
Asynchronous Distributed Key Generation for Computationally- Secure
Randomness, Consensus, and Threshold Signatures.

ELEFTHERIOS KOKORIS-KOGIAS†, Faceook Novi & IST Austria

DAHLIA MALKHI, Faceook Novi

ALEXANDER SPIEGELMAN, Faceook Novi

In this paper, we present the �rst Asynchronous Distributed Key Generation (ADKG) algorithm which is also the �rst distributed key
generation algorithm that can generate cryptographic keys with a dual (f , 2f + 1)�threshold (where f is the number of faulty parties).
As a result, using our ADKG we remove the trusted setup assumption that the most scalable consensus algorithms make. In order to
create a DKG with a dual (f , 2f + 1)� threshold we �rst answer in the a�rmative the open question posed by Cachin et al. [7] on how
to create an Asynchronous Veri�able Secret Sharing (AVSS) protocol with a reconstruction threshold of f + 1 < k 2f + 1, which
is of independent interest. Our High-threshold-AVSS (HAVSS) uses an asymmetric bivariate polynomial to encode the secret. This
enables the reconstruction of the secret only if a set of k nodes contribute while allowing an honest node that did not participate in
the sharing phase to recover his share with the help of f + 1 honest parties.

Once we have HAVSS we can use it to bootstrap scalable partially synchronous consensus protocols, but the question on how to get
a DKG in asynchrony remains as we need a way to produce common randomness. The solution comes from a novel Eventually Perfect
Common Coin (EPCC) abstraction that enables the generation of a common coin from n concurrent HAVSS invocations. EPCC’s key
property is that it is eventually reliable, as it might fail to agree at most f times (even if invoked a polynomial number of times). Using
EPCC we implement an Eventually E�cient Asynchronous Binary Agreement (EEABA) which is optimal when the EPCC agrees and
protects safety when EPCC fails.

Finally, using EEABA we construct the �rst ADKG which has the same overhead and expected runtime as the best partially-
synchronous DKG (O (n4) words, O (f) rounds). As a corollary of our ADKG, we can also create the �rst Validated Asynchronous
Byzantine Agreement (VABA) that does not need a trusted dealer to setup threshold signatures of degree n � f . Our VABA has an
overhead of expected O (n2) words and O (1) time per instance, after an initial O (n4) words and O (f) time bootstrap via ADKG.

1 INTRODUCTION

A common assumptionmade bymanymodern Byzantine fault tolerant distributed algorithms is the existence of a trusted
dealer that generates and distributes cryptographic keys at the beginning of every execution. For example, e�cient
asynchronous Byzantine agreement protocols [1, 3, 9, 17, 29] use a shared coin scheme to produce randomness [34],
e�cient state machine replication protocols [20, 35] use a threshold signature scheme to reduce communication
complexity, and e�cient secure multiparty computation protocols [22, 23] use threshold encryption [26] to reduce the
communication complexity for sharing secret inputs. All these schemes require a trusted dealer, which is a single point
of failure and a potential weakness for secure decentralized systems.

It is therefore natural to ask under what network assumptions and at what cost the requirement of a trusted dealer
can be substituted with a distributed key generation (DKG) protocol. A DKG protocol allows a group of parties to
distribute private shares of a cryptographic key and later use them to compute a common value such that an adversary
controlling a threshold of the parties cannot predict the value. Thereby, this value can be used to produce unpredictable
randomness or as a “private” key.
∗Corresponding Author.

Authors’ addresses: Eleftherios Kokoris-KogiasFaceook Novi & IST Austria, lefteris2k@gmail.com; Dahlia MalkhiFaceook Novi, dahliamalkhi@gmail.com;
Alexander SpiegelmanFaceook Novi, sasha.spiegelman@gmail.com.

*

In synchronous communication settings, a DKG protocol can be realized via a combination of two building blocks,
secret sharing and consensus [32] (or a broadcast channel such as a blockchain [2, 18]). In a nutshell, all parties
simultaneously choose and share a secret and then use a Byzantine agreement instance for each secret in order to
agree if it should be part of the key. The key is the sum of all valid secrets and the share of each party is the sum of
the corresponding shares. To the best of our knowledge, no asynchronous DKG (ADKG) protocol has been previously
proposed. We focus on protocols with n = 3f +1 parties that assume no trusted setup except for public key infrastructure
(PKI). We further explore protocols that support threshold recovery of 2f + 1, which is required by e�cient Byzantine
agreement algorithms that use threshold signatures to reduce the size of the messages from linear in the number of
parties to constant [1, 20, 35].

A naive approach for ADKG is to apply the ideas in [32] to the asynchronous settings. For example, it is possible to
use the AVSS scheme of Cachin et al [7] and n independent parallel instances of a binary agreement protocol1 like [4, 6].
However, the resulting algorithm has three drawbacks: First, the secret sharing in [7] has a reconstruction threshold of
f + 1 and thus the resulting ADKG cannot have the desired 2f + 1 threshold. Second, running n binary agreements
does not guarantee a successful protocol execution, since they can all terminate with 0 which means that the key will
include no secrets. Finally, even if we could guarantee that more than f instances terminate successfully2, the resulting
protocol would be ine�cient with a communication complexity of O(n5lo�n).

In this paper we present the �rst ADKG protocol with a recovery threshold of 2f + 1 and low communication cost.
Formally, the main theorem we prove in this paper is following:

T������ 1.1. There exists a protocol among n parties that solves Asynchronous Distributed Key Generation (ADKG)
with reconstruction threshold k n � f and is secure against an adaptive adversary that controls up to f < n/3 parties,
with expected O(n4) communication complexity and expected O(f) running time.

In a nutshell, our protocol follows the idea of concurrently sharing n secrets and then agree which to consider for the
key. However, instead of using a costly Byzantine agreement instance for each secret, we use the secrets as the driving
randomness source to build an e�cient common coin which in turn we use for an e�cient Byzantine agreement. In
particular, we observe that to build a common coin from the secrets we can use a slightly weaker agreement notion
which is not subject to the FLP impossibility result. To this end, we �rst improve the asynchronous secret sharing
scheme in [7] to support 2f + 1 reconstruction threshold. Then, we rely on the completeness property of our secret
sharing scheme and guarantee that eventually all honest parties get shares for the same secrets. As a result, we know
that all parties eventually agree on the set of secrets and ,hence, could use it for a shared coin. Unfortunately, the parties
do not know when this happens (in contrast to the agreement problem) and cannot ever terminate.

To circumvent this non-termination problem, our idea is to let the parties optimistically think that every received
share is the last one (i.e., all correct AVSS instance have terminated and all other instances are faulty) and try to
terminate. Each time a new share is received by n � f parties, they generate new key shares and initiate a shared
coin protocol (produce a threshold signature and hash it to get unpredictable randomness). This shared coin �ip is in
turn used in some e�cient binary agreement protocol (these keys replace the ones produced by the trusted dealer).
If the parties happen to agree on the key (their sets of shares correspond to the same secrets), then the Byzantine
agreement protocol terminates successfully. Otherwise, some parties received shares that others have not yet received
and they will try again to terminate when the next (additional) secret is recoverable by all honest parties. We call our

1Each instance agrees on whether an AVSS secret is correctly shared.
2So that the adversary does not know all the secrets that are included in the key.

coin Eventually Perfect Common Coin (EPCC) and the resulting Byzantine agreement Eventually E�cient Asynchronous
Binary Agreement (EE-ABA) , because eventually (after at most f failed tries) the protocols converge to the optimal
solutions.

Finally, once we have an EE-ABA, we run n instances that share the same EPCC and use it in order to decide on the
�nal set of shares, which terminates the ADKG protocol. In order to guarantee that the �nal key is unpredictable, the
parties refrain from voting 0 in the binary agreement instances that they consider faulty until they witness f + 1 binary
agreements terminating with 1 (which is guaranteed to happen due to the strong termination of the HAVSS). Next we
explain the algorithms in more detail and prove that parties cannot disagree on the set of shares more than f times.

1.1 Technical contribution

We break the ADKG construction in a bottom-upmanner, starting with a building block (Section 3) we callHigh-threshold
Asynchronous Veri�able Secret Sharing (HAVSS). HAVSS is an extension of Cachin et al. [7] AVSS protocol that answers
in the a�rmative the open question they posed on the existence of an AVSS protocol that has a reconstruction threshold
of f + 1 < k 2f + 1. To achieve this, we separate the reconstruction threshold (which we increase to k) from the
recovery threshold (which is still f + 1). In order to encode this change, we use an asymmetric bivariate polynomial
where each dimension plays a di�erent role (recovery, reconstruction) and we defend against an adaptive adversary
with a reliable broadcast step before terminating the sharing. More formally HAVSS satis�es the following lemma.

L���� 1.2. There exists a protocol among n parties that solves Asynchronous Veri�able Secret Sharing (AVSS) for
reconstruction threshold f + 1 < k n � f , with no trusted setup, and is secure against an adaptive adversary that controls
up to f < n/3 parties, with O(n3) word communication.

The “secret sauce”: The second (intermediate) building block is the weak Distributed Key Generation (Section 4). It
builds on top of n parallel HAVSS invocations and uses the fact that all honest nodes eventually terminate all correct
HAVSS to deliver a prediction on what the DKG should output. The wDKG is weaker than consensus because it refrains
from outputting a �nal decision. Instead, it acts as an eventually perfect agreement detector. Any protocol that uses the
wDKG gets the guarantee that eventually all parties will output the same key, but the speci�c time when the detector
becomes perfect cannot be determined. One key property of wDKG is that every prediction is a superset of all prior
predictions, hence there can only be a limited, totally-ordered number of predictions.

Our third building block (Section 5) is called Eventually Perfect Common Coin (EPCC). It relies on the wDKG to detect
the points of agreement and on adaptively secure deterministic threshold signatures [28] to produce the randomness.
The key property of the EPCC is that the adversary can only force it to disagree a �nite (f) number of times. This
happens because a point of disagreement occurs only if f + 1 honest parties are slower than the rest and the adversary
brings them up to speed after they have invoked the EPCC but before they deliver the result. Due to the way the wDKG
is constructed this can happen for at most f di�erent keys and for each candidate key it may happen at most once.

Once we have the EPCC we can use the protocol of Moustefaoui et al. [29] to create our fourth building block:
an e�cient Asynchronous Binary Agreement protocol that does not assume a trusted setup (Section 6.1). We call it
Eventually E�cient ABA (EEABA) as it might have f failed runs before converging, but once it converges it is optimal
(with communication complexity of O(n2) and constant expected round complexity). Formally EEABA achieves the
following:

L���� 1.3. There exists a protocol among n parties that solves Asynchronous Binary Agreement (ABA) without a trusted
dealer in the authenticated setting and is secure against an adaptive adversary that controls up to f < n/3 parties, with
O(n4) one-shot (O(n2) amortized) word communication and expected O(f) one-shot (O(1) amortized) running time.

