (with
respect to `) is, by definition, the extension degree k := [Fq(µ`) : Fq]. Further, let E ′ be a
twist for E of degree d | k (see, e.g., [16, §2.3.6]) and G′ ⊂ E ′(Fqk/d) be the subgroup of order
`. By virtue of [26, Theorem 9] the latter exists at least if 2, 3 - |Eb(Fq)|. In practice, pairings
(of type 2 [15, §2.3.2]) are mainly taken in the form

G×G′ → µ` ⊂ F∗qk [27, §7.3],

where k is the minimally possible number such that the discrete logarithm problem in F∗
qk

is
hard, but d is, conversely, the maximally possible one. It is a classical fact that d 6 6 and
this bound is only attained by the elliptic curves Eb.

Among those, the Barreto–Naehrig (BN) curves [28], [29, §2] and Barreto–Lynn–Scott
(BLS12) curves [30] of embedding degree k = 12 (and only they as far as the author knows)
are used in practice at the moment. BN curves also have k = 12, that is k/d = 2. Last time,
the most popular choice for the 128-bit security level is the Fp-curve BLS12-381 [22], where
p ≡ 3 (mod 4), p ≡ 10 (mod 27), and dlog2(p)e = 381.

Thus it will be useful to find a compression method for Fq2-points of the curves Eb/Fq2 ,
whose decompression stage is much faster than extracting a square root in Fq2 . It is easily
seen that the latter can be accomplished by extracting 2 square roots in Fq (for details see
[31]). Despite the known fact that for q 6≡ 1 (mod 8) a square root in Fq is computed by a
single exponentiation in Fq, it is still a quite laborious operation.

This article proposes a novel point compression method (to 2dlog2(q)e+ 3 bits) requiring
(in the decompression stage) to extract only a single cubic root in Fq. For q 6≡ 1 (mod 27)
this can also be done by one exponentiation in Fq (see [32, Proposition 1]), hence our method
seems to be about twice as quick as the classical one with the x (a fortiori, y) coordinate.

Our approach is based on the Fq-rationality [33, §6.6] of the generalized Kummer surface
GKb := Rb/[ω]2 of the Weil restriction (descent) Rb := R Fq2/Fq(Eb) [34, §3.2] with respect to

the order 3 automorphism [ω]2 := R Fq2/Fq([ω]). More precisely, we apply the theory of conic

bundles [35], [36]
(
i.e., conics over the function field Fq(t)

)
to obtain explicit as well as quite

simple formulas of a birational Fq-isomorphism between GKb and A2. The new compression
method consists in computation of these formulas. By the way, another constructive proof of
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the Fq-rationality of GKb could consist in applying the theory of adjoints [37, §5]. However,
in our opinion, the approach using conic bundles is more simple and elegant.

To recover the original point from Eb(Fq2) = Rb(Fq
)

by the corresponding decompression
method we need, given a point of GKb(Fq), to find its inverse image with respect to the
natural map % : Rb → GKb of degree 3, i.e., to solve a cubic equation over Fq. Since ω ∈ Fq,
an advantage of the curves Eb is that the pull-back map %∗ is actually a Kummer extension,
i.e., the field Fq(Rb) is generated by a cubic root of some rational function from Fq(GKb) (see
Lemma 2).

A similar result has been obtained in the author’s master’s thesis [38] for point compres-
sion of some two Jacobians Jb [39] over the fields F2e , where b ∈ F2 and 2, 3 - e. These are the
unique (up to an F2e-isogeny) supersingular simple abelian surfaces that have the maximally
possible embedding degree k = 12. We proved the F2-rationality of the (usual) Kummer sur-
face K := Jb/[−1] and even obtained explicit formulas of a birational F2-isomorphism between
K and A2, also using the theory of conic bundles, but in a different way.

Building on the established results, we dare to formulate Conjecture 1 about Fq-rationality
of geometrically rational generalized Kummer surfaces defined over a finite field Fq.

This article is organized as follows. In §1 we recall some mathematical facts, which are
necessary for our results. More precisely, §1.1 is dedicated to the theory of cubic polynomials.
In §1.2 we review some facts about curves Eb and their Weil restriction Rb (§1.2.1). In §1.3
we consider generalized Kummer surfaces, in particular GKb (§1.3.1). Besides, §1.4 discusses
the theory of conic bundles. In turn, §2 is dedicated to our auxiliary results. In §2.1 we
study some cubic Fp-surfaces Sh with two Fp-nodes. Further, it is given an example of a conic
bundle on Sh (§2.2) and some propositions about blowing down components of degenerate
fibers (§2.3). Next, in §3 we prove Fp-rationality of the surfaces GKb (for q = p), which leads
to the new point compression method. We instantiate this method in §3.1 for a special case
(including commercially used curve BLS12-381 [22]) and calculate its algebraic complexity.
Finally, §4 briefly discusses further questions regarding possible generalizations of this work.

1 Background

1.1 Cubic polynomials

In this paragraph we recall some known facts about cubic polynomials. Consider a poly-
nomial x3 + αx2 + βx+ γ over a field k of characteristic p 6= 2, 3. After the variable change
x := y − α/3, we obtain the polynomial

f(y) := y3 + cy + d, where c := β − α2

3
, d := γ − αβ

3
+ 2α3

27
.

Let G ↪→ S3 be the Galois group of the splitting field of f over k. Further, for a ∈ k we
denote by

(
a
k

)
the Legendre symbol, however in the case of a finite field k = Fq we also use

the notation
(
a
q

)
.
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Lemma 1 ([40, §2]). The discriminant of f is equal to ∆ = −4c3 − 27d2 and

(
∆
k

)
=


0 if f has a multiple root,

1 if G = 1 or G ' Z/3,

−1 if G ' Z/2 or G ' S3.

