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Abstract. Secure block cipher design is a complex discipline which combines 

mathematics, engineering, and computer science. In order to develop cryptogra-

phers who are grounded in all three disciplines, it is necessary to undertake syn-

ergistic research as early as possible in technical curricula, particularly at the un-

dergraduate university level. In this work, students are presented with a new 

block cipher, which is designed to offer moderate security while providing engi-

neering and analysis challenges suitable for the senior undergraduate level. The 

BIG (Block) (Instructional, Generic) cipher is analyzed for vulnerability to linear 

cryptanalysis. Further, the cipher is implemented using the Nios II microproces-

sor and two configurations of memory-mapped hardware accelerators, in the Cy-

clone V FPGA on the Terasic DE1 System-on-chip (SoC). Three distinct imple-

mentations are realized: 1) Purely software (optimized for latency), 2) Purely 

hardware (optimized for area), and 3) A hardware-software codesign (optimized 

for throughput-to-area ratio). All three implementations are evaluated in terms of 

latency (encryption and decryption), throughput (Mbps), area (ALMs), and 

throughput-to-area (TP/A) ratio (Mbps/ALM); all metrics account for a fully 

functional Nios II, 8 kilobytes of on-chip RAM, Avalon interconnect, benchmark 

timer, and any hardware accelerators. In terms of security, we demonstrate re-

covery of  a relationship among 12 key bits using as few as 16,000 plaintext/ci-

phertext pairs in a 6-round reduced round attack and reveal a diffusion rate of 

only 43.3% after 12 rounds. The implementation results show that the hardware-

software codesign achieves a 67× speed-up and 37× increase in TP/A ratio over 

the software implementation, and 5× speed-up and 5× increase in TP/A ratio 

compared to the hardware implementation. 

Keywords: Cryptography, block cipher, linear cryptanalysis, FPGA, Nios II, 

Cyclone V, design optimization, undergraduate, education. 

1 Introduction 

In 2013, over 2.5 quintillion (1018) bytes of data were created each day, encompassing 

many fields of personal data, such as social media postings, mobile banking infor-

mation, cellular data, and purchase history [1]. Naturally, as the number of internet 

users continues to grow, totaling over 2.5 billion worldwide users as of 2016 [2], an 

increase in personal data generation is logical. In order to provide a means of secure 



transmission for the growing quantity of sensitive data, a system of optimized encryp-

tion and decryption (secure from brute-force attacks, cryptanalysis, and physical imple-

mentation attacks) is mandated. 

 New cryptographic algorithms are historically introduced through government and 

industry collaboration (e.g., [5]), government-sponsored competitions and standardiza-

tion efforts (e.g., [6],[7],[8]) or non-governmental, multi-national competitions (e.g., 

[9]). However, the core competencies and skill sets required to develop robust crypto-

graphic algorithms, which are secure and efficient in hardware and software, are di-

verse, academically challenging, and require significant time and effort to mature.  

 Although the above skills can be developed piecemeal (e.g., through separate math-

ematics, engineering, and computer science curricula), a unified educational approach, 

which combines all of these disciplines as early as possible, could facilitate future im-

plementation of cryptographic standards, which are secure and efficient from inception. 

 To demonstrate the “art of the possible,” undergraduate computer engineering stu-

dents implement a prototype educational block cipher in software, hardware, and an 

optimized hardware-software codesign approach. Implementations use the Nios II soft 

core microprocessor and are built with the Intel Quartus Prime Lite design suite, in-

cluding Platform Designer, and the Nios II Software Build Tools (SBT) by Eclipse. 

Designs are instantiated in the Cyclone V FPGA, as part of the Terasic DE1 System-

on-Chip (SoC). Implementation results are characterized in terms of latency (total en-

cryption and decryption clock cycles), throughput (Mbps), memory (bytes), FPGA area 

(adaptive logic modules, or ALMs), and throughput-to-area (TP/A) ratio (Kbps/ALM).  

We additionally perform a partial security analysis of the cipher by analyzing the 

confusion and diffusion of the cipher and using linear cryptanalysis to uncover a rela-

tionship of key bits. In this analysis, we uncover a relationship among 12 key bits by 

using plaintext/ciphertext pairs, which, if used to create other approximations, would 

allow more bits of the key to be recovered. We additionally argue the impracticality of 

key recovery for the 12-round or 18-round block cipher. 

2 The BIG Cipher Specification 

The BIG (Block) (Instructional, Generic) cipher is a block cipher, which operates on 

128-bit blocks and allows for the encryption of plaintext or decryption of ciphertext, 

using a 128-bit secret key. This cipher requires a specific number of encryption or de-

cryption rounds to be used, based on the desired level of security, such as 12 rounds for 

moderate security or 18 rounds for high security. This cipher is designed as a Feistel 

structure [3], which implies separate operations on 64-bit left (high) and right (low) 

operands. This approach lends itself to parallelization, provided appropriate resources 

are available. The Feistel approach is motivated by previous block cipher designs, such 

as DES [5], SIMON and SPECK [10], and TWINE [11].  

 The BIG cipher is designed as an educational block cipher to prepare computer en-

gineers for the challenges of implementing symmetric cryptography in hardware, soft-

ware, and hardware-software codesign. For example, it contains 4-bit non-linear sub-

stitutions (S-Boxes), a composite permutation (including rotation by 𝑟 bits, where 2𝑛 ∤



 

𝑟), and round constant addition (which is not aligned with bytes, half-words, or words), 

which increase complexity in software and favor a hardware approach.  Additionally, 

substitutions and constant generations are derived through finite field arithmetic (in 

GF(24) and GF(28), respectively), which provide the possibility of low-area hardware 

implementations.   Finally, the 128-bit block and key size of the cipher is designed to 

provide a nominal example of the implementation costs of a high-security block cipher, 

and to highlight the realistic communication challenges of integrating hardware accel-

erators with large data words (e.g., an Avalon memory-mapped slave device) with mas-

ter peripherals on smaller data buses (e.g., a 32-bit Nios II processor). 

 

2.1 Basic Operation 

Strings of plaintext (𝑃𝑇), ciphertext (𝐶𝑇), and secret key (𝐾) are 128-bits (16 bytes), 

where the order of a string 𝑊, consisting of 𝑃𝑇, 𝐶𝑇, or 𝐾, is represented as: 

 𝑊 =  𝑊0 || 𝑊1 || 𝑊2 || … || 𝑊15, (1) 

where 𝑊i is the ith byte of the relevant string, and 𝑊 is further split into an upper 

half 𝑊H and a lower half 𝑊L, where 𝑊 = 𝑊H || 𝑊L, and both halves are 64 bits (8 bytes 

long). The BIG encryption operation ‘𝐸𝑁𝐶’ is represented as Algorithm 1 and dis-

played in Figure 1. 