Finally, in Section 6.2 we invoke n concurrent and correlated EEABAs (one for every HAVSS) to agree on the set of
shares that construct the key and complete the ADKG protocol (Theorem 1).

Corollaries. Since solving DKG implies a solution for consensus (if the secret value is public then it can be used as
the consensus decision), a corollary of our main theorem is:

C�������� 1.4. There exists a protocol among n parties that solves Validated Asynchronous Byzantine Agreement
without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that controls up to f < n/3
parties, with expected O(n4) word communication and expected O(f) running time.

And through the combination of our ADKG with the optimal validated asynchronous Byzantine agreement (VABA)
of [1] a second corollary is:

C�������� 1.5. There exists a protocol among n parties that solves Validated Asynchronous Byzantine Agreement
without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that controls up to f < n/3
parties, with expected O(n2) amortized word communication and expected constant amortized running time.

Contributions. In summary our contributions are:

• We answer the open problem of a high-threshold AVSS posed by Cachin et al. [7] a�rmatively. HAVSS in
combination with Hybrid-DKG [24] removes the setup requirement of e�cient partially synchronous consensus
protocols [20, 35].

• We introduce a novel EPCC construction that disagrees at most f times but can be used polynomially many
times.

• Using our EPCC inside the protocol of Moustefauoi et al. [29] we create EEABA protocol that needs no trusted
setup. EEABA is optimal if amortized. It terminates in O(f) one-shot (O(1) amortized) expected rounds and has
O(n4) for one-shot, (O(n2) amortized) word complexity.

• Using n parallel invocation of Binary Agreement (all sharing the same EPCC), we construct a computationally-
secure, e�cient, leaderless ADKG. Once the ADKG terminates, we can use the resulting key as a perfect common
coin and as the key used in the threshold signature scheme, which are the building blocks of VABA. The ADKG
has O(n4) word complexity and terminates in an expected O(f) rounds. Hence, the combination of ADKG and
VABA results in the �rst trustless VABA solution, which is also optimal if amortized.

1.2 Related work

Consensus is one of the most well studied distributed systems problem, �rst introduced by Pease et al [31], which has
become once again relevant due to the interest in blockchain protocols [25, 27]. The problem can be stated informally
as: how to ensure that a set of distributed processes achieve agreement on a value despite a fraction of the processes
being faulty. From a theoretical point of view, the relevance of the consensus problem derives from several other
distributed systems problems being reducible or equivalent to it. Examples are atomic broadcast [21], or state machine
replication [33]. Algorithms that solve consensus vary much depending on the system model. This paper considers a

message-passing setting for systems that may experience Byzantine (or arbitrary) faults in asynchronous settings (i.e.,
without timing assumptions).

In this paper, we focus on 3 interconnected variants: Asynchronous Binary Agreement (ABA), Distributed Key
Generation (DKG), and Validated Asynchronous Byzantine Agreement (VABA). Furthremore, we survey Asynchronous
Secure Multiparty Computation (AMPC) that could provide a generic solution to our problem.

ABA:. The �rst optimally resilient (f < n/3) ABA was introduced by Bracha [6]. It is based on locally drawn random
coins used to defend against a network controlling adversary. As the protocol uses local randomization it can only
terminate when all correct processes happen to propose the same (0 or 1) value which has an expected O(2n) number
of rounds with every round costing O(n3) messages. Canetti and Rabin [11] where the �rst to propose an ABA that
has polynomial total communication complexity, however, the protocol is far from practically e�cient with a cost of
O(n8lo�n) bits. Advancements in the information-theoretic secure model have lowered the cost down to O(n6) [4].

In order to reduce the communication complexity, Cachin et al [9] demonstrated how to achieve consensus against a
computationally-bounded adversary using cryptography. Trying to achieve this, however, introduced a new assumption
of a trusted dealer that deals a perfect common-coin. Mostefaoui et al. [29] slightly weakened the assumption of Cachin
et al. by assuming a weak common-coin. Nevertheless, it remains an open problem on how to get such a coin e�ciently.
This is the core of our work, we build an eventually perfect common coin without the need of a trusted dealer. Our coin
is also in the computationally-bounded adversary and falls in-between the weak coin and the perfect coin and as a
result, can power Mostefaoui’s protocol.

DKG:. A distributed key generation is a protocol that is executed once by a set of parties in order to achieve consensus
on a shared secret key. The core idea is that each party uses secret sharing to disperse some secret value and then the
parties reach consensus on which secret values have been correctly shared. In the end, these values are combined and
the �nal result is a threshold private-public key-pair that can be used for e�cient ABA [9] and VABA [1]. The �rst DKG
was proposed by Pedersen [32] and is fully synchronous. Gennaro et al. [19] showed that Pedersen’s scheme is secure if
used for threshold signatures, but does not produce uniformly random keys. Hence they also proposed a scheme that
produces such keys, which is not of interest to our protocols. Later, Kate et al. [24] realized that synchronous protocols
are not suitable for large scale deployment over the Internet and proposed a partially-synchronous DKG instead. Their
protocol has a worst-case O(n4) bit complexity and produces keys with a threshold of k = f + 1.

Our contribution to the DKG space is two-fold. First, we show how to generate keys with threshold reconstruction
k = 2f + 1, which as we already mentioned can be used to power scalable partially synchronous BFT protocols [20, 35].
Second, we create the �rst asynchronous DKG with O(n4) word complexity making it practical to generate distributed
keys with no timing assumptions.

VABA:. The VABA problem was introduced by Cachin et al. [8] which generalizes ABA, by allowing any externally
valid value to be eligible for consensus. In this model, Abraham et al. [1] have provided an optimal solution (f < n/3)
for VABA that has an expected complexity ofO(n2) messages and terminates with probability 1 in an expected constant
number of rounds. Both these protocols assume a perfect-coin, hence require a trusted setup. Our contribution in
this model is also two-fold. First we show how we can implement a VABA protocol with no trusted setup and second
we show how to bootstrap the more e�cient protocols [1, 8] with our ADKG in order to get an optimal VABA if we
amortize the cost of the ADKG over O(n2) runs.

Secure Multiparty Computation: On a �rst glance our protocol can be categorised as a special case of Asynchronous
Secure Multiparty Computation [5], however with further inspection it actually provides a foundation for increasing
the e�ciency [5, 14, 15, 22, 23, 30] and removing the trusted setup assumption [14, 22, 23] of existing multiparty
computation protocols.

More speci�cally, existing MPC protocols assume access to a Byzantine Agreement black box which they need
to reach agreement on the inputs by deploying n parallel BAs. However this black box deployment of BA leads to
ine�ciencies leading to an expected O(n5lo�n) world complexity in the cryptographically secure setting. Using our
protocol which opens the black boxes and reuses the common coin, we can agree on the same inputs in only O(n4).

Furthermore,MPC protocols either assume a trusted setup of threshold signatures and threshold encryption [14, 22, 23]
or employ a special type of AVSS called ACSS [5], which guarantees that all honest parties (instead of f + 1) get a share.
Our HAVSS provides the same guarantees, making it a cryptographically secure ACSS protocol. Choudry and Patra [13]
have created a framework where an MPC protocol can be constructed using BA and ACSS, as a result if we plug in our
HAVSS and couple it with error-corrected reliable broadcast [10] we could get the most e�cient AMPC with complexity
ofO(n3lo�n) per multiplication gate. This improvement comes at the cost of sacri�cing unconditional security since the
state of the art has an O(n5lo�n) cost3. However, the most natural use of ADKG would be to bootstrap the threshold
encryption and threshold signing protocols of [23] and then run at O(n2) cost per multiplication gate. If the AMPC
protocol has more than O(n2) gates, then we can get an amortized cost of O(n2) per gate.

In summary, this paper provides practical improvements on the foundation protocols of AMPC which could result
through composition to practically e�cient protocols. However, we leave the actual secure implementation and proofs
to future work.

2 MODEL AND DEFINITIONS

In order to reason about distributed algorithms in cryptographic settings we adopt the model de�ned in [9]. For space
limitation and better readability we de�ne here a simpli�ed version and the full formal model can be found in [1, 8, 9]
and in Appendix A. We consider an asynchronous message passing system consisting of a set � of n parties and an
adaptive adversary. The adversary may control up to f < n/3 parties during an execution. An adaptive adversary is not
restricted to choose which parties to corrupt at the beginning of an execution, but is free to corrupt (up to f) parties on
the �y. Note that once a party is corrupted, it remains corrupted, and we call it faulty. A party that is never corrupted is
called honest.

Communication. We assume asynchronous authenticated links controlled by the adversary, that is, the adversary
can see all messages and decide when and what messages to deliver but cannot deliver a message from an honest
party that was not generated by it. In order to be able to use cryptographic tools in asynchronous settings, the model
de�ned in [1, 8, 9] restricts the adversary to perform no more than a polynomial in the security parameter number of
computation steps during the time a message between two honest parties is sent and delivered. For completeness, in
Appendix A, we give the formal de�nition of the assumption on message delivery and the termination requirement
in asynchronous protocols with computationally bounded adversaries. However, in order to be able to focus on the
distributed computing aspect of our work, we assume throughout the paper perfect cryptographic tools, standard
delivery assumptions and termination requirement. That is, we assume every message between two honest parties is
eventually delivered.

3Concurrent non peer-reviewed works claims reduction to O (n4lo�n) [12]

Complexity. Following [1], our basic communication unit is word, which may contain a constant number of values of
some domain V and cryptographic signatures. We de�ne the total communication cost of our protocol to be the number
of words sent among honest parties. One word is a signature that is linear in the size of the security parameter.

Cryptographic Abstractions. Given that our protocols use cryptographic constructions as black boxes, we assume
perfect cryptographic tools and present simpli�ed educational examples that use the multiplicative notation and simple
computationally hiding commitments. Furthermore, in order to still have a correct protocol we employ the Di�e-
Hellman Based Threshold Coin-Tossing Scheme of Cachin et al. [9]. This way the reader can focus on the distributed
aspect of the protocol which is the novelty. However, in order to be adaptively-secure, the actual implementation of our
consensus algorithm requires pairing-based threshold cryptography, as shown by Libert et al. [28]. More speci�cally,
Libert et al. runs a classic synchronous DKG [32], but we can instead use our ADKG (Section 6.2) to terminate their
protocol in asynchrony and generate the consistent secret shares.

