
Fast Secure Multiparty ECDSA with Practical Distributed Key

Generation and Applications to Cryptocurrency Custody∗

Iftach Haitner†‡ Yehuda Lindell†§ Ariel Nof¶ Samuel Ranellucci†

May 29, 2023

Abstract

ECDSA is a standardized signing algorithm that is widely used in TLS, code signing, cryp-
tocurrency and more. Due to its importance, the problem of securely computing ECDSA in a
distributed manner (known as threshold signing) has received considerable interest. Despite this
interest, however, as of the time of publication of the conference version of this paper ([LN18]),
there had been no full threshold solution for more than two parties (meaning that any t-out-of-n
parties can sign, security is preserved for any t− 1 or fewer corrupted parties, and t ≤ n can be
any value) that supports practical key distribution. All previous solutions for this functionality
utilized Paillier homomorphic encryption, and efficient distributed Paillier key generation for
more than two parties is not known.

In this paper, we present the first (again, for the conference version publication time) truly
practical full threshold ECDSA signing protocol that has fast signing and key generation. This
solves an old open problem and opens the door to many practical uses of threshold ECDSA
signing that are in demand today. One of these applications is the construction of secure
cryptocurrency wallets (where key-shares are spread over multiple devices, and so are hard to
steal) and cryptocurrency custody solutions (where large sums of invested cryptocurrency are
strongly protected by splitting the key between a bank/financial institution, the customer who
owns the currency, and possibly a third-party trustee, in multiple shares at each). There is
growing practical interest in such solutions, but prior to our work, these could not be deployed
due to the need for a distributed key generation.

∗An extended abstract of this work (by the second and third authors) appeared as [LN18]. This full version
includes full security proofs, and a new many-party multiplication protocol.

†Coinbase Ltd. Email:{iftach.haitner,yehuda.lindel,samuel.ranellucci}@coinbase.com.
‡The Blavatnik School of Computer Science at Tel-Aviv University.
§Part of this work was conducted while at the department of Computer Science at Bar-Ilan University, supported

by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber
Directorate in the Prime Minister’s Office, and by the Alter Family Foundation.

¶Department of Computer Science, Bar-Ilan University. Email: ariel.nof@biu.ac.il.

1

Contents

1 Introduction 4
1.1 Background and Prior Work . 4
1.2 Our Results . 5
1.3 Cryptocurrency Wallets and Custody . 6
1.4 Concurrent and Subsequent Work . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Universal Composability (UC) . 8
2.3 The ECDSA Signature Scheme . 9

2.3.1 The Standalone Scheme . 9
2.3.2 The Multiparty Ideal Functionality . 10

2.4 Pedersen Commitments . 10
2.5 ElGamal Commitments . 11
2.6 Zero Knowledge . 11
2.7 String Commitments . 13

2.7.1 Committed Non-Interactive Zero Knowledge 13

3 ECDSA Protocol 13
3.1 Security . 18
3.2 Using ElGamal Commitments . 22
3.3 Many Honest Parties . 22

3.3.1 Security . 23
3.4 Threshold Signatures . 24

3.4.1 Security . 25
3.5 A More Efficient Protocol . 25

4 Many-Party Leaky Multiplication 26
4.1 Security . 28
4.2 Multiplication Equality Test . 30

4.2.1 Security . 31
4.2.2 Many Honest Parties . 33

4.3 Weak Two-Party Multiplication . 34
4.3.1 Using Weak Two-Party Multiplication in Protocol 4.3 35

4.4 Using ElGamal Commitments . 36
4.5 A More Efficient Protocol . 36

5 Experimental Results 36

A Implementing Auxiliary Functionalities 41
A.1 Zero Knowledge . 41

A.1.1 Knowledge of Pedersen Commitment . 43
A.1.2 Knowledge of ElGamal Commitment . 44
A.1.3 ElGamal Equals Pedersen . 46

2

A.1.4 Knowledge of ElGamal Scalar Product . 47
A.1.5 Product of ElGamal Commitments . 48