Algorithm 1. The BIG cipher encryption algorithm 

𝐶𝑇 = 𝐸𝑁𝐶(𝑃𝑇, 𝐾) 

𝑊𝐻  =  𝑃𝑇[127: 64] 

𝑊𝐿 =  𝑃𝑇[63: 0] 

𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑁𝑈𝑀_𝑅𝑂𝑈𝑁𝐷𝑆 −  1 

𝑊𝐻 =  𝑊𝐻⨁ 𝑅𝐾𝐻𝑖
 

𝑊𝐻 =  𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑊𝐻) 

𝑊𝐿 =  𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑊𝐿 , 𝑖) 

𝑊𝐿 =  𝑊𝐿⨁ 𝑅𝐾𝐿𝑖
 

𝑊𝐿 =  𝑃𝑒𝑟𝑚2(𝑃𝑒𝑟𝑚1(𝑊𝐿)) 

𝑡𝑚𝑝 =  𝑊𝐻 

𝑊𝐻 =  𝑊𝐻⨁ 𝑊𝐿 
𝑊𝐿 =  𝑡𝑚𝑝 

𝐶𝑇 =  𝑊𝐻 || 𝑊𝐿  

𝑟𝑒𝑡𝑢𝑟𝑛 𝐶𝑇 



 
Figure 1. The BIG encryption operation ‘𝐸𝑁𝐶’, where the flow of data is logically represented 

from top to bottom and encompasses the 𝑖th encryption round. 

 

Similarly, the BIG decryption operation ‘𝐷𝐸𝐶’ is represented as Algorithm 2 and 

displayed in Figure 2. 

Algorithm 2. The BIG cipher decryption algorithm 

𝑃𝑇 =  𝐷𝐸𝐶 (𝐶𝑇, 𝐾) 

𝑊𝐻 =  𝐶𝑇[127: 64] 

𝑊𝐿 =  𝐶𝑇[63: 0] 

𝑓𝑜𝑟 𝑖 =  𝑁𝑈𝑀_𝑅𝑂𝑈𝑁𝐷𝑆 –  1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 

𝑡𝑚𝑝 =  𝑊𝐿 
𝑊𝐿 =  𝑊𝐻⨁ 𝑊𝐿 
𝑊𝐿 =  𝑃𝑒𝑟𝑚1

−1(𝑃𝑒𝑟𝑚2
−1(𝑊𝐿)) 

𝑊𝐻 =  𝐼𝑛𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑡𝑚𝑝) 

𝑊𝐻 =  𝑊𝐻  ⨁ 𝑅𝐾𝐻𝑖
 

𝑊𝐿 =  𝑊𝐿  ⨁ 𝑅𝐾𝐿𝑖
 

𝑊𝐿 =  𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑊𝐿 , 𝑖) 

𝑃𝑇 =  𝑊𝐻  || 𝑊𝐿 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑃𝑇 



 

 
Figure 2. The BIG decryption operation ‘𝐷𝐸𝐶’, where the flow of data is logically represented 

from top to bottom and encompasses the 𝑖th decryption round. 

 

 Given the high-level encryption and decryption algorithms, we present the individ-

ual implementations for each submodule. 

 

2.2 SubBytes Specification  

The SubBytes operation is represented as a string of sixteen 4-bit S-Boxes, where 

𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑌) is defined as: 

 𝑆 =  𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑌)  =  𝑆0 ||  … || 𝑆15  =  𝑆𝑏𝑜𝑥(𝑌0) ||  … || 𝑆𝑏𝑜𝑥(𝑌15), (2) 

where 𝑆𝑖 and 𝑌𝑖 are 4-bit nibbles of 𝑆 and 𝑌, respectively, and 𝑖 = 0, 1, 2, … , 15. 

 

 𝑆𝑏𝑜𝑥 is defined as  

 𝑆𝑏𝑜𝑥(𝑌) =  𝐴𝑌−1  +  𝑏,  (3) 

where the binary matrix 𝐴 is represented as 

 

 

 

𝑌−1 is the multiplicative inverse of 𝑌 modulo 𝑃(𝑥) =  𝑥4 + 𝑥 + 1, and 𝑏 is the column 

vector constant (0 0 1 1)𝑇 . The resulting substitution is shown in Table 1. 

 

𝐴 =  

1 0 0 0 

 

 

0 1 0 0 

1 0 0 1 

0 0 1 0, 



Table 1. S-Box Lookup Table 

Y 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S C 9 D 2 5 F 3 6 7 E 0 1 A 4 B 8 

 

2.3 InvSubBytes Specification  

The InvSubBytes operation is represented as a string of sixteen 4-bit S-Boxes, where 

𝐼𝑛𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑣) is defined as: 

 𝜎 =  𝐼𝑛𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑣)  =  𝐼𝑛𝑣𝑆𝑏𝑜𝑥(𝑣0) ||  … || 𝐼𝑛𝑣𝑆𝑏𝑜𝑥(𝑣15), (4) 

where 𝜎𝑖 and 𝑣𝑖 are 4-bit nibbles of 𝜎 and 𝑣, respectively, and 𝑖 = 0, 1, 2, … , 15. 

 

𝐼𝑛𝑣𝑆𝑏𝑜𝑥 is defined as 

 𝐼𝑛𝑣𝑆𝑏𝑜𝑥(𝑣)  =  [𝐴−1(𝑣 +  𝑏)]−1, (5) 

where the binary matrix 𝐴−1 is represented as 

 

 

 

 

 

[ ∙ ]-1 is the multiplicative inverse of [ ∙ ] modulo 𝑃(𝑥) =  𝑥4 + 𝑥 + 1, and 𝑏 is the col-

umn vector constant (0 0 1 1)𝑇 . The resulting substitution is shown in Table 2. 

Table 2. Inverse S-Box Lookup Table 

V 0 1 2 3 4 5 6 7 8 9 A B C D E F 

     𝜎 A B 3 6 D 4 7 8 F 1 C E 0 2 9 5 

 

The choices of S-Boxes used in SubBytes and InvSubBytes are motivated by inver-

sions in a finite field modulo an irreducible polynomial (e.g., [12]), and S-Box con-

structions presented in [13], [4], and [11]. Additionally, the choice of a 4-bit S-Box 

purposely increases the complexity required for software implementations, since oper-

ations on 4-bit values cannot be efficiently performed using simple byte operations. 