Di�e-Hellman Based Coin. In order to follow our protocols, we need to present the coin-tossing protocol of Cachin
et al. [9]. We work with a group G of large prime order q. At a high level, the value of a coin C is obtained by �rst
hashingC to obtain �̄ 2 G, then raising �̄ to a secret exponent x0 2 Zq to obtain �̄0 2 G, and �nally hashing �̄0 to obtain
the value F (C) 2 {0, 1}.

In this paper, we distributively generate the secret exponent x0 such that before the coin-toss is invoked every party
Pi holds a share xi of x0. The party uses this share to generate a share of the coin F (C) which is �̄xi . For our purpose
we abstract the inner workings of the coin by exposing four functions:

generate-share(xi ,C), it uses the partial key xi to generate a coin-share for coin C .

verify-share(C,m,�) veri�es that � is a valid share of party Pm .

generate-coin(C, [�i]) generates a coin given a threshold of valid shares of C .

verify-coin(C,�P), veri�es that the given value �P correspond to valid coin for C .

3 HIGH-THRESHOLD ASYNCHRONOUS VERIFIABLE SECRET SHARING

Existing AVSS [7, 11] schemes provide a reconstruction threshold up to n � 2f shares. Intuitively this is because at
the sharing step the participating nodes can only wait for n � f ready message from nodes, where ready con�rms
that a node has veri�ed its share. As a result in the reconstruction phase, there can be up to f (corrupt) nodes who
participated at the sharing but do not participate in the reconstruction, hence for the reconstruction to succeed the
recovery threshold should be n � f � f = n � 2f .

In this section we present our HAVSS scheme that requires a high threshold of up to n � f shares for the secret
reconstruction. Our scheme is an extension of the AVSS scheme by Cachin et al. [7], where the dealer uses an asymmetric
bivariate polynomial instead of a symmetric one. The key idea is that one dimension of the asymmetric bivariate
polynomial has an order of f and is used for shares recovery, while the other dimension has an order of 2f and is used
for the secret reconstruction.

3.1 Definition

Our protocol falls in the class of dual-threshold sharing [9], which are protocols that allow the reconstruction threshold
of a secret to be more than f + 1. Although in the original AVSS [7] paper the authors introduce the notion of a

dual-threshold secret sharing scheme with reconstruction threshold up to n � f , the AVSS described only works for
reconstruction threshold n � 2f . In this work, we solve the open problem posed by the authors on creating an (n,k, f)
dual-threshold AVSS where f + 1 < k n � f . This is an important challenge since an (f ,n � f)-AVSS can power4

e�cient Byzantine agreement [1, 35] and e�cient MPC [22, 23] which currently require a trusted dealer during setup.
We follow the de�nitions of Cachin et al [7] and modify them for HAVSS: A protocol with a tag ID.d to share a

secret s 2 Zq consists of a sharing stage and a reconstruction stage as follows.

Sharing stage. The sharing stage starts when the party initializes the protocol. In this case, we say the party initializes
a sharing ID.d. There is a special party Pd , called a dealer, which is activated additionally on an input message of the
form (ID.d, in, share, s). If this occurs, we say Pd shares s using ID.d among the group. A party is said to complete the
sharing ID.d when it generates an output of the form (ID.d, out, shared). An honest but slow party might not complete
the sharing if the dealer is malicious. In this case, it can still recover its share of the secret from the rest of the parties
that managed to terminate the sharing. Such a party is said to indirectly complete the sharing ID.d .

Reconstruction stage. After a party has completed the sharing, it may be activated on a message (ID.d, in, reconstruct).
In this case, we say the party starts the reconstruction for ID.d . At the end of the reconstruction stage, every party
should output the shared secret. A party Pi terminates the reconstruction stage by generating an output of the form
(ID.d, out, reconstructed, zi). In this case, we say Pi reconstructs zi for ID.d . This terminates the protocol.

Furthermore, the protocol should satisfy the following properties for our threat model, except with negligible
probability:

H(i) : Liveness. If the adversary initializes all honest parties on sharing ID.d , delivers all associated messages, and the
dealer Pd is honest throughout the sharing stage, then all honest parties complete the sharing. Moreover, if all
honest parties subsequently start the reconstruction for ID.d , then every honest party Pi reconstructs some zi
for ID.d .

H(ii) : Agreement. Provided the adversary initializes all honest parties on sharing ID.d and delivers all associated
messages, the following holds: If some honest party completes the sharing ID.d , then all honest parties will
complete the sharing of ID.d .

H(iii) : Correctness. Once k honest parties have completed the sharing of ID.d , there exists a �xed value z such that
the following holds:

(1) If the dealer has shared (ID.d, in, share, s) and is honest throughout the sharing stage then z = s .
(2) If an honest party Pi reconstruct zi for ID.d then zi = z.

H(iv) : Privacy. If an honest dealer shared (ID.d, in, share, s) and less than k � f honest parties have started the
reconstruction for ID.d , then the adversary has no advantage when trying to guess the value s .

3.2 Implementation

The key mechanism of HAVSS (see Figure 1) is the use of an asymmetric bi-variate polynomial (k � 1, f). The �rst
dimension is used to protect the secret, which is reconstructed if k shares are combined, whereas the second dimension
is used to enable recovery of the shares of the secret from any group of f + 1 honest participants.

Let p and q be two large primes satisfying q | (p � 1), and q > n. Let G denote a multiplicative subgroup of order q of
Zp and let � be a generators of G.

4Coupled with a suitable DKG [24]

Fig. 1. Intuition of HAVSS. Pj receives row �⇤.j which is used to compute the recovery polynomial bj (�) and column �j .⇤ which is
used to compute the share polynomial aj (x) and recover its share Sj = aj (0). If a malicious dealer does not send Pm its share, Pm
can still complete indirectly the sharing. This is possible because Pj , that completes the sharing directly, will send Pm a message with
�m .j . Since there are f + 1 available parties that should have shares in columnm and complete the sharing directly, Pm will get
enough points to recover aj (x), hence recover Sm = am (0). As a result, eventually k parties will have shares Si , compute locally
u(0, x) and recover the secret s = u(0, 0).

(1) The dealer computes a one-dimensional sharing of the secret and uses the second dimension of the bi-variate
polynomial to share the secret-shares. This is achieved by choosing a random bivariate polynomial u 2 Zq [x ,�]
where the dimension [x] is of degree t = k � 1 and the dimension [�] is of degree f with u(0, 0) = s and it
commits to u(x ,�) = Õt,f

j,l=0 ujlx
j�l by computing a commitment matrix C = {Cjl } with Cjl = �

ujl for j 2 [0, t],
l 2 [0, f]. The dealer sends each party Pi a message containing the commitment matrix C as well as a recovery
polynomial ai (�) := u(i,�) of order f and a share polynomial bi (x) := u(x , i) of order t .

(2) When the parties receive the send message from the dealer, they echo the points in which their share and
recovery polynomial overlap with each other. To this e�ect, Pi sends an echo message containing C, ai (j), bi (j)
to every party Pj .

(3) Upon receiving k echo messages that agree on C and contain valid points, every party Pi interpolates its own
share and recovery polynomials āi and b̄i from the receiving points and veri�es that they are the same as the
ones received by the dealer. Then Pi sends a ready message containing C.

(4) Once the party receives a total of n � f ready messages that agree on C, it completes the sharing. Its share of the
secret is si = āi (0). In order to guarantee that the rest of the parties also complete the sharing, it sends the set of
n � f ready messages (for the parties that send the ready message and will �nish with shared) as well as bi (j) to
every party Pj (for the ones that are slow and will �nish indirectly).

(5) A party that has not sent a ready message yet, needs to consider the possibility that it is in the slow set. Hence,
if it receives f + 1 consistent shared messages, it interpolates si = āi (0) and �nishes the sharing indirectly.

As a result, during reconstruction, every honest node eventually has a correct share of the secret. Hence eventually
k points that are consistent with C become public. Once Pi receives them all, he can interpolate u(0,�) and recover
s = u(0, 0). The protocol has communication complexity ofO(n4), however, it can be optimized toO(n3) as shown in [7].

3.3 Protocols

Algorithm 1 and 2. In the protocol description, the following predicates are used:

verify-poly(C, i,a,b), where a,b are polynomials of degree f and t respectively, i.e.,

a(�) =
f’
l=0

al�
l and b(x) =

t’
j=0

bjx
j

This predicate veri�es that the given polynomials are share and recovery polynomials for Pi consistent with C; it is
true if and only if for l 2 [0, f], it holds �al =Œf

j=0(Cjl)i
j
and for j 2 [0, t], it holds �bl =Œt

l=0(Cjl)
i l .

verify-point(C, i,m,� , �), veri�es that the given values � , � correspond to points f (m, i), f (i,m), respectively, committed
to C, which Pi supposedly receives from Pm ; it is true if and only if �� =

Œf ,t
j,l=0(Cjl)

m j i l and �� =
Œf ,t

j,l=0(Cjl)
i jml

.

verify-share(C,m,�) veri�es that � is a valid share of Pm with respect to C; it is true if and only if �� =
Œt

j=0(Cj0)m
j
.

verify-shared(C, Si�C) veri�es the set of signatures Si�C .

The parties may need to interpolate a polynomial a of degree f or a polynomial b of degree t . This can be done using
standard Lagrange interpolation, we abbreviate this by saying a party interpolates a.

In the protocol description the variables e , f , and r count the number of echo, shared and ready messages. They are
instantiated separately only for values of C that have actually been received in incoming messages.

Analysis. Proofs for the HAVSS properties mostly follow from [7] and for space limitation deferred to Appendix B.

3.4 HAVSS for Bootstrap of Hotstu�/SBFT

Although this paper focuses on fully asynchronous protocols, advancements in partially synchronous protocols [20, 35]
have shown that the ability to generate distributively an (f , 2f + 1)-threshold key is a useful primitive. HAVSS is the
�rst protocol that can power such e�cient DKGs, for example, if we combine HAVSS with Hybrid-DKG [24] we can
securely bootstrap Hotstu� and SBFT without introducing any new assumptions.

4 WEAK DISTRIBUTED KEY GENERATION

This section describes an asynchronous protocol for detecting agreement on the generation of (up to) f + 1 candidate
shared keys without a trusted setup, which we use for building the eventually perfect coin in the next section. The key
idea of wDKG is that the protocol never terminates (e.g., never commits to a speci�c key). Instead, each party outputs a
�nite sequence of candidate keys, and even though there is no explicit termination (otherwise, we would contradict the
FLP [16] impossibility of asynchronous agreement), we guarantee that eventually all honest parties stop outputting new
candidate keys and the last candidate key output by all honest parties is the same. Moreover, to bound the complexity
of an higher-level protocol that uses our weak distributed key generation (wDKG), we guarantee that no honest party
outputs more than f + 1 keys.