Theorem 1 (Cardano’s formula [40, Theorem 2.5]). The roots of f are equal to R+ +R−,
where

R± := 3

√
−d

2
±
√
D, D := − ∆

108
= c3

27
+ d2

4
, R+R− = − c

3
.

One can see that for general c, d finding roots of f (by this formula) consists in extracting 1
square root and 2 cubic ones.

Throughout the article we denote by ω a fixed primitive 3-th root of unity, which is
obviously equal to (−1 +

√
−3)/2. From Cardano’s formula we immediately obtain

Lemma 2. Assume that ω ∈ k∗, i.e.,
(−3
k

)
= 1. Then a cubic extension of k is Galois (and

hence cyclic) iff it is Kummer, i.e., it has the form k( 3
√
a) for some a ∈ k∗ such that a /∈ (k∗)3.

Note that for k = Fq the condition ω ∈ F∗q is also equivalent to q ≡ 1 (mod 3).
To formulate the next theorem we need to recall a definition of the Lucas sequence vn =

vn(a, b) for a, b ∈ k and n ∈ N:

v0 := 2, v1 := b, vn := bvn−1 − avn−2.

Theorem 2 ([2, Theorem 2]).
Assume that k = Fp, c, d 6= 0, and

(
∆
p

)
= −1. Then the unique Fp-root of f equals

−(3c)−(p/3)vn(C,D)

3
, where C := −27c3, D := −27d, n :=

p+ 2(p
3
)

3
.

Lemma 3 ([2, Remark 2]). For a ∈ F∗q we obtain:

a /∈ (F∗q )3 if and only if q ≡ 1 (mod 3) and a(q−1)/3 6= 1.

Moreover, if a ∈ (F∗q )3, then

3
√
a =


a(2q−1)/3 if q ≡ 2 (mod 3),

a−(q−4)/9 if q ≡ 4 (mod 9),

a(q+2)/9 if q ≡ 7 (mod 9).

Remark 1 ([32, Proposition 1]). If q ≡ 1 (mod 9) and q 6≡ 1 (mod 27), then given a ∈ (F∗q )3

its cubic root 3
√
a can be computed with the cost of one exponentiation in the field Fq.

Algorithms of exponentiation in Fq and extracting cubic roots in Fq for q ≡ 1 (mod 27) can
be found, for example, in [41, §3.4] and [32] respectively. At the same time, for extracting
square roots in Fp see [41, §12.5.1].
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1.2 Elliptic curves Eb (of j-invariant 0)

Consider a finite field Fq, where q = pe, e ∈ N, and p (>3) is a prime. In this paragraph
we review elliptic curves Eb ⊂ P2 (of j = 0) given by the affine model

Eb : y2 = x3 + b ⊂ A2
(x,y)

for b ∈ F∗q . In other words, Eb = Eb ∪ {O}, where O := (0 : 1 : 0). Unless otherwise specified

we will identify Eb and Eb for the sake of simplicity. Curves Eb are discussed, for example,
in [10]. They have the order 3 automorphism

[ω] : Eb ∼−→ Eb, (x, y) 7→ (ωx, y)

with fixed point set
Fix([ω]) =

{
O, (0,±

√
b)
}
.

Let us recall some well known results.

Theorem 3 ([42, Example V.4.4]). A curve Eb is ordinary if and only if p ≡ 1 (mod 3).

Hereafter we will assume this condition, because results of the article have immediate ap-
plications only for discrete logarithm cryptography, where supersingular elliptic curves are
weak.

Theorem 4 ([29, Proposition 1.50], [29, Example 1.112]).

1. Curves Eb are isomorphic to each other at most over Fq6 by the map

ϕb,b′ : Eb ∼−→ Eb′ , (x, y) 7→ ( 3
√
βx,

√
βy),

where β := b′/b. Besides, for α ∈ Fq such that α /∈ (F∗q )2, α /∈ (F∗q )3 the curves Eαi

(0 6 i < 6) are unique ones of j = 0 (up to an Fq-isomorphism).

2. The endomorphism ring of curves Eb (and only of them) is that of Eisenstein integers:

End(Eb) ' Z[ω] ⊂ Q
(√
−3
)
,

where ω = 3
√

1 ∈ C∗ (such that ω 6= 1) corresponds to the automorphism [ω]. In partic-
ular,

Aut(Eb) ' 〈−ω〉 ' Z/6.

Theorem 5 ([26, Theorem 9]). Let nb := |Eb(Fq)| and α be as in Theorem 4. If 2, 3 - nb,
then

Eb(Fq6) '
⊕

06 i< 6

Eαi(Fq).

Moreover, if Fq(Eb[`]) = Fq6 for some prime ` | nb, then Eb has the unique sextic twist Eb′/Fq
such that ` | nb′. In other words,

Eb[`] = Eb(Fq)[`]×ϕ−1
b,b′(G

′), where G′ := Eb′(Fq)[`].
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1.2.1 The Weil restriction of Eb/Fp2

For simplicity suppose p ≡ 3 (mod 4), i.e., i :=
√
−1 /∈ Fp. Also, let b := b0 + b1i and

Nb := b2
0 + b2

1 for some b0, b1 ∈ Fp. Then the Weil restriction [34, §3.2] of Eb ⊂ A2
(x,y) (with

respect to the extension Fp2/Fp) is equal to

Rb :=

{
y2

0 − y2
1 = x3

0 − 3x0x
2
1 + b0,

2y0y1 = −x3
1 + 3x2

0x1 + b1

⊂ A4
(x0,x1,y0,y1).

Besides, we denote by Rb ↪→ P8 the Weil restriction of Eb ⊂ P2, recalling that Rb ' Eb × Ebp
over Fp2 .

Further, consider the restriction of [ω], i.e., the order 3 automorphism

[ω]2 : Rb
∼−→ Rb, (x0, x1, y0, y1) 7→ (ωx0, ωx1, y0, y1).