Finally, the use of a 4-bit S-Box could facilitate future research involving side-channel 

resistant countermeasures, based on [14], [15]. 

 

2.4 AddRoundConstant Specification  

The AddRoundConstant operation adds a 7-bit round constant 𝑐𝑖 to bits 20:14 of a 64-

bit argument, where ‘addition’ is finite field addition (XOR), and 

𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑋, 𝑖) is defined as: 

 𝑌 =  𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑋, 𝑖) =  (𝑋63:21) || (𝑋20:14 ⨁ 𝑐𝑖) || (𝑋13:0), (6) 

𝐴−1 =  

1 0 0 0 

 
0 1 0 0 

0 0 0 1 

1 0 1 0, 



 

where 𝑐𝑖  =  0𝑥5𝐴 ∙  2𝑖, multiplication is performed modulo 𝑃(𝑥)  =  𝑥8  +  𝑥4  +
 𝑥3  +  𝑥 +  1 (i.e., the AES polynomial [12]), and the computed round constants for 

rounds 0 to 17 are shown in Table 3. 

Table 3. Round Constants (in 7-bit hexadecimal) 

i 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 

ci 5A 34 73 66 57 35 71 62 5F 25 51 22 5F 3E 67 4E 07 15 

 

Round constants are generated using a similar strategy to that described in [11]. The 

addition of a 7-bit round constant, which does not fall on byte boundaries, is expected 

to be more complex in software (e.g., requiring multiple shift and concatenation oper-

ations per round iteration), but easier to perform in hardware, and is designed to influ-

ence the student-designer’s decision calculus for allocation of primitives in hardware 

or software components. 

 

2.5 Permutation Specification  

In the BIG cipher, there are two permutation operations: 𝑃𝑒𝑟𝑚1(𝑋) and 𝑃𝑒𝑟𝑚2(𝑋), as 

well as their inverse permutations. Specifically, 𝑃𝑒𝑟𝑚1 swaps the positions of neigh-

boring 16-bit words, where: 

 𝑌 =  𝑃𝑒𝑟𝑚1(𝑋)  =  𝑃𝑒𝑟𝑚1(𝑋0 || 𝑋1 || 𝑋2 || 𝑋3)  =  𝑋1|| 𝑋0|| 𝑋3|| 𝑋2,  (7) 

and each 𝑋𝑖 is 16-bits. Note that 𝑃𝑒𝑟𝑚1
−1(𝑋)  =  𝑃𝑒𝑟𝑚1(𝑋).  

 

𝑃𝑒𝑟𝑚2 is a 43-bit right circular shift on a 64-bit operand, where: 

 𝑌 =  𝑃𝑒𝑟𝑚2(𝑋)  =  𝑃𝑒𝑟𝑚2(𝑋63:0)  =  𝑋42:0 || 𝑋63:43, (8) 

and the inverse of 𝑃𝑒𝑟𝑚2 is a 43-bit left circular shift on a 64-bit operand, where: 

 𝑣 =  𝑃𝑒𝑟𝑚2
−1(𝜉)  =  𝑃𝑒𝑟𝑚2

−1(𝜉63:0)  =  𝜉20:0 || 𝜉63:21 (9) 

In particular, 𝑃𝑒𝑟𝑚2 is inspired by the 61-bit rotation used in the key scheduling 

algorithm of PRESENT [13]. Previous research has shown that rotations by values that 

are not divisible by 2𝑛 are difficult to perform in software, but trivially performed in 

hardware [16].  

 

2.6 RoundKey Encryption Specification  

The RoundKey scheduling algorithms are designed for flexible implementation, at the 

cost of security. Specifically, round keys are generated using only a combination of 

Feistel swaps, and half word-wise permutations (i.e., 𝑃𝑒𝑟𝑚1).  This causes round keys 

to be periodic; they repeat every six rounds. This informs the choice of number of 

rounds as 12 (6∙2) or 18 (6∙3); other choices are possible, however, a BIG cipher con-

structed with only 6 rounds is unable to withstand analytic attacks, and a BIG cipher 

with more than 18 rounds rapidly sacrifices performance. 



Since the round key generation algorithms do not introduce confusion (e.g., S-

Boxes) or whitening (e.g., key and data combination), there are likely a large number 

of weak keys. One example would be 0128; others could be determined analytically.  

However, one benefit of this simple round key generation scheme is the ease of “on 

the fly” round key scheduling for both encryption and decryption algorithms. By con-

trast, decryption round keys cannot be generated on-the-fly for algorithms such as AES; 

the designer must pre-compute round keys, which levies a significant tax on perfor-

mance (especially for short messages with non-repeating secret keys), and memory to 

store round keys, e.g., 128 bits ∙ 10 rounds = 160 bytes. 

For the ith round of encryption, a round key is generated according to Algorithm 3, 

and as shown in Figure 3. 

 

Algorithm 3. Round Key Generation (Encryption) Algorithm 

𝑅𝐾𝑖 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑒𝑛𝑐(𝑅𝐾𝑖−1) 

𝑖𝑓 𝑖 =  0 

𝑅𝐾𝑖−1 =  𝐾 // 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑘𝑒𝑦 
𝑅𝐾𝐻𝑖−1

 =  𝑅𝐾𝑖−1[127: 64]  

𝑅𝐾𝐿𝑖−1
 =  𝑅𝐾𝑖−1[63: 0] 

𝑡𝑚𝑝 =  𝑃𝑒𝑟𝑚1(𝑅𝐾𝐿𝑖−1
) 

𝑅𝐾𝐿𝑖
 =  𝑡𝑚𝑝 ⨁ 𝑅𝐾𝐻𝑖−1

 
𝑅𝐾𝐻𝑖

 =  𝑡𝑚𝑝 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝐾𝐻𝑖
 || 𝑅𝐾𝐿𝑖

  

 

 
Figure 3. The Round Key Generation (encryption) operation ‘𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑒𝑛𝑐’, where 

the flow of data is logically represented from top to bottom and encompasses the ith round key 

generation (encryption). 



 

 

2.7 RoundKey Decryption Specification 

For the ith round of decryption, a round key is generated according to Algorithm 4, and 

as shown in Figure 4. 

