COSAC: COmpact and Scalable
Arbitrary-Centered Discrete Gaussian Sampling
over Integers

Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad

Faculty of Information Technology, Monash University,
{raymond.zhao,ron.steinfeld,amin.sakzad }@monash.edu

Abstract. The arbitrary-centered discrete Gaussian sampler is a funda-
mental subroutine in implementing lattice trapdoor sampling algorithms.
However, existing approaches typically rely on either a fast implementa-
tion of another discrete Gaussian sampler or pre-computations with re-
gards to some specific discrete Gaussian distributions with fixed centers
and standard deviations. These approaches may only support sampling
from standard deviations within a limited range, or cannot efficiently
sample from arbitrary standard deviations determined on-the-fly at run-
time.

In this paper, we propose a compact and scalable rejection sampling algo-
rithm by sampling from a continuous normal distribution and performing
rejection sampling on rounded samples. Our scheme does not require pre-
computations related to any specific discrete Gaussian distributions. Our
scheme can sample from both arbitrary centers and arbitrary standard
deviations determined on-the-fly at run-time. In addition, we show that
our scheme only requires a low number of trials close to 2 per sample
on average, and our scheme maintains good performance when scaling
up the standard deviation. We also provide a concrete error analysis of
our scheme based on the Rényi divergence. We implement our sampler
and analyse its performance in terms of storage and speed compared
to previous results. Our sampler’s running time is center-independent
and is therefore applicable to implementation of convolution-style lat-
tice trapdoor sampling and identity-based encryption resistant against
timing side-channel attacks.

Keywords: Lattice-based crypto - Discrete Gaussian sampling - Implementa-
tion - Efficiency

1 Introduction

The arbitrary-centered discrete Gaussian sampling algorithm is an important
subroutine in implementing lattice trapdoor samplers, which is a fundamental
tool employed by lattice-based cryptography applications such as digital signa-
ture [20] and identity-based encryption (IBE) [3,7]. However, previous works
focused more on optimising the lattice trapdoor sampling algorithms, but the

The final authenticated publication is available online at
https://doi.org/10.1007/978-3-030-44223-1_16.

implementation details of the arbitrary-centered discrete Gaussian sampling
were not well addressed. Typically, arbitrary-centered discrete Gaussian sam-
pling approaches need to perform either rejection sampling [5,8,12,20,21] or
pre-computations related to some specific discrete Gaussian distributions [14,
15,17]. However, both types of methods have issues in the implementation: re-
jection sampling based methods are either slow due to the large number of trials
per sample on average (typically, about 8-10) [8], requiring high number of bit
operations to fulfill the precision needed by cryptography applications and not
being constant-time [12], or relying on a fast implementation of another discrete
Gaussian sampler [5,20,21]. On the other hand, pre-computation based meth-
ods consume at least few kilobytes (KB) of memory to store the tables and have
the following limitations: the pre-computation table size in [14, 15] grows signifi-
cantly when scaling up the standard deviation and this approach cannot support
arbitrary standard deviations determined on-the-fly at run-time, while it is un-
clear how to efficiently implement the offline phase in [17] if the full algorithm
needs to be executed during the run-time.

Recently the rounded Gaussian sampling (i.e. sampling from a continuous
normal distribution and rounding the samples) was adapted by lattice-based
digital signatures [11, 25]. Compared with a previous discrete Gaussian sampling
algorithm [6], the rounded Gaussian sampler in [11] showed impressive perfor-
mance with regards to the running speed and can be implemented in constant-
time. The implementation in [11] is also notably simple (within less than 40 lines
of C++ source code). However, since it is unclear whether a rounded Gaussian
distribution can be directly adapted to implement a lattice trapdoor, another in-
teresting question is: can one employ the existing efficient (rounded) continuous
Gaussian distribution sampling techniques to implement an arbitrary-centered
discrete Gaussian sampler?

1.1 Contribution

In this paper, we introduce a novel arbitrary-centered discrete Gaussian sampling
algorithm over integers by generalising ideas from [4]. Our scheme samples from
a continuous normal distribution and performs rejection sampling on rounded
samples by adapting techniques from [11,25]. Compared to previous arbitrary-
centered discrete Gaussian sampling techniques, our scheme has the following
advantages:

— Our sampling algorithm does not require any pre-computations related to a
specific discrete Gaussian distribution or a specific standard deviation, and
both the center and the standard deviation can be arbitrary determined
on-the-fly at run-time.

— In addition, we show in Section 4 that our sampling method only requires
a low number of trials close to 2 per sample on average compared to about
8-10 on average in the rejection sampling with regards to a uniform distri-
bution, and the rejection rate of our algorithm decreases when scaling up
o. Therefore, our sampling algorithm is not limited to small ¢ and can be
adapted to sample from larger o without affecting the efficiency.

— Since sampling from a continuous normal distribution is a well-studied topic
[22] and the sampling algorithms are implemented in many existing software
libraries (including the C++11 STL) and hardware devices, one can easily
implement our scheme by employing existing tools.

— We provide a center-independent run-time implementation of our algorithm
without timing leakage of the center and it can be adapted to achieve timing
resistant implementation of convolution-style lattice trapdoor sampler [16,
18] and IBE [3].

