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Abstract. Non-interactive arguments of knowledge are powerful cryp-
tographic tools that can be used to demonstrate the faithful execution
of arbitrary computations with publicly verifiable proofs. Increasingly
efficient protocols have been described in recent years, with verification
time and/or communication complexity that is sublinear in the size of
the computation being described. These efficiencies can be exploited to
realize recursive proof composition: the concept of proofs that attest to
the correctness of other instances of themselves, thereby allowing large
computational effort to be incrementally verified. All previously known
realizations of recursive proof composition have required a trusted setup
and cycles of expensive pairing-friendly elliptic curves. We obtain and
implement Halo, the first practical example of recursive proof compo-
sition without a trusted setup, using the discrete log assumption over
normal cycles of elliptic curves. In the process we develop several novel
techniques that may be of independent interest.

Keywords: recursive proofs · incrementally verifiable computation ·
zero knowledge

1 Introduction

Proofs of knowledge [24], introduced by Goldwasser, Micali and Rackoff, allow
us to demonstrate knowledge of a satisfying witness to some NP statement. If
these proofs also do not reveal anything about the witness we refer to them
as zero-knowledge proofs of knowledge. The works of Kilian, Micali and oth-
ers showed that proofs of knowledge could be non-interactive, and that these
proofs could even be smaller than the statement being proven. [31,33,10,9] In the
decades since, significant reductions in the size and verification time of such pro-
tocols have been made, culminating in zero-knowledge succinct non-interactive
arguments of knowledge, or zk-SNARKs for short. Today, the most efficient zk-
SNARKs require pairing-friendly elliptic curves and trusted setup assumptions
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as in [25] but in return admit small, constant-size proofs with constant-time
verification.

One of the motivating use cases for zk-SNARKs is the application of verifiable
computation [23], whereby computations can be delegated to an untrusted third
party who returns the result as well as a cryptographic proof that the result is
correct. Ideally this proof would be asymptotically smaller and less expensive
to check than the computation itself, a property of zk-SNARKs that we call
succinctness. A direct consequence of a succinct argument is the concept of
incrementally verifiable computation [36] in which proofs not only attest to the
correct execution of a computation but also, by exploiting succinctness, the
validity of a previous proof. In this way a large and virtually unbounded amount
of computation can be verified with a single proof, and with this proof alone we
may extend the computation with further proofs.

As a concrete motivation for incrementally verifiable computation, consider
a blockchain network that requires all participants in the network to download
the entire history of the blockchain and validate each individual state transi-
tion (transaction) merely in order to validate and process new state changes.
SNARKs allow us to partially address this scalability problem by outsourcing
some of these verification steps to a third party. However, the participant still
must download and check each proof. Incrementally verifiable computation solves
this issue, allowing a single proof to inductively demonstrate the correctness
of many previous proofs. The participant in the blockchain network need only
download the current state of the network as well as a single proof that this
state is correct. Further proofs of state changes can be constructed with the
latest proof alone, allowing active participants to prune old state changes.

We can obtain incremental verifiable computation via recursive proof com-
position, i.e. proofs that can feasibly attest to the correctness of other instances
of themselves. These proofs can be used to ensure the satisfaction of compliance
predicates between old and new states, leading to concepts such as proof-carrying
data [19] which can be extended to obtain verifiable distributed computations as
in [8]. The first practical realization of recursive proof composition was shown in
[4] and relies on SNARKs built over pairing-friendly elliptic curves. Elliptic curve
groups are typically instantiated over a base field Fp, but these groups are often
of a prime order q 6= p so that the SNARK construction, which demonstrates
satisfiability of an arithmetic circuit over the scalar field Fq, cannot efficiently
encode the Fp arithmetic needed to verify its own proofs. The authors of [4] side-
step this issue by constructing a 2-cycle of pairing-friendly elliptic curves such
that the base field of either curve is the scalar field of the other. Unfortunately,
only a single family of pairing-friendly curves is known to admit cycles of this
form [16], and due to their low embedding degrees secure curves in this family
must be constructed over large (780-bit) fields, disturbing performance. Perhaps
more importantly, all known pairing-based SNARKs require a trusted setup.

In theory it should be possible to instantiate recursive proof composition
using any zk-SNARK, and in recent years protocols such as STARKs [3] of-
fer alternatives to pairing-based SNARKs that do not require trusted setups.
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However, recursive proof composition has never been practically realized with
these protocols due to large constants; for example STARKs have proofs that
are hundreds of kilobytes in size even for relatively simple computations.

1.1 Our Contributions

We present Halo, the first practical realization of recursive proof composition
without a trusted setup. As in [4], we use a cycle of elliptic curves such that
proofs constructed with one curve can efficiently verify proofs constructed over
the other. However, neither curve is pairing-friendly; the cycle consists of normal
255-bit prime-order curves that are conjectured to approach the 128-bit security
level. Such cycles are easy to construct, as discussed in Section 6.1. Proof size and
verification time in our protocol does not increase with the depth of recursion.

Polynomial Commitments with Amortized Succinctness In Section 3
we present a new polynomial commitment scheme based on the inner product
argument of [12,13], inspired by a similar protocol from [37]. We make a novel
observation that, by exploiting the smooth structure of vectors that the verifier
must work with, we can amortize away (across many proofs) the linear-time ver-
ification operation for commitment openings with the assistance of an untrusted
third party “helper.” In particular, instead of performing a linear-time operation
for each commitment opening proof, the helper provides the claimed output of
these linear-time operations for each proof and then uses a new argument to
demonstrate that every claimed output was correct. This new argument requires
that the verifier perform the same linear-time operation, but this time only once
for the entire batch of proofs. This strategy allows us to build proofs for arith-
metic circuit satisfiability in which the marginal verification time is logarithmic
in the size of the circuit, improving asymptotically over Bulletproofs [13]. This
is similar to the helped variant of the Sonic protocol [32, Section 8], except that
our approach avoids the need for a trusted setup.

Nested Amortization All previously known attempts at achieving recursive
proof composition have followed a similar strategy: build a fully succinct, non-
interactive argument system and then construct a verification circuit for this
system. Due to the succinctness property, at some threshold the verification cir-
cuit will be smaller than the size of the circuit being checked, allowing arbitrary-
depth recursion to be achieved. Argument systems based on elliptic curve groups
have the smallest communication complexity known in the literature, but cur-
rently they either require trusted setups (as in all pairing-based SNARKs) or
have linear-time verifiers (as in Bulletproofs [13]) and so are not fully succinct.

Our primary contribution is a novel approach for reducing the verification
circuit size by exploiting the amortization strategy explained previously. In short,
the verification circuit never performs linear-time operations itself, but rather
takes the input and (claimed) output of the linear-time operation to be public
inputs to the circuit, i.e. they are encoded in the statement being proven. The
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circuit proceeds on the assumption that the claimed output is correct and so
the circuit is sublinear in size. This effectively defers the full verification of
the “inner” proof to the verifier, who must also perform a similar linear-time
operation to check the “outer” proof. Using the amortization argument described
previously, the verifier can collapse these two computations together into one
with the assistance of a helper. In the recursive context we simply embed the
verifier of this amortization argument at each depth of the recursion so as to
continually collapse the cost of verifying arguments. The linear-time verification
operation is thus only performed once at the end of the recursive chain, and
never as part of the verification circuit itself, bypassing the conventional need
for a fully succinct argument and in fact avoiding the need for pre-processing.

Implementation We fully implement our protocol in Section 6 to demonstrate
its practicality and assist in comparison with future work. In the process, we
describe a 2-cycle of elliptic curves – which we refer to as Tweedledum and Twee-
dledee, respectively – with attractive performance and security. We instantiate
an argument for arithmetic circuit satisfiability over each elliptic curve group,
exploiting their cyclic nature to efficiently express verification circuits as in [4].
The curves we choose are also specifically designed to support certain endomor-
phisms which we exploit to reduce the size of our verification circuit in various
novel ways described in Section 6.2, which are likely of independent interest.

1.2 Concurrent Work

In concurrent work, Fractal [18] is a proposed recursive zero-knowledge proto-
col based on recent efficient low-degree testing techniques, with plausible post-
quantum security and full succinctness. Our work is not fully succinct (in that
the verifier’s work is linear in the circuit size) but our fully-recursive proofs are
3.5 KiB in size, compared to Fractal’s which are over 120 KiB in size at the
128-bit security level. Further, Halo’s recursion threshold1 is less than 217 multi-
plication gates — at least an order of magnitude smaller than Fractal’s — which
has the potential for substantially reducing proving time/memory requirements.

Supersonic [14] is a recent zk-SNARK based on groups of unknown order,
which does not require a trusted setup. It is not clear to us if recursion can be
practically achieved using this scheme or, if so, how competitive it would be with
our results.

2 Preliminaries

We take λ as our security parameter, and unless explicitly noted, all algorithms
and adversaries are probablistic interactive Turing machines that run in polyno-
mial time in this security parameter. We use negl(λ) to describe a function that
is negligible in λ.