Its fixed point set

Fix([ω]2) =
{

(0, 0, y0, y1) | y2
0 − y2

1 = b0, 2y0y1 = b1

}
.

Over Fp it obviously consists of exactly 4 points, and besides, Fix([ω]2)(Fp) = ∅ if and only if(
b
p2

)
= −1. At the same time, the continuation [ω]2 : Rb

∼−→ Rb has exactly 9 fixed Fp-points.
The similar analysis can be also carried out for the involution

[−1] : Rb
∼−→ Rb, (x0, x1, y0, y1) 7→ (x0, x1,−y0,−y1).

1.3 Generalized Kummer surfaces

Let A be an abelian surface over a perfect field k of characteristic p and σ be its auto-
morphism as a group variety. The quotient A/σ (or its minimal resolution of singularities) is
called generalized Kummer surface. The theory of geometric quotients is well represented in
[43]. For σ = [−1] this is just Kummer surface KA. Besides, we will denote by % : A→ A/σ
the quotient morphism, which is of degree ord(σ).

Let us recall some rationality properties of generalized Kummer surfaces.

Theorem 6 ([44, Theorem A], [45, Theorem 1.3]). For k = k we obtain:

1. If p > 2, p 6≡ 1 (mod 12), then A is supersingular ⇔ KA is a Zariski surface [46];

2. If p = 2, then A is supersingular ⇔ KA is a rational surface.

Theorem 7 ([47, Table 6], [48, §2]). For k = C there are only two abelian surfaces having σ
of a prime order such that the generalized Kummer surface is rational. These are:

1. The direct square E2
1 with σ = [ω]×2 of order 3;

2. The Jacobian J1 of the genus 2 curve given by the affine model y2 = x5 + 1 with σ (of
order 5) induced from the curve automorphism (x, y) 7→ (x 5

√
1, y).
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In fact, J1 is the unique simple abelian surface A having σ with the rational quotient A/σ
even if we omit the prime condition on ord(σ).

Theorem 8 ([49, Theorem 2.11]). Assume that k = k, dim
(
Fix(σ)

)
= 0, and at least one of

singularities on A/σ is not a node. Then A/σ is a rational surface.

Recently, a sort of classification for automorphism groups of abelian surfaces over a finite
field Fq appeared in [50]. Nevertheless, almost nothing is known about Fq-rationality of
generalized Kummer surfaces unlike their Fq-unirationality in some cases (see [49]).

1.3.1 The surface GKb

We keep the notation of §1.2.1. Consider the generalized Kummer surface GKb := Rb/[ω]2
and its open subset GKb := Rb/[ω]2. Besides, we will need the polynomials

α(t) := 3t2 − 1, β(t) := t(t2 − 3),

f(t) := −b0α(t) + b1β(t) = b1t
3 − 3b0t

2 − 3b1t+ b0.

Note that the discriminant of f/b1 is equal to ∆ = 2233N2
b /b

4
1 and hence

(
∆
p

)
= −1. By

Lemma 1 there is the decomposition f = λγ into linear λ and Fp-irreducible quadratic γ
polynomials over Fp. For uniqueness we suppose γ to be reduced. This decomposition (or,
equivalently, the unique Fp-root of f) can be found, for example, by means of Theorem 2.

Theorem 9. There is the affine model

GKb = α(t)(y2
0 − y2

1)− 2β(t)y0y1 + f(t) ⊂ A3
(t,y0,y1)

for which the corresponding quotient map has the form

% : Rb 99K GKb, (x0, x1, y0, y1) 7→
(
x0

x1
, y0, y1

)
.

Proof. It is well known that Fp(GKb) = Fp(Rb)
[ω]2 , that is rational functions on GKb are

[ω]2-invariant ones on Rb. Also, consider the field

F := Fp(t, y0, y1) ⊂ Fp(GKb), where t :=
x0

x1
.

Note that F (x1) = Fp(Rb), because x0 = tx1. Since x3
1 = (2y0y1 − b1)/α(t), the extension

degree [Fp(Rb) : F ] 6 3. At the same time, [Fp(Rb) : Fp(GKb)] = 3 according to the Artin
theorem from the Galois theory. Thus F = Fp(GKb). Finally, looking at the equations of Rb

and the equalities

y2
0 − y2

1 − b0

2y0y1 − b1

=
x3

0 − 3x0x
2
1

−x3
1 + 3x2

0x1

=
(x3

0 − 3x0x
2
1)/x3

1

(−x3
1 + 3x2

0x1)/x3
1

=
β(t)

α(t)
,

we obtain the aforementioned equation for GKb. There are no another dependencies between
the coordinates t, y0, y1, because GKb is a surface.
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It is known [51, Example 8.10] that the image of Fix([ω]2) ⊂ Rb under % is the singular
locus of GKb and all its 9 singularities are cyclic quotient ones of type 1

3
(1, 1) (see, e.g., [51,

Appendix]).
Later it will be more practical to consider the closure GKb in A1

t×P2
(y0:y1:y2), keeping the

same notation. In this case the quotient map takes the form

% : Rb 99K GKb, (x0, x1, y0, y1) 7→
(
x0

x1
, (y0 : y1 : 1)

)
.

An inverse image of % is represented, for example, as(
t, (y0 : y1 : y2)

)
7→
(
tX1, X1, Y0, Y1

)
,

where

X1 := 3

√
2Y0Y1 − b1

α(t)
, Y0 :=

y0

y2
, Y1 :=

y1

y2
.

In other words, these formulas give the map %−1 from GKb to the set-theoretic quotient of
Rb by [ω]2.

1.4 Conic bundles (conics over the rational function field)

In this paragraph we will recall some facts about conic bundles. For a deeper look, see
[35], [36]. Let (x0 : x1) be homogenous coordinates of P1 and t := x0/x1. As usual, we denote
a point (t0 : 1) just by t0 and the point (1 : 0) by ∞.