2 Preliminaries

Let peo () = exp (— (z—c)?/ (202)) be the (continuous) Gaussian function
with center ¢ and standard deviation o. We denote the continuous Gaussian (nor-
mal) distribution with center ¢ and standard deviation o by A (c, 02), which
has the probability density function p.(z)/ (ov27). We denote the discrete
Gaussian distribution on integer lattices with center ¢ and standard deviation
o by: Do (%) = peo (x) /S, where S = peo(Z) = >} cp peo (k) is the nor-
malisation factor. We omit the center in notations (i.e. p,(z) and D,(z)) if
the center is zero. In addition, we denote the uniform distribution on set S by
U(S). Sampling from a distribution P is denoted by z <= P. We define |z]
as the nearest integer to € R. We denote Z* as the integer set {1,...,00}
and Z~ as the integer set {—oc,...,—1}, respectively. Also, for a lattice A
and any € € RT, we denote the smoothing parameter n.(A) as the smallest
s € R* such that P1)(sv/2r) (A*\ {0}) < ¢, where A* is the dual lattice of A:

A ={weR": Ve € A,x - w € Z} [18]. An upper bound on 7. (Z) is given by
[18]: 1.(2) < /(2 +2/e) .

Theorem 1 (Adapted from [18], Lemma 2.4). For any e € (0,1) and ¢ € R,
if 0 > ne (Z) /2w, then peo (Z) = [}I_Z, 1} po (Z), and py (Z) is approzimately
7 po(@)da = ov/2m.

Definition 1 (Relative Error). For two distributions P and Q such that

Supp(P) = Supp(Q), the relative error between P and Q is defined as: A(P||Q) =

P(x)—Q(x
MaXzeSupp(P) l (é(w)() .

Definition 2 (Rényi Divergence [2,19]). For two discrete distributions P
and Q such that Supp(P) C Supp(Q), the Rényi divergence (RD) of order o €

(1,+00) is defined as: Ry (P||Q) = (ZJJESupp(P) %) =
Theorem 2 (Relative Error Bound, Adapted from [19], Lemma 3 and
Eq. 4). For two distributions P and Q such that Supp(P) = Supp(Q), we have:

R, (P||Q) < (1 + %W)ﬁ. The right-hand side is asymptotically

equivalent to 1 + o - (A (P]]Q))* /2 as A(P||Q) — 0. In addition, if a crypto-
graphic search problem using M independent samples from Q is (A + 1)-bit se-
cure, then the same problem sampling from P will be A-bit secure if Rox(P||Q) <
1+ 1/(4M).

3 Previous Work

3.1 Rejection Sampling

The classic rejection sampling algorithm [8,23] can sample from an arbitrary-
centered discrete Gaussian distribution. To sample from D, ,, one can sample
x <> U ([c — To,c+ To] N Z) and accept x with probability p. () as the output,
where 7 is the tail-cut factor (typically, about 10-12). However, this method
is slow as the number of trials is 27/y/27 on average (about 8-10 for typical
7). Recently an algorithm sampling exactly from D., without floating-point
arithmetic was presented by [12], which also has a lower rejection rate compared
to the classic rejection sampling algorithm. However, this algorithm needs high
number of bit operations to satisfy the precision requirements in cryptography
applications. In addition, the original algorithm [12] is not constant-time. If
one attempts to implement the scheme in constant-time, the implementation
might be inefficient, since the implementation may always need to perform the
worst-case (i.e. maximum) number of bit operations sufficient to the precision
requirement of the target cryptography application.

To reduce the rejection rate, recent works performed rejection sampling
with regards to some distributions much closer to D., compared to a uni-
form distribution: The Falcon signature [20] and its constant-time variant [21]
adapted a rejection sampling method with regards to bimodal Gaussians: to
sample from D., where ¢ € [0,1], one can choose some ¢/ > ¢ and sample
T ’D: (i.e. the discrete Gaussian distribution D, restricted to the domain
Z* U {0}). The algorithm computes 2’ = b+ (2b — 1) - & where b <> U ({0,1}).
The authors of [20,21] showed that z’ has a bimodal Gaussian distribution
close to the target distribution. The algorithm then accepts z’ with probabil-

2 ! 2
- (2'—c)

202 202

ity C(o) - exp < > as the output, where the scaling factor C'(o) =

min(c)/o when sampling from multiple o. This scheme has the average accep-
tance rate C(0) - pe.o (Z) / (2p0r (ZT)), which is proportional to min(c)/o” [20,
21]. However, if the application needs to sample from different o, the acceptance
probability is high only when min(o) and max(o) are sufficiently close. This is
not an issue in the Falcon signature, since the parameters in Falcon implies ¢’
is very close to max(o) and min(o)/ max(c) = 0.73 [21]. However, if the gap
between min(o) and max(o) is large, since ¢’ > max(c), this algorithm might
have a low acceptance rate.!

! One may employ different implementations for different o, similar to the implemen-
tation of Falcon.

A recent work [5] extended the binary sampling algorithm from the BLISS sig-
nature [6] to support non-zero arbitrary centers. For any center ¢ € R, sampling
from D, , is equivalent to sampling from D.,. , + |c|, where cp = c—|¢| € [0,1)
is the fractional part of ¢. In addition, for ¢ € [1/2,1), sampling from D,,, , is
equivalent to sampling from 1 — D., , where ¢ = 1 —cp € (0,1/2]. A modi-
fied binary sampling scheme [5] can then be adapted to sample from D, with
any ¢ € (0,1/2], in which the average number of trials is upper-bounded by:

o2 . _Poo (Z+) _ : s
50053 " F/nrie1’ where 09 = 4/1/(21In2) is a fixed parameter used by the bi

nary sampling algorithm [5,6] and o = ko for some k € ZT. This upper-bound
is about 1.47 for large o [5].