1 The recursion threshold is the number of (multiplication) gates in the smallest circuit
that can achieve arbitrary-depth proof composition.
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2.1 Zero-Knowledge Arguments of Knowledge

Zero-knowledge proofs of knowledge allow a prover P to demonstrate knowledge
of a witness w such that (x,w) ∈ R for a polynomial-time decidable relation R
and some statement x, without revealing any information about w to the verifier
V of the proof except that which can be inferred from the truth of the statement.
We’ll write relations in the form {(statement; witness) : predicate}.

We will work with arguments of knowledge which assume computationally
bounded provers. We will model P,V as interactive algorithms, with a prelimi-
nary algorithm Setup that produces a common reference string σ. We will denote
the transcript of the interaction as 〈P(σ, x, w),V(σ, x; ρ)〉, with the verifier’s in-
ternal randomness ρ sometimes being omitted.

Definition 1 (Perfect Completeness). (Setup,P,V) has perfect complete-
ness if for all non-uniform polynomial-time adversaries A

Pr

[
(x,w) /∈ R ∨ 〈P(σ, x, w),V(σ, x)〉 accepts

∣∣∣∣∣ σ ← Setup(1λ)

(x,w)← A(σ)

]
= 1

Definition 2 (Computational Witness-Extended Emulation).
(Setup,P,V) has witness-extended emulation if for all deterministic polynomial-
time P∗ there exists an expected polynomial-time emulator E such that for all
pairs of interactive adversaries A1,A2∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 A1(tr) = 1

∣∣∣∣∣∣∣
σ ← Setup(1λ)

(x, s)← A2(σ)

tr ← 〈P∗(σ, x, s),V(σ, x)〉

−

Pr

 A1(tr) = 1

∧ (tr accepts⇒ (x,w) ∈ R)

∣∣∣∣∣∣∣
σ ← Setup(1λ)

(x, s)← A2(σ)

(tr, w)← EO(σ, x)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where the oracle is given by O = 〈P∗(σ, x, s),V(σ, x)〉 and permits rewinding to a
specific point and resuming with fresh randomness for the verifier from that point
onward. We also define computational witness-extended emulation by restricting
to non-uniform polynomial-time adversaries A1 and A2.

Definition 3 (Argument of Knowledge). (Setup,P,V) is an argument of
knowledge if it has perfect completeness and computational witness-extended em-
ulation.

Definition 4 (Public-Coin). (Setup,P,V) is a public-coin argument if the
verifier chooses their messages uniformly at random and independently of the
messages sent by the prover, i.e., the challenges correspond to the verifier’s ran-
domness ρ.
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Definition 5 (Perfect Special Honest-Verifier Zero Knowledge).
(Setup,P,V) has perfect special honest-verifier zero knowledge (PSHVZK) if for
all non-uniform polynomial-time adversaries A1,A2 and polynomially decidable
relation R with (x,w) ∈ R there exists a probablistic polynomial-time simulator
S such that

Pr

A1(tr, σ, x) = 1

∣∣∣∣∣∣∣
σ ← Setup(1λ)

(x,w, ρ)← A2(σ)

tr ← 〈P(σ, x, w),V(σ, x; ρ)〉

 =

Pr

A1(tr, σ, x) = 1

∣∣∣∣∣∣∣
σ ← Setup(1λ)

(x,w, ρ)← A2(σ)

tr ← S(σ, x, ρ)


where ρ is the verifier’s internal randomness.

2.2 Groups

We use the notation G for a group of prime order p, and Fp to denote its scalar
field. We will often write the field as F if the size of the field is implied or
unimportant. Rather than drawing verifier challenges from F× we will draw
them instead from a challenge space I ⊂ F× that is of size 2λ.

We use uppercase letters to denote group elements, and lowercase letters to
denote scalars. Group operations are written additively, and scalar multiplication
is denoted by [a]G for a ∈ F and G ∈ G. The additive identity in G is written
as O. We use boldface variable names for vectors, such that a is a vector of
scalars and G is a vector of group elements. All vectors are zero-indexed unless
explicitly noted.

We write the inner product a0b0 + a1b1 + · · · + an−1bn−1 of scalar vectors
a,b ∈ Fn, as 〈a,b〉. Similarly we write the multiscalar multiplication [a0]G0 +
[a1]G1 + · · · + [an−1]Gn−1 of a scalar vector a ∈ Fn with a vector of group
elements G ∈ Gn, as 〈a,G〉. We will sometimes write Glo or Ghi to refer to the
first half or second half of a vector of group elements or scalars.

Definition 6 (Discrete Log Relation Assumption). For all adversaries A
and for all n ≥ 2

Pr
[
G

$←− Gn; a ∈ Fn ← A(G,G) : ∃ai 6= 0 ∧ 〈a,G〉 = O
]
≤ negl(λ)

The discrete log relation assumption generalizes the discrete log assumption to
arbitrary numbers of random group elements. We say that 〈a,G〉 = O is a non-
trivial discrete log relation between elements of G when at least one of a is
nonzero.
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3 Polynomial Commitments

Polynomial commitment schemes [30] form a fundamental building block in many
modern arguments of knowledge. [32,17,22,14] In these schemes, a prover can
construct commitments to polynomials and then later provably evaluate the
committed polynomials at arbitrary points. We present a univariate polynomial
commitment scheme (Setup,Commit,Open,VerifyOpen) based on the multivari-
ate scheme of [37], which is itself a variant of the inner product argument first
presented in [12], with adaptations from Bulletproofs [13].

First, for a given degree bound d− 1 we define Setup(1λ, d) as an algorithm
that produces a common reference string σ = (G,Fp,G, H) for group G of prime
order p, with random G ∈ Gd and H ∈ G. Let Commit be defined as

Commit(σ, p(X); r) = 〈a,G〉+ [r]H

for blinding factor r, where ai ∈ F is the coefficient for the ith degree term of
p(X), and p(X) ∈ Fp[X] is of maximal degree d − 1. We will sometimes omit
the blinding factor r if it is either implicit or unnecessary. This is a Pedersen
vector commitment to the polynomial coefficients, and we remark that such
commitments are perfectly hiding and additively homomorphic: ∀a, b, r, s ∈ Fp
and p(X), q(X) ∈ Fp[X] we have

[a]Commit(σ, p(X); r)

+ [b]Commit(σ, q(X); s)
= Commit(σ, a · p(X) + b · q(X); ar + bs).

We will have (Setup,Open,VerifyOpen) be a PSHVZK argument of knowledge
for the relation{

((P, x, v); (a, r)) : P = 〈a,G〉+ [r]H ∧ v = 〈a, (1, x, x2, ..., xd−1)〉
}

which will allow a prover to demonstrate to a verifier that the polynomial con-
tained “inside” the commitment P evaluates to v at x, and moreover, that the
committed polynomial has maximum degree d− 1.

3.1 Protocol Description

The protocol takes the polynomial commitment P , point x, and claimed eval-
uation v as common inputs. In the first move the verifier VerifyOpen sends a
random group element U ∈ G. Both parties compute

P ′ = P + [v]U

and begin an argument (described next) to demonstrate that the prover Open
knows a ∈ Fdp and r, v′ ∈ Fp such that

P ′ = 〈a,G〉+ [r]H + [v′]U

and that v′ = 〈a, (1, x, x2, ..., xd−1)〉. As the prover did not know U in advance,
this establishes that v = v′. (In this respect we differ from the protocol described
in [37, Appendix A.3] which effectively has U fixed prior to the argument; a
prover with malicious control of P would then be able to interfere with the
argument by including terms involving U in P .)
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Modified Inner Product Bulletproofs [13] presents a variant of the inner
product argument [12] in which a prover aims to convince a verifier that they
know a,b ∈ Fd such that

P ′ = 〈a,G〉+ 〈b,H〉+ [〈a,b〉]U

for some given P ′, and random generators G,H ∈ Gd, U ∈ G. We use a variant
of this argument in which the second vector b = (1, x, x2, ..., xn−1) is fixed for
the given choice of x, and known to both the prover and verifier. As a result no
vector H is necessary. Further, we allow an additional generator H to serve as a
mechanism for perfectly blinding both prover messages and the commitment P ′

itself.
Assume d = 2k for k > 0. Initializing for the prover G′ := G,a′ := a,b′ := b,

we will proceed in k rounds of interaction, where in the jth round (starting with
j = k and finishing with j = 1) the prover sends

Lj = 〈a′lo,G′hi〉 + [ lj ]H + [〈a′lo,b′hi〉]U
Rj = 〈a′hi,G′lo〉 + [rj ]H + [〈a′hi,b′lo〉]U

with random blinding factors lj , rj ∈ Fp. The verifier responds with a random
challenge uj ∈ I and the prover computes

a′ ← a′hi · u−1j + a′lo · uj
b′ ← b′lo · u−1j + b′hi · uj
G′ ← G′lo · u−1j + G′hi · uj

for the next round. After the final round, G′,a′,b′ are each of length 1. Note
that the verifier can compute G = G′0 as 〈s,G〉 and b = b′0 as 〈s,b〉 where

s = (u−11 u−12 · · · u
−1
k ,

u1 u−12 · · · u
−1
k ,

u−11 u2 · · · u−1k ,
u1 u2 · · · u−1k ,

...
u1 u2 · · · uk )

(1)

which has a binary counting structure arising from the fact that in each round
the inverted challenges are used to scale bases in the first half G′lo, while the
ordinary challenges scale the bases in the second half G′hi.