Algorithm 4. Round Key Generation (Decryption) Algorithm 

𝑅𝐾𝑖 − 1 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑑𝑒𝑐(𝑅𝐾𝑖) 

𝑖𝑓 𝑖 =  𝑁𝑈𝑀_𝑅𝑂𝑈𝑁𝐷𝑆 −  1 

𝑅𝐾𝑖 =  𝐾 // 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑘𝑒𝑦 
𝑅𝐾𝐻𝑖

=  𝑅𝐾𝑖[127: 64] 

𝑅𝐾𝐿𝑖
 =  𝑅𝐾𝑖[63: 0] 

𝑡𝑚𝑝 =  𝑃𝑒𝑟𝑚1(𝑅𝐾𝐻𝑖
) 

𝑅𝐾𝐻𝑖−1
 =  𝑅𝐾𝐻𝑖

⨁ 𝑅𝐾𝐿𝑖
 

𝑅𝐾𝐿𝑖−1
 =  𝑡𝑚𝑝 

𝑟𝑒𝑡𝑢𝑟𝑛  𝑅𝐾𝐻𝑖−1
 || 𝑅𝐾𝐿𝑖−1

 

 
Figure 4. The Round Key Generation (decryption) operation ‘𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑑𝑒𝑐’, where 

the flow of data is logically represented from top to bottom and encompasses the ith round key 

generation (decryption). 

3 Security Analysis 

In this section, we discuss diffusion and confusion, as defined by Shannon [18] and 

perform linear cryptanalysis on the six-round version of the BIG cipher. The linear 

analysis performed in this section is based on the work of Matsui on linear cryptanalysis 

of DES [17]. A linear approximation using six active S-Boxes was created manually, 



leading to recovery of a relationship among 12 key bits using ~16,000c plaintext/ci-

phertext pairs, where c is a small positive number. This method, if used to create other 

approximations, would allow more of the key to be recovered. 

3.1 Diffusion and Confusion 

Diffusion in the BIG cipher is provided through the repeated permutations, which serve 

to mix up the state of the cipher and Feistel swaps. Confusion in the cipher is provided 

through the introduction of round key bits from the key scheduler on both sides of the 

Feistel structure and nonlinear S-Boxes. 

Experimental results showing the number of bits in the ciphertext that flip due to a 

single bit change in the plaintext (for diffusion) or the key (for confusion) are shown in 

Table 4. Ideal (strong) diffusion and confusion are an average of 64-bit flips. 

Table 4. Number of bit flips on average over 1.28 million tests for each property in 6, 12, and 

18 rounds of the BIG cipher. 

# of Rounds Diffusion Bit Flips Confusion Bit Flips 

6 22.09 44.39 

12 55.43 63.69 

18 64.28 64.13 

 

From the table it is obvious that the 6 round version exhibits weak diffusion and 

confusion, while the versions with more rounds offer stronger diffusion and confusion. 

Although the 12 round version offers improved diffusion and generally strong confu-

sion, the fact that only 43% of bits flip due to diffusion on average suggests vulnerabil-

ity to linear cryptanalysis. In contrast, the 18 round version offers near optimal diffusion 

and confusion in this test. 

 

3.2 Linearized S-Box Approximations  

To implement a linear attack against the algorithm, a linear approximation of the algo-

rithm starts with approximating S-Boxes. This is accomplished by relating certain “ac-

tive” input and output bits of an S-Box using XOR like in (10): 

 
𝑥3 ⊕ 𝑥1 = 𝑦2 ⊕ 𝑦1            (10) 

 

where 𝑥 = 𝑥3|| 𝑥2|| 𝑥1|| 𝑥0 is the 4-bit input to the S-Box and 𝑦 =  𝑦3|| 𝑦2|| 𝑦1|| 𝑦0 =
𝑆𝑏𝑜𝑥(𝑥). In (10), input bits 3 and 1 are active, and output bits 2 and 1 are active. Ap-

proximations like these will be correct only for some S-Box input combinations. Those 

that are correct for many (or wrong for many) have high bias. 

The S-Box definition presented in Section 2.2 has the following Normalized Linear 

Approximation Table shown in Table 5. 



 

Table 5. S-Box Normalized Linear Approximation Table. The hexadecimal number identifying 

the rows represents which S-Box input bits are active (6 would be middle two bits active in the 

approximation). Similarly, the hexadecimal number identifying the columns represent which out-

put bits are active. With 16 possible inputs to an S-Box in BIG, each approximation would ideally 

(from an algorithm designer’s point of view) be correct for 8 inputs. The values in the table 

represent the deviation from 8 that occur for the 16 input combinations. 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0: 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1: 0 -2 0 2 0 2 -4 2 0 -2 0 2 0 2 4 2 

2: 0 0 0 0 -4 0 0 -4 -2 -2 2 2 -2 2 -2 2 

3: 0 2 0 -2 0 2 0 -2 2 -4 -2 -4 -2 0 2 0 

4: 0 0 2 -2 0 0 2 -2 0 0 -2 2 4 4 2 -2 

5: 0 2 2 4 -4 2 2 0 0 2 -2 0 0 -2 2 0 

6: 0 0 -2 2 0 -4 2 2 -2 -2 -4 0 -2 2 0 0 

7: 0 -2 -2 4 0 -2 -2 -4 2 0 0 -2 2 0 0 -2 

8: 0 -2 0 -2 -2 0 -2 0 0 2 -4 -2 2 0 -2 4 

9: 0 0 4 0 -2 -2 -2 2 0 -4 0 0 2 -2 -2 -2 

a: 0 -2 4 2 2 0 2 0 -2 0 2 -4 0 2 0 2 

b: 0 4 0 0 -2 -2 -2 2 2 2 2 -2 0 4 0 0 

c: 0 2 2 0 2 0 -4 -2 -4 2 -2 0 -2 0 0 -2 

d: 0 0 -2 -2 -2 -2 0 0 -4 0 2 -2 2 -2 4 0 

e: 0 2 2 0 2 -4 0 -2 2 0 0 2 0 -2 2 4 

f: 0 4 -2 2 2 2 0 0 -2 -2 0 0 4 0 -2 2 

3.3 Approximating 6 Rounds of BIG 

For this section, let the plaintext 𝑃𝑇 be expressed in bits as: 

 𝑃𝑇 =  𝑃𝑇0 || 𝑃𝑇1 ||  … || 𝑃𝑇127   (11) 

Similarly let the key 𝐾 be expressed in bits as: 

 𝐾 =  𝐾0 || 𝐾1 ||  … ||  𝐾127  (12) 

Using Table 5 to select approximations with high bias (those that have a value with a 

large absolute magnitude), the approximation: 