Algorithm 1 Protocol HAVSS for party Pi and tag ID.d (sharing stage)
1: upon initialization do
2: success false
3: for all C do
4: eC 0; rC 0
5: AC ;; BC ; Si�C ;

6: upon receiving “ID .d, in, share, s” do . only Pd
7: choose a random asymmetric bivariate polynomials u of

degree (t, f) with u(0, 0) = u00 = s , i.e.,

u(x, �) =
t, f’
j,l=0

ujlx j�l

8: C {Cjl }, where Cjl = �ujl for j 2 [0, t] and l 2 [0, f]
9: for j 2 [1, n] do
10: aj (�) u(j, �); bj (x) u(x, j)
11: send “ID .d, send, C, aj , bj ” to Pj

12: upon receiving “ID .d, send, C, a, b” from Pd for the �rst time do
13: if verify � poly(C, i, a, b) then
14: for j 2 [1, n] do send “ID .d, echo, C, a(j), b(j)” to Pj

15: upon receiving “ID .d, echo, C, �, � ” from Pm for the �rst time do
16: if verify � point(C, i,m, �, �) then
17: AC AC

–{(m, �)}; BC BC
–{(m, �)}

18: eC eC + 1
19: if eC = k then
20: interpolate ā, b̄ from BC, AC, respectively
21: for j 2 [1, n] do send “ID .d, ready, C, ā(j), b̄(j), si�i ” to Pj

22: upon receiving “ID .d, ready, C, �, �, si�m ” from Pm for the �rst time do
23: if verify � point(C, i,m, �, �) then
24: Si�C Si�C

–{(m, si�m)}
25: rC rC + 1
26: if rC = n � f and eC � k then
27: C̄ C; si ā(0); success true
28: for j 2 [1, n] do send “ID .d, shared, C, Si�C, b̄(j)” to Pj
29: output (ID .d, out, shared)

30: upon receiving “ID .d, shared, C, Si�mC , � ” from Pm for the �rst time do
31: if verify � shared(C, Si�mC) then
32: if eC � k then .Can fully terminate
33: C̄ C; si ā(0); success true
34: for j 2 [1, n] do send “ID .d, shared, C, Si�C, b̄(j)” to Pj
35: output (ID .d, out, shared)
36: else if verify � point(C, i,m, �) then .Can only recover share
37: BC BC

–{(m, �)}
38: rC rC + 1
39: if rC = f + 1 then
40: C̄ C
41: interpolate ā from BC ,
42: si ā(0)
43: output (ID .d, out, shared)

Algorithm 2 Protocol HAVSS for party Pi and tag ID.d (reconstruction stage)
1: upon receiving “ID .d, in, reconstruct” do
2: c 0; S ;
3: for j 2 [1, n] do send “ID .d, reconstruct-share, si " to Pj

4: upon receiving “ID .d, reconstruct-share, � ” from Pm do
5: if verify � share(C̄,m, �) then
6: S S

–{(m, �)}; c c + 1
7: if c = k then
8: interpolate a0 from S
9: output (ID .d, out, reconstructed, a0(0))
10: halt

4.1 Definition

A weak Distributed Key Generation is a helper protocol that is implemented on top of n HAVSS instances where each
party Pi acts as the dealer of HAVSS instance i . We denote the share that party Pi receives in HAVSS instance j by s ji ,
and de�ne a prediction of a candidate distributed key to be a set of shares. During a wDKG each party Pi might output a
sequence of predictions, and we say that an output prediction Pult imate is last if Pi does not output a prediction after
Pult imate . For each party Pi , there is a one-to-one mapping between a set of HAVSS dealers and the predictions induced
by the HAVSS instances of these dealers. That is, given a set S of parties, the prediction sharesi (S) , {s ji | Pj 2 S}, and
given a prediction P of Pi , source(P) , {Pj | s ji 2 P}. Note that source(sharesi (S)) = S . We say that two predictions
P1,P2 of di�erent parties are matching if source(P1) = source(P2).

The wDKG protocol provides the following properties.

W(i): Inclusion. For every prediction P an honest party outputs, |source(P)| � 2f + 1.
W(ii): Containment. For each honest party Pi , predictions are ordered by strict containment. This means that for

any two predictions output by Pi in times k < j : Pk ⇢ Pj .
W(iii): Eventual Agreement. Every honest party eventually outputs an ultimate prediction, and all ultimate predic-

tions are matching.
W(iv): Privacy. If no honest party reveals its private share for a prediction p then the adversary can neither compute

the prediction p nor the shared secret s. This is equivalent to the HAVSS privacy property de�ned before.

4.2 Technical Overview

The wDKG protocol uses n instances of HAVSS as sub-protocols. Each party Pi invokes HAVSS instance ID.i as a dealer
and participates in the sharing phases of all HAVSS instances as a receiver. Upon initialization, each party Pi instantiates
its HAVSS with a random secret and collects n � f shares from di�erent HAVSS instances (including its own) into a
prediction H . Note that since n � f instances have honest leaders, then all honest parties eventually collect n � f shares.
Then, it starts the eventual agreement phase by broadcasting a candidate-key message that includes source(H). Later,
any time Pi delivers another HAVSS share, it inserts the share into H and broadcasts the new source(H) in another
candidate-key message.

When a party pi receives 2f + 1 candidate-key messages with the same source (set of parties) S , it (1) waits until
H ◆ sharesi (S) or in other words until pi gets all the HAVSS shares from instances with parties from S acting as dealers;
and then (2) outputs the prediction sharesi (S) provided it did not output a prediction P 1 sharesi (S) before to make sure

parties output increasing predictions by containment. Note that by the containment property and since predictions by
honest parties consists of at least 2f + 1 shares, we get that each party outputs at most f + 1 predictions.

Although the above protocol has an e�cient (O(n4)) as we will see later) word complexity, it needs one further
check in order to avoid exponential computation and storage. The challenge is that every time a party receives a new
candidate-key it needs to search its local memory to increase the counter of how many matching source(H) it has
received. Honest parties broadcast up to f + 1 candidate-key messages, but a Byzantine party might broadcast an
exponential number of such messages, causing the local memory and the cost of searching it to become exponential.
Therefore, in order to avoid this attack we ignore candidate-key messages from parties that do not satisfy containment
(i.e., a party pi ignores a candidate-key message with source set S from party pj if it previously received from pj a
candidate-key message with source set S 0 1 S). The pseudocode appears in Algorithm 3.

Algorithm 3 Protocol wDKG for party Pi
1: upon initialization do
2: for every j 2 {1, . . . , n } do
3: Sj {} .The source (set of parties) pi received from pj
4: H {} . The set of HAVSS shares pi outputs
5: SP {} .The source set of the current prediction
6: C[:] 0 .A counter for every possible source
7: select random ri
8: invoke (i, in, share, ri) .Every party starts an HAVSS as a dealer

9: upon (ID .j, out, shared) do
10: H H [{s ji }
11: if |H | � n � f then
12: send “candidate-key, source(H)” to all parties

13: upon receiving “candidate-key, S” from party pj do .Handle these messages one after the other
14: if S � Sj [SP then
15: Sj S
16: C[S] C[S] + 1
17: if C[S] = n � f then
18: SP S
19: wait until H ◆ sharesi (S)
20: output (out, key, sharesi (S))

4.3 Analysis

In this Section we prove that the protocol in Figure 3 implements wDKG. The �rst two proofs follow directly from the
code. For the eventual agreement we �rst need to show that no honest party will get stuck at a prediction that is not
the best possible. Then we show that parties will keep delivering predictions that include more shares until they deliver
a prediction with the maximum number of shares (all the shares that were generated by good dealers). Since no party
gets stuck at a suboptimal prediction and there exists a maximum prediction, all parties will eventually deliver that
prediction and stop delivering anything new, hence they eventually agree. Of course the parties will not be aware that
the prediction they delivered is the maximum, which is the reason they cannot explicitly terminate. Speci�cally, we
prove the following lemmas:

4.3.1 Correctness proof. In this section we prove that the protocol in Figure 3 implements wDKG, i.e., satis�es
containment, inclusion, and eventual agreement:

L���� 4.1. The protocol in Algorithm 3 satis�es W(ii) (Containment).

P����. By line 14, honest parties ignore “candidate-key, S” messages when S 2 SP. By the code, SP stores the source
set of the last prediction. The lemma follows from the fact that candidate-key messages never handled in parallel.

⇤

L���� 4.2. The protocol in Algorithm 3 satis�es W(i) (Inclusion).

P����. Let P be a prediction some honest party Pi outputs. By line 17, Pi gets at least n� f “candidate-key, source(P)”
messages. Thus, at least one honest party sends a “candidate-key, source(P)” message. Therefore, by line 11, |source(P)| =
|P| � n � f .

⇤

L���� 4.3. An honest party is never stuck.

P����. The only possible place for an honest party to stuck is in Line 19. Consider an honest party Pi that gets to
Line 19 and waits until its H ◆ sharesi (S) where S is the source set it received in the candidate-keymessage. By Line 17,
Pi gets n � f “candidate-key, S” messages, and thus at least one honest party Pj sent “candidate-key, S” message. By
the code, Pj delivers a share for every HAVSS instance in S . Thus, by property H(ii), Pi will eventually deliver a share
for every HAVSS instance in S as well. Meaning that eventually H ◆ sharesi (S), and thus Pi will eventually end the
waiting in Line 19.

⇤

L���� 4.4. The protocol in Algorithm 3 satis�es W(iii) (Eventual Agreement).

P����. Note that the size of H is bounded by n, so for every honest party there is a point after which H is never
changing and includes all HAVSS shares it will ever deliver. By H(ii), all honest parties will eventually reach the same
source(H), which we denote by SH .

We now show that an honest party Pi does not ignore a
“candidate-key, SH ” message from an honest party Pj . In other words, the if statement in Line 14 is always true when
Pj receives such message. We need to show two conditions:

• First, SH � Sj . Since by the code, Pj only sends the
“candidate-key00 with source(H), we get by the de�nition of SH that Pj never sends “candidate-key, S 0” message
with S 0 * SH .

• Second, SH � SP. Assume by a way of contradiction that at some point Pi sets SP S 0 s.t. S 0 * SH . By the code,
Pi gets “candidate-key, S 0” message from at least one honest party Pk . Therefore, the source(H) of party Pj was
equal to S 0 at some point. A contradiction to the de�nition of SH .

By property H(i), and since we have at least n � f honest parties, we get that |SH | � n � f . Thus, by the code, all
honest parties will eventually send “candidate-key, SH ” message to all other honest parties. Therefore, by Lemma 4.3
and from the above, every honest party Pi will eventually process n � f “candidate-key, SH ” message, pass the if
statement in Line 17, and output sharesi (SH).