3.2 TwinCDT

The authors of [14, 15] suggested a variant of the Cumulative Distribution Table
(CDT) method [4] with multiple pre-computed tables. These algorithms will
have two phases: online and offline. To be more specific, for ¢ € [0,1), during
the offline phase, the algorithm pre-computes multiple CDT of D;/, ,, where
i €{0,...,n—1} and n € Z" is sufficiently large. During the online phase, the
algorithm picks a sample generated from either D, c—|c|)|/n,0 OF Drn(e—[c))]/n.0
as the output. Although the algorithm is very fast compared to other approaches,
however, o is fixed during the offline computation and thus this algorithm cannot
support sampling from D, , with both arbitrary c and o determined on-the-fly at
run-time. Another issue is that the pre-computation table size grows significantly
when scaling up o (see Table 2 in Section 5) and therefore the algorithm is not
scalable.

3.3 Convolution

A recursive convolution sampling scheme for D.. , was presented in [17] as follows:

suppose the center ¢ has k fractional bits. Let o9 = o/ Zf:ol 272 One can

sample zj <= D, », Where ¢;, = 2k=1.¢ then use yp = 27*1. 2, to round ¢ to a

new center ¢’ = ¢—y, with ¥’ = k—1 fractional bits. Set ¢ = ¢ and k = &’ in the
next iteration until k£ = 0, and Zle y; will be a sample distributed as D, ,. The
authors of [17] separated this algorithm into an online phase and an offline phase,
where the offline phase will generate samples x; in batch and the online phase will
compute the linear combinations of x; for ¢ € {1,..., k}. The online phase is very
fast and can be implemented in constant-time. However, for implementations
where both sampling from D, », and computing the linear combinations need
to be carried during the run-time, it is unclear how to efficiently implement the
De, .0, sampling algorithm in constant-time (which is another discrete Gaussian
sampler supporting a small amount of centers ¢;). The offline batch sampler also
consumes significant amount of memory (see Table 2 in Section 5).

Algorithm 1 Rejection sampler adapted from [4], pg. 117, ch. 3

Input: Standard deviation o € RY.
Output: A sample z distributed as Pr[X = z] = c-exp (— (2| + 1/2)? / (20%)).
1: function SAMPLER(0)
2: Sample z <> N (0,02).
Sample r < U ([0,1)).
Let Y = (||2]| 4+ 1/2)% — 22
if r <exp (—Y/ (20°)) then
Let z = |z].
else
goto 2.
9: end if
10: return z.
11: end function

4 Proposed Algorithm

In the textbook [4], the author defined a variant of the discrete Gaussian dis-
tribution as Pr{X =2z] = ¢ - exp (— (2] +1/2)%/ (202)>, where z € Z and
c is the normalisation constant, i.e. Pr[X = 2] oc p_y/5,(2) for z > 0 and
Pr[X = 2] & p1/2,,(2) for z < 0. A rejection sampling algorithm (see Algorithm
1) was provided by [4] with rejection probability less than (2/0) - y/2/7 for such
a distribution, which is fast for large o (see Appendix B for the proof).

Here we generalise Algorithm 1 to sample from D, ,(z). By removing the
absolute value and replacing the fixed center —1/2 with a generic center ¢ in
Algorithm 1, we observe that Y’ = (|] + ¢)®> — 2% > 0 when (¢ > 1/2,z > 0) or
(¢ < =1/2,2 < 0). Therefore, we can replace Y with Y’ and perform a similar
rejection sampling to Algorithm 1 when sampling from D, ,(z) for some ¢ and
z = |z]. To extend Algorithm 1 to support all ¢ € R and z € Z, we first compute
cr = |c] and ¢p = ¢f — ¢, where cp € [—1/2,1/2]. Then we can sample from
D_¢. - instead, since D, , = D_., » + c;. To sample from D_., , for all cp €
[—1/2,1/2], we shift the center of the underlying continuous normal distribution,
i.e. sampling y <> N (£1,0?), and perform a rejection sampling over z = |y]
with acceptance rate exp (—Y"/ (20?)) where Y = (|y] + cr)? — (yF1)? (we
also need to ensure Y” > 0 before performing this rejection sampling). The
sampling algorithm for D_.,, , is presented in Algorithm 2. Note that the output
of Algorithm 2 is restricted to the domain Z \ {0}. Therefore, the algorithm
needs to output 0 with probability D_., »(0). We present the full algorithm
in Algorithm 3. Since both Algorithm 2 and Algorithm 3 do not require pre-
computations related to o, our scheme can support arbitrary standard deviations
determined on-the-fly at run-time in addition to arbitrary centers.

Theorem 3. The output z sampled by Algorithm 2 s distributed as
D_cp.o (Z\{0}). The output of Algorithm 3 is distributed as D -(Z).

Algorithm 2 D_., , (Z\ {0}) sampler

Input: Center cp € [—1/2,1/2]. Standard deviation o € R*.
Output: A sample z distributed as D_., o, restricted to the domain Z \ {0}.
1: function ROUNDINGSAMPLER(cF, 0)

2: Sample z < N(0,1).
3: Sample b <= U ({0,1}).
4: if b =0 then
5: Let y=0-2— 1.
6: if y > —1/2 then
7 goto 2.
8: end if
9: Sample r < U ([0, 1)).
10: Let Vi = (|y] + ¢r)® — (y+ 1)°
11: if r <exp(—Y1/(20?)) then
12: Let z = |y].
13: else
14: goto 2.
15: end if
16: else
17: Let y=0- -2+ 1.
18: if y < 1/2 then
19: goto 2.
20: end if
21: Sample r <= U ([0, 1)).
22: Let Y2 = (|y] + cr)® — (y — 1)°.
23: if r < exp (—Yg/ (202)) then
24: Let z = |y].
25: else
26: goto 2.
27: end if
28: end if
29: return z.