A.2 String Commitments . 50
A.2.1 Committed Non-Interactive Zero Knowledge 50

3

1 Introduction

1.1 Background and Prior Work

In the late 1980s and the 1990s, a large body of research emerged around the problem of threshold
cryptography ; e.g., [Boy86; CH89; Des87; DF89; Gen+01; SG98; Sho00; MR04]. In its most general
form, this problem considers the setting of a private key shared between n parties with the property
that any subset of t parties may be able to decrypt or sign, but any set of fewer than t parties can
do nothing. This is a specific example of secure multiparty computation, where the functionality
being computed is either decryption or signing. Note that trivial solutions like secret-sharing the
private key and reconstructing to decrypt or sign do not work since, once the key is reconstructed,
any single party can decrypt or sign by itself from that point onward. Rather, the requirement is
that a subset of t parties is needed for every private-key operation.

Threshold cryptography can be used in applications where multiple signers are needed to gen-
erate a signature, and likewise where highly confidential documents should only be decrypted and
viewed by a quorum. Furthermore, threshold cryptography can be used to provide a high level of
key protection. This is achieved by sharing the key on multiple devices (or between multiple users)
and carrying out private-key operations via a secure protocol that reveals nothing but the output.
This provides key protection since an adversary must breach multiple devices in order to obtain
the key. After intensive research on the topic in the 1990s and early 2000s, threshold cryptography
received considerably less interest in the last decade. However, interest has recently been renewed.
This can be seen from the fact that a number of startup companies are now deploying threshold
cryptography for the purpose of key protection [Por; Sec; Sep; Cur; Fir]. Another reason is due
to the fact that ECDSA signing is used in Bitcoin and other cryptocurrencies, and the theft of a
signing key can immediately be translated into concrete financial loss. Bitcoin has a multisignature
solution built in, which is based on using multiple distinct signing keys rather than a threshold
signing scheme. However, the flexibility of the Bitcoin multisig is limited in that it does not sup-
port arbitrary and complex access structures. In addition, multisig solutions, like the one used
in Bitcoin, introduce anonymity and scalability problems (as discussed in [Gen+16, Section 6.3]),
and do not support revoking a party’s share (which can be a crucial feature in some applications).
Thus, a more general solution may be obtained via threshold cryptography.

Fast threshold cryptography protocols exist for a wide variety of problems, including RSA sign-
ing and decryption, ElGamal and ECIES encryption, Schnorr signatures, Cramer–Shoup, and more.
Despite the above successes, and despite the fact that DSA/ECDSA is a widely-used standard, for
a long time DSA/ECDSA resisted attempts at constructing efficient protocols for threshold sign-
ing. This seems to be due to the need to compute k−1 without knowing k, were k is the signature
“nonce” (see discussion in Lindell [Lin21]). The first solution to overcome this difficulty in the
honest minority setting was by MacKenzie and Reiter [MR04], who use Paillier additively homo-
morphic encryption in order to generate a signature between two parties. Their protocol required
heavy zero-knowledge proofs, but was improved in [Gen+16] and later in [Lin21]. More significantly
to our setting, [Gen+16; Bon+17] show how to generalize the MacKenzie and Reiter paradigm to
any number of parties and with a full threshold. This means that for any n number of parties and
any threshold t ≤ n (even t = n) it is possible for any subset of t parties to sign, and security is
preserved in the presence of any subset of t−1 corrupted parties. This is a significant breakthrough,
but falls short of providing a full solution in practice, since it requires distributed Paillier key gener-
ation. Although two-party distributed Paillier key generation can work in practice [Fre+18] (albeit

4

requiring about 40 seconds between two powerful servers), it was still unknown as to whether this
can be done practically for more than two parties. Thus, despite decades of research in threshold
cryptography and secure multiparty computation, the following basic question remained open (as
of the conference version of this paper [LN18] publication time):

Is it possible to construct a full-threshold protocol for multiparty ECDSA, with practical
distributed key generation and signing (based on well-studied hardness assumptions)?

We answer this question in the affirmative.