Consider a projective irreducible (possibly singular) surface S over a finite field Fq of
characteristic p > 2. We call a non-constant Fq-morphism π : S → P1 conic bundle if for
general t0 ∈ P1 the fibre π−1(t0) is a non-degenerate conic. The latter means an irreducible
(or, equivalently, non-singular) algebraic Fq(t0)-curve of degree 2. As usually, a Fq-section of
π is a Fq-morphism σ : P1 → S such that π ◦ σ = id.

It is clear that π corresponds to its general fibre Fπ, which is a non-degenerate conic over
the univariate function field Fq(t). And besides, Fq-sections of π correspond to Fq(t)-points
on Fπ. For one another conic bundle π′ : S ′ → P1 any birational Fq-isomorphism ϕ : S ∼99K S ′
(such that π = π′ ◦ ϕ) corresponds to an Fq(t)-isomorphism (i.e., a transformation in P2) of
their general fibers ϕπ,π′ : Fπ ∼−→ Fπ′ , and vice versa. If the general fibre Fπ is isotropic, i.e.,
it has Fq(t)-point, then S is obviously an Fq-rational surface. Inverse is not true (see, for
example, Theorem 12).

Suppose S to be a non-singular surface. A conic bundle π is called relatively Fq-minimal if
S has no Fq-orbits of pairwise disjoint exceptional (−1)-curves in fibers of π. In other words,
the surface S can not be contracted over Fq with respect to π. A conic bundle may have
several relatively Fq-minimal models, however the Frobenius action on each of them is the
same.

Theorem 10 (Iskovskih [36, §0.7, Theorem 4.1]). Suppose π : S → P1 to be a relatively Fq-
minimal conic bundle. Then we obtain:

1. The number of degenerate fibres of π (over Fq) is equal to 8−K2, where K is a canonical
divisor of S;
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2. The surface S is Fq-rational if K2 > 5, i.e., there is no more than 3 degenerate fibers.

It is well known that every surface having conic bundle can be reduced by means of some
birational Fq-isomorphism to the form

S = F (x0, x1)y2
0 +G(x0, x1)y2

1 +H(x0, x1)y2
2 ⊂ P1

(x0:x1)×P2
(y0:y1:y2),

where F,G,H are non-zero homogenous Fq-polynomials of the same degree. The conic bundle
itself is transformed into the projection π : S → P1

(x0:x1). The product ∆ := FGH is called
discriminant of π. After a simple check we obtain

Lemma 4. For t0 ∈ P1 the following is true:

1. The fibre of π over t0 is degenerate ⇔ ∆(t0) = 0;

2. The fibre of π over t0 contains a singular point on S ⇔ t0 is a multiple root of ∆;

3. Singular curves on S may only be double fibers of π.

Further, it is clear that the surface S has the non-singular Fq-model

Sf,g,h := f(t)y2
0 + g(t)y2

1 + h(t)y2
2 ⊂ A1

t×P2
(y0:y1:y2),

where f, g, h are non-zero (possibly Fq-reducible) square-free polynomials having no common
roots in pairs. We will also call the projection Sf,g,h → A1

t (induced from π) a conic bundle
despite the fact that Sf,g,h is not a projective surface. Thus its general fibre can be written
as

Qα,β := y2
0 + α(t)y2

1 + β(t)y2
2, where α(t) :=

g(t)

f(t)
, β(t) :=

h(t)

f(t)
.

Lemma 5 ([37, Theorem 3.7]). The conic bundle Sf,g,h → A1
t has an Fq-section if and only

if the following identities on the Legendre symbols are satisfied:(
−fg
h

)
=

(
−fh
g

)
=

(
−gh
f

)
= 1.

A quite efficient algorithm for finding an Fq-section of a conic bundle can be found, for
example, in [52].

We recall that for functions α, β ∈ Fq(t)∗ their (quadratic) Hilbert symbol at t0 ∈ P1 is the
Legendre one

(α, β)t0 :=

(
e(α, β)

Fq(t0)

)
, where e(α, β) := (−1)abα

b

βa
(t0) ∈ Fq(t0)∗

and a, b are orders at t0 of α, β respectively. The following theorem is very useful despite
the fact that it is not constructive.

Theorem 11 ([35, Example 3.7]). Fix two more functions α′, β′ ∈ Fq(t)∗. Then the conics
Qα,β, Qα′,β′ are Fq(t)-isomorphic if and only if for all t0 ∈ P1 we have that (α, β)t0 = (α′, β′)t0 .
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2 Auxiliary results

Throughout this paragraph p denotes a prime such that p ≡ 3 (mod 4), p > 3.

2.1 Cubic Fp-surfaces Sh with two Fp-nodes

We will study some singular cubic surfaces with 16 lines, which occur in §2.2, §3. The
general theory of singular cubic ones (over a non-closed field) can be found, for example, in
[53, Part I].

Lemma 6. For h = h1t+ h0 ∈ Fp[t] with h1 6= 0 consider a cubic surface

Sh := x2y − (t2 + y2)y − (h1t+ h0y)z2 ⊂ P3
(x:y:z:t).

It has only two singular points P± := (±1 : 0 : 0 : 1) and they are nodes. In particular, the
surface Sh is Fp-rational.

Proof. The partial derivatives of Sh are equal to

∂Sh
∂x

= 2xy,
∂Sh
∂y

= x2 − (t2 + 3y2)− h0z
2,

∂Sh
∂z

= −2(h1t+ h0y)z,
∂Sh
∂t

= −2ty − h1z
2.

Besides, after the translation

τP± : (x : y : z : t) 7→ (±x− t : y : z : t), τ−1
P±

: (x : y : z : t) 7→
(
±(x+ t) : y : z : t

)
the tangent cone of

Sh,O := τP±(Sh) = x2y + 2xty − y3 − (h1t+ h0y)z2

at the origin O = τP±(P±) of A3
(x,y,z) has the form

TO(Sh,O) = 2xy − h1z
2.