30: end function

Proof. When b = 0, y is distributed as N (—1, 02). For step 11 in Algorithm 2,
we have Y1 = (|y] + c¢p)’—(y +1)° > 0for any cp € [—1/2,1/2] wheny < —1/2.
Therefore, the rejection condition exp (—Y;/ (20%)) € (0,1]. Let 2o = [y]. We
have the output distribution:

zo+1/2 2 . . 2 9

0—1/2 202
20+1/2 (ZO + CF)2
= exp | —— 5| dy = p—cp0 (20). (1)
/z01/2 < 202 g

In this case, the distribution of z = 2y is D_., , restricted to the domain Z~
(due to the rejection of y to (—oo, —1/2]).

Algorithm 3 D, (Z) sampler
Input: Center ¢ € R. Standard deviation o € R*. Normalisation factor S = p.,» (Z) ~

oV 2T.
Output: A sample distributed as D.,» (Z).
1: function ROUNDINGSAMPLERFULL(c, o)

2 Let ¢ = |¢] and ¢cp = c1r — ¢

3 Sample r <= U ([0, 1)).

4 if r <exp (—cz/ (20°)) /S then

5 Let 2/ = 0.

6: else

T Let 2z’ = RoundingSampler (cr, o).
8: end if

9: return 2’ + c;.

10: end function

Similarly, when b = 1, y is distributed as N (1, 02). For step 23 in Algorithm
2, we have Y = (|y] +¢p)® — (y — 1)> > 0 for any cp € [~1/2,1/2] when y >
1/2. Therefore, the rejection condition exp (—Y2/ (20?)) € (0,1]. Let z = |y].
We have the output distribution:

Pr [z = 2] x /:0+1/2 exp (_(9_1)2> - exp <_ (20 +cp)’ = (y — 1)2> dy

0_1/2 20'2 20'2
Zo+1/2 (Z() + CF)2
= exp | ———==—— | dy = p_c,.0 (20)- (2)
/zo—1/2 < 202 g

In this case, the distribution of z = zy is D_., , restricted to the domain Z*
(due to the rejection of y to [1/2,00)). Therefore, the output z in Algorithm 2
is distributed as D_,,, , restricted to the domain Z \ {0}.

In Algorithm 3, the probability Pr[z’ =0] = exp(—c%/(20%))/S =
D_.,. »(0). Therefore, variable 2z’ is distributed as D_.,. ,(Z). Since ¢ = ¢; — ¢p,
we have the output 2’ + ¢; distributed as D, (Z).

(|

To prove the rejection rate of Algorithm 2, we need the following lemma:

Lemma 1. For anye € (0,1) and ¢ € [-1/2,1/2], if o0 > . (Z) /v/ 27, then both
peo (Z7) and peo (Z1) have the lower bound: é . ijrz < po (Z) — 1.

Proof. When ¢ € [-1/2,1/2], for p., (Z~), we have:
Peo (L) = peo (Z7)4peo (27 U{0}) < 2pe0 (Z7 U{0}) = 2pe,0 (Z7)+2pc,0 (0).

Therefore,

_ 1
Pe,o (Z) > 9 * Pe,o (Z) — Pc,o (O)
> 1z (0) (By Theorem 1)
25 TP Pe.o y Theorem 1).

We have p, (0) > pe.o (0) for ¢ € [-1/2,1/2]. Therefore,

1—¢
— s (Z) — 1.
1 6p()

_ 1
pc,o(Z)Zi‘ +

Similarly, when ¢ € [—1/2,1/2], for p. (Z*1), we have:

Peo (Z) = pe,o (Z7)+peo (ZTUL{0}) < 2pc0 (ZT UL{0}) = 2pc0 (Z7)+2pc,0 (0) .

Therefore, since ¢ € [—1/2,1/2], we have:

1
Pe,o (Z+)2§~pc,a (Z) = pe.s (0)
S A (0) (By Th 1
Z 5 Tqc Pe Peo (0) (By Theorem 1)
1 1—e€
> . . — > - .
25 T4e o (Z) =1 (pg(0) = pe,s (0) when ¢ € [-1/2,1/2])

O

Theorem 4. For o > n.(Z) /2w, the expected number of trials M in Algo-

rithm 2 has the upper bound: M < 2 - 1£¢. ﬁ If o is much greater

than (1 t2. }%) JN2r, then M < 2-(1+ O(e) + O (1/0)).

Proof. By Theorem 3, when b = 0, we have the output probability density func-
tion f(y) = p—cp,o (|Y]) /P=cr.0 (Z7) and the input probability density function
9(y) = p-1,0(y)/ (cv/2m). The expected number of trials can be written as:

= max /W) — max | P=erse (LyD) . oV2m
= 9(y) (P-1,0(Y) P-cro (Z-)) '

We have:

prero () _ o (C1555) (_ (W] +er)—(u+ 1>2> .

P-1,0(y) exp (_%) 202 =
Therefore,
M < oV 2T §2'1+6' O'\/27T1 S2'1+6' oV 2w ’
p—cp,o (Z7) l—e p,(Z) -2 1 l—€ ov2r—1-2. 7=

where the second inequality follows from Lemma 1, and the third inequality
follows from p, (Z) = po (Z= U{0}) + ps (Zt U{0}) — 1 and the sum-integral
comparison: p, (Z~ U{0}) > fi}o po(z)dz = o+/7/2 and p, (ZTU{0}) >

157 po(@)da = o\/7/2.