The verifier next computes

Q =
k∑
j=1

(
[u2j ]Lj

)
+ P ′ +

k∑
j=1

(
[u−2j ]Rj

)
and the prover proceeds to demonstrate knowledge of a = a′0 and synthetic
blinding factor r′ =

∑k
j=1(lju

2
j ) + r +

∑k
j=1(rju

−2
j ) such that

Q = [a]G+ [r′]H + [ab]U

= [a] (G+ [b]U) + [r′]H
(2)

which establishes the claim that v = v′ = 〈a,b〉 as described in [13, Section 3].
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Zero-Knowledge Opening The prover demonstrates knowledge of a, r′ ∈ Fp
such that Equation 2 is satisfied, without revealing a, r′, in order to establish
the claim without revealing anything else about the committed polynomial. We
use a generalized Schnorr protocol that is modified from the protocol in [37,
Appendix A.3] to improve efficiency.

The prover begins by sampling random d, s ∈ Fp and sending

R = [d] (G+ [b]U) + [s]H

which the verifier responds to with random challenge c ∈ I. The prover now
sends

z1 = ac + d
z2 = cr′ + s

and the verifier accepts if [c]Q+R = [z1] (G+ [b]U) + [z2]H.

Theorem 1. The protocol presented in Section 3.1 has perfect completeness,
computational witness-extended emulation, and perfect special honest-verifier
zero knowledge.

This proof appears in Appendix A.

3.2 Amortization Strategy

The polynomial commitment scheme just described suffers from an undesirable
asymptotic property: although the communication complexity is logarithmic in
the degree bound, the verifier must compute G = 〈s,G〉 and b = 〈s,b〉 to accept
the argument. One of our novel observations is to exploit the structure of s and
b by defining a polynomial

g(X,u1, u2, ..., uk) =
k∏
i=1

(ui + u−1i X2i−1

) (3)

such that b = 〈s,b〉 = g(x, u1, u2, ..., uk) which can be computed by the verifier
in logarithmic time. This alone seems uninteresting, as computing G still requires
a linear-time multiscalar multiplication. However, observe that

G = Commit(σ, g(X,u1, u2, ..., uk))

which suggests the following strategy: instead of the verifier computing G it-
self for multiple (independent) arguments, it can ask an untrusted third-party
“helper” to compute each G1, G2, ..., Gm for m separate arguments and pro-
vide an argument that each are correct by demonstrating that a random linear
combination of the commitments opens at a random point to a value that the
verifier can compute in time O(m log(d)). Due to the degree bound of the poly-
nomial commitment scheme the helper convinces the verifier with high proba-
bility (given a large enough field) only if the claimed commitments are correct.
This new argument itself requires an invocation of the polynomial commitment
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opening protocol, and so the verifier still must ultimately perform a linear-time
operation. However, the verifier has traded m linear-time operations for one,
with a marginal cost that is logarithmic in the degree bound. This is of crucial
importance for our later techniques.

4 Nested Amortization

The general approach for achieving recursive proof composition is to first obtain
a non-interactive argument of knowledge for arithmetic circuit satisfiability (i.e.
C(x,w) = 1 for auxiliary input w and public input x), and then to encode the ver-
ification algorithm for this argument into such an arithmetic circuit. Assuming
that the verification circuit for a proof is sublinear in the size of the circuit that
the proof reasons about, then at some threshold it will be possible to recursively
verify proofs. In our setting we do not have a protocol which can be fully verified
in sublinear time, and so naively applying this strategy will not yield results be-
yond fixed-depth composition. Instead, we devise a novel technique which allows
us to avoid fully verifying proofs at each layer of the recursion, leveraging the
fact that our protocol in Section 5 has sublinear marginal verification time and
logarithmic proof size.

Arithmetic circuits are often encoded into systems of constraints such that,
given a satisfying assignment of variables (the prover’s witness), the satisfaction
of the constraint system implies the satisfiability of the circuit. The inherent
non-determinism in this process means that some expensive operations can be
performed more efficiently when the prover is allowed to assist. As an example,
in circuits where a field inversion of a variable u must be computed, rather
than exponentiating “in the circuit” (up−2 which requires log(p) multiplication
constraints), the prover can instead witness v = u−1 and show that it is the
correct inverse with the single multiplication constraint uv = 1. We will exploit
this non-determinism in a slightly different way: when our circuit contains an
expensive fixed operation f that is invoked with some input x we will instead
allow the prover to witness y = f(x) and then take (x, y) as public inputs to
the circuit. The circuit can then proceed under the assumption that y is correct,
delegating the responsibility of checking the correctness of y to the verifier of
the proof.

In the context of proof composition, we apply this optimization so that a
verification circuit for a proof will not perform any linear-time (or otherwise ex-
pensive) operation f but rather take their inputs and the prover’s alleged outputs
(x, y) as public inputs to its own circuit. Observe that as proofs are continually
composed, increasing instances of (x, y) accumulate because the verification cir-
cuit will not check them but rather continually delegate these checks to its veri-
fier. In order to prevent this runaway cost we introduce an amortization strategy:
given instances (x, y) and (x′, y′), the prover will provide a non-interactive proof
that y = f(x) and y′ = f(x′) as a witness to the verification circuit, and the
verification circuit will check this proof. In order to fully check this amortization
proof the verification circuit may need to perform a linear-time (or otherwise
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expensive) operation. However, if this operation is equivalent to invoking f then
the verifier has collapsed the two instances (x, y) and (x′, y′) into a single fresh
instance (x′′, y′′), allowing us to continually amortize away the cost of invoking f
as proofs are composed. It is only “outside” of the circuit that f is invoked once
by the ultimate verifier, demonstrating the correctness of the entire underlying
tree of proofs by induction. We refer to this strategy as “nested amortization.”

The public-coin PSHVZK argument of knowledge for arithmetic circuit sat-
isfiability described in Section 5 is designed to exploit this nested amortization
strategy, leveraging the polynomial commitment amortization technique we ex-
plored in Section 3.2. The setting is described as a stream of arguments from the
prover to the verifier, where the verifier will maintain logarithmic-size state and
perform logarithmic-time operations to partially verify each proof in sequence.
Finally, at the end of a stream of proofs the verifier will choose to accept or
reject all of them simultaneously in linear time. By applying the Fiat–Shamir
heuristic [21] in Section 6 we can transform this argument into a non-interactive
zero-knowledge argument of knowledge. The result is then grafted to the nested
amortization technique, where the “state” maintained by the verifier is merely
the deferred values that are shepherded through public inputs. This leads di-
rectly to a recursive proof of arbitrary depth2 where the verifier outside of the
circuit will be responsible only for checking the correctness of the verifier state
once, with a linear-time operation that is never performed inside the circuit.

5 Main Argument

The main argument of Sonic [32] allows a prover to demonstrate the satisfiability
of an arithmetic circuit (e.g., C(x,w) = 1) for some public input x and auxiliary
input w. Our main protocol is a variant of Sonic that is adapted to the polynomial
commitment scheme described in Section 3. We will work within a restricted
setting to aid later exposition: the circuit C is fixed, and the prover will repeatedly
interact with the verifier to engage in multiple arguments in sequence. Our goal
will be for the verifier to perform logarithmic marginal work in choosing to accept
or reject all of the arguments simultaneously, leveraging the technique described
in Section 3.2 as well as an analogous technique described in Section 8 of [32].

In all of the following let N,Q, k be integers such that d = 4N = 2k and
3Q < d. Let the common reference string σ ← Setup(1λ, d) be shared between
the prover and verifier.