Therefore the points P± are nodes and the projection from one of them is the birational
Fp-isomorphism pr : Sh ∼99K A2.

Let Nh := h2
0 + h2

1 and note that

Sh,O ∩ TO(Sh,O) = LP+,P− ∪MO,

where

LP+,P− := V(y, z), MO :=

{
h1x =

(
h0 ±

√
Nh

)
y,

h1z = ±
√

2h1xy.

Here MO is the union of 4 lines, i.e., the signs ± are taken independently. Consider the
projection from O and its inverse map:

prO : Sh,O ∼99K A2
(u,v), (x : y : z : t) 7→

(
x
y
, z
y

)
,
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pr−1
O : A2

(u,v)
∼99K Sh,O, (u, v) 7→ (uY : Y : vY : T ),

where
Y := h1v

2 − 2u, T := u2 − h0v
2 − 1.

Note that prO, pr−1
O are isomorphisms on the open subsets

UO := Sh,O \
(
TO(Sh,O) ∪ L∞

)
, V := A2

(u,v) \ V(Y ),

where L∞ := V(y, t). Thus the maps

pr = prO ◦ τP± : Sh ∼99K A2, pr−1 = τ−1
P±
◦ pr−1

O : A2 ∼99K Sh

are those on the open subsets V and

U := τ−1
P±

(UO) = Sh \
(
TP±(Sh) ∪ L∞

)
,

where
TP±(Sh) = τ−1

P±
(S ′h) = ±2(x+ t)y − h1z

2.

Thus we proved

Lemma 7. If
(
Nh

p

)
= −1, then pr : U(Fp) ∼−→ V (Fp), where

U(Fp) = Sh(Fp) \ V(y), V (Fp) = A2(Fp) \ V(Y ).

We are also interested in the involution

[−1] : Sh ∼−→ Sh, (x : y : z : t) 7→ (x : y : −z : t),

the meaning of which is explained in Remark 3. Let P ∈ Sh \ T∞(Sh) be a point outside the
tangent plane

T∞(Sh) = h1t+ h0y at ∞ := (0 : 0 : 1 : 0) ∈ Sh.

In geometric terms the point [−1](P ) is the third intersection one of the surface Sh and the
line L∞,P passing through ∞ and P (see also [54, Proposition II.12.13]). In other words,

Sh ·L∞,P =∞+ P + [−1](P ).

2.2 A conic bundle π on Sh

We save the notation of §2.1. In §3 we will encounter the projection π : Sh → P1
(y:t) from

the line L∞, which is a conic bundle. The surfaces Sh and

S ′h := x2 − (t2 + 1)y2 − (h1t+ h0)z2 ⊂ A1
t×P2

(x:y:z)

are obviously equal for y 6= 0 on both ones. Moreover, after inducing the maps π, pr, [−1] on
S ′h they respectively become the projection π′ : S ′h → A1

t,

pr′ : S ′h ∼99K A2
(u,v),

(
t, (x : y : z)

)
7→
(
±x
y
− t, z

y

)
,
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and
[−1] : S ′h

∼−→ S ′h,
(
t, (x : y : z)

)
7→
(
t, (x : y : −z)

)
.

Besides,

(pr′)−1 : A2
(u,v)
∼99K S ′h, (u, v) 7→

(
T
Y
,
(
±(uY + T ) : Y : vY

))
,

where
Y := h1v

2 − 2u, T := u2 − h0v
2 − 1.

For compactness we will sometimes use the notation g(t) := t2 + 1.

Lemma 8. The conic bundle π′ has an Fp-section ⇔
(
Nh

p

)
= 1.

Proof. According to Lemma 5 there is an Fp-section for π′ if and only if(g
h

)
=
(
h
g

)
=

(
−gh

1

)
= 1.

The last equality is obviously true. Also, note that(g
h

)
=

(
g(h0/h1)

p

)
=
(
Nh

p

)
.

Finally, the second equality is, by definition, the existence of an Fp-polynomial r(t) = r1t+ r0

such that g | h− r2. The remainder of dividing h− r2 by g equals

(h1 − 2r0r1)t+ (h0 − r2
0 + r2

1),

hence we obtain the equation system
r0 =

h1

2r1

,

4r4
1 + 4h0r

2
1 − h2

1 = 0.

Therefore r2
1 = R±, where

R± :=
−h0 ±

√
Nh

2
, R+R− = −h

2
1

4
.

If
(
Nh

p

)
= 1, then the above system is solvable. Indeed, R± ∈ Fp and exactly one of these

elements is a quadratic residue in Fp.

Provided
(
Nh

p

)
= −1 we see that pr′ : U(Fp) ∼−→ V (Fp) by analogy with Lemma 7. For the

next simple lemma consider the lines

L± := h1x± y
√
Nh, M± := x− z

√
h(±i), M

(1)
± = x+ z

√
h(±i).

Lemma 9. If
(
Nh

p

)
= −1, then:

1. The degenerate fibers of π′ over t 6=∞ are represented in Figure 1;

2. The fibre of π′ over∞ is the double one with the unique surface singular point (1 : 0 : 0).

Hereafter we will identify (Sh, π, pr) and (S ′h, π
′, pr′), saving for simplicity only the first

notation.
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L+

L−

M+

M
(1)
+

M−

M
(1)
−

−h0/h1 i −i

Figure 1: The Frobenius action on
degenerate fibers of the conic bundle
π′ : S ′h → A1

t

M+

L+

M−

L−

r+ r−

Figure 2: Pairs of Fp-conjugate lines
lying in two Fp-conjugate degenerate
fibers

2.3 Blowing down components of degenerate fibres for π

According to [35, §3] we have explicit formulas for contracting one of Fp-lines of a degen-
erate Fp-fibre. We will also need to explicitly contract one of the pairs of Fp-conjugate lines
L± (or M±) lying in two Fp-conjugate degenerate fibers over roots r± of some Fp-irreducible
quadratic polynomial. This is done in Lemma 10 in a particular case, which is sufficient for
our purposes. For better comprehension of the described situation see Figure 2.