Similarly, when b = 1, we have the output probability density function
F(W) = p—cp.o 1Y])/p—cp.o (ZT) and the input probability density function
9(y) = p1,-(y)/ (6v/2m). The expected number of trials can be written as:

M = max

FW) _ s (p_cm(m) oV/2m)

g(y) pl,cr(y) ' P—cp,o (Z+)

We have:

prero) _ P (CV5FT) (- e 1)2> <1

p1,0(Y) exp (7(;,2;12)2) 957 <
Therefore,
M < oV 2T §2.1—|—e. (7\/27r1 §2'1+€' oV 2w ,
p*CF,U(ZJr) l—e pU(Z)_2'1i_: l—€ o 277_1_2'?:2

where the second inequality follows from Lemma 1, and the third inequality
follows from p, (Z) > ov/2m — 1.

When ¢ is much greater than (1 +2- }J_rz) /v 27, o/ 27 is much greater than
142 1££. Thus,

1
M <9 1+e oV 2T

=T 1—¢ oyom—1-—2.
1—e

<2-(1+0(e) + 0 (1/0)).

4.1 Accuracy Analysis

We now analyse the relative error of Algorithm 2 here. Let the absolute error
of the continuous Gaussian sample = be e,: ' = = + e, where 2’ is the actual
sample, z is the ideal sample, and the error |e| < e,. We denote the actual
distribution by Pactual and the ideal distribution by Pigeal- Since the variable y
might be rounded to an incorrect integer due to the error from x when y is close
to the boundaries zg + 1/2 [11], we have:

Pactua
A (Pactual||7)idcal) = max 7t1 - 1‘
ideal
zo+1/2+0es zo+cr)?
fz00—1/2—oez (_(0202F) dy
= max —1| (by (1), (2),and y = oz £ 1)
o0 P—cp,o (20)
1 2 z) " P—cFp,o
= max (L+20¢) - per, (20)1‘20'€z.

20 P—cp,o (20)

10

By Theorem 2, for A-bit security, we need:

1 A P, u Pi 2
R?)\ (Pactua1||7)ideal) S 1+ m = 1+ 2\ - ((act anH deal)) S 1+ m

1
— €., S —_—.
“ 7 40VAM
Note that both P.ciuar and Pigear have the same normalisation factor, since
Phactual is obtained by the imperfect continuous Gaussian distribution with the
rounding error contributed to the interval of the integral [11].

5 Evaluation

Side-channel Resistance Our implementation is not fully constant-time because
the rejection rate may still reveal o due to Theorem 4. However, since the re-
jection rate is independent of the center, our implementation can achieve fully
constant-time with respect to the secret if ¢ is public. The ¢ in convolution-style
lattice trapdoor samplers [16, 18] is typically a public constant, but o in GPV-
style sampler [10] depends on the secret. Note that the IBE implementation in
[3] adapted a variant of [16], but it appears that the implementation source code?
of [3] used a different distribution and the side-channel resistance perspective is
unclear. Our sampling algorithm can be applied in the IBE implementation of
[3] to give a fully constant-time IBE implementation.

We perform benchmarks of Algorithm 3 with fixed ¢ and random arbitrary
centers. We employ the Box-Muller continuous Gaussian sampler [11,25] imple-
mented by using the VCL library [9], which provides e, < 27%® [11]. To compare
with [15], we select o = {2,4,8,16,32}, and to compare with [17], we choose
o = 2%, In addition, we also compare with variants [5,26] of the binary sam-
pling algorithm [6] for additional o = {217,220}. From the error analysis in

Section 4.1, for given e, and A\, M < m For o € [2,220} and A = 128,

we have M < 2%5. We adapt techniques similar to [26] to avoid high precision
arithmetic (see Appendix A for details) and the scheme? is implemented by us-
ing the double precision i.e. §y = 52. We also compute the normalisation factor
S in double precision. We use the AES256 counter mode with hardware AES
instructions (AES-NI) to generate the randomness in our implementations. We
provide both the non-constant time reference implementation and the center-
independent run-time implementation. We take care of all the branches for the
center-independent run-time implementation by adapting constant-time selec-
tion techniques [1]. For the non-constant time reference implementation (the
“Ref.” column in Table 1), we use the exp(z) from the C library, which provides
about 50-bit precision [20], while for the center-independent run-time implemen-
tation (the “Center-independent” column in Table 1), we adapt the techniques
from [26] with about 45-bit precision. From the precision analysis in [19, 26], the

2 https://github.com/lbibe/code
3 Our implementation is available at https://gitlab.com/raykzhao/gaussian_ac

11

Table 1. Number of Samples per Second for Our Scheme with Fixed o at 4.2GHz

(with A = 128).

Ref. (x10°)

Center-independent (x10°%)

o0 & N Q

16
32
915
917

10.33 £0.18
11.57 £ 0.18
11.95+0.17
12.14 +0.16
12.19+£0.15
11.70 £0.13
11.20 £ 0.14
11.17+0.13

8.96 £0.16

10.87 £ 0.15
11.61 +£0.13
12.00 £ 0.12
12.21 £0.11
11.57 £ 0.09
11.63 +0.10
11.28 +0.09

above precisions (including the precision of S) are sufficient for A = 128 and
M < 2%,

The benchmark is carried on as follows: we use g++ 9.1.1 to compile our
implementations with the compiling options -03 -march=native enabled. The
benchmark is running on an Intel i7-7700K CPU at 4.2GHz, with the Hyper-
threading and the Turbo Boost disabled. We generate 1024 samples (with a
random arbitrary center per sample) for 1000 times and measure the consumed
CPU cycles, with the exception that we fix ¢ = 0 and compare our center-
independent run-time implementation with [26], since the scheme in [26] is essen-
tially a constant-time zero-centered discrete Gaussian sampler. Then we convert
the CPU cycles to the average number of samples per second for the comparison
purpose with previous works.