It is left to show that no honest party will ever output a prediction after sharesi (SH). Assume by a way of contradiction
that some party Pi outputs S 0 after it outputs sharesi (SH). By property W(ii) (Containment), S 0 � SH . Thus, by de�nition
of SH , S 0 contains a party that acts as a dealer in a HAVSS instance in which no honest party delivers a share. Therefore,
no honest party ever sends a “candidate-key, S 0” message. Hence, Pi never get n � f “candidate-key, S 0” messages, and
thus by the code never output S 0. A contradiction.

⇤

L���� 4.5. The protocol in Algorithm 3 satis�es W(iv) (Privacy).

P����. Follows directly from the W(i) (inclusion) and H(iv) (privacy).
⇤

Complexity. By the code, each party sends at most f + 1 candidate-key messages, each of which of size O(n), to all
other parties. Therefore, the bit complexity of each party is O(n3) words, and the total bit complexity is O(n4) words.

5 FROMWEAK DKG TO EVENTUALLY PERFECT COMMON COIN

In this section, we use wDKG as the backbone of an eventually-perfect common coin (EPCC), which is a perfect-common
coin that fails a �nite number of times (at most f in our case). As a result, we can use it as a perfect-coin as long as we
make sure to handle the small number of disagreements.

5.1 Definition

The EPCC is a long-lived task, which can be invoked many times by each party via coin-toss(sq) invocation. Each
invocation is associated with a unique sequence number sq and returns a value � . We assume well-formed executions in
which honest parties block any subsequent EPCC invocations until the invoked EPCC returns a value. This is crucial for
the Eventual Agreement property because disagreement on the EPCC output in one instance must advance at least one
wDKG key toward the following instance. For notational convenience, we assume that if a party invokes coin-toss(sq)
and later invoke coin-toss(sq’), then sq0 > sq.

An EPCC implementation must satisfy the following properties:

E(i): Unpredictability. For every sq, the probability that the adversary predicts the return value of coin-toss(sq)
invocation by an honest party before at least one honest party invoke coin-toss(sq) is at most 1/2 + �(k), where
�(k) is a negligible function.

E(ii): Termination: If n � f honest parties invoke coin-toss(sq), then all coin-toss(sq) invocations by honest parties
eventually return.

E(iii): Eventual Agreement: There are at most f sequence numbers sq for which two invocations of coin-toss(sq)
by honest parties return di�erent coins.

5.2 Technical Overview

Our EPCC protocol is built on top of n HAVSS instances and uses the wDKG algorithm as a sub-protocol. Recall that
the wDKG algorithm outputs a sequence of at most f + 1 predictions (sets of HAVSS shares) P1, . . . ,Pl . Whenever, the
wDKG sub-protocol outputs a prediction Pi we use it to derive a tuple hKPi ,VPi i, where KPi is the key, and VPi is the a
bit vector indicating the HAVSS instances included in source(Pi) (see get-key below). The hK ,V i variables store the last
derived key, and the bit vector, respectively, and are updated whenever the wDKG outputs a new prediction.

Upon a coin-toss(sq) invocation by an honest party Pi , it enters a protocol to construct a common coin. The protocol
loops using the outputs from wDKG until for some key K , Pi succeeds in collecting n � f shares corresponding to K and
the sequence number sq. More speci�cally, each party Pi uses the latest key K ,V output from wDKG and the sequence
number sq to generate its share of the common-coin, and sends a coin-share message with the share together with the
bit vector V to all other parties. Whenever the wDKG outputs a new prediction, Pi updates the hK ,V i variables, and
broadcasts a new share.

A coin-toss(sq) invocation by an honest party Pi returns when it collects 2f + 1 coin-share messages from di�erent
parties with valid coin-shares and the same bit vector V 0. Note that V 0 can be di�erent from any bit vector party
Pi previously sent in a coin-share message. To validate the coin-shares, Pi needs to generate a commitment C� 0

that is associated to the bit vector V 0 by combining all the commitments of HAVSS instances included in V 0 (see
get-commitment below). Note that in order to be able to do it, Pi �rst needs to complete the sharing phases of all
HAVSS instances included in V 0. Then, after Pi successfully veri�es the 2f + 1 signatures (see verify-share below), it
uses them to produce a coin (see generate-coin below), sends it in a coin message together with the bit vector to all
other parties, and outputs it.

Upon receiving a coin message, Pi �rst checks that the bit vector includes at least 2f + 1 ones in order make sure
randomness from honest parties were included in the associated key generations. Next, Pi generates a commitment
associated with the bit vector and then uses it to verify the coin (see verify-coin below). If the veri�cation passes, Pi
forwards the coin message to all parties and output the coin.

Note that since EPCC is a long lived object some honest parties may complete a coin-toss(sq) for some sq before
another honest party invoked coin-toss(sq). To handle this, honest parties maintain two maps S and Coins that map
tuples of bit-vectors and sq to set of coin-shares and coins, respectively. These maps are updated every time a share-coin
or coin message is received regardless if there is a coin-toss(sq) operation in progress. In addition, when a coin-toss(sq)
operation invoked by an honest party Pi , it �rst checks these maps to see if it already received enough messages to
return a coin. The pseudocode is given below (Algorithm 4) and the omitted proofs are given in Appendix C. In the
pseudocode we use the following functions:

get-key(P) gets a prediction output P from a wDKG sub-protocol, and outputs hKP,VPi that are computed as follows:

KP =
’
s 2P

s and 8pi 2 source(P),VP[i] = 1

In other words, KP is the sum of all shares in P and VP indicates the HAVSS instances these shares came from.

get-commitment(VP) gets a bit vector that was generated from a prediction P, and returns a commitment CP that is
used to verify signatures associated with KP (share and coin). In order to be able to compute CP, parties �rst have to
complete the sharing phases of all the HAVSS instance indicated by VP in order to get their commitment, and then
multiply them to get CP. More speci�cally,

8i 2 {1, . . . ,n}, if VP[i] = 1, then wait for commitment Ci

from P 0i s HAVSS instance

CP =
n÷
i=1

VP[i]Ci

In Algorithm 4, an invocation of get-commitment can block forever if send by a bad party that lies about what
HAVSS instances have terminated. We do not need to handle this as we only care to return one random value of a sq.
To this end, we handle all events concurrently and abort all outstanding procedures associated with sq after we output
a coin for sq.

Note that for every prediction P an honest party gets from the wDKG protocol, the bit vector VP de�nes a unique
private K i

P for every party Pi , and a unique global commitment CP. Together, they form the setup required for the
Di�e-Hellman based threshold coin-tossing scheme that is given in [9], which yields a common coin �ip for each sq

input. In our educational example, we use Pedersen [32] DKG, which does not produce uniformly random keys [19],
but as shown by Libert et al. [28] it is su�cient for the adaptively secure threshold signatures, which we will use for the
real-world deployment. Hence we assume that the key generated by the DKG is su�ciently random for our proofs
and only focus on proving that it remains unpredictable and private. Below we brie�y describe the functionality this
scheme provides, and more details and formal proofs can be found in [9]. Note that the wDKG might output di�erent
sequences of predictions when invoked by di�erent parties, so the challenge that we overcome in Algorithm 4 is how
to eventually agree on the same key.

generate-share(CP,KP, sq) uses the key KP derived from prediction P to sign the sequence number sq in order to
generate a share for a coin de�ned by CP and sq.

verify-share(CP, sq, j,�), veri�es that the given value � is a valid coin share from Pj for the coin de�ned by CP and sq.

generate-coin(CP, �, sq) uses a set � of 2f + 1 valid shares de�ned by CP and sq in order to generates the coin.

verify-coin(CP,� , sq), veri�es that the given value � is a valid coin de�ned by CP and sq.

5.3 Analysis

5.3.1 Correctness proof. In this section we show unpredictability, termination, and eventual agreement of our EPCC.
The �rst two properties can easily be deduced from the code. For eventual agreement we �rst need to show that (due to
WDKG’s containment property) if a party uses a certain set of shares V1 to produce randomness then it will only use
supersets of V1 in future invocations. This creates a total ordering of predictions. The second part of the proof relies on
the well-formed nature of EPCC and shows that if di�erent sets of shares where used to generate randomness for a
certain invocation sq then only the largest set of shares will be used for any subsequent invocation. Given that there
can only be f + 1 di�erent valid and totally ordered sets, the adversary can only cause the generation of inconsistent
randomness at most f times. Speci�cally, we prove in Appendix C the following Lemmas:

L���� 5.1. If a valid coin for some sq is generated, then at least 2f + 1 valid share-coins associated with some bit vector
V for sq were previously generated, f + 1 of which by honest parties.

L���� 5.2. The protocol in Algorithm 4 satis�es E(i) (Unpredictability).

L���� 5.3. For every sq, if an invocation of coin-toss(sq) by an honest party Pi returns, then all coin-toss(sq) invocations
by honest parties eventually return.

L���� 5.4. The protocol in Algorithm 4 satis�es E(ii) (Termination).

Algorithm 4 Protocol EPCC for party Pi . All events must be handled in parallel per sq. Upon �rst output message for
sq all other invocations are aborted.
1: upon initialization do
2: invoke wDKG
3: K ?; V ? .last derived key and bit vector, respectively
4: currentSQ ? .? indicates that there is not coin-toss in progress
5: S [:] {} .A mapping from tuples of bit vector and sq to sets of shares
6: Coins[:] ? .A mapping from tuples of bit vector and sq to coins

7: upon (out, key, P) do .prediction output form the wDKG sub-protocol
8: hK, V i get-key(P)
9: if currentSQ , ? then
10: BroadcastShare()

11: upon coin-toss(sq) do
12: currentSQ sq .Avoid races during concurrent invocations
13: if 9V 0 s.t. Coins[hV 0, sq i] , ? then .Already saw the coin
14: ForwardCoinAndReturn(V 0, sq)
15: if 9V 0 s.t. |S [hV 0, sq i] | � 2f + 1 then .Enough shares
16: BroadcastCoinAndReturn(V 0, sq)
17: if V , ? then
18: BroadcastShare()

19: upon receiving “coin-share, sq, � , Vj ” message from party Pj for the �rst time do
20: C get-commitment(Vj)
21: if verify-share(C, sq, j, �) ^ Õn

k=1Vj [k] � 2f + 1 then
22: S [hVj , sq i] S [hVj , sq i] [{� }
23: if sq = currentSQ ^ |S [hVj , sq i] | � 2f + 1 then
24: BroadcastCoinAndReturn(Vj , sq)

25: upon receiving “coin, sq, �, Vj ” message from party Pj for the �rst time do
26: C get-commitment(Vj)
27: if verify-coin(C, �, sq) ^ Õn

k=1Vj [k] � 2f + 1 then
28: Coins[hVj , sq i] �
29: if sq = currentSQ then
30: ForwardCoinAndReturn(Vj , sq)

31: procedure B��������S����()
32: C get-commitment(V)
33: � generate-share(C, K, currentSQ)
34: send “coin-share, currentSQ, � , V ” to all parties

35: procedure B��������C���A��R�����(V 0, sq)
36: C get-commitment(V 0)
37: � generate-coin(C, S [hV 0, sq i], sq)
38: send “coin, sq, �, V 0” to all parties
39: currentSQ ?
40: output (out, coin, sq, �)

41: procedure F������C���A��R�����(V 0, sq)
42: send “coin, sq, Coins[hV 0, sq i], V 0” to all parties
43: currentSQ ?
44: output (out, coin, sq, Coins[hV 0, sq i])

L���� 5.5. If an honest party generates a share-coin associated withV , then it will never generate a share-coin associated
with V 0 + V .