For any polynomial h ∈ Fp[t] consider the surface

Sh := x2 − (t2 + 1)y2 − h(t)z2 ⊂ A1
t×P2

(x:y:z).

As usual, the projection π : Sh → A1
t is a conic bundle.

Lemma 10. Let q(t) := t2 + ct+ d ∈ Fp[t] with roots r± and discriminant D = c2 − 4d such
that

(
D
p

)
= −1. Also, let h ∈ Fp[t] and s± := r2

± + 1 provided that q | h and
(
s±
p2

)
= 1. If

c 6= 0 or
(
c = 0 and d− 1 ∈ (F∗p )2

)
, then for some u ∈ F∗p there is a birational Fp-isomorphism

(respecting the conic bundles)

ϕq : Sh ∼99K Suh
q

such that ϕq : Sh(Fp) ∼−→ Suh
q
(Fp).

Proof. We propose to start the searching a desired transformation in the form

ψq :=


x2 := (b0 + b1t)x− y,
y2 := −x+ (a0 + a1t)y,

z2 := a1b1q(t)z,

ψ−1
q =


x := (a0 + a1t)x2 + y2,

y := x2 + (b0 + b1t)y2,

z := z2,

where det(ψ−1
q ) = a1b1q(t) and a0, b0 ∈ Fp, a1, b1 ∈ F∗p . After substitution ψ−1

q into Sh and
division by q(t) the coefficients of the monomials x2

2, x2y2, y2
2 we obtain (with the help of

Magma [55]) the remainders

(a2
0 − a2

1d+ d− 1)x2
2, (2a0a1 − a2

1c+ c)x2
2t,

2(a0 + b0d− b0 − b1cd)x2y2, 2
(
a1 + b0c− b1(c2 − d+ 1)

)
x2y2t,
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(
db2

0 − b2
0 − 2cdb0b1 + d(c2 − d+ 1)b2

1 + 1
)
y2

2,(
cb2

0 − 2(c2 − d+ 1)b0b1 + c(c2 − 2d+ 1)b2
1

)
y2

2t

and the non-zero quotients ux2
2, v(t)x2y2, w(t)y2

2, where

u := a2
1 − 1,

v(t) := 2(−b1t+ b1c− b0),

w(t) := −b2
1t

2 + b1(−2b0 + b1c)t− b2
0 + 2b0b1c− b2

1(c2 − d+ 1).

Consider the trace and norm:

T := TrFp2/Fp(s±) = c2 − 2d+ 2, N := NFp2/Fp(s±) = c2 + d2 − 2d+ 1.

Because of
(
s±
p2

)
= 1 we get

(
N
p

)
= 1. Also, it is easily checked that T 2 − c2D = 4N .

The system of reminders has two Fp-solutions:

a0 := c
(d+ 1)Nb2

1 + 1− d
2Nb1

, a1 :=
TNb2

1 − c2

2Nb1

,

b0 := c
Nb2

1 + 1

2Nb1

, b1 := ±
√
β,

where

if c 6= 0, then β is exactly one (due to
(
D
p

)
= −1) of the roots

T ± 2
√
N

ND
∈ F∗p of DN2X2 − 2TNX + c2 ∈ Fp[X]

such that
(
β
p

)
= 1;

if c = 0 and d− 1 ∈ (F∗p )2, then β := 1
d(d−1)

and moreover
(
β
p

)
= 1.

Therefore

ψq : Sh ∼99K S ′, where S ′ := ux2
2 + v(t)x2y2 + w(t)y2

2 −
h(t)

q(t)
z2

2 .

Note that u, a1 6= 0. Thus after the Fp-transformation χq : S ′ ∼−→ Suh
q

given by

χq :=


x3 := ux2 +

v(t)

2
y2,

y3 := a1b1y2,

z3 := z2,

χ−1
q =


x2 :=

a1b1

u x3 −
v(t)

2u
y3,

y2 := y3,

z2 := a1b1z3,

(where det(χq) = ua1b1) we obtain the desired surface Suh
q
, i.e., ϕq := χq ◦ ψq satisfies the

theorem conditions.
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Without loss of generality let (
√
s+)p = −√s−. Then under the conditions of Lemma 10 as

the lines of Figure 2 one takes

L± =

{
x±√s±y = 0,

t = r±,
M± =

{
x∓√s±y = 0,

t = r±.

Corollary 1. If c = 0 and d− 1 ∈ (F∗p )2 in the previous lemma, then the condition
(
s±
p2

)
= 1

is automatically fulfilled. Thus, letting δ :=
√
d(d− 1) ∈ F∗p , we obtain:

u = −1
d
, v(t) = ∓2t

δ
, w(t) = −t

2 − d+ 1
δ2

(in particular,
(
u
p

)
= −1) and (up to multiplication by elements of F∗p )

ψq =


x2 := ± t

δ
x− y,

y2 := −x∓ (d− 1)t

δ
y,

z2 := −q(t)
d
z,

ψ−1
q =


x := ∓(d− 1)t

δ
x2 + y2,

y := x2 ± t
δ
y2,

z := z2,

χq =


x3 := x2 ± dt

δ
y2,

y3 := y2,

z3 := −dz2,

χ−1
q =


x2 := x3 ∓ dt

δ
y3,

y2 := y3,

z2 := −1
d
z3.

Proof. It is immediately checked that

s± = 1− d, D = −4d, T = −2(d− 1), N = (d− 1)2, β = 1
δ2

and all other values are as stated.