The benchmark results of our scheme are shown in Table 1 (in the format
of mean =+ standard deviation). We also summarise the performance of previous
works in Table 2, and show the comparison with [26] in Table 3 when ¢ = 0.
Since previous works [5,15,17] measured the number of generated samples per
second running on CPUs with different frequencies, we scale all the numbers
to be based on 4.2GHz.* In addition, since some previous works [15, 17] require
pre-computations to implement the sampling schemes, we summarise the pre-
computation memory storage consumptions in Table 2. Because the TwinCDT
method [15] provided different tradeoffs between the running speed and the
pre-computation storage consumption, we show all 3 different sampling speeds
and the corresponding pre-computation storage consumptions for each o from
[15]. Note that although our sampling scheme does not require pre-computations,
however, the exp(z) implementation typically consumes a small amount of mem-
ory to store the coefficients of the polynomial approximation. For example, the
polynomial approximation of the exp(z) in our center-independent run-time im-
plementation (adapted from [26]) has degree 10 with double precision coeflicients,
and therefore it consumes (10 + 1) - 8 = 88 bytes.

4 The online4offline benchmark result is obtained and scaled from the variant imple-
mented by [5].

12

Table 2. Summary of Previous Works for Fixed o at 4.2GHz (with A = 128).

o|Num. of samples (x10°/sec) Pre-computation storage (KB)
2 [15][51.01/62.45/76.43 1.4/4.6/46
4 [15]|45.50/56.44,/69.09 1.9/6.3/63
8 [15](37.70/53.31/63.51 3/10/100
16 [15]|31.29/37.63/52.29 5.2/17/172
32 [15]]34.38/39.76/42.60 9.5/32/318
275 [17]|~ 12.35 (online)®, 1.78 (online+offline)|2°-*
4-2%° [5]|~ 16.3 -6

Table 3. Number of Samples per Second Compared with [26] for Fixed ¢ and ¢ = 0
at 4.2GHz (with A = 128).

a|Our Scheme (x10°/sec)[[26] (x10°/sec)

2(9.44 19.87

4[11.10 19.04

8(12.08 19.04

16(12.63 18.62

32/12.93 18.80
215112.67 18.36
217112.67 18.90
220113.04 18.70

From Table 1, our scheme has good performance for both small and large o
(11.53 x 10° samples per second for the non-constant time reference implemen-
tation and 11.27 x 10% samples per second for the center-independent run-time
implementation on average). In particular, our scheme has better performance
for large o since the number of trials becomes lower by Theorem 4. Note that
the amount of randomness required by the comparison steps in Appendix A will
significantly increase for very small or very large o. Therefore, our implementa-
tion consumes different amount of randomness in comparison steps for each o
based on Appendix A, and the performance for some larger o is slightly slower
than smaller ¢ in Table 1 due to the increased amount of randomness required.
The overhead introduced by the center-independent run-time implementation
is at most 13.33% in our benchmarks. Note that the overhead of the center-
independent run-time implementation is smaller for large o due to the lower
probability of outputting 2z’ = 0 in Algorithm 3.

For o € [2,32], although the TwinCDT method [15] is 2.5x-7.3x faster than
our non-constant time reference implementation, however, this method requires
a pre-computation with at least 1.4 KB memory consumption to store the CDT,
while our scheme only requires at most several hundred bytes if considering all

® The result in [17] is based on the authors’ reference implementation, which is not
claimed to be optimal [24].

5 The base sampler and the Bernoulli sampler may require pre-computations depend-
ing on the implementation techniques.

13

the polynomial approximation coefficients (including those functions used by the
Box-Muller continuous Gaussian sampler). When scaling up o, the TwinCDT
method [15] also costs much larger amount of memory (the pre-computation
storage size increases by a factor of 6.7-6.9 when o changes from 2 to 32), and
the performance becomes significantly worse (the number of samples per second
decreases by 32.6-44.3% when o changes from 2 to 32). In contrary, the pre-
computation storage of our scheme is independent of ¢ and only relies on the
precision requirements. Our scheme is also scalable and maintains good perfor-
mance even for large o = 2'°. In addition, for applications sampling from various
o such as [7], one sampler subroutine implemented by using our scheme is able to
serve all o since the implementation does not require any pre-computations de-
pending on o, while the TwinCDT method [15] needs to pre-compute a different
CDT for each o.

Compared with [17] for ¢ = 25 if we measure both the online and of-
fline phase running speed in total, our center-independent run-time implemen-
tation achieves better performance in terms of both timing (6.5x faster) and
pre-computation storage (the implementation in [17] requires about 42 KB to
implement the Knuth-Yao [13] offline batch sampler).” The online-phase only
running speed in [17] is slightly (1.07x) faster than our scheme. On the other
hand, our scheme requires no offline pre-computations related to a specific dis-
crete Gaussian distribution. In addition, our scheme can also be accelerated if
we generate all the continuous Gaussian samples during the offline phase and
only perform the rejection during the online phase. In this case, our center-
independent run-time implementation generates 13.73 x 10% samples per second
during the online phase, which is 1.11x faster than [17].

For the comparison with variants of the binary sampling algorithm, in Table
2, our non-constant time reference implementation is about 28.2% slower than [5]
for o € [4,22°] with arbitrary centers, and from Table 3, our center-independent
run-time implementation is 30.3%-52.5% slower than [26] when ¢ = 0 and o €
[2, 220]. However, the scheme in [26] does not support an arbitrary center, while
the side-channel resistance perspective of [5] is unclear. We expect that our
implementation can achieve at most about 73.5% of the running speed of [5, 26]
on average for large o, since both binary sampling variants [5,26] require less
than 1.47 trials per sample on average, while the average number of trials per
sample is close to 2 in our scheme for large o.