L���� 5.6. If for some sq, two coin-toss(sq) invocations by two honest parties return di�erent valid coins �1 , �2, then
there are two bit vectors V1,V2 s.t. (1) V1 ⇢ V2; and (2) f + 1 honest parties generated valid share-coins associated with V1
for sq and f + 1 honest parties generated valid share-coins associated with V2 for sq.

L���� 5.7. For every 1 k f + 1, if there are k sequence numbers sq for which two invocations of coin-toss(sq) by
honest parties output di�erent coins, then there is a bit vector V of size at least 2f + 1 + k such that f + 1 honest parties
generated valid share-coins associated with V .

L���� 5.8. The protocol in Algorithm 4 satis�es E(iii) (Eventual Agreement).

5.3.2 Complexity. By W(i) and W(ii), each party outputs at most f + 1 predictions from the wDKG sub-protocol. For
each predictions, each party sends at most a constant number of words and O(n) sized bit-vector to every party. Hence
the worst-case complexity of a consistent coin �ipping is O(n4) bits + O(n3) words.

6 ACHIEVING CONSENSUS

6.1 Eventually E�icient Asynchronous Binary Agreement

Once we have our EPCC, we can use it in any Binary Agreement protocol that uses a weak coin [6, 29]. The most
e�cient asynchronous BA solution is from Moustefaoui’s et al [29] and has O(n2) bit complexity 5.

Since our coin has at most f bad �ips, when we plug it in [29] we know that if we invoke n instances of ABA in
succession with the same coin, then the overall number of bad �ips remains f in the entire succession. Hence, the
overall complexity remainsO(n3) bit complexity and expectedO(f) rounds. We refer to an ABA that has this succession
property as eventually e�cient ABA (EEABA).

We refrain from reintroducing the full protocol as we only need to plug in our coin-toss(sq) and make sure that a
party which has already seen a safe value continues to coin-toss(sq) in order for EPCC to be live, but ignores the output
of EPCC (as it already knows the safe value). The total bit complexity of our EEABA has two parts. First, there is the
needed HAVSS for EPCC to work, which has a total O(n4) words (n concurrent instances of HAVSS). Then, we can
start running the ABA of [29] which (as mentioned above) has an overall complexity remains O(n3) bit complexity
and expected O(f) rounds. Hence the total complexity of EEABA is O(n4) bit complexity and expected O(f) rounds.
Nevertheless, if we run this protocol for (O(n2)) sequential decisions it will amortize toO(n2) communication complexity
and O(1) termination because the coin will be perfect for most of the EEABA instances (at most f failures due to
asynchrony) which means that the n2 � f instances will terminate in an expected number of 2 rounds. Hence, we can
get the ABA with the properties de�ned in Lemma 1.3.

6.2 Asynchronous Distributed Key Generation

We build our ADKG protocol on top of EEABA by explicitly terminating the wDKG and agreeing on what HAVSS
instances contribute to the scheme. We can achieve this by extending the Asynchronous Common Subset (ACS) protocol
introduced by Ben-or et al [5]. In an ACS protocol, n processors have some initial value and they need to agree on a
5They do not give an implementation for their weak coin assumption, but instead use an external oracle.

Algorithm 5 Protocol ADKG for party Pi

1: upon initialization do
2: I � .A set of parties, initially all
3: K {} .The set of HAVSS shares that corresponds the the agreed instances
4: c 0 .A counter for the number of ABAs in which Pi decided
5: select random ri
6: invoke (i, in, share, ri) .Every party starts an HAVSS as a dealer

7: upon (ID .j, out, shared) do .The sharing phase of Pj ’s HAVSS completed
8: if Pj 2 I then
9: invoke ABA.j with 1
10: I I \ {Pj } .Remove instances already voted on

11: upon (ABA.j, deliver, 1) do
12: K K [{s ji } .This might block until the HAVSS delivers, but it will eventually terminate.
13: c c + 1
14: if c = n � f then
15: for all Pl 2 I do
16: invoke ABA.l with 0
17: I I \ {Pl } .Remove instances already voted on
18: if c = n then
19: output K

20: upon (ABA.j, deliver, 0) do
21: c c + 1
22: if c = n then
23: output K

subset of values to be adopted. Our Asynchronous Distributed Key Generation is similar, with the added restriction that
the values we agree on need to remain private (secret-shared), hence parties output the same set of parties source(v) and
maintain a private shares set � locally. For simplicity, we do not deal in this section with the speci�c details of how to a
generate a secret-key, public-key, and the commitments for veri�cation, which is fairly straightforward after we agree
on the set of HAVSS instances.

6.2.1 Definition. More formally, an Asynchronous Distributed Key Generation protocol is a one-shot consensus variant.
Each party is initialized with an ID.i of the HAVSS instance it should act as a dealer, as well as the full ID vector of
the HAVSS instances it should be a part of. For every party pi , the protocol outputs a private set of shares �i s.t. the
following is satis�ed except with negligible probability:

A(i): Validity. If an honest party outputs a set of shares � , then |� | � n � f and � includes only valid shares.
A(ii): Agreement. For every two honest parties Pi , Pj , if Pi and Pj output sets of shares �i and �j , respectively, then

source(�i) =source(�j).
A(iii): Liveness. If n � f correct parties start dealing shares and the adversary delivers all messages, then all correct

parties output a set of shares.
A(iv): Privacy. If an honest party pi outputs a set of shares �i and no honest party has revealed its output shares and

the secret it shared, then the adversary cannot compute the sum of secrets shared by parties in source(�i).

6.2.2 Technical Overview. We follow the ACS solution of Ben-Or et al [5], which consists of starting n parallel reliable
broadcasts, one for each party to act as the sender, where for each broadcast instance, they use a single ABA to agree
whether its value should be included in the set. In their protocol, parties invoke with 1 (success) every ABA that
corresponds to a reliable broadcast instance in which they deliver a value, and refraining from invoking with 0 any
ABA instance until n � f ABA instances have decided 1. Then, they invoke with 0 all other ABA instance and terminate
the ACS protocol once they decided in all ABA instances.

Our ADKG protocol is similar but instead of reliable broadcasts, we uses HAVSS instances. By the agreement and
liveness properties of the HAVSS, eventually there are n � f ABA instances which all honest parties invoke with 1 and
thus eventually n � f instances agree on 1 (all honest parties decide 1). Note that the properties of the binary ABA
guarantee that if all honest parties invoke it with 1, then they all eventually decide 1 (same for 0). This protocol has an
expected running time of O(lo�(n)). Additionally EEABA has an expected running time of O(1) when the network is
synchronized and an expected running time ofO(f)when the adversary is manipulating the message ordering hence the
full ADKG protocol has an expectedO(lo�n) running time without a network level adversary and anO(f + lo�n) = O(f)
running time under asynchrony. On a high-level the ADKG works as follows:

When a party is initialized for ADKG it also initializes n parallel ABA instances of Section 6.1 s.t. ABA.j will be
used to decide if HAVSS ID.j terminated successfully (all honest parties delivered a share that corresponds to the same
secret), and proceeds as follows:

(1) Once player Pi delivers an HAVSS share for Pj ’s instance he inputs 1 in ABA.j.
(2) Once Pi decides 1 in n-f ABA instances, it inputs 0 in every ABA instance it have not invoked yet.
(3) When Pi decides in all n ABA instances, pi outputs the subset K of shares that corresponds to ABA instance in

which it decided 1.

A detailed description of the protocol is given in Algorithm 5 and the proof is given in Appendix D.

Analysis. The cost of n parallel instances (where each instance costs a worst case of O(n3) and has an expected
O(n) running time) is O(n4) the same as the HAVSS step. Once the ADKG terminates the system can use the strong
common-coin generated to run VABA [1] and amortize the costs toO(n2). We know that validity, agreement and liveness
hold from ACS. Privacy holds from inclusion and privacy of the wDKG. With this we prove our main Theorem.

7 CONCLUSION

In this paper, we show a protocol that implements the �rst asynchronous Distributed Key Generation protocol. To
achieve this we show how to get the �rst AVSS protocol that supports thresholds f + 1 < k 2f + 1, the �rst Eventually
E�cient ABA which does not need a trusted setup and can also be amortized to the optimal cost if run O(n2) times in
sequence, and the �rst VABA that does not require a trusted setup.