5.1 Central Argument

The prover aims to demonstrate that C(x,w) = 1 for public input x and auxiliary
(witness) input w without revealing w. It will do so by demonstrating that a

2 We remark that, theoretically, the knowledge extractor requires a number of tran-
scripts from the prover that increases exponentially as the depth increases. However,
there are no known attacks and this concern is often disregarded in practice. In any
case, applications can sometimes sidestep this theoretical concern by restricting to
a fixed-depth tree of proofs as in [8].
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system of arithmetic constraints that encodes C is satisfied for witness a,b, c ∈
FN known only to the prover and some instance k ∈ FQ which encodes the public
inputs. This system of constraints consists of N multiplication constraints, where
the ith such constraint is of the form

ai · bi = ci

and Q linear constraints, where the qth such constraint is of the form(
N∑
i=1

ai · (uq)i

)
+

(
N∑
i=1

bi · (vq)i

)
+

(
N∑
i=1

ci · (wq)i

)
= kq

for some fixed uq,vq,wq ∈ FN that encode C. Just as in [32] we will embed all
of these constraints into a single equation in formal indeterminate Y

N∑
i=1

ai · Y Nui(Y ) +
N∑
i=1

bi · Y Nvi(Y ) +
N∑
i=1

ci · (Y Nwi(Y )− Y i − Y −i)

+
N∑
i=1

aibi · (Y i + Y −i)− Y Nk(Y ) = 0

(4)

where we define the polynomials

ui(Y ) =

Q∑
q=1

Y q(uq)i vi(Y ) =

Q∑
q=1

Y q(vq)i

wi(Y ) =

Q∑
q=1

Y q(wq)i k(Y ) =

Q∑
q=1

Y q kq

such that given a choice of a,b, c,k we have that Equation 4 holds at all points
when the constraint system is satisfied. Thus, given a large enough field the
equation will not hold at a random point (with high probability) if the constraint
system is not safisfied. Given a second formal indeterminate X let us define the
polynomials

r(X,Y ) =
N∑
i=1

aiX
iY i +

N∑
i=1

biX
−iY −i +

N∑
i=1

ciX
−i−NY −i−N

s(X,Y ) =
N∑
i=1

ui(Y )X−i +
N∑
i=1

vi(Y )Xi +
N∑
i=1

wi(Y )Xi+N

s′(X,Y ) = Y Ns(X,Y ) −
N∑
i=1

(Y i + Y −i)Xi+N

t(X,Y ) = r(X, 1)(r(X,Y ) + s′(X,Y ))− Y Nk(Y )

such that the constant term of t(X,Y ) is exactly the left-hand side of Equation 4.
Observe that because r(X,Y ) = r(XY, 1) the prover can commit to r(X,Y )

using a univariate polynomial commitment scheme, i.e. Commit(σ, r(X, 1)). The
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remaining polynomials are fully determined by this choice of r(X,Y ) and do
not depend on the witness a,b, c. The general strategy is for the prover to
send a commitment to r(X,Y ) and then to demonstrate that the constant term
of t(X,Y ) is the zero polynomial. The verifier will sample a random y ∈ I
and ask the prover to commit to t(X, y). The commitments will be checked for
consistency: the verifier will choose a random x ∈ I, and the prover will open its
commitments to a = r(x, 1), b = r(x, y) and t = t(x, y), such that

t = a(r + s′(x, y))− k(y)

gives us that the commitment to t(X, y) is correct with high probability. If the
prover can convince the verifier that their commitment to r(X,Y ) is bounded at
degree N then we have that the constant term of t(X,Y ) is exactly the left-hand
side of Equation 4, and if the constant term of this commitment can be shown
to be zero then with high probability the prover has knowledge of a satisfying
witness.

Committing to r(X,Y ) In order to show that the degree of r(X,Y ) is bound
at N , the prover will instead send R = Commit(σ, r(X, 1)X3N−1; δR) for some
blinding factor δR ∈ F so that the degree bound d − 1 = 4N − 1 restricts the
prover. The verifier need only rescale openings of this commitment by X−3N+1

to obtain the desired value.

Blinding r(X,Y ) The commitment R is perfectly blinded by the prover’s choice
of δR. The prover will eventually open r(X,Y ) at various points for the verifier to
check consistency with the prover’s commitment to t(X, y). This will reveal some
information about the witness a,b, c. We resolve this by designating seven of
these wire values as random blinding factors; as shown in the proof of Theorem 2
the verifier will then not learn a sufficient number of evaluations of r(X,Y ) to
distinguish the committed polynomial from random.

Committing to t(X, y) Observe that t(X, y) has exponents of X that span
from X−4N to X3N , with a constant term of zero. Let tlo(X, y) and thi(X, y)
be polynomials of degree d − 1 such that t(X, y) = tlo(X, y)X−d + thi(X, y)X.
Rather than committing directly to t(X, y) the prover will demonstrate that its
constant term is zero by separately sending Tlo = Commit(σ, tlo(X, y), δlo) and
Thi = Commit(σ, thi(X, y), δhi) for blinding factors δlo, δhi ∈ F, and the pair of
commitments will then be taken as a commitment to a Laurent polynomial with
a constant term of zero due to the degree bound of the polynomial commitment
scheme, and the verifier will again rescale commitment openings as appropriate.

Committing to k(Y ) In our setting it will ultimately be more efficient for
the prover and verifier to compute K = Commit(σ, k(Y )) so that the prover can
open this commitment at y on behalf of the verifier, rather than requiring the
verifier to evaluate k(y) itself.

13



Amortizing the Evaluation of s′(x, y) In the protocol described so far, the
verifier must evaluate s′(x, y) to accept the argument. Instead we will borrow a
strategy from [32] in which the prover sends S = Commit(σ, s(X, y)XN ) prior
to the verifier’s choice of x and then later opens this commitment at x, which
the verifier rescales by x−N to obtain the desired value s(x, y) and uses this to
compute s′(x, y) in logarithmic time. It remains for the verifier to check that
the commitment S is correct, which would ordinarily require work that is linear
in |C|. Recall that in our setting we permit the verifier to perform a linear-time
operation only at the end of a sequence of arguments, and that the marginal
cost of checking an argument must be logarithmic in |C|.

We address this using a technique inspired by Section 8 of [32]. Each argu-
ment will produce a value ynew and a value Snew that is purportedly equal to
Commit(σ, s(X, ynew)XN ). Let (yold, Sold) be the values (ynew, Snew) produced
from the previous argument. The prover will demonstrate that S and Sold are
correct by sending C = Commit(σ, s(x, Y )xN ) following the verifier’s choice of
x, and then opening C at yold, y to the same values that Sold and S open at x,
respectively. This establishes with high probability that each commitment is to
the correct polynomial assuming that C is a commitment to the correct poly-
nomial. Instead of checking the correctness of C the verifier will sample random
ynew ∈ I and ask the prover to supply Snew = Commit(σ, s(X, ynew)XN ). The
prover will demonstrate that Snew opens at x to the same value that C opens at
ynew. The correctness of Snew then demonstrates the correctness of C with high
probability. The verifier will now take this (ynew, Snew) for the next argument.
In order to accept a sequence of arguments the verifier will need to check that
Snew = Commit(σ, s(X, ynew)XN ) for the final argument but otherwise does not
perform linear-time marginal work with respect to evaluating s(X,Y ).

Combining Polynomial Commitment Opening Arguments In the proto-
col described so far the prover and verifier must engage in several separate poly-
nomial commitment opening arguments. The commitments R, Sold, S, Snew, Tlo,
Thi must each be opened at x, the commitments K,C must be opened at y, the
commitment R must be opened at xy and the commitment C must be opened
at yold and ynew. We use a batch opening strategy from [30] which leverages
the fact that our polynomial commitments are additively homomorphic. Given
a verifier challenge z1 let

P = R+ [z1]Sold + [z21 ]S + [z31 ]Snew + [z41 ]Tlo + [z51 ]Thi = Commit(σ, p(X))

and Q = K + [z1]C = Commit(σ, q(X)) for implicitly defined polynomials
p(X), q(X) ∈ F[X]. The prover will send the openings for each of R, Sold, S,
Snew, Tlo, Thi at x and for each of K,C at y prior to the choice of z1, and then
the prover will proceed to open P at x and Q at y to values the verifier can
compute itself, convincing it with high probability that the openings are each
correct due to the degree bound of the polynomial commitment scheme.
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In order to reduce five separate opening arguments to one we use a technique
inspired by [11]. In general for distinct evaluation points x0, x1, ..., xm−1 we will
define the polynomial

h(X,Y ) =
m−1∑
i=0

Y i
ei(X)− vi
X − xi

where for m commitments E0, E1, ..., Em−1 each Ei = Commit(σ, ei(X)) will be
opened at point xi to value vi. The prover sends the openings vi = pi(xi) for all i
and is then given a random challenge z2. The prover sends the commitment H =
Commit(σ, h(X, z2); δH) for some blinding factor δH ∈ F. In order to establish
the correctness of H with respect to the previous commitments the prover will
open P,Q,R,C,H at a fresh challenge point z3 from the verifier, where the
verifier can compute the expected opening of H itself given the prover’s claimed
openings. Given that P,Q,R,C are fixed prior to the choice of z2, z3 we see that
H is a commitment to the correct polynomial with high probability, and thus by
the factor theorem we conclude that the openings of P,Q,R,C are correct with
high probability. In order to collapse the openings of P,Q,R,C,H at z3 together
into a single invocation of the polynomial commitment opening argument we will
use the same technique as before, i.e. the verifier will sample random z4 and the
prover will open P + [z4]Q+ [z24 ]R+ [z34 ]C + [z44 ]H to the value the verifier can
compute itself using the prover’s claimed openings.