1.2 Our Results

We present a full-threshold ECDSA signing protocol which is the first to have practical distributed
key generation and fast signing. The protocol has seven rounds in the OT-hybrid model. We achieve
this breakthrough by replacing Paillier additively homomorphic encryption with ElGamal-in-the-
exponent encryption, which support additively homomorphic encryption. This change enables us to
compute an encrypted signature in a similar way to that of [Gen+16], except that, upon decryption,
the parties only receive s ·G (where G is the generator of the elliptic curve group) and not s itself,
where s is the desired portion of the signature. This is due to the fact that we use ElGamal “in
the exponent”, and so only obtain the result “in the exponent”.1 We overcome this by computing
the signature value s, in parallel, using a method that guarantees privacy, but not correctness.
The combination of the above approaches yields a secure solution, since the encrypted signature
is verified, and so s-in-the-clear is only revealed once equality with the encrypted signature is
validated. The above method has many significant advantages over using Paillier; the major ones
are:

1. We do not need distributed key generation of Paillier keys, which is hard, but just distributed
key generation of ElGamal keys, which is very easy.

2. Elliptic curve operations themselves are far more efficient than Paillier operations.

3. Zero-knowledge proofs that are very expensive in Paillier are far more efficient in an elliptic
curve group (it is well-known that zero-knowledge is easier in known-order groups).

4. By working in the same elliptic curve group as the signature, all prime-order homomorphic
operations automatically take place modulo the required group order q. This removes many
of the difficulties associated with Paillier (which requires adding randomness, to enable ef-
fectively working over the integers, and then proving in zero-knowledge that the “correct
amount” was added).

5. Our ECDSA protocol enforces that the parties use the correct value of k−1 using a method
similar to that of [Gen+16], i.e., they multiplicatively mask k with a random value ρ, and then
reveal k · ρ. By working with ElGamal and not Paillier, we achieve this far more efficiently
than does [Gen+16], and without the expensive Paillier-based zero-knowledge proofs that
they require.

1This is called ElGamal “in-the-exponent” due to typical multiplicative group notation. Specifically, encryption
of some x using generator G and public-key D is carried out by computing (Gr, Dr ·Gx). In elliptic curve notation,
this becomes (r ·G, r ·D + x ·G). It is easy to see that this scheme is additively homomorphic, but that decryption
only returns x · G and not x itself. Since obtaining x requires solving the discrete log problem, this is not possible
(except for very small values of x).

5

Finally, we remark that our entire protocol works over any group for which there exists an efficient
injective mapping into Zq, and thus can be used to securely compute DSA in exactly the same way.

1.3 Cryptocurrency Wallets and Custody

As mentioned above, one important application of our protocol in practice today is in the protection
of cryptocurrency. Although there are differing opinions on the benefit of existing cryptocurrencies
to society, it is well accepted that honest investors should be protected from mass theft that we are
already seeing in this space. On the end-user side, a secure cryptocurrency wallet should enable
the user to split the signing key amongst multiple devices, and require all (or a subset) in order
to transfer money. On the financial institution side, there is real interest in full cryptocurrency
custody solutions for large customers. Such a solution is intended for use by investors who wish
to protect very large amounts of cryptocurrency (even in the billions) as part of their investment
portfolio. Due to the high amount of funds involved, it is not possible to enable any single party
to have access to the signing key. Furthermore, neither the bank nor the customer should have the
ability to single-handedly transfer funds (the bank cannot, due to liability, and the customer cannot
due to the fact that its systems are typically less secure than the bank). Thus, a natural solution
is to split the signing key into multiple parts, both in the bank and the customer (and potentially
an additional third trustee) and then require some threshold in each entity to sign.2 A full-blown
solution for this will typically have different roles both at the bank and the customer (one set of
parties would authorize the signature itself as being requested from the customer, another would
verify that the transfer meets the agreed-upon policy, and so on). Since such solutions require
complex access structures for signing, our protocol, which provides the first real solution for this
problem, is of very practical relevance.