3 New point compression method

We will freely use notation of previous paragraphs. Below p will be a prime such that
p ≡ 1 (mod 3), p ≡ 3 (mod 4). Consider the following ordinary elliptic Fp2-curve, its Weil
restriction (with respect to Fp2/Fp), and the generalized Kummer Fp-surface respectively:

Eb ⊂ A2
(x:y), Rb ⊂ A4

(x0,x1,y0,y1), GKb ⊂ A1
t×P2

(y0:y1:y2).

Note that the projection π : GKb → A1
t is a conic bundle. In this paragraph we prove Fp-

rationality of GKb, which leads to the creation of our compression method for Fp2-points of
Eb. We also discuss some technical details of its implementation.

Remark 2. If
√
b = a0 + a1i for some a0, a1 ∈ Fp, then the general fibre of π contains the

point (a0 : a1 : 1) and the projection from it obviously gives a birational Fp-isomorphism be-
tween GKb and A2. In fact, this case does not happen in pairing-based cryptography, otherwise
by Theorem 4 the curve Eb would not be a sextic Fp2-twist for any initial Fp-curve Eb′. Thus
we can always assume that

(
b
p2

)
= −1, in particular b0, b1 6= 0.
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First, we reduce GKb to a diagonal form by the map σ : GKb
∼99K Sαf given by

σ :=


x := β(t)y0 + α(t)y1,

y := g(t)y0,

z := y2,

σ−1 =


y0 := α(t)y,

y1 := g(t)x− β(t)y,

y2 := α(t)g(t)z,

where det(σ) = α(t)g(t). In particular, σ respects the conic bundle π and σ : GKb(Fp) ∼−→
Sαf (Fp). Next we successively apply Corollary 1 and Lemma 10 to contract pairs of Fp-
conjugate lines lying in the fibres of π over roots of the Fp-irreducible polynomials α, γ
respectively. More precisely, this is done by means of the maps

ϕα/3 : Sαf ∼99K S9f , ϕγ : S9f
∼99K Sh,

where h(t) = 9uλ(t) for some u ∈ F∗p . The cubic surface Sh is Fp-rational by the projection
pr from any of its two nodes (see Lemma 6). Thus we obtain the maps

θ := ϕγ ◦ ϕα/3 ◦ σ : GKb
∼99K Sh, τ := pr ◦ θ : GKb

∼99K A2,

θ% := θ ◦ % : Rb 99K Sh, τ% := τ ◦ % : Rb 99K A2.

By analogy with %−1 we also have the map θ−1
% (resp. τ−1

% ) from Sh (resp. A2) to the set-
theoretic quotient of Rb by [ω]2.

Remark 3. It is immediately checked that by θ% the involution [−1] : Rb
∼−→ Rb is induced to

the cubic surface Sh as the involution [−1] from §2.1, §2.2. Similarly, on Sh there is the
double map [2]. It would be very interesting to also understand its geometric picture.

According to Lemma 8 we can assume that
(
Nh

p

)
= −1, otherwise the conic bundle π on

Sh (or, equivalently, on GKb) has an Fp-section. However, we do not claim that only this
case occurs in practice, although it seems more likely. Taking into account Lemma 7 we sum
up the main result of this article in

Theorem 12. For a prime p such that p ≡ 1 (mod 3), p ≡ 3 (mod 4) the generalized Kummer
surface GKb is Fp-rational. More precisely, assume that the conic bundle π on GKb has no
an Fp-section, in particular

(
b
p2

)
= −1. Then we have the birational Fp-isomorphism

τ : GKb
∼99K A2 such that τ : GKb(Fp) ↪→ A2(Fp).

The map % is not defined for x1 = 0. We extend it to this case as follows. Let

Rb,∞ := Rb ∩ V(x1) =

{
2y0y1 = b1,

y2
0 − y2

1 = x3
0 + b0.

⊂ A3
(x0,y0,y1),

Qb := 4y2
0(y2

0 − x3
0 − b0)− b2

1 ⊂ A2
(x0,y0).

Then the projection %∞ : Rb,∞ ∼99K Qb to (x0, y0) is a birational Fp-isomorphism with the
inverse one

%−1
∞ : Qb

∼99K Rb,∞, %−1
∞ : (x0, y0) 7→

(
x0, y0,

b1

2y0

)
.
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It is obvious that %∞ is an isomorphism if y0 6= 0 both on Rb,∞ and Qb. In particular, this is
fulfilled for b1 6= 0.

Similarly, the map pr is not defined for y = 0. Let

Sh,∞ := x2 − (h1t+ h0)z2 ⊂ A3
(t,x,z).

Then the projection pr∞ : Sh,∞ ∼99K A2
(x,z) is a birational Fp-isomorphism with the inverse one

pr−1
∞ : A2

(x,z)
∼99K Sh,∞, (x, z) 7→

(
x, z,

x2 − h0z
2

h1z
2

)
.

As a result, in the case
(
Nh

p

)
= −1 we obtain the compression map

comb : Eb(Fp2) ↪→ F2
p×F3

2 , comb(P ) :=



(
%∞(P ), (0, 0, 0)

)
if x1(P ) = 0,(

(0, 0), (0, 0, 1)
)

if P = O,(
(pr∞ ◦ θ%)(P ), (v, 0)

)
if y

(
θ%(P )

)
= 0,(

τ%(P ), (v, 1)
)

otherwise,

where v ∈ {(0, 1), (1, 0), (1, 1)} is the position number of x1(P ) ∈ F∗p in the representative
set {ωix1(P ) (mod p)}2

i=0 ordered with respect to the usual numerical order. Therefore the
corresponding decompression map has the form

com−1
b : Im(comb) ∼−→ Eb(Fp2), com−1

b

(
Q,w

)
=



%−1
∞ (Q) if w = (0, 0, 0),

O if w = (0, 0, 1),

(θ−1
% ◦ pr−1

∞ )(Q) if w = (v, 0),

τ−1
% (Q) if w = (v, 1),

where in the two last cases the image of com−1
b is uniquely defined by the value v.