Amortizing the Evaluation of G The argument so far requires the verifier
to compute G = 〈s,G〉 as described in Section 3.2. This requires a multiscalar
multiplication that is linear in the degree bound and thus also linear in |C|. As
mentioned previously, in our setting we require that the verifier only perform a
single operation that is linear time in |C| at the end of the argument and otherwise
expend only logarithmic marginal work to accept each individual argument.

We resolve this with a similar strategy as before, amortizing evaluations of
s′(X,Y ) by using the technique discussed in Section 3.2. The prover will provide
the verifier with the purported value G ∈ G. The verification of each argu-
ment will produce values Gnew = G and challenges (unew)1, (unew)2, ..., (unew)k.
Rather than checking Gnew = Commit(σ, g(X, (unew)1, (unew)2, ..., (unew)k)) the
verifier will ask the prover to open Gnew at x ∈ F in the next argument.
Let (Gold, (uold)1, (uold)2, ..., (uold)k) be the values (Gnew, (unew)1, (unew)2, ...,
(unew)k) produced from the previous argument. We will modify P such that

P = R+ [z1]Sold + [z21 ]S + [z31 ]Snew + [z41 ]Tlo + [z51 ]Thi + [z61 ]Gold

so that Gold is opened at x, and we note that the verifier can compute the
expected opening of Gold in logarithmic time using Equation 3. The verifier
will thus be convinced of the correctness of each value Gnew in a sequence of
arguments so long as the final Gnew sent by the prover is correct.
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5.2 Full Protocol

We now bring together a full description of the protocol. The prover and verifier
will engage in a series of PSHVZK arguments of knowledge for relationR defined
as

R =



((Gold, Sold, yold, (uold)1, (uold)2, ..., (uold)k,k); (a,b, c)) :

∀i (ai · bi = ci)

∧ ∀q

[(
N∑
i=1

ai · (uq)i

)
+

(
N∑
i=1

bi · (vq)i

)
+

(
N∑
i=1

ci · (wq)i

)
= kq

]
∧ Gold = Commit(σ, g(X, (uold)1, (uold)2, ..., (uold)k))
∧ Sold = Commit(σ, s(X, yold))


(5)

where the verifier will not immediately choose to accept or reject each individual
argument, as it requires the computation of Gnew, Snew each requiring linear time
in |C|. Instead the prover will take the values as Gold, Sold for the next argument
and suspend its decision to accept. After the final argument the verifier will check
the values Gnew, Snew in linear time. The full interactive protocol is described in
Figure 1.

Theorem 2. The protocol presented in Figure 1 has perfect completeness, per-
fect special honest-verifier zero knowledge, and computational witness-extended
emulation.

This proof appears in Appendix B.

6 Implementation

We apply the Fiat–Shamir heuristic to the protocol from Section 5 to obtain a
non-interactive argument of knowledge that is secure in the random oracle model
and has perfect zero knowledge. The verifier’s challenges are substituted for
outputs of a secure hash function over the transcript of messages sent previously
by the prover. We instantiate this scheme in the uniform random string model
by taking the group elements in σ as outputs of a hash function that models a
random function. Recall from Section 5 that the verifier performs two distinct
operations when checking a stream of proofs. The verifier maintains a state st
and, upon receiving a proof, performs a verification operation that is logarithmic-
time in the circuit size. This operation produces an updated st that the verifier
uses for the next proof. Finally, at the end of a sequence of proofs the verifier
performs a linear-time operation to check the correctness of st and then chooses
to accept or reject all previous proofs. This arrangement is deliberately designed
to leverage the nested amortization strategy described in Section 4. The circuit
encodes the logarithmic-time proof checking operation, taking st as a public
input to the circuit. The ultimate verifier of the recursive proof performs the
final linear-time operation outside of the circuit. The result is that the circuit
converges to a finite size and so recursive proof composition can be achieved.

16



Common inputs: σ,Gold, (uold)1, (uold)2, ..., (uold)k, Sold, yold,K = Commit(σ, k(Y ))
Prover inputs: a,b, c

Prover

δR
$←− F, R← Commit(σ, r(X, 1)X3N−1; δR)

R−→
y

$←− I←−−−−
δtlo

$←− F, δthi

$←− F
Tlo ← Commit(σ, tlo(X, y); δtlo)
Thi ← Commit(σ, thi(X, y); δthi)

S ← Commit(σ, s(X, y)XN )
Tlo, Thi, S−−−−−−−→
x

$←− I←−−−−

C ← Commit(σ, s(x, Y )xN )
C−→

ynew
$←− I←−−−−−−−

Snew ← Commit(σ, s(X, ynew)XN )
v1 ← r(x, 1)x3N−1, v2 ← s(x, yold)xN

v3 ← s(x, y)xN , v4 ← s(x, ynew)xN , v5 ← tlo(x)
v6 ← thi(x), v7 ← g(x, (uold)1, (uold)1, ..., (uold)k)

v8 ← k(y), v9 ← r(x, y)x3N−1 Snew, v1, v2, ..., v9−−−−−−−−−−−−−→
z1

$←− I, z2
$←− I←−−−−−−−−−−−

δH
$←− F, H ← Commit(σ, h(X, z2); δH)

H−→
z3

$←− I \ {x, y, xy, yold, ynew}←−−−−−−−−−−−−−−−−−−−−−−
v10 ← p(z3), v11 ← q(z3), v12 ← r(z3, 1)zN3

v13 ← s(x, z3)xN
v10, v11, v12, v13−−−−−−−−−−−−→

z4
$←− I←−−−−−

The verifier now checks that v5x
−d + v6x = v1x

−3N+1(v9x
−3N+1 + v3y

n −
∑N

i=1(yi +
y−i)xi+N )− v8yn in logarithmic time, checks v7 in logarithmic time using Equation 3
and engages in the polynomial commitment opening argument with the prover to see
that the commitment

R+ [z1]Sold + [z21 ]S + [z31 ]Snew + [z41 ]Tlo + [z51 ]Thi + [z61 ]Gold

+[z4] (K + [z1]C) + [z24 ]R+ [z34 ]C + [z44 ]H

opens at z3 to the expected value

v10 + z4v11 + z24v12 + z34v13 + z44

(
z2
v11 − (v8 + z1v3)

z3 − y
+ z22

v12 − v9
z3 − xy

+ z32
v13 − v2
z3 − yold

+z42
v13 − v4
z3 − ynew

+
v10 − (v1 + z1v2 + z21v3 + z31v4 + z41v5 + z51v6 + z61v7)

z3 − x

)
.

Fig. 1: PSHVZK argument of knowledge for relation R.
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In practice we will use the Rescue [1] algebraic hash function for prime fields
to obtain verifier challenges. We instantiate it with a duplex sponge construction
[7] where prover messages are “absorbed” and verifier challenges are “squeezed.”

6.1 Cycles of Curves

The partial verification operation for a proof (which is encoded in the circuit) is
dominated by group operations. If we were to instantiate our protocol over an
arbitrary elliptic curve E over base field Fp, for security reasons we must obtain
a group of prime order q 6= p. This presents a challenge as our protocol will
demonstrate arithmetic circuit satisfaction over the scalar field Fq, and simulat-
ing Fp arithmetic over a distinct field is expensive. This efficiency problem was
addressed in [4] by finding a “2-cycle” Ep, Eq of elliptic curves, constructed over
the base fields Fp and Fq respectively, such that #Ep = q and #Eq = p. This
allows proofs constructed using the group Ep to efficiently reason about proofs
constructed over Eq, and vice versa, as the group operations needed to verify
proofs consist of operations in each proving system’s native field. We remark
that although [4] sought pairing-friendly elliptic curve groups, we can use “nor-
mal” elliptic curve groups, and secure 2-cycles of such groups are empirically
abundant and easy to find.

We performed a search for the 2-cycle used in our implementation, seeking
curves that had highly 2-adic scalar fields; both fields have large 2k primitive
roots of unity for applying radix-2 FFTs to accelerate polynomial multiplica-
tion. We also ensured that both fields have elements of multiplicative order 3
so that we can apply curve endomorphisms to optimize our circuit, and that
gcd(p− 1, 5) = gcd(q − 1, 5) = 1 in order to allow instantiating the Rescue hash
function with α = 5. We affectionately refer to the resulting curves as Tweedle-
dum and Tweedledee. [15]

Ep/Fp : y2 = x3 + 5 of order q is called Tweedledum;
Eq/Fq : y2 = x3 + 5 of order p is called Tweedledee;

where p and q are 255-bit primes:

p = 2254 + 4707489545178046908921067385359695873;
q = 2254 + 4707489544292117082687961190295928833.

The software used to generate these curves and to test various security prop-
erties is available at [26]. Its documentation describes how to reproduce this
generation.