1.4 Concurrent and Subsequent Work

Concurrently to this work, Gennaro and Goldfeder [GG18] and Doerner, Kondi, Lee, and Shelat
[Doe+19] also present multiparty ECDSA protocols with practical key generation. Our protocol and
the protocol of [GG18] have some similarity, but the methods used to prevent adversarial behavior
are very different. One significant difference between the two results is the hardness assumption
and security model. We prove that our protocol is secure under simulation-based definitions, show-
ing that it securely computes a standard ideal functionality for ECDSA. In addition, we prove
the security of our protocol under the standard assumptions that the DDH problem is hard and
the hardness of the standalone ECDSA signature. In contrast, [GG18] prove the security of their
protocol under a game-based definition, and require DDH as well as an ad-hoc but plausible as-
sumption called Paillier-ECR (a weaker version of a similar assumption first introduced in [Lin21]).
However, we note that the running times given in [GG18] (even in the updated version) are for the
original insecure version without expensive range proofs. It is unclear how expensive their protocol
is when the range proofs are run. The protocol of [Doe+19] is an extension of [Doe+18] to the
multiparty setting. Their approach is very different than ours, as their main goal is to reduce the
computational cost of the parties. Indeed, their protocol requires very few public-key operations
compared to ours. However, their bandwidth is much higher, and their number of rounds grows

2We remark that offline solutions requiring physical presence of representatives of both the bank and the customer,
as could be achieved using physically protected HSMs, are not viable due to the requirement of fast transfer in case
of a cryptocurrency crash.

6

with the number of parties, and so is not constant. In contrast, in this work, as well as in [GG18],
the protocols are constant-round. Thus, their protocol may be favorable when the parties are all
located in same the local network, whereas our protocol is likely to outperform theirs when the
parties are remotely located.

In a more recent work, Canetti, Gennaro, Goldfeder, Makriyannis, and Peled [Can+20a] present
a four-round protocol (one round less than our protocol), featuring identifiable abort (our does
not) and secure against adaptive corruptions (our protocol only withstands static corruptions).
On the downside, their protocol uses Paillier homomorphic encryption, and thus suffers from the
disadvantages this encryption scheme induces (see Section 1.2); moreover, the parties require, as an
auxiliary input, safe bi-primes, which are costly to generate. Finally, Smart and Alaoui [SA19] and
Dalskov et al. [Dal+20] developed frameworks for threshold ECDSA based on any MPC protocol
over the field Zq.

Paper Organization

Security notions and some basic building blocks used in our protocol are given in Section 2. In
Section 3, we define and implement our distributed ECDSA signing protocol, which uses a many-
party multiplication protocol described in Section 4. Experimental results of the running time of
our ECDSA protocol are given in Section 5.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, upper-case characters for group elements, and lower-case
characters for scalars. We use || to denote string concatenation. For a prime q, let Zq denote the
finite field of size q. For t ∈ N, let [t] = {1, . . . , t} and (t) = {0, . . . , t}. For a (binary) relation R,
let R(x,w) = 1 iff (x,w) ∈ R. Let accept = true = 1, and reject = false = 0.

Throughout this paper, we fix an (elliptic-curve) group G of prime order q with additively
written group operation, and fix a generator G of G. Each point A of G is of the form A = (a, ·) for

some a ∈ N. We let G̃ def
= G×G denote the product group that inherits its additive operation from

G in an element-wise manner, and denote the elements of G̃ using the ˜ notation, e.g., Ã ∈ G̃. We
also fix a security parameter κ ∈ N. All arithmetic is done over the relevant group/field in which
the elements in consideration reside.

Remark 2.1 (Fixed security parameter). In the following text, we mostly focus on a fixed group
G and a fixed security parameter κ. This is, however, merely for ease of notation. Since all the
reductions given use the adversary as a black-box and their running time is some (fixed) polynomial
in the security parameter, the following text readily extends to the case that the group in consid-
eration is determined by a (non-fixed) security parameter, and the basic group operation as well
as the description of the group element, are polynomial in the security parameter. In particular,
when referring to the standard discrete logarithm and DDH (Decisional Diffie Hellman) hardness
assumptions, we formally mean with respect to an infinite group ensemble.

Communication model. Throughout, we assume each pair of parties have authenticated point-
to-point channel. We assume no broadcast channel.

7

2.2 Universal Composability (UC)

We prove the security of our protocols in the UC (universally composable) framework [Can01], with
the following specifications:

• Security with abort : after getting its output, the adversary can instruct the ideal functionality
to send ⊥ instead of the actual output to some of the parties.