6 Conclusion

In conclusion, we generalise the idea from [4] and present a compact and scalable
arbitrary-centered discrete Gaussian sampling scheme over integers. Our scheme
performs rejection sampling on rounded samples from a continuous normal distri-
bution, which does not rely on any discrete Gaussian sampling implementations.
We show that our scheme maintains good performance for o € [2,22°] and needs

" Here we compare the performance with our center-independent run-time implemen-
tation because the implementation in [17] is constant-time.

14

no pre-computations related to any specific o, which is suitable to implement
applications that requires sampling from multiple different o. In addition, we
provide concrete rejection rate and error analysis of our scheme.

The performance of our scheme heavily relies on the underlying continu-
ous Gaussian sampling algorithm. However, the Box-Muller sampler [11, 25] em-
ployed in our implementation does not have the fastest sampling speed com-
pared to other algorithms according to a survey [22]. The main reason behind
the choice of the continuous Gaussian sampler in our implementation is because
the Box-Muller sampler is very simple to implement in constant-time [11]. If the
side-channel perspective is not a concern, one may employ other more efficient
non-constant time algorithms from the survey [22] to achieve a faster implemen-
tation of our scheme.

Acknowledgments. Ron Steinfeld was supported in part by ARC Discovery
Project grant DP180102199.

References

1. Aumasson, J.P.. Guidelines for low-level cryptography software.
https://github.com/veorq/cryptocoding (2019), accessed: 2020-01-28

2. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: Using the Rényi divergence rather than the statisti-
cal distance. In: ASTACRYPT (1). Lecture Notes in Computer Science, vol. 9452,
pp. 3—24. Springer (2015)

3. Bert, P., Fouque, P., Roux-Langlois, A., Sabt, M.: Practical implementation of
ring-SIS/LWE based signature and IBE. In: PQCrypto. Lecture Notes in Computer
Science, vol. 10786, pp. 271-291. Springer (2018)

4. Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag, New
York, NY, USA (1986)

5. Du, Y., Wei, B., Zhang, H.: A rejection sampling algorithm for off-centered discrete
Gaussian distributions over the integers. SCIENCE CHINA Information Sciences
62(3), 39103:1-39103:3 (2019)

6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bi-
modal Gaussians. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 8042,
pp. 40-56. Springer (2013)

7. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: ASIACRYPT (2). Lecture Notes in Computer Science,
vol. 8874, pp. 22-41. Springer (2014)

8. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: ASTACRYPT. Lecture Notes in Computer Science, vol. 7658, pp.
415-432. Springer (2012)

9. Fog, A.: VCL C++ vector class library. www.agner.org/optimize/vectorclass.pdf,
accessed: 2019-08-01

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC. pp. 197-206. ACM (2008)

11. Hiilsing, A., Lange, T., Smeets, K.: Rounded Gaussians - fast and secure constant-
time sampling for lattice-based crypto. In: Public Key Cryptography (2). Lecture
Notes in Computer Science, vol. 10770, pp. 728-757. Springer (2018)

15

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 3:1-3:14 (2016)

Knuth, D., Yao, A.: Algorithms and Complexity: New Directions and Recent Re-
sults, chap. The complexity of nonuniform random number generation. Academic
Press (1976)

Melchor, C.A.; Albrecht, M.R., Ricosset, T.: Sampling from arbitrary centered dis-
crete Gaussian for lattice-based cryptography. In: ACNS. Lecture Notes in Com-
puter Science, vol. 10355, pp. 3-19. Springer (2017)

Melchor, C.A., Ricosset, T.: CDT-based Gaussian sampling: From multi to double
precision. IEEE Trans. Computers 67(11), 1610-1621 (2018)

Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7237, pp. 700-718.
Springer (2012)

Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic,
constant-time. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 10402,
pp. 455—-485. Springer (2017)

Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: CRYPTO.
Lecture Notes in Computer Science, vol. 6223, pp. 80-97. Springer (2010)

Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi diver-
gence. In: ASTACRYPT (1). Lecture Notes in Computer Science, vol. 10624, pp.
347-374. Springer (2017)

Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-based
compact signatures over NTRU. https://falcon-sign.info/ (2017), accessed: 2018-
10-31

Prest, T., Ricosset, T., Rossi, M.: Simple, fast and constant-time Gaussian
sampling over the integers for Falcon. Second PQC Standardization Confer-
ence, https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-
Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf (2019),
accessed: 2019-08-13

Thomas, D.B., Luk, W., Leong, P.H.W., Villasenor, J.D.: Gaussian random number
generators. ACM Comput. Surv. 39(4), 11 (2007)

von Neumann, J.: Various techniques used in connection with random digits. In:
Householder, A., Forsythe, G., Germond, H. (eds.) Monte Carlo Method, pp. 36—
38. National Bureau of Standards Applied Mathematics Series, 12, Washington,
D.C.: U.S. Government Printing Office (1951)

Walter, M.: Private communication (2020), date: 2020-01-29

Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NIST PQ submission: pgNTRUSign
a modular lattice signature scheme. https://www.onboardsecurity.com/nist-post-
quantum-crypto-submission (2017), accessed: 2019-08-01

Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: fast, compact, and constant-time
discrete Gaussian sampler over integers. IEEE Trans. Computers 69(1), 126-137
(2020)

A Precision Analysis

To avoid sampling a uniformly random real r with high absolute precisions at
rejection steps 11 and 23 in Algorithm 2, and step 4 in Algorithm 3, we adapt the
comparison approach similar to [26]. Assume an IEEE-754 floating-point value

16

f € (0,1) with (6;+1)-bit precision is represented by f = (1 + mantissa - 27°7)-
2exponent - where integer mantissa has 65 bits and exponent € Z~. To check
r < f, one can sample r,,, <= U ({0, 1}5f+1), re ¢ U ({07 1}1), and check r,, <
mantissa+2% and r, < 2itezponent+lingtead for some [such that I+exponent +
1>0.