 𝑃𝑇2 ⊕ 𝑃𝑇4 ⊕ 𝑃𝑇6 ⊕ 𝑃𝑇7 ⊕ 𝑃𝑇70 ⊕ 𝑃𝑇75 ⊕ 𝑊0
2 = 0, (13) 

where 𝑊0
2 is the first bit of 𝑊 after the round 𝑖 = 2. This approximation was created 

by approximating six “active” S-Boxes, each chosen for its ability to use a high bias of 

absolute magnitude 0.25. This is calculated by dividing the number in Table 5 for that 



approximation by 16 [19]. Using the “Piling-up Lemma” from Matsui, the bias of the 

BIG approximation is calculated as: 

  𝜀𝑡𝑜𝑡𝑎𝑙 = 2𝑛−1 ∏ 𝜀𝑖
𝑛
𝑖=1 = 252−12 = 2−7  (14) 

 

In this case with six S-Boxes, 𝑛 = 6 and each 𝜀𝑖 = 0.25 =  2−2. Also, by Matsui, the 

number of plaintext/ciphertext pairs to use this approximation with confidence of ac-

curacy is  

𝜀𝑡𝑜𝑡𝑎𝑙
−2 = (2−7)−2𝑐 ≈  16,000𝑐          (15) 

 

where 𝑐 is a small positive number [17]. 

3.4 Uncovering Key Bits 

The approximation presented in the previous section can be used to uncover a relation-

ship between the key bits. Specifically, the approximation can be used to discover the 

value of this expression: 

 𝐾16…19  ⊕  𝐾59…62 ⊕ 𝐾123…126 (16) 

This expression is determined by which key bits are used in the algorithm to decrypt 

from the ciphertext to the S-Box directly after 𝑊0
2. 

By setting 𝐾16…19  ⊕  𝐾59…62 = 0 in a candidate key and going through the sixteen 

possible values of 𝐾123…126, the linear approximation will have the largest (in magni-

tude) bias when the value for the expression in (16) is correct [17]. 

 This method was tested with varying number of plaintext/ciphertext pairs, and the 

results are shown in Table 6. 

Table 6. Linear attack results. Each # of plaintext/ciphertext pairs was tested on 10,000 keys. 

The third column is the number of keys where the attack correctly recovered all 4 bits in (16) 

𝒄 # of Plaintext/Ciphertext 

pairs 

# of Correct Recoveries 

(out of 10,000 keys) 

% Correctly                 

Recovered 

½ 8,000 2,829 28.29% 

1 16,000 4,293 42.93% 

2 32,000 5,717 57.17% 

4 64,000 6,824 68.24% 

8 128,000 7,871 78.71% 

16 256,000 8,347 83.47% 

32 512,000 8,614 86.14% 

 

The accuracy of the attack increases with an increased number of plaintext/ciphertext 

pairs. Similar approximations to (13) could be found for 6 rounds, leading to more re-

lations like (16) being discovered. However, extending this attack to 12 rounds or 18 

rounds would require more active S-Boxes, which would mean the required number of 

plaintext/ciphertext pairs would increase, making this attack infeasible for real world 

use. 



 

For example, assuming the analysis was extended to 12 rounds, this would require 

at least 6 more S-Box approximations (as an unrealistically bare minimum). Assuming 

these approximations have a bias of magnitude 0.25 (the maximum available in Table 

5), that would mean the bias of the full cipher approximation would decrease (using the 

Piling-up Lemma) by a factor of 2−6. The total number of required plaintext/ciphertext 

pairs would then increase by a factor of 212 to a minimum of 67.1 million. 

4 Design Implementation and Optimization 

When implementing a proposed algorithm, there are design variations which can be 

exploited in order to optimize the implementation toward a specific metric. We present 

three design optimization techniques: a pure software implementation, optimized for 

minimum clock cycles; a pure hardware implementation, optimized for minimum 

ALMs used; and hardware-software codesign implementation, optimized for maximum 

throughput/area (TP/A). When implementing these designs, the Terasic DE1-SoC hard-

ware is used to implement the base processor (the Nios II (e) Classic) for all implemen-

tations, while the Eclipse SBT is used to implement the software interface (written in 

C code). Additional constraints within the design include: 8KB of Intel On-Chip RAM, 

the JTAG UART, clock and reset modules, a timer module, and the respective inter-

connect for all components, which mandates a lower-limit of 676 ALMs (the minimum 

ALM usage of the software design implementation, and base ALM usage for the hard-

ware design implementation and hardware-software codesign implementation).  

The base interface to the Nios II processor is shown in Figure 5. Metrics for all im-

plementations include the area, in ALMs, required to instantiate all of the below hard-

ware, plus any additional hardware accelerators for the hardware and hardware-soft-

ware codesigned versions. Additionally, all implementations are for the 12 round BIG 

cipher version, and use a single clock domain, operating on the 50MHz clock source 

generated by the Terasic DE1-SoC. 

 

  
Figure 5. The base Qsys (Platform Designer) interface for the BIG Cipher implementation, which 

bridges the Nios II Processor (HW) to the respective implementation (SW, HW, or HW/SW). 



4.1 Software Design Implementation 

In our pure software implementation, minimizing the required encryption and decryp-

tion clock cycles mandates a tactful approach toward C programming, including such 

techniques as: loop unrolling, function in-lining, compiler optimizing, intelligent 

memory accessing, intelligent round key generation, and smarter S-Box utilization.  

Given a minimum clock cycle optimization target, and assuming that there is suffi-

cient instruction memory available to allow reduced code density to provide a clock 

cycle reduction, we can increase the amount of instruction memory consumed to de-

crease the total clock cycles required. Specifically, we explicitly unroll all loops and 

in-line all function calls; thus we remove the branch and jump overheads, which reduces 

the overall required clock cycles for the implementation.  

In order to further reduce the required encryption and decryption clock cycles, 

memory accesses are performed in an intelligent manner, based on the sequential nature 

of the stored block data (e.g., plaintext/ciphertext, key, round keys, and S-Boxes). Spe-

cifically, when multiple bytes of data are known to be stored sequentially, rather than 

reading or writing individual bytes (which requires a single clock cycle), the data is 

read as either a 16-bit or 32-bit integer (which requires a single clock cycle) and inter-

preted accordingly, effectively ‘batching’ multiple memory accesses into a single ac-

cess and operating on the bytes in parallel. 

By examining the BIG cipher’s specification, we note that a round-key generation 

has a period of 6 rounds; thus, these six round keys can be computed a single time, 

stored in memory, and utilized for the remainder of an encryption/decryption process, 

thus amalgamating multiple operations into a single memory access. Using a similar 

principle, the 4-bit S-Box ‘nibbles’ are also recomputed to work on ‘bytes’, which al-

lows for a further compaction of operations. 

Finally, we employ the use of high compiler optimizations, such as the “#pragma 

GCC optimize” approach, which optimizes the compilation for minimum clock cycles. 