• Static corruptions: the adversary chooses which parties to corrupt before the interaction
starts.

In the rest of the paper UC security stands for its variant with the above specifications. When
proving UC security, we make the following assumptions:

1. Suffices to provide non-rewinding simulators. Since all protocols we use have an implicit start
synchronization phase (all parties are active in the first round), to prove security, it suffices
to provide a straight-line (i.e., non-rewinding) simulator [Kus+10, Theorem 5].

2. We assume for simplicity that the environment provides a fresh session id on each invocation
it makes. (This assumption can be enforced by instructing the parties to chose fresh session
ids using a single-round weak coin-flipping protocol.3)

3. We assume for simplicity that all honest parties agree on the common input. (This assumption
can be forced by the parties sending hash of their common input in the first round of the
protocol).

4. We prove security in different hybrid models, where the parties have access to an ideal imple-
mentation of several (more basic) functionalities. By composability of UC protocols, given
UC secure implementation of these functionalities, the resulting protocol is UC secure.

5. The ideal functionalities are aware of the identity of the corrupted parties, which allowed to
provided additional inputs (as specified by the functionality), e.g., to set the value of share
of the secret key, and to cause abort (also after receiving their outputs).

In addition, throughout the paper we use the following convention:

1. A corrupted party never sends a message to the honest party (apart from an aborting message)
or a messages to the ideal functionalities, that it knows, with probability one, it will make
them abort. This is without loss of generality, since such an adversary can be emulated by
a one that aborts the relevant honest party, by sending it an abort message, before sending
such messages.

2. When an honest party receives an aborting message from another party or from an ideal
functionality, it immediately informs all other parties and aborts.

3. When proving security, we do not address the all-corrupted party case, since the emula-
tion in this case it trivial in an hybrid world in which all ideal functionalities are efficiently
computable.

3The parties send uniform strings to each other, and the session id is set to the hash (random oracle) of their
concatenation.

8

Remark 2.2 (Concrete security). While we do not state concrete security bound in this paper,
since all reductions considered are non-rewinding, the security loss is proportional (linearly) to the
running time of the honest parties. and the adversary. As such, as long as the concrete security of
the underlying assumptions is good enough, then so is the security of the constructed protocol.

2.3 The ECDSA Signature Scheme

We start with defining the standalone ECDSA key generation, signing and verification algorithms,
and then define the multiparty ideal functionality that enables distributed parties to jointly compute
these operations. The ECDSA schemes below are defined with respect to arbitrary hash function
H : {0, 1}∗ 7→ Zq (in practice, SHA256 is used).

2.3.1 The Standalone Scheme

Algorithm 2.3 (KeyGenerator—ECDSA key generation).

1. Sample x←
R
Zq.

2. Output (x,X = x ·G).

. .

Algorithm 2.4 (Signer—ECDSA signing).

Input: x ∈ Zq and m ∈ {0, 1}∗.
Operation:

1. Sample k←
R
Zq, and let R = (r′, ·) = k ·G.

2. Let r = r′ mod q and s = k−1 · (H(m) + r · x). 4

3. Output (r, s).
. .

Algorithm 2.5 (Verifier—ECDSA verification).

Input: X ∈ G, m ∈ {0, 1}∗ and signature (r, s) ∈ Z2
q.

Operation: accept, i.e., output 1, if s−1 · (H(m) ·G + r ·X) = (r, ·).. .

In the following, when saying that the standalone ECDSA is secure, we mean that the above
signature scheme is existentially unforgeable secure.

4To get unique signatures, once can change the above algorithms to consider min{s,−s} instead of s.

9

2.3.2 The Multiparty Ideal Functionality

We only define distributed key generation and signing protocols (verification is, locally, done using
the standalone algorithm described above). We focus on the t-out-of-n access structure (t out of n
parties are needed for signing).

Let Storek(v) be the functionality that stores the value v under key k. The functionality aborts
if the key k exists in the database. Analogously, Retrieve(k) returns the value stored under key k,
and aborts if no such key exists. We address these keys as object ids, and typically name them
oidx, for some id x ∈ {0, 1}∗.