Both curves have 126-bit security against Pollard rho attacks; this takes into
account that the additional endomorphisms may be used to speed up Pollard
rho and similar discrete log algorithms [5] [20].3

3 A conservative estimate of the available improvement to Pollard rho is that on a
group of prime order q with an automorphism group of order 6, the attack cost is√

πq

12
, as compared to

√
πq

4
using only the negation map as described in [6]. That is,

the maximum speed-up is only a factor of
√

3 ≈ 1.732 for a given success probability.
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Use of prime-order curves simplifies protocols and security analysis, avoid-
ing error-prone techniques such as cofactor multiplication that may be applied
incorrectly. However, the most efficient addition formulae for these curves are
incomplete: they do not work correctly when adding two points with the same
x-coordinate. In our circuits, we pay due attention to this issue and specify
additional checks where necessary. With care, we can safely use incomplete ad-
dition within the scalar multiplications that dominate the circuit size [27]. In
curve arithmetic performed outside the circuit, or if the same curves are used
elsewhere in an application protocol, close attention to this issue is needed from
implementors. Suitable complete, constant-time formulae for prime-order short
Weierstrass curves are given in [34] or [35]. We recommend that fault attacks on
the prover be addressed by validating the proof immediately after creating it.

6.2 Endomorphism-based Optimizations

Our method of searching for 2-cycles finds curves E/Fp with an endomorphism
φ defined on Fp-rational points by φ

(
(x, y)

)
= (ζpx, y), where φ(P ) = [ζq]P for

some ζq ∈ Fq of multiplicative order 3 (and similarly with p and q exchanged).
We leverage this endomorphism to optimize the multiplication of group elements
by challenges, which is the dominating cost of partial proof verification in the
circuit. Let r ∈ {0, 1}λ be a verifier challenge. Rather than interpreting r as a
scalar and performing a scalar multiplication of a Fp-rational point P , we will
apply the endomorphism to multiply by a scalar that is dependent on r using
the following algorithm:

Algorithm 1

Inputs: r ∈ {0, 1}λ, P ∈ E \ {O}
Acc := [2](φ(P ) + P )

for i from λ/2− 1 down to 0:

let Si =

{
[2r2i − 1]P, if r2i+1 = 0

φ
(
[2r2i − 1]P

)
, otherwise

Acc := (Acc + Si) + Acc

Output Acc

Algorithm 1 can be implemented with 3.5 multiplication constraints per bit of
r. We show in Appendix C that this algorithm is equivalent to computing [n(r)]P
where for the Tweedledum and Tweedledee curves with λ = 128, n : {0, 1}λ 7→ I
is injective.

6.3 Other Optimizations

In the polynomial commitment scheme described in Section 3 the verifier samples
a challenge u in each round of the modified inner product argument. The verifier
will compute [u−2]L and [u2]R in each round to check the proof. It is possible
for the prover to witness L′ = [u−2]L and then in the circuit multiply L′ by u2
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to obtain the expected value L, demonstrating the correctness of L′. In order to
improve the performance of computing [u2]P for arbitrary P ∈ G we modify the
protocol so that the verifier samples its challenge as u2 instead. Approximately
half of all challenges in I will be square, and so the prover can always rewind
and sample new randomness for their values L,R until the verifier samples a
square challenge. Thus, rather than computing [u] ([u]P ) the circuit can directly
compute [u2]P using Algorithm 1.

Recall from Figure 1 that the verifier must, in addition to some group arith-
metic, perform a check to see that the circuit is satisfied and also compute the
expected opening of the polynomial commitment. This arithmetic occurs in the
scalar field Fp of the embedded elliptic curve, which is not the native field Fq
of the proving system. (The native field is the base field of the embedded ellip-
tic curve.) We modify the protocol in practice, introducing a collision-resistant
hash function (i.e. Rescue) over the scalar field which the prover uses to commit
to their openings. These commitments are sent through public inputs to the
proving system over the other curve, where the correct field is native. The com-
mitments are opened in the proving system for that circuit and all scalar field
arithmetic is performed there, where it is significantly cheaper. The expected
polynomial commitment openings are sent through public inputs. As a result no
field arithmetic is ever “simulated” over the wrong field.

We remark that the protocol described in Section 5 has the verifier compute
K = Commit(σ, k(Y )) so that it can be opened by the prover rather than forc-
ing the verifier to evaluate k(y) which would require the circuit over Fq to again
simulate arithmetic over Fp. It is more efficient for the verification circuit to con-
struct the commitment K, and we implement an efficient circuit for computing
K that can leverage the curve endomorphism and the fact that σ is fixed.

6.4 Evaluation

We obtain benchmarks for our protocol on a 16-core Intel i9-7960X CPU @
2.80 GHz, using 16 threads. The results are presented in Figure 2. Recursion is
achieved at a cross-over point that is just below 217 multiplication gates. Fully
recursive proofs in our protocol are at least 3.5 KiB in size.

7 Conclusion

We devised a novel strategy (nested amortization) for achieving a practical re-
alization of recursive proof composition without a trusted setup. After several
optimizations we obtain a fully recursive proof that is only 3.5 KiB in size at
the 128-bit security level. We implement our scheme to show that it is efficient
to create and verify proofs on consumer hardware.

In the process we obtained a modified variant of the polynomial commitment
scheme from [37] and observed a new technique for amortizing away the cost of
verifying many inner product arguments. We also devised a proving system with
marginal verification time that is logarithmic in the size of the circuit, improving
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Fig. 2: Performance of Halo. (a) The runtime of the prover (top left) and verifier
(top right) for circuits of varying sizes, along with the size of the resulting proof
(bottom left). (b) The cross-over point between the size of the verification circuit
and the size of the circuit it is verifying (bottom right).

asymptotically on Bulletproofs [13] and realizing the “helped” mode of Sonic [32]
without the need for pairings or trusted setups.

7.1 Future Work

We remark that our nested amortization technique can be applied using cycles
of elliptic curves such that only one curve is pairing-friendly, and a pairing-
based SNARK can be constructed on one end of the cycle instead; this is trivial
to obtain using Barreto–Naehrig [2] curves with an embedding degree of 12,
which allows for the use of smaller fields to improve performance compared to
MNT4/MNT6 cycles proposed in [4].
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A Proof of Theorem 1

Proof. Perfect completeness follows trivially. In order to establish perfect special
honest-verifier zero knowledge we demonstrate that a simulator S exists which,
when given the verifier’s randomness and the statement, can produce a transcript
that is equally distributed with transcripts from an honest prover that has a
witness.

In each round of the modified inner product argument the simulator will
simply output random group elements, which are distributed identically to the
honest prover’s outputs. Upon calculation of Q the simulator chooses d, s ∈ Fp
at random and uses its access to c to send the verifier

R = [d] (G+ [b]U) + [s]H − [c]Q

which has the same distribution as the honest prover. Finally, since by definition
we have

[c]Q+R = [d] (G+ [b]U) + [s]H

the simulator sends z1 = d and z2 = s, which are again distributed the same as
an honest prover, and which satisfy the verifier’s check.

In order to show computational witness-extended emulation we first prove
the existence of an extractor Xpoly which, with full access to an adversary P∗
that outputs accepting transcripts, can extract a witness in expected polynomial
time. We show that we can extract a, r′ such that

Q = [a] (G+ [b]U) + [r′]H (6)

by rewinding P∗ once and continuing the argument with fresh challenge c′. If P∗
succeeds in both arguments, then we have pairs of responses (z1, z2) and (z′1, z

′
2)

such that
[c]Q+R = [z1] (G+ [b]U) + [z2]H

[c′]Q+R = [z′1] (G+ [b]U) + [z′2]H

which can be rewritten as

[ac + d] (G+ [b]U) + [ cr′ + s]H = [z1] (G+ [b]U) + [z2]H
[ac′ + d] (G+ [b]U) + [c′r′ + s]H = [z′1] (G+ [b]U) + [z′2]H.

Observe by the equalities ac+ d = z1 and ac′ + d = z′1 and the fact that c 6= c′

that a, d are fully determined, and similarly for r′, s. If it is then not the case
that Q = [a] (G + [b]U) + [r′]H we have extracted a non-trivial discrete log
relation between G,U,H.