We present the results of the optimization techniques in Table 7: 

Table 7. Software Design Implementation Results 

 
Encrypt 

Cycles 

Decrypt 

Cycles 

Total 

Cycles 

Throughput 

(Mbps) 

.text 

(bytes) 
ALMs 

Mem. 

Bits 

TP/A Ratio  

(Kbps/ALM) 

Optimized 

Design 
26,667 26,734 53,401 0.24 6,084 676 76,800 0.355  

 

 



 

4.2 Hardware Design Implementation 

In our pure hardware implementation, which is optimized for minimum area (measured 

as ALMs), a multi-slice partition is used to split each encryption/decryption round into 

16 slices of 4-bit nibbles, which reduces the number of required S-Boxes, and thus 

overall ALMs. This design is shown in Figure 6. 

 
Figure 6. Multi-slice Partition design (for encryption). Inputs from 𝑅𝐾𝐻, the output of 

𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝑅𝐾𝐿 are specifically chosen 4-bit slices of those values for each iter-

ation. After 16 iterations of this, the full 𝑊𝐻 word can be calculated using a single S-Box. 

 

By observing the parallel structure of the BIG cipher, and by utilizing a shift register 

for the upper half of the plaintext/ciphertext word (where no permutation of data exists), 

we implement the multi-slice design. For clarity, we display this design as a Platform 

Designer block in Figure 7, an algorithmic-state-machine (ASM) in Figure 8, and as a 

block diagram in Figure 9; we display results in Table 8. 

Table 8. Hardware Design Implementation Results 

 
Encrypt 

Cycles 

Decrypt 

Cycles 

Total 

Cycles 

Throughput 

(Mbps) 

.text 

(bytes) 
ALMs 

Mem. 

Bits 

TP/A Ratio  

(Kbps/ALM) 

Optimized 

Design 
2,040 2,040 4,080 3.138  2,588 1,170 76,800 2.68 

 



  
Figure 7. The pure HW Qsys (Platform Designer) interface for the BIG Block Cipher’s imple-

mentation, which bridges the Nios II Processor (HW) to the HW Implementation (Round Slicing 

BIG Peripheral) 

 

 
Figure 8. The algorithmic-state-machine (ASM) of the pure HW implementation, which defines 

the behavior of the multi-slice approach. 

 



 

 
Figure 9. The block diagram representation of the pure hardware design implementation’s min-

imum area optimization. 

 

 

4.3 Hardware/Software Codesign Implementation 

Having demonstrated optimization techniques for both a pure software and a pure hard-

ware implementation, we present a hardware-software codesign implementation, which 

is optimized around maximizing the TP/A ratio by making effective hardware-software 



codesign decisions. Initially, we considered three potential design options: Nios II cus-

tom encryption and decryption instructions; a parallelized, pure-hardware implementa-

tion with an appropriate finite state machine (FSM); and a serialized, pure hardware 

implementation, using software for control logic. 

 

Nios II Custom Instruction. We observed the potential capability of the custom in-

struction to provide a single-cycle, tightly-coupled hardware operation upon some op-

erands; as such, we developed an appropriate series of encryption and decryption cus-

tom instructions. After development, the resulting TP/A ratio of the system was meas-

ured as 1.45 Kbps/ALM. 

 

Parallel Hardware Implementation. While developing the Nios II Custom Instruc-

tion, we simultaneously developed a memory-mapped, parallel hardware-accelerator, 

capable of performing encryption and decryption in accordance with the BIG specifi-

cation, through the use of two memory-mapped interfaces: a control system and a 

datapath. Upon completion of the implementation, we achieved a resulting TP/A ratio 

of 13.16 Kbps/ALM, a 9× improvement over the Nios II Custom Instruction TP/A ra-

tio; as such, the parallel hardware implementation was selected for final optimization. 

 

Optimization Methodology. After choosing to optimize the parallel hardware imple-

mentation further, we concluded the most effective optimization techniques involved 

not only an appropriately modeled HDL design, but also the appropriate utilization of 

advanced synthesis options. Specifically, we optimized the synthesis options for mini-

mally synthesized area, by: directly optimizing for area, eliminating register duplication 

(allowing shared registers), allowing resource sharing, and allowing RAM replacement. 

Upon optimization, we achieved an optimized TP/A ratio of 13.36 Kbps/ALM. 

 

Computational Analysis. It is prudent to observe the limitations of a design, in order 

to identify and mitigate system bottlenecks. As such, we examine the efficiency of our 

hardware-accelerator, relative to the hardware-software interface. First, we identify the 

parameter of comparison as bits/cycle, where a higher ratio represents a more stream-

lined design. If the hardware-software interface has a higher ratio than the hardware-

accelerator, the system is defined as computationally constrained, and suggests further 

optimization is needed for the hardware-accelerator, otherwise, the system is commu-

nication constrained, and the hardware-software interface to the hardware-accelerator 

becomes the bottleneck. 

Using the methods and notations in [20], we identify the parameters of the hardware-

software interface as 𝑣 (bits per transfer) and 𝐵 (cycles per transfer), where, based on 

the BIG specification, 

 𝑣 =  832 𝑏𝑖𝑡𝑠/𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, (17) 

 𝐵 =  643 𝑐𝑦𝑐𝑙𝑒𝑠/𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, (18) 

and 



 

 𝑣/𝐵 =  1.311 𝑏𝑖𝑡𝑠/𝑐𝑦𝑐𝑙𝑒 (19) 

 Similarly, we identify the parameters of the hardware-accelerator as 𝑤 (bits per ex-

ecution) and 𝐻 (cycles per execution), where, based on the BIG specification, 

 𝑤 =  256 𝑏𝑖𝑡𝑠/𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, (20) 

 𝐻 =  92 𝑐𝑦𝑐𝑙𝑒𝑠/𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, (21) 

 𝑤/𝐻 =  2.783 𝑏𝑖𝑡𝑠/𝑐𝑦𝑐𝑙𝑒, (22) 

and 

 𝑣/𝐵 <  𝑤/𝐻, (23) 

thus, the hardware-software interface is the bottleneck of the system, and the imple-

mentation is communication constrained, which suggests maximum throughput has 

been achieved for a memory-mapped hardware-accelerator. 

Conclusively, we present the results of the optimized hardware-software codesign 

implementation in Table 9, as well as the interface of the implementation in Figure 10. 

Table 9. Hardware-Software Codesign Implementation Results 

 
Encrypt 

Cycles 

Decrypt 

Cycles 

Total 

Cycles 

Throughput 

(Mbps) 

.text 

(bytes) 
ALMs 

Mem. 