Here we analyse the precision requirement of r.. We have the following the-
orem for the worst-case acceptance rate in Algorithm 2:

Theorem 5. Assume x € [-7,7] and y € [—70 — 1,70 +1]. In worst case, step
11 in Algorithm 2 has the acceptance rate:

(=270 +cr—3/2)(cp — 3/2))

>exp| —
b= p(992

and step 23 in Algorithm 2 has the acceptance rate:

Dy > exp (270 +cp +3/2) (cr +3/2) .
202
Proof. For b = 0 and y < —1/2, we have the acceptance rate p; =

exp (—Yl/ (202)) at step 11 in Algorithm 2 where:

Vi=(lyl +er)?—(y+1)7°
=(+6+cp)—(y+1)? (ly] =y+ 6 where 5 € [-1/2,1/2])
2y+0+cr+1)(6+cr—1)

<(-2t0+cp—3/2)(cr —3/2). (whend=-1/2andy=—70—1)

Similarly, for b = 1 and y > 1/2, we have the acceptance rate p, =
exp (—Yg/ (202)) at step 23 in Algorithm 2 where:

(ly] +er)’ = (y—1)°

(y+6+cr)’ —(y—1)° (ly] =y + 6 where § € [-1/2,1/2])
RQy+d+ter—1)(0+cr+1)

< (27r0+cr+3/2)(cp+3/2). (whend=1/2and y=710+1)

Y, =

O

Let A < 1/2 be the maximum relative error of the right hand side compu-
tations at rejection steps 11 and 23 in Algorithm 2, and step 4 in Algorithm 3.
For exp (le/ (202)) at step 11 in Algorithm 2, we have:

Y;
exponent; > {logg ((1 — A)-exp <_212)>J
o

> \‘_1 _ (—2T0'+CF —232/2) (CF —3/2)

-log, eJ (by Thm. 5 and A < 1/2)

- log, eJ . (when cp = —1/2)

17

Similarly, for exp (—Yg/ (202)) at step 23 in Algorithm 2, we have:

exponenty > {logg ((1 — A) -exp <—2YQQ)>J
o

g

2 2
> {—1 - T(T;— -log, eJ . (when cp =1/2)
o

For exp (—C%/ (202)) /S at step 4 in Algorithm 3, we have:

e = [y (11 30 o (-5 1)

1
> {—1 ~ 52 -logy e — log, (a\/27r)J . (when ¢y = £1/2 and A < 1/2)
o
Therefore, we have:

2 2 1
exponent > minq | —1 — otz logse|, |—1— — -logy e — log, (U\/ 27r) .
o? 852

Since the probability Pr[—7 <z < 7] = erf (1/v2) for z + N(0,1), to
ensure 1 —Pr[—7 <2 < 7] <27 we need 7 > V2 erf! (1 — 2_>‘). Therefore,
for A = 128 and o € [2,220], we have 7 > 13.11, exponent > —23, and thus
[> 22, i.e. r, needs to have at least 22 bits.

B Proof of Algorithm 1

Since Algorithm 1 was an exercise in [4] without solutions, here we provide a
brief proof of Algorithm 1.

Normalisation Factor By definition, we have the normalisation factor:

2
LS e <_<k| +1/2))

Il

(e}

»

e}

|

—~
-
ol |
Q| —
N~
K

()
~_
+

(e}

]

o)
/_\

(k+1/2
) Do ()

keZ~ kez+
=120 (Z7) + p-1)2,0 (+)+6XP<—8 2)
>10¢ @+ ! 2. (ByL 1)
e exp { —o— y Lemma

18

Correctness Let z = |x]. We have Y = (|zo| +1/2)> — 22 > 0 for any = € R.
Therefore, the rejection condition exp (fY/ (202)) € (0, 1]. We have the output
distribution:

ZO+1/2 2 1 2 2 2
PI‘ [Z = ZO} o< / eXp (_.’,E2> . eXp _ (‘ZO| + /2) X dx
z0—1/2 20 2

wot1/2 (20| + 1/2)° (20| + 1/2)°
:/20_1/2 P (‘zaz do=exp | === 5]

Rejection Rate By definition, we have the output probability density function
2
f(z) =c-exp (*W) and the input probability density function g(z) =

po (2) / (0+/27). The expected number of trials can be written as:

(lz1l+1/2)?
f(z) exp (_ 257) oV2r
M = max = max .
g9(z) po (2) 1/c
We have:
(lz]]+1/2)? (lz1l+1/2)?
=P (_ 202) xp (_ 202) (Il=]] + 1/2)* — 2?
= 2 =exp | — 3 <1
po (z) exp (—353) 20
Therefore,

oV 2w o2
ST S, @ —<) -2
/C 1+e pa()+6Xp(802)
o\/2r
176'(0 27Tfl)+exp(—§)727

<

where the second inequality follows from the inequality of 1/c and the third
inequality follows from the fact that p, (Z) > o+v/27 — 1. Thus, we have the
rejection probability:

1 (1—ili)'0m+112—exp(—g%)+2N3—exp(—¢) _2]2

~ —A/ —

M= oV 2T oV 2 A

when ¢ is small.

1—

19