We now proceed with our extracted a, r′ to obtain a witness a, v′ such that

P ′ = 〈a,G〉+ [r]H + [v′]U (7)

and that v′ = 〈a, (1, x, x2, ..., xn−1)〉. We proceed in a similar fashion as in the
proof of [13, Theorem 1]. In each of the k rounds of the inner product argument
starting with j = 1 where n′ = 2j , the extractor (on input G′ ∈ Gn′ ,b′ ∈ Fn′/2,
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Pj ∈ G) will run the prover to obtain Lj and Rj , and then by rewinding the
prover four times with distinct challenges uj,1, uj,2, uj,3, uj,4 the extractor obtains

four pairs a′i ∈ Fn′/2, r′i ∈ F such that for all i

[u2j,i]Lj +Pj + [u−2j,i ]Rj = 〈a′i,G′lo · u−1j,i + G′hi · uj,i〉+ [〈a′i,b′〉]U + [r′i]H (8)

Let some aL,aR,aP ∈ Fn′ and vL, rL, vR, rR, vP , rP ∈ F exist such that

L = 〈aL,G′〉 + [vL]U + [rL]H
R = 〈aR,G′〉 + [vR]U + [rR]H
Pj = 〈aP ,G′〉 + [vP ]U + [rP ]H

so that we can take the equalities

u2j,ivL + vP + u−2j,i vR = 〈a′i,b′〉
u2j,irL + rP + u−2j,i rR = r′i

u2j,i(aL)lo + (aP )lo + u−2j,i (aR)lo = u−1j,i a
′
i

u2j,i(aL)hi + (aP )hi + u−2j,i (aR)hi = uj,ia
′
i

(9)

which fully determine aL,aR,aP , vL, vR, vP , rL, rR, rP given three distinct chal-
lenges uj,1, uj,2, uj,3 or else reveal a non-trivial discrete logarithm relation be-
tween G, U,H. Following the third and fourth equations of (9) we have that

u3j,i(aL)lo + uj,i((aP )lo − (aL)hi) + u−1j,i ((aR)lo − (aP )hi)− u−3j,i (aR)hi = 0

holds for all i. Given that this holds for four distinct challenges the left-hand
side must be zero for all challenges and so we have

(aL)lo = (aR)hi = 0
(aP )lo = (aL)hi
(aP )hi = (aR)lo

Inspection of (9) shows that the extracted vL, vP , vR are of the correct form. In
the final round j = k we extract from Pj = P ′ a witness (a, v′, r) that satisfies
Equation 7. In order to establish that v = v′ we rewind P∗ one last time and
provide a fresh challenge U ′. Given two successful arguments we obtain v′ = v
or otherwise obtain a non-trivial discrete log relation between G, H, U, U ′. We
see that our extractor Xpoly is efficient (requiring 4d2 transcripts in total, which
is polynomial in λ) and so by the general forking lemma [13, Theorem 6] we
have shown computational witness-extended emulation for the extractor X ′poly
which is taken identically to Xpoly except that it fails whenever Xpoly extracts a
non-trivial discrete log relation. Such failures happen with negligible probability
under the discrete log relation assumption. ut

B Proof of Theorem 2

It will be helpful for us to supply the following simple lemma.
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Lemma 1. Let p(X) ∈ F[X] be a polynomial of maximal degree d − 1, and
let q(X) ∈ F[X] be a polynomial of maximal degree d − 1 such that q(x) =
(p(x) − v)/(x − y) holds for d + 1 distinct values x1, x2, ..., xd+1 ∈ F and some
fixed y ∈ F \ {x1, x2, ..., xd+1} and fixed v ∈ F. Then p(y) = v.

Proof. Let f(X) = q(X) · (X − y) be a polynomial of maximal degree d, and
let g(X) = p(X) − v be a polynomial of maximal degree d − 1. Since we have
that f(X) = g(X) over a domain of size d + 1, by the degree bounds of f(X)
and g(X) this gives us that f(X) = g(X). Following the definition of f(X) we
have that g(X) is perfectly divisible by (X − y) and so by the factor theorem
p(y) = v. ut

We now present a proof of Theorem 2.

Proof. Perfect completeness follows from the perfect completeness of the poly-
nomial commitment opening argument, and the fact that the protocol triv-
ially succeeds for every valid verifier challenge x, y, ynew, z1, z2, z4 ∈ I and z3 ∈
I \ {x, y, xy, yold, ynew} when the prover has a valid witness a,b, c.

Perfect special honest-verifier zero knowledge is shown with a simulator S
that behaves identically to the honest prover except that it outputs random
R, Tlo, Thi, H ∈ G and supplies random v1, v5, v6, v9, v10, v12 ∈ F such that the
verifier’s check is satisfied. The honest prover blinds their polynomial r(X,Y )
with seven blinding factors, and the verifier learns only six evaluations of r(X,Y )
and t(X,Y ) so that the honest prover and simulator messages are indistinguish-
able. The simulator then invokes the simulator of the polynomial commitment
opening argument described in Appendix A to simulate a transcript that is in-
distinguishable from an honest prover’s transcript.

In order to show computational witness-extended emulation we will define
an extractor X with full access to an adversary P∗ which always produces
accepting transcripts. We will invoke the extractor Xpoly of the polynomial
commitment opening argument while running the prover with fresh challenges
x, y, ynew, z1, z2, z3, z4 as needed. First, the prover is run with five distinct val-
ues of the challenge z4 so that the extractor obtains five polynomials where the
coefficients can be interpreted as evaluations of a degree-4 polynomial in z4 and
thus with interpolation we extract polynomials p′(X), q′(X), r′(X), c′(X), h′(X)
or else recover a non-trivial discrete log relation. Observe that we have

h′(z3) =
v10 − (v1 + z1v2 + z21v3 + z31v4 + z41v5 + z51v6 + z61v7)

z3 − x

+z2
v11 − (v8 + z1v3)

z3 − y
+ z22

v12 − v9
z3 − xy

+ z32
v13 − v2
z3 − yold

+ z42
v13 − v4
z3 − ynew

and so by running the prover with d + 1 distinct challenges z3 we extract from
the degree bound of p′(X), q′(X), r′(X), c′(X), h′(X) that

h′(X) =
p′(X)− (v1 + z1v2 + z21v3 + z31v4 + z41v5 + z51v6 + z61v7)

X − x

+z2
q′(X)− (v8 + z1v3)

X − y
+ z22

r′(X)− v9
X − xy

+ z32
c′(X)− v2
X − yold

+ z42
c′(X)− v4
X − ynew
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is a polynomial of degree d − 1, or otherwise obtain a non-trivial discrete log
relation. The prover is run with five distinct challenges z2 so that we can extract
via interpolation each term in h′(X) as a polynomial of maximal degree d − 1,
or otherwise obtain a non-trivial discrete log relation. We use the d+ 1 distinct
challenges z3 ∈ I\{x, y, xy, yold, ynew} to apply Lemma 1 for each term, obtaining
that p′(x) = v1 + z1v2 + z21v3 + z31v4 + z41v5 + z51v6 + z61v7, q′(y) = v8 + z1v3,
r′(xy) = v9, c′(yold) = v2 and c′(ynew) = v4.

Next, by running the prover with seven distinct challenges z1 we obtain (by
interpolation) from our extracted polynomials p′(X) and q′(X) the polynomials
r′′(X), s′old(X), s′(X), s′new(X), t′lo(X), t′hi(X), g′(X) and k′(X), c′′(X) or else we
obtain a non-trivial discrete log relation. We directly obtain a non-trivial discrete
log relation if r′′(X) 6= r′(X) or c′′(X) 6= c′(X). The extractor computes K =
Commit(σ, k(Y )) and checks Snew = Commit(σ, s(X, ynew)XN ) just as the verifier
does, and so if either k′(X) 6= k(Y ) or s′new(X) 6= s(X, ynew)XN the extractor
obtains a non-trivial discrete log relation. It then follows from before that r′(x) =
v1, s′old(x) = c′(yold) = v2, s′(x) = c′(y) = v3, s′new(x) = c′(ynew) = v4, t′lo(x) =
v5, t

′
hi(x) = v6, g′(x) = v7, k′(y) = v8, and r′(xy) = v9.
The prover is run with d distinct challenges ynew, and we obtain from this

that since s′new(x) = c′(ynew) holds for d distinct ynew that c′(Y ) = s(x, Y )xN .
The prover is run with 2d distinct challenges x so that since c′(y) = s′(x) and
c′(yold) = s′old(x) hold for d distinct x that s′(X) = s(X, y)XN and s′old(X) =
s(X, yold)XN , which establishes that Sold = Commit(σ, s(X, yold)XN ).
Because g′(x) = g(x, (uold)1, (uold)2, ..., (uold)k) holds for d distinct x we have
that g′(X) = g(X, (uold)1, (uold)2, ..., (uold)k) which establishes that Gold =
Commit(σ, g(X, (uold)1, (uold)2, ..., (uold)k)). Finally we extract from r′(X) a wit-
ness a,b, c which satisfies our system of constraints. Let t′(X) = t′lo(X)X−d +
t′hi(X)X. Due to the fact that t′(x) = (r′(x)x−3n+1) · (r′(xy)(xy)−3n+1 + s′(x)−∑N
i=1(yi + y−i)xi+N )− yNk(y) for 2d distinct x we obtain t(X, y) = t′(X) and

that the constant term of t(X, y) is zero. The prover is run with d distinct values
of the challenge y so that we can conclude the left-hand side of Equation 4 is the
zero polynomial for our extracted a,b, c and thus that the constraint system is
satisfied.

In total the extractor X requires 5 · (d+ 1) · 5 · 7 · 2d · d · d invocations of the
extractor Xpoly which is polynomial in λ and so by the general forking lemma
[13, Theorem 6] we have shown computational witness-extended emulation for
the extractor X ′ which is taken identically to X except that it fails whenever X
extracts a non-trivial discrete log relation. Such failures happen with negligible
probability under the discrete log relation assumption. ut

C Proof for Algorithm 1

Collecting the scalars by which φp(P ) and P are multiplied, we see that Algo-
rithm 1 is equivalent to:

28



Algorithm 2
Inputs: r ∈ {0, 1}λ, P ∈ Ep \ {Op}
(a ◦

◦ Fq, b ◦
◦ Fq) := (2, 2)

for i from λ/2− 1 down to 0:

let (ci,di) =

{
(0, 2r2i − 1), if r2i+1 = 0

(2r2i − 1, 0), otherwise
(a, b) := (2a+ ci, 2b+ di)

Output [aζq + b]P .