Bits 

TP/A Ratio  

(Kbps/ALM) 

Optimized 

Design 
402 395 797 16.0602  1,848 1,220 76,800 13.1641 

 

 
Figure 10. The HW/SW codesign Qsys (Platform Designer) interface for the BIG Cipher imple-

mentation, which bridges the Nios II Processor (HW) to the HW/SW Implementation (Round 

Slicing BIG Peripheral) 



5 Conclusion 

In this work, we presented a specification of a block cipher, the BIG (Block) (Instruc-

tional, Generic) cipher, intended to synergize the cryptographic educational competen-

cies of mathematics, engineering, and computer science. This work demonstrates the 

ability of senior university undergraduate computer engineering students to analyze a 

cipher specification, conduct basic security analysis using linear cryptanalysis, and pro-

duce several implementations, optimized for distinct targets. All implementations lev-

eraged an identical baseline of the Intel Nios II soft core microprocessor, 8 kilobytes of 

on-chip RAM, JTAG and interconnect peripherals, and a custom-designed benchmark 

timer. 

Security analysis leveraged the linear cryptanalytic methods of [17] to conduct a 

reduced-round attack on the BIG cipher using 6 rounds. A recovery of a relationship of 

12 key bits is described using as few as 16,000 plaintext/ciphertext pairs; however, a 

similar attack on a 12-round version would require more than 67 million plaintext/ci-

phertext pairs. Additionally, analysis of the 12-round version implemented in this re-

search revealed a suboptimal diffusion rate of 43.3% bit-flips after 12 rounds, which 

could be exploited using bias vulnerabilities.  

Implementation results are summarized in Table 10. The purely software implemen-

tation has the highest total latency (53,401 clock cycles), and the lowest throughput and 

throughput-to-area (TP/A) ratio, at 0.24 Mbps and 0.355 Kbps/ALM, respectively.  The 

hardware implementation has improved throughput 3.138 Mbps and 2.68 Kbps/ALM, 

which represent 13× and 7.5× improvements, respectively, over the software imple-

mentation. This requires 1,170 ALMs, which is 494 additional Cyclone V FPGA ALMs 

above the baseline Nios II and peripherals. Finally, the hardware-software codesigned 

implementation achieves a 67× speed-up and 37× increase in TP/A ratio over the soft-

ware implementation, and 5× speed-up and 5× increase in TP/A ratio compared to the 

hardware implementation, while requiring a total of 1,220 ALMs, which is 544 addi-

tional ALMs over the baseline Nios II and peripherals. Our analysis shows that the 

hardware-software designed is communication constrained, which illustrates upper-

bounds on performance improvements realized by memory-mapped hardware acceler-

ators. 

 

 

 



 

 

Table 10. Summarized Implementation Results 

 
Encrypt 

Cycles 

Decrypt 

Cycles 

Total 

Cycles 

Throughput 

(Mbps) 

.text 

(bytes) 
ALMs 

Mem. 

Bits 

TP/A Ratio  

(Kbps/ALM) 

Software 

Design 
26,667 26,734 53,401 0.24 6,084 676 76,800 0.355  

Hardware 

Design 
2,040 2,040 4,080 3.138  2,588 1,170 76,800 2.68 

HW/SW  

Codesign 
402 395 797 16.0602  1,848 1,220 76,800 13.1641 
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6 Appendices 

6.1 Appendix A 

In order to facilitate replication of the BIG cipher, we provide three sample vectors to 

be used for testing (Table 11, Table 12, and Table 13). 

 

Table 11. 12 Rounds Test Set 1 (𝑃𝑇= Plaintext, 𝐾 = Key, 𝐶𝑇= Ciphertext) 

𝑃𝑇 = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} 

𝐾 = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} 

𝐶𝑇 = {0xA8, 0x5E, 0x68, 0x2C, 0x0E, 0x14, 0x0E, 0x79, 0x67, 0x9E, 0xC7, 0x22, 0x13, 0x5B, 0x6C, 0x64} 

 

Table 12. 12 Round Test Set 2 (𝑃𝑇= Plaintext, 𝐾 = Key, 𝐶𝑇= Ciphertext)  

𝑃𝑇 = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xFE, 0xBA, 0xBE, 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0} 

𝐾 = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFF, 0xEE, 0xDD, 0xCC, 0xAA, 0x99, 0x88, 0x77}  

https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf


 

𝐶𝑇 = {0xDA, 0xB1, 0xC4, 0xC0, 0xCA, 0x4D, 0xCF, 0x5B, 0x50, 0xEA, 0xF6, 0x17, 0xDB, 0x92, 0x55, 0x13}  

 

Table 13. 18 Round Test Set 3 (𝑃𝑇= Plaintext, 𝐾 = Key, 𝐶𝑇= Ciphertext)  

𝑃𝑇 = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xFE, 0xBA, 0xBE, 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0} 

𝐾 = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFF, 0xEE, 0xDD, 0xCC, 0xAA, 0x99, 0x88, 0x77}  

𝐶𝑇 = {0x13, 0x4B, 0x75, 0x0C, 0xD4, 0xB8, 0x00, 0x65, 0x93, 0x50, 0x17, 0x7F, 0x76, 0x3B, 0x4A, 0x3D}  

6.2 Appendix B 

Algorithm 5. Generic C BIG Encryption and Decryption Implementation 

#include <stdint.h> 

#include <string.h> 

 

// number of rounds for encryption/decryption (a multiple of 6)  

#define NUM_ROUNDS 12 

 

// array where SBox(Y) = sbox[Y] 

const uint8_t sbox[16] = { 0xC, 0x9, 0xD,0x2, 0x5, 0xF, 0x3, 

0x6, 0x7, 0xE, 0x0, 

 0x1, 0xA, 0x4, 0xB, 0x8 }; 

 

// array where InvSBox(v) = inv_sbox[v] 

const uint8_t inv_sbox[16] = { 0xA, 0xB, 0x3, 0x6, 0xD, 0x4, 

0x7, 0x8, 0xF, 0x1, 

 0xC, 0xE, 0x0, 0x2, 0x9, 0x5 }; 

 

// round constants through 18 rounds 

const uint8_t round_constants[18] = { 0x5A, 0x34, 0x73, 0x66, 

0x57, 0x35, 0x71, 

 0x62, 0x5F, 0x25, 0x51, 0x22, 0x5F, 0x3E, 0x67, 0x4E, 0x07, 

0x15 }; 

 