ACKNOWLEDGEMENTS

We would like to thank Ittai Abraham for the discussions and guidance during the initial conception of the project,
especially for HAVSS. Furthermore, we would like to thank the anonymous reviewers for pointing out the relevance of
this work to MPC protocols.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzantine agreement. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing, pages 337–346, 2019.
[2] Abhinav Aggarwal, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Bootstrapping public blockchains without a trusted setup. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing, pages 366–368, 2019.
[3] Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. Brick: Asynchronous state channels. arXiv preprint arXiv:1905.11360, 2019.
[4] Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminating asynchronous byzantine agreement revisited. In Proceedings of

the 2018 ACM Symposium on Principles of Distributed Computing, pages 295–304. ACM, 2018.
[5] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resilience. In Proceedings of the thirteenth annual

ACM symposium on Principles of distributed computing, pages 183–192. ACM, 1994.
[6] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings of the third annual ACM symposium on Principles of distributed

computing, pages 154–162. ACM, 1984.
[7] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous veri�able secret sharing and proactive cryptosystems. In

Proceedings of the 9th ACM conference on Computer and communications security, pages 88–97. ACM, 2002.
[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and e�cient asynchronous broadcast protocols. In Annual International

Cryptology Conference, pages 524–541. Springer, 2001.
[9] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement using

cryptography. Journal of Cryptology, 18(3):219–246, 2005.
[10] Christian Cachin and Stefano Tessaro. Asynchronous veri�able information dispersal. In 24th IEEE Symposium on Reliable Distributed Systems

(SRDS’05), pages 191–201. IEEE, 2005.
[11] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In STOC, volume 93, pages 42–51. Citeseer, 1993.
[12] Ashish Choudhury. Optimally-resilient unconditionally-secure asynchronous multi-party computation revisited. Cryptology ePrint Archive, Report

2020/906, 2020. https://eprint.iacr.org/2020/906.
[13] Ashish Choudhury and Arpita Patra. An e�cient framework for unconditionally secure multiparty computation. IEEE Transactions on Information

Theory, 63(1):428–468, 2016.
[14] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Public-Key Cryptography–PKC 2016, pages 183–207. Springer, 2016.
[15] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-party computation based on one-way functions. In

International Conference on the Theory and Application of Cryptology and Information Security, pages 998–1021. Springer, 2016.
[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. JACM, 1985.
[17] Bryan Ford, Philipp Jovanovic, and Ewa Syta. Que sera consensus: Simple asynchronous agreement with private coins and threshold logical clocks.

arXiv preprint arXiv:2003.02291, 2020.
[18] Juan A Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the blockchain, with applications to consensus and fast

pki setup. In IACR International Workshop on Public Key Cryptography, pages 465–495. Springer, 2018.
[19] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation for discrete-log based cryptosystems. In

International Conference on the Theory and Applications of Cryptographic Techniques, pages 295–310. Springer, 1999.
[20] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin

Tomescu. Sbft: a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP international conference on dependable systems and
networks (DSN), pages 568–580. IEEE, 2019.

[21] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related problems. Technical report, Cornell University, 1994.
[22] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-party computation with optimal resilience. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 322–340. Springer, 2005.
[23] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation with quadratic communication. In International

Colloquium on Automata, Languages, and Programming, pages 473–485. Springer, 2008.
[24] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the wild. IACR Cryptology ePrint Archive, 2012:377, 2012.
[25] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho�, Linus Gasser, and Bryan Ford. Enhancing bitcoin security and performance

with strong consistency via collective signing. In 25th {usenix} security symposium ({usenix} security 16), pages 279–296, 2016.
[26] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford.

Calypso: Auditable sharing of private data over blockchains. IACR Cryptol. ePrint Arch., Tech. Rep, 209:2018, 2018.
[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized

ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.
[28] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed non-interactive adaptively-secure threshold signatures

with short shares. Theoretical Computer Science, 645:1–24, 2016.
[29] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine consensus with t< n/3, o (n2) messages,

and o (1) expected time. Journal of the ACM (JACM), 62(4):31, 2015.

[30] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. E�cient statistical asynchronous veri�able secret sharing with optimal resilience. In
International Conference on Information Theoretic Security, pages 74–92. Springer, 2009.

[31] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.
[32] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. InWorkshop on the Theory and Application of of Cryptographic Techniques,

pages 522–526. Springer, 1991.
[33] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319,

1990.
[34] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Kho�, Michael J Fischer, and Bryan Ford. Scalable

bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP), pages 444–460. Ieee, 2017.
[35] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstu�: Bft consensus with linearity and responsiveness. In

Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–356, 2019.

A FULL COMPUTATIONAL MODEL

Following [1, 8, 9], we use standard modern cryptographic assumptions and de�nitions. We model the computations
made by all system components as probabilistic Turing machines, and bound the number of computational basic steps
allowed by the adversary by a polynomial in a security parameter k. A function �(k) is negligible in k if for all c > 0
there exists a k0 s.t. �(k) < 1/kc for all k > k0. A computational problem is called infeasible if any polynomial time
probabilistic algorithm solves it only with negligible probability. Note that by the de�nition of infeasible problems, the
probability to solve at least one such problem out of a polynomial in k number of problems is negligible. Intuitively,
this means that for any protocol P that uses a polynomial in k number of infeasible problems, if P is correct provided
that the adversary does not solve one of its infeasible problems, then the protocol is correct except with negligible
probability. We assume that the number of parties n is bounded by a polynomial in k .

Communication. We assume asynchronous links controlled by the adversary, that is, the adversary can see all
messages and decide when and what messages to deliver. In order to �t the communicationmodel with the computational
assumptions, we restrict the adversary to perform no more than a polynomial in k number of computation steps between
the time a messagem from an honest party pi is sent to an honest party pj and the timem is delivered by pj 6. In addition,
for simplicity, we assume that messages are authenticated in a sense that if an honest party pi receives a messagem
indicating thatm was sent by an honest party pj , thenm was indeed generated by pj and sent to pi at some prior
time. This assumption is reasonable since it can be easily implemented with standard symmetric-key cryptographic
techniques in our model.

Termination. Note that the traditional de�nition of the liveness property in distributed system, which requires that
all correct (honest) parties eventually terminate provided that all messages between correct (honest) parties eventually
arrive, does not make sense in this model. This is because the traditional de�nition allows the following:

• Unbounded delivery time between honest parties, which potentially gives the adversary unbounded time to
solve infeasible problems.

• Unbounded runs that potentially may consist of an unbounded number of infeasible problems, and thus the
probability that the adversary manages to solve one is not negligible.

Following Cachin et al. [8, 9], we address the �rst concern by restricting the number of computation steps the adversary
makes during message transmission among honest parties. So as long as the total number of messages in the protocol is
polynomial in k , the error probability remains negligible. To deal with the second concern, we do not use a standard

6Note that although this restriction gives some upper bound on the communication in terms of the adversary local speed, the model is still asynchronous
since speeds of di�erent parties are completely unrelated.

liveness property in this paper, but instead we reason about the total number of messages required for all honest parties
to terminate. We adopt the following de�nition from [8, 9]:

De�nition A.1 (Uniformly Bounded Statistic). Let X be a random variable. We say that X is probabilistically uniformly
bounded if there exist a �xed polynomial T (k) and a �xed negligible functions � (l) and �(k) such that for all l ,k � 0,

Pr [X > lT (k)] � (l) + �(k)

With the above de�nition Cachin et al. [8, 9] de�ne a progress property that makes sense in the cryptographic settings:

• E�ciency: The number of messages generated by the honest parties is probabilistically uniformly bounded

The e�ciency property implies that the probability of the adversary to solve an infeasible problem is negligible, which
makes it possible to reason about the correctness of the primitives’ properties. However, note that this property can
be trivially satis�ed by a protocol that never terminates but also never sends any messages. Therefore, in order for a
primitive to be meaningful in this model, Cachin et al. [8, 9] require another property:

• Termination: If all messages sent by honest parties have been delivered, then all honest parties terminated.

B HAVSS PROOFS

L���� B.1. The protocol in Algorithms 1 and 2 satisfy H(i) (Liveness).

P����. If the dealer pd is honest, it follows directly by inspection of the protocol that all honest parties complete the
sharing ID.d , provided all parties initialize the sharing ID.d and the adversary delivers all associated messages.

⇤

L���� B.2. The protocol in Algorithms 1 and 2 satisfy H(ii) (Agreement).

P����. We show that if some honest party pi completes the sharing of ID.d , then all honest parties will complete
the sharing of ID.d , provided all parties initialize the sharing ID.d and the adversary delivers all associated messages.
Consider two cases:

• First, pi completes the sharing directly (line 29 or line 35 in Algorithm 1). Then it has received n � f valid ready
messages that agree on some C̄ from a set of at least n � f parties S . Since we have at most f Byzantine parties,
we get that S contains at least n � 2f honest parties who have witnessed k valid echo messages and thus each
such party will also complete the sharing upon reception of n � f ready messages. By the algorithm in step 4
(line 28 or 34), after receiving n � f (signed) valid ready messages, pi sends them to all other parties. Therefore,
every honest party in S eventually receives n � f valid ready messages and thus eventually outputs shared. It is
left to show that honest parties not in S will terminate as well. Consider such party pj that never sent a ready
message. We already showed that eventually f + 1 honest parties in S output shared, which means that they had
a correct b(j) polynomial and they will eventually sent a shared message with a valid point to pj . Therefore, pj
eventually gets at least f + 1 consistent shared messages, recovers its share in step 5 and terminates as well (line
36-43).

• Second, pi complete the sharing indirectly (line 36-43). Then we know that pi gets at least f + 1 consistent shared
messages, meaning that pi gets at least one such message from an honest party pj . By step 4, pj was part of S
and terminated (line 29 or 35). Therefore, by the �rst case, we get that all honest eventually output shared.

⇤

L���� B.3. Suppose an honest party Pi sends a shared message containing Ci and a distinct honest party Pj sends a
shared message containing Cj . Then Ci = Cj .

P����. We prove the lemma by contradiction. Suppose Ci , Cj . Pi outputs the shared for Ci only if it has received
at least n � f ready messages for Ci or veri�ed Si�C that contains n � f signed ready messages for Ci . Pj outputs the
shared forCj only if it has received at least n� f readymessage forCj or veri�ed Si�C that contains the on n� f signed
ready messages for Cj . From the n � f ready messages for Ci at least n � 2f are generated by honest parties. From the
n � f ready messages for Cj at least n � 2f are generated by honest parties. Since there are at most f malicious parties
and n > 3f this is only possible if an honest party signed two contradicting ready messages. A contradiction to the
code of the protocol.

⇤

L���� B.4. The protocol in Algorithms 1 and 2 satisfy H(iii) (Correctness).

P����. Let J be the index set of the k honest parties that have completed the sharing and let sj be the shares of � . To
prove the �rst part, suppose the dealer has shared s and is honest throughout the sharing stage. Towards a contradiction
assume z , s .

Because the dealer is honest, it is easy to see that every echo message sent from an honest Pi to Pj contains
C,u(i, j),u(j, i), as computed by the dealer. Furthermore, if the parties in � computed their shares only from these echo
messages, then sj = aj (0) = u(j, 0). But since z , s , at least one honest party Pi computed a polynomial ai (�) , u(i,�);
this must be because Pi accepted an echo or ready message from some corrupted Pm containing am , u(m, i). Since Pi
has evaluated verify-point to true, we have �a =

Œf
j=0(Cjl)i

j
On the other hand, the dealer has sent polynomials am

to Pm satisfying �am =
Œf

j=0(C̄jl)i
j
. However, from Lemma B.3 and the fact that the dealer is honest we know that

C̄ = C. Hence Pm knows an am , a such that �a = �am , however this is a collision to the commitment scheme which
should be hard (binding commitment). A contradiction.