The equivalence holds because invariants Acc = [a]φp(P )+[b]P = [aζq+b]P and
Si = [ci]φp(P ) + [di]P = [ciζq + di]P are maintained at corresponding steps.
Now we aim to show that the effect of Algorithm 2 (and hence also Algorithm 1)
is to compute [np(r)]P = [aζq + b]P for some injective np

◦
◦ {0, 1}λ → Iq. As a

first step, we show that the mapping from r to (a, b) is injective.
For each i ∈ [0, λ/2), the mapping (r2i, r2i+1) 7→ (ci,di) is injective, and

exactly one of ci,di
◦
◦ {−1, 0,+1} is 0. Let Mk = {(c,d ◦

◦ {−1, 0,+1}k) : for all
i, exactly one of ci,di is 0}. So r 7→ (c,d) ◦

◦ Mλ/2 is also injective.

Lemma 2. For k ≥ 0, (c,d) ∈Mk 7→
(∑k−1

j=0
cj2

j ,
∑k−1

j=0
dj2

j
)

is injective.

Proof (sketch). If (c,d) and (c′,d′) coincide on a prefix of length m, then the
statement reduces to a smaller instance of the lemma with that prefix deleted
and k reduced by m. So we need only consider the case (c0,d0) 6= (c′0,d

′
0) and

show that the resulting sums always differ. In fact they always differ modulo 4:

(c0,d0) 6= (c′0,d
′
0) =⇒

(∑k−1

j=0
cj2

j mod 4,
∑k−1

j=0
dj2

j mod 4
)

6=
(∑k−1

j=0
c′j2

j mod 4,
∑k−1

j=0
d′j2

j mod 4
)

Therefore, it is sufficient to verify this property exhaustively for k = 1 and k = 2
(see injectivitylemma.py in [26]), since terms with j ≥ 2 do not affect the
sums modulo 4.

Corollary 1. r 7→ (a, b) is injective.

Proof. This follows from injectivity of r 7→ (c,d), the above lemma, and from

a = 2
λ/2 + 1 + 2

∑λ/2−1

j=0
cj2

j and b = 2
λ/2 + 1 + 2

∑λ/2−1

j=0
dj2

j in Algorithm 2.

Let A = [0, 2
λ/2+1 + 2

λ/2− 1] ⊂ Fq. It is straightforward to verify that a, b ∈ A
at the end of Algorithm 2 for any input r. Next we need to show that the mapping
(a ◦

◦ A, b ◦
◦ A) 7→ (aζq + b) mod q is injective. This will depend on the specific

values of ζq and q. We use the sumset notation v ·A+A for {av+b ∈ Fq : a, b ∈A}.
The question is then whether |ζq ·A+A| = |A|2.

For intuition, note that if av + b = a′v + b′ (mod q), with a 6= a′, we would

have v = b′ − b
a− a′

(mod q). Thus the number of v ∈ Fq for which |v ·A+A| < |A|2

is at most (|A − A| − 1)2. 4 Since in our case where q ≈ 2254 and λ = 128,

4 We thank Robert Israel for this observation. [29]
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(|A − A| − 1)2 ≈ 9 · 2130 is small compared to q, we would heuristically expect
that |ζq ·A+ A| = |A|2 unless there is some reason why ζq does not behave like
a random element of Fq.

Of course ζq is not a random element of Fq, and so the above argument can
only be used for intuition. Even when (|A − A| − 1)2 is small compared to q,
there are clearly values of ζq and q for which it would not hold. To prove that
it holds in the needed cases for the Tweedledum and Tweedledee curves used in
our implementation, we take a different tack.

Define a distance metric δq on Fq so that δq(x, y) is the minimum distance
between x and y around the ring of integers modulo q in either direction, and
let Dq, ζq(m) be the minimum δq-distance between any two elements of ζq·[0,m]:

δq(x, y) = min(z, q − z) where z = (x− y) mod q

Dq, ζq(m) = min{δq(aζq, a′ζq) : a, a′ ∈ [0,m]}

An algorithm to compute Dq, ζq(m) is implemented by checksumsets.py in
[26]; it works by iteratively finding each m at which Dq, ζq(m) decreases.

Now if Dq, ζq(2
λ/2+1 + 2

λ/2− 1) ≥ 2
λ/2+1 + 2

λ/2, then copies of A will “fit within
the gaps” in ζq ·A. That is, ζq ·A+A will have |A|2 elements, because all of the
sets {ζq ·{a}+A : a ∈ A} will be disjoint.

Corollary 2. Let np(r) = (arζq + br) mod q as computed by Algorithm 2 for
λ = 128, and similarly for nq, where p, q, ζp and ζq are as defined for the
Tweedledum and Tweedledee curves (Section 6.1). Then np and nq are injective.

Hence, on each curve, sampling r uniformly at random from {0, 1}λ and
computing [n(r)]P via Algorithm 1 will be equivalent to sampling the challenge
scalar uniformly at random from I. This is sufficient for security of our protocol,
which does not depend on the specific set I but only that its size is at least 2λ.

We have glossed over a complication. In order to implement Algorithm 1 in
3.5 constraints per bit, we must use incomplete short Weierstrass additions. Thus
we need to show that the inputs to addition do not encounter the exceptional
cases where two points being added have the same x-coordinate. We first write
out [28, Theorem A.3.4] adapted to short Weierstrass curves:

Theorem 3 (Distinct-x theorem). Let Q be a point of odd-prime order s on
a short Weierstrass curve E : y2 = x3 + ax + b over F. Let k1 .. 2 be integers in{
− s−12 .. s−12

}
\ {0}. Let Pi = [ki]Q = (xi, yi) for i ∈ {1 .. 2}, with k2 6= ±k1.

Then P1,2 6= O and x1 6= x2.

Proof. Neither Pi can be O since ki 6= 0 (mod s). Assume for a contradiction
that x1 = x2. For any P1 = [k1]Q, there can be only one other point −P1 with
the same x-coordinate (since the curve equation determines ±y as a function of
x). But −P1 = −[k1]Q = [−k1]Q. Since k ◦

◦

{
− s−12 .. s−12

}
7→ [k]Q is injective

and k1 .. 2 are in
{
− s−12 .. s−12

}
, then k2 = ±k1 (contradiction).

Now we take the same approach as [27], applying the above theorem and aug-
menting Algorithm 2 (the “indexed version” of Algorithm 1) with the assertions
that need to hold:
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Algorithm 2a

Inputs: r ∈ {0, 1}λ, P ∈ Ep \ {Op}
(a ◦

◦ Fq, b ◦
◦ Fq) := (2, 2)

for i from λ/2− 1 down to 0:

let (ci,di) =

{
(0, 2r2i − 1), if r2i+1 = 0

(2r2i − 1, 0), otherwise

1 assert aζq + b 6= ±(ciζq + di) (mod q)
2 assert (aζq + b) + (ciζq + di) 6= ±(aζq + b) (mod q)

(a, b) := (2a+ ci, 2b+ di)

3 assert a, b ∈ [1, 2
λ/2+1 + 2

λ/2 − 1]
4 assert aζq + b 6= 0 (mod q)

Output [aζq + b]P .

Lemma 3. Suppose we are given a prime q, ζq ∈ Fq, and A ⊂ Fq with 0 ∈ A
and |ζq·A+A| = |A|2. Then 6∃(α, β) 6= (0, 0) ∈A2 such that αζq+β = 0 (mod q).

Proof. 0ζq + 0 = 0 (mod q) and (α ◦
◦ A, β ◦

◦ A) 7→ (αζq + β) mod q is injective.

As previously shown, the condition |ζq ·A + A| = |A|2 holds for q and ζq
corresponding to the Tweedledum and Tweedledee curves from Section 6.1. So
we can use the lemma to show that the assertions in Algorithm 2a always hold
for those curves:

Assertion 1 can be split into (a+ci)ζq+(b+di) 6= 0 (mod q) and (a−ci)ζq+
(b−di) 6= 0 (mod q). In both cases the assertion becomes αζq + β 6= 0 (mod q)

where α, β ∈ [1, 2
λ/2 +2

λ/2−1] ⊂ A, which holds by applying the lemma. Assertion
2 can be split into ciζq + di 6= 0 (mod q), which is true by construction, and

2(aζq + b) + (ciζq + di) 6= 0 (mod q). The latter is equivalent to asserting that
(2a+ci)ζq+(2b+di) 6= 0 (mod q), in other words it is redundant with assertion
4 following the update to (a, b). Assertion 3 is straightforward to verify, and

then assertion 4 holds by applying the lemma.
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