// Performs XOR on two arrays of 8 bytes producing X = X ^ Y 

void xor_8_bytes(uint8_t * X, const uint8_t * Y) 

{ 

 int i; 

 for (i = 0; i < 8; i++) 

  X[i] = X[i] ^ Y[i]; 

} 

 

// Performs SubBytes on an array of 8 bytes 



void SubBytes(uint8_t * Y) 

{ 

 int i; 

 uint8_t temp0, temp1; 

 for (i = 0; i < 8; i++) 

 { 

  // lower nibble 

  temp1 = Y[i] & 0xF; 

  temp1 = sbox[temp1]; 

 

  // upper nibble 

  temp0 = Y[i] >> 4; 

  temp0 = sbox[temp0]; 

  Y[i] = (temp0 << 4) | temp1; 

 } 

} 

 

// Performs InvSubBytes on an array of 8 bytes 

void InvSubBytes(uint8_t * Y) 

{ 

 int i; 

 uint8_t temp0, temp1; 

 for (i = 0; i < 8; i++) 

 { 

  // lower nibble 

  temp1 = Y[i] & 0xF; 

  temp1 = inv_sbox[temp1]; 

 

  // upper nibble 

  temp0 = Y[i] >> 4; 

  temp0 = inv_sbox[temp0]; 

  Y[i] = (temp0 << 4) | temp1; 

 } 

} 

 

// Performs AddRoundConstant on an array of 8 bytes 

// X is the array of 8 bytes 

// i is the round 

void AddRoundConstant(uint8_t * X, int i) 

{ 

 X[6] ^= (round_constants[i] & 0x3) << 6; 

 X[5] ^= round_constants[i] >> 2; 

} 

 

// Performs Perm_1 on two arrays of 8 bytes 



 

// Y is the output array 

// X is the input array 

void Perm_1(uint8_t * Y, const uint8_t * X) 

{ 

 Y[0] = X[2]; 

 Y[1] = X[3]; 

 Y[2] = X[0]; 

 Y[3] = X[1]; 

 Y[4] = X[6]; 

 Y[5] = X[7]; 

 Y[6] = X[4]; 

 Y[7] = X[5]; 

} 

 

// Performs Perm_1 on an array of 8 bytes 

void AssignPerm_1(uint8_t * X) 

{ 

 uint8_t temp[8]; 

 memcpy(temp, X, 8); 

 Perm_1(X, temp); 

} 

 

// Performs Perm_2 on an array of 8 bytes 

void Perm_2(uint8_t * X) 

{ 

 uint64_t op = 0, temp; 

 

 // build a 64-bit unsigned integer out of the array 

 int i; 

 for (i = 0; i < 8; i++) 

 { 

  op <<= 8; 

  op |= X[i]; 

 } 

 temp = op; 

 

 // perform circular shift 

 temp <<= 21; 

 op >>= 43; 

 op |= temp; 

 

 // deconstruct into bytes 

 for (i = 7; i >= 0; i--) 

 { 

  X[i] = op & 0xFF; 



  op >>= 8; 

 } 

} 

 

 

// Performs (Perm_2)^-1 on an array of 8 bytes 

void InvPerm_2(uint8_t * X) 

{ 

 uint64_t op = 0, temp; 

 

 // build a 64-bit unsigned integer out of the array 

 int i; 

 for (i = 0; i < 8; i++) 

 { 

  op <<= 8; 

  op |= X[i]; 

 } 

 temp = op; 

 

 // perform the inverse circular shift 

 temp >>= 21; 

 op <<= 43; 

 op |= temp; 

 

 // deconstruct into bytes 

 for (i = 7; i >= 0; i--) 

 { 

  X[i] = op & 0xFF; 

  op >>= 8; 

 } 

} 

 

// Calculates next round key (16-byte array) 

void generateRoundKey_enc(uint8_t * round_key) 

{ 

 uint8_t previous_round_key[16]; 

 memcpy(previous_round_key, round_key, 16); 

 Perm_1(round_key, &previous_round_key[8]); 

 int i; 

 for (i = 0; i < 8; i++) 

 { 

  round_key[8 + i] = round_key[i] ^ previous_round_key[i]; 

 } 

} 

 



 

// Calculates previous round key (16-byte array) 

void generateRoundKey_dec(uint8_t * round_key) 

{ 

 uint8_t previous_round_key[16]; 

 memcpy(previous_round_key, round_key, 16); 

 Perm_1(&round_key[8], previous_round_key); 

 int i; 

 for (i = 0; i < 8; i++) 

 { 

  round_key[i] = previous_round_key[i] ^ previous_round_key[8 

+ i]; 

 } 

} 

 

// BIG Encryption Function 

// plaintext, key, and ciphertext are arrays of 16 bytes 

void encrypt(const uint8_t * plaintext, const uint8_t * key, 

 uint8_t * ciphertext) 

{ 

 uint8_t W[16], RK[16], temp[8]; 

 

 memcpy(W, plaintext, 16); 

 memcpy(RK, key, 16); 

 

 int i; 

 for (i = 0; i < NUM_ROUNDS; i++) 

 { 

  generateRoundKey_enc(RK); 

 

  xor_8_bytes(W, RK); 

  SubBytes(W); 

 

  AddRoundConstant(&W[8], i); 

  xor_8_bytes(&W[8], &RK[8]); 

  AssignPerm_1(&W[8]); 

  Perm_2(&W[8]); 

 

  // Feistel swap 

  memcpy(temp, W, 8); 

  xor_8_bytes(W, &W[8]); 

  memcpy(&W[8], temp, 8); 

 } 

 memcpy(ciphertext, W, 16); 

} 

 



// BIG Decryption Function 

// ciphertext, key, and plaintext are arrays of 16 bytes 

void decrypt(const uint8_t * ciphertext, const uint8_t * key, 

 uint8_t * plaintext) 

{ 

 uint8_t W[16], RK[16], temp[8]; 

 

 memcpy(W, ciphertext, 16); 

 memcpy(RK, key, 16); 

 

 int i; 

 for (i = NUM_ROUNDS - 1; i >= 0; i--) 

 { 

  memcpy(temp, &W[8], 8); 

  xor_8_bytes(&W[8], W); 

 

  InvPerm_2(&W[8]); 

  AssignPerm_1(&W[8]); 

  xor_8_bytes(&W[8], &RK[8]); 

  AddRoundConstant(&W[8], i); 

 

  InvSubBytes(temp); 

  memcpy(W, temp, 8); 

  xor_8_bytes(W, RK); 

   

  generateRoundKey_dec(RK); 

 } 

 memcpy(plaintext, W, 16); 

 

} 