3.1 Usage of the method for some curves (including BLS12-381)

In this paragraph we instantiate the new point compression method in the case b0 = b1.
In particular, this condition is fulfilled for the curve BLS12-381 [22], which is one the most
popular pairing-friendly curves today according to [25, Table 1]. For this curve

p ≡ 10 (mod 27), p ≡ 3 (mod 4), dlog2(p)e = 381, b = 4(1 + i).

The former allows to extract a cubic root in Fp with the cost of one exponentiation in Fp (see
Remark 1). More generally, for b0 = b1 we obtain:

Nb = 2b2
1, λ(t) = b1(t+ 1), γ(t) = t2 − 4t+ 1, r± = 2±

√
−3i, s± = 4r±.

In particular,
(
s±
p2

)
= 1, because the norm N(r±) = 1. As usually, we will suppose that

(
b
p2

)
=

−1 (i.e.,
(

2
p

)
= −1), hence according to the known formula

(
2
p

)
= (−1)

p2−1
8 [41, Theorem

12.1.iv] we have p ≡ 3 (mod 8).
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We say that an arbitrary map has (on the average) an algebraic complexity

nSS + nMcMc + nMM + nII + nCRCR

if (for most arguments) it can be computed by means of nS squarings, nMc multiplications
by a constant, nM general ones (with different non-constant multiples), nI inversions and
nCR cubic roots, where all operations are in Fp. Additions and subtractions in Fp are not
considered, because they are very easy to compute. We also do not take account (in nMc)
for multiplications by a constant c ∈ Fp such that c (mod p) 6 6, because they are not more
difficult than few additions. Implementation details of the most operations mentioned see,
for example, in [41].

Next we specify the maps ϕα/3 and ϕγ, multiplying them by some elements of F∗p to reduce
their algebraic complexity.

Corollary 2. For q = α/3 the value δ = 2/3 and hence Corollary 1 takes the form:

u = 3, v(t) = ∓3t, w(t) = −3
(

3
4
t2 + 1

)
and

ψq =


x2 := ±3tx− 2y,

y2 := −2x± 4ty,

z2 := 2α(t)z,

ψ−1
q =


x := ±4tx2 + 2y2,

y := 2x2 ± 3ty2,

z := 2z2,

χq =


x3 := 6x2 ∓ 3ty2,

y3 := 6y2,

z3 := 2z2,

χ−1
q =


x2 := 2x3 ± ty3,

y2 := 2y3,

z2 := 6z3.

Corollary 3. For q = γ Lemma 10 takes the form:

u = −1
3
, v(t) = ∓t− 1√

6
, w(t) = −t

2 − 6t+ 1
24

and

ψq =


x2 := ±

√
6

2
(5− t)x+ 6y,

y2 := 6x± 2
√

6(1 + t)y,

z2 := q(t)z,

ψ−1
q =


x := ∓ 2√

6
(1 + t)x2 + y2,

y := x2 ∓ 1
2
√

6
(5− t)y2,

z := z2,

χq =


x3 := 2x2 ∓

√
6

2
(1− t)y2,

y3 := y2,

z3 := −6z2,

χ−1
q =


x2 := −3x3 ∓ 3

√
6

2
(1− t)y3,

y2 := −6y3,

z2 := z3.

It is easily seen that after applying ϕγ we obtain the surface Sh with h(t) = −3b1(t+ 1). In
particular,

(
Nh

p

)
= −1. To make sure in correctness of the above formulas see our code [55]

in the language of the computer algebra system Magma.
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Theorem 13. The maps comb, com−1
b respectively have an algebraic complexity

3S + 5Mc + 14M + 2I and 4S + 6Mc + 18M + 3I + CR.

Proof. It is easily checked that the basic maps forming comb, com−1
b have an algebraic com-

plexity as in Table 1. Therefore we know that of the maps τ%, τ
−1
% . Exactly these functions

are computed for most arguments. It remains to note that for finding v ∈ F2
2 (during compu-

tation of comb) it is necessary to accomplish two multiplications by the constants ω, ω2. And
vice versa, this is also done to recover the initial value of x1-coordinate (during computation
of com−1

b ).

map %∞ pr∞ % σ ϕα/3 ϕγ pr %−1
∞

alg. complexity 0 0 I S + 4M S + 4M S + 3Mc + 4M 2M + I Mc + I

pr−1
∞ %−1 σ−1 ϕ−1

α/3 ϕ−1
γ pr−1

2S +Mc +M + I S + 4M + 2I + CR S + 6M 3M 3Mc + 3M 2S +Mc + 2M + I

Table 1: An algebraic complexity of the maps

4 Further questions

We end the article by some comments about possible generalizations of our point com-
pression method. First of all, in addition to Theorem 12 the author has already proved in [38]
a similar one about F2-rationality of the (usual) Kummer surface of some two supersingular
Jacobians [39] of dimension 2. Thus we are feel free to formulate

Conjecture 1. Let A be an abelian surface over a finite field Fq and σ be its Fq-automorphism.
If the generalized Kummer surface A/σ is geometrically rational, then it is also Fq-rational.

We do not see any problems to extend the new point compression method to the Weil
restriction R Fq2/Fq(Eb) for any finite field Fq such that q ≡ 1 (mod 3) and p > 3. Besides,

our approach could be immediately applied to the direct product Eb×Eb′ for any b, b′ ∈ F∗q .
Nevertheless, in this article we focused on the surface Rb, because compression of its points
seemed to us more difficult and important for practice. Finally, according to Theorem 7 the
Jacobian of a hyperelliptic curve y2 = x5 + b (for b ∈ F∗q , q ≡ 1 (mod 5), and p > 5) seems to
also have the Fq-rational generalized Kummer surface.
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