To prove the second part, assume by a way of contradiction that two distinct honest parties Pi and Pj reconstruct
values zi and zj such that zi , zj . This means that they have received two distinct sets Si = (l , s(i)l) Sj = (l , s(j)l)) and
of k shares each, which are valid with respect to the unique commitment matrix C used by Pi and Pj (the uniqueness
of C follows from Lemma B.3). According to the protocol, zi and zj are interpolated from the sets Si , Sj respectively.
Since the shares in are valid, it is easy to see that �zi = C00 = �zj , however the commitment scheme is binding. A
contradiction.

⇤

L���� B.5. The protocol in Algorithms 1 and 2 satisfy H(iV) (Privacy).

P����. If the dealer pd is honest, it follows directly by inspection of the protocol that the dealer generated a
polynomial with degree (t , f) then no set of f shares can reconstruct it. Furthermore, by inspection of the code, no
honest party reveals its shares and polynomials to any unauthorized party. Finally, the lemma follows from the hiding
property of the commitment scheme. That is, the adversary is unable to recover a share or points on the polynomial by
looking at C.

⇤

C EPCC PROOFS

L���� 5.1. If a valid coin for some sq is generated, then at least 2f + 1 valid share-coins associated with some bit vector
V for sq were previously generated, f + 1 of which by honest parties.

P����. By the code, Pi either gets 2f + 1 share-coin messages with correct shares associated with some bit vector
V and sq or gets a coin message with valid coin associated with some bit vector V and sq. In the second case, by the
generate-coin and verify-coin functions, we know that at least 2f + 1 valid share-coins associated with V and sq are
needed to produce the valid coin. In addition, note that by the code, Pi ignores bit vectors that include less than 2f + 1
ones. Therefore, we only need to show that the adversary cannot produce more than f valid share-coins associated
with sq and some bit vector V that includes at least 2f + 1 ones (before honest parties do it).

By the H(iv) property of HAVSS (privacy), the adversary cannot learn the shares of honest parties that were delivered
in HAVSS instances with honest dealers. SinceV includes at least 2f + 1 ones, we get that the associated keys of honest
parties include shares from HAVSS instances with honest dealers. Therefore, the adversary cannot learn the keys of
honest parties that are associated with V , and thus cannot produce more than f valid share-coins associated with V .

⇤

L���� 5.2. The protocol in Algorithm 4 satis�es E(i) (Unpredictability).

P����. First, due to W(i) (Inclusion), we know that any valid shared private-key has contribution of at least f + 1
honest parties who never reveal them, hence the adversary does not know the shared private-key.

Second, consider an honest party Pi who’s coin-toss(sq) invocation returns a coin �. By Lemma 5.1, at least f + 1
share-coins for sq were previously generated. By the code, an honest party does not generate a share-coin for sq before
coin-toss(sq) is invoked. Therefore, the adversary can neither know the private-key nor predict � before at least one
honest party invokes coin-toss(sq).

⇤

L���� 5.3. For every sq, if an invocation of coin-toss(sq) by an honest party Pi returns, then all coin-toss(sq) invocations
by honest parties eventually return.

P����. Assume by a way of contradiction that some invocation of coin-toss(sq) by an honest party Pj never returns.
By the code, before Pi returns, it forwards the coin to all other parties in a coin message, and thus all other honest
parties eventually get this messages. In addition, since Pi is honest, we know that the coin is valid and associated with a
bit vector that includes at least 2f + 1 ones. Therefore, Pj will eventually get this coin, successfully verify it and return
it. A contradiction.

⇤

L���� 5.4. The protocol in Algorithm 4 satis�es E(ii) (Termination).

P����. Assume by a way of contradiction that some invocation of coin-toss(sq) by an honest party Pj never returns.
By Lemma 5.3, we get that no invocation of coin-toss(sq) by an honest party returns. By the W(iii)(Eventual Agreement)
property of the wDKG sub-protocol, every party Pi eventually outputs an ultimate prediction and never outputs a
prediction again. Moreover, by W(iii), we also know that all the ultimate predictions of honest parties are matching,
meaning that they are associated with the same bit vector V 0. In addition, by property W(i), we get that V 0 includes at
least 2f + 1 ones.

Therefore, by the code, all honest parties eventually generate and send to all other parties a valid coin-share for sq
that is associated with V 0. Hence, Pj will eventually get 2f + 1 valid coin shares for sq that are associated with a valid
bit vector (includes 2f + 1 ones), and thus eventually generate a coin and return. A contradiction.

⇤

L���� 5.5. If an honest party generates a share-coin associated withV , then it will never generate a share-coin associated
with V 0 + V .

P����. By the code, at any point during the EPCC algorithm, an honest party generates share-coins that are
associated with the bit vector that were produced (via get-key) from the last prediction it received from the wDKG
sub-protocol. By property W(ii) (Containment) of the wDKG sub-protocol, we know that predictions outputted from
the wDKG are related by containment, and thus the lemma follows.

⇤

L���� 5.6. If for some sq, two coin-toss(sq) invocations by two honest parties return di�erent valid coins �1 , �2, then
there are two bit vectors V1,V2 s.t. (1) V1 ⇢ V2; and (2) f + 1 honest parties generated valid share-coins associated with V1
for sq and f + 1 honest parties generated valid share-coins associated with V2 for sq.

P����. By Lemma 5.1, �1 implies that at least 2f + 1 valid share-coins associated with some bit vectorV1 for sq were
previously generated, f + 1 of which by honest parties; and �2 implies that at least 2f + 1 valid share-coins associated
with some bit vector V2 for sq were previously generated, f + 1 of which by honest parties. Therefore, there is at least
1 honest party Pi that generated a share-coin for sq that is associated with V1 and another share-coin for sq that is
associated with V2. Since �1 , �2, we get by H(iii) (HAVSS correctness) that V1 , V2. Therefore, by Lemma 5.5, V1 and
V2 are related by containment.

⇤

L���� 5.7. For every 1 k f + 1, if there are k sequence numbers sq for which two invocations of coin-toss(sq) by
honest parties output di�erent coins, then there is a bit vector V of size at least 2f + 1 + k such that f + 1 honest parties
generated valid share-coins associated with V .

P����. We prove by induction on k .
Base: we show that if there is one sq for which two invocations of coin-toss(sq) by honest parties output di�erent

coins then there is some vector V of size at least 2f + 2 such that f + 1 honest parties generated valid share-coins
associated with V . By the code, honest parties only generate share-coins that are associated with bit vectors that were
produced from wDKG prediction outputs. Thus, by property W(i) (Inclusion) of wDKG, honest parties only generate
share-coins that are associated with bit vectors of size at lest 2f + 1. Therefore, the base case follows from Lemma 5.6.
Step: Assume the lemma holds for some 1 k f , we show that the lemma holds for k + 1. First note that sine k f ,
we get that the total number number of crytpographic signatures is polynomial in the security parameter, and thus all
previous lemmas hold except with negligible probability. Let sqk and skk+1 be the kth and (k + 1)th sequence numbers
for which two invocations of coin-toss by honest parties output di�erent coins, respectively. By the well-formed nature
of EPCC we are guaranteed that any honest party invokes coin-toss(sqk+1) only after coin-toss(sqk) returns. By the
induction assumption, there is a bit vector V k of size at least 2f + 1 + k such that f + 1 honest parties generated valid
share-coins associated with V k before their coin-toss(sqk) invocation returns. So by Lemma 5.5 and by well-formance,
there are f + 1 honest parties that do generate share-coins associated with bit vectors with less than 2f + 1 + k entries

for skk+1. By Lemma 5.1, we need 2f + 1 valid shares in order to generate a valid coin for skk+1. Thus, since every bad
party can generate at most one valid share-coin, we get that only coins that are associated with bit vectors of size at
least 2f + 1 + k can be generated for skk+1. Therefore, the lemma follows from lemma 5.6.

⇤

L���� 5.8. The protocol in Algorithm 4 satis�es E(iii) (Eventual Agreement).

P����. Assume by a way of contradiction that there are f + 1 sequence numbers sq for which two invocations of
coin-toss(sq) by honest parties return di�erent coins. By Lemma 5.7, then there is a bit vector V of size at least 3f + 2
such that f + 1 honest parties generated valid share-coins associated with V . Since the number of parties is (and thus
HAVSS) instances is 3f + 1, we get a contradiction to the bit vector de�nition.

⇤

D ADKG PROOFS

L���� D.1. All honest parties decide 1 in at least n � f ABA instances.

P����. Consider two case:

• First, there is an honest party that inputs 0 in some ABA instance. By the code, it decides 1 in at least n � f ABA
instances. Therefore, by the ABA Agreement property all honest parties decide 1 in at least n � f ABA instances.

• Second, no honest party invoke an ABA with 0. By the H(i) (Liveness) property of HAVSS, there are n � f HAVSS
instance for which all honest parties deliver a share, and thus input 1 in the corresponding ABA instances.
Therefore, by the Validity and Termination properties all honest parties decide 1 in these n � f ABA instances.

⇤

L���� D.2. The protocol in Algorithm 5 satis�es A(i) (Validity).

P����. Consider a party pi that outputs a set of shares � . By the code, since pi outputs a value, it outputs a decision
in all ABA instances. Moreover, � includes all the shares of HAVSS for which the corresponding ABA decides 1. Thus,
we need to prove that pi decides 1 in at least n � f ABA instances. The Lemma follows from Lemma D.1.

⇤

L���� D.3. The protocol in Algorithm 5 satis�es A(ii) (Agreement).

P����. By the code, parties include all the shares of HAVSS instances for which they output 1 in the corresponding
ABA instances. Therefore, the lemma follows from the ABA Agreement property.

⇤

L���� D.4. If ABA.j outputs 1, then all honest parties eventually deliver a share for the HAVSS instance for which pj is
the dealer.

P����. By the ABA validity, at least one honest party input 1 to ABA.j. Therefore there is at least one honest party
who delivers a share for the HAVSS instance for which pj is the dealer. The Lemma follows from the Agreement (Hii)
property of HAVSS.

⇤

L���� D.5. The protocol in Algorithm 5 satis�es A(iii) (Liveness).

P����. By Lemma D.4, all parties output provided they decide in all the ABA instances. Thus, we need to prove that
all ABA instance eventually terminate. Therefore, by the termination property of ABA, we only need to prove that all
honest party invoke all ABA instances. Thus, by the code, we need to prove that at least n � f ABA instance decide 1.
The Lemma follows from Lemma D.1.

⇤

L���� D.6. The protocol in Algorithm 5 satis�es A(iv) (Privacy).

P����. Consider an honest party pi that outputs a set of shares �i . By the Validity property, |�i | � n � f , and thus
source(�i) contains at least 1 honest party. The lemma follows from H(iV) (Privacy) of HAVSS.

⇤