Functionality 2.6 (FEcdsa—Distributed ECDSA).

Parameters: t ≤ n ∈ N.

Parties: P1, . . . ,Pn.

Operation:

• Upon receiving (sid,Keygen) from all n parties:

1. Let (x,X)←
R
KeyGenerator().

2. Storesid(x).

3. Send (sid, X) to all parties.

• Upon receiving (sid, Sign, oidx,m) from t parties:

1. x = Retrieve(oidx).

2. Send (sid, (r, s) = Signerx(m)) to all parties.

. .

2.4 Pedersen Commitments

We utilize Pedersen commitments. A Pedersen commitment, of a value m ∈ Zq with public key
(parameter) D ∈ G and randomness r ∈ Zq, is defined by

PedComD(m; r) = r ·D + m ·G,

and PedComD(m) stands for PedComD(m; r), where r←
R
Zq. We typically denote elements of G that

are outputs of PedCom using the ̂ symbol, e.g., Â = PedComD(m).

Fact 2.7 ([Ped91]). PedCom is perfectly hiding. Assuming discrete log is hard over G, it is com-
putationally binding.

Pedersen commitments are additively homomorphic: for two commitments Â1 = PedComD(m1; ·)
and Â2 = PedComD(m2; ·), it holds that Â1+Â2 (where addition is over the group G), is a commit-
ment to m1+m2. The latter can be combined with rerandomization by adding a fresh commitment
to 0. We use the following syntactic sugar operation for a ∈ Zq and Â ∈ G:

• Let Â +D a stands for Â + PedComD(a; 0). (Adding deterministic commitment to a.)

10

2.5 ElGamal Commitments

In Section 4.2, we utilize ElGamal in-the-exponent encryption5 for commitments, which we refer to
as ElGamal commitments. This is done by putting the committed message is in the exponent of
the generator. ElGamal commitments are twice as large comparing to Pedersen commitments (two
group elements instead of one), but have an associated private key that can be used to open the
commitment (if the committed values are taken from a (known) polynomial-size set). An ElGamal
commitment of a value m ∈ Zq with public key E ∈ G, and randomness r ∈ Zq is defined by

EgComE(m; r) = (r ·G, r · E + m ·G),

and EgComE(m) stands for EgComE(m; r) with uniform r←
R
Zq. Recall that we denote elements of

G̃ = G×G, and thus ElGamal commitments, using the ˜ symbol, e.g., Ã = EgComE(m).

Fact 2.8. EgCom is perfectly binding. Assuming DDH is hard over G, it is computationally hiding.

Also ElGamal commitments are additively homomorphic: for two commitments Ã1 = EgComE(m1; ·)
and Ã2 = EgComE(m2; r), it holds that Ã1 + Ã2 (where addition is over the group G̃, is an commit-
ment to m1 + m2. The latter can be combined with rerandomization by adding a fresh encryption
of 0. We use the following syntactic sugar operation for r ∈ Zq, E ∈ G and Ã ∈ G̃:

• EgRerandE(Ã; r) = Ã + EgComE(0; r).

2.6 Zero Knowledge

For a relation R, we use the standard ideal zero-knowledge proof-of-knowledge functionality FR
zk .

Functionality 2.9 (FR
zk—Zero-knowledge for relation R).

Party: Pi.

Operation: Upon receiving (sid, x, w, j) from Pi, send (sid, x, j) to Pj if R(x,w) = true.. .

As a syntactic sugar, a call FR
zk(sid, x, w) stands for the parallel calls {FR

zk(sid, x, w, j)}j ̸=i. We
use zero-knowledge functionalities for the following relations (see Appendix A.1 regarding the UC
implementation of these functionalities).

1. Knowledge of discrete log.

RDL = {(A,B,w) : B = w ·A}

We write (B,w) ∈ RDL as a shorthand for (G,B,w) ∈ RDL.

2. DH tuple.

RDH = {(Ã = (A1, A2), B̃ = (B1, B2), w) : B̃ = w · Ã}

We write (A, B̃, w) ∈ RDH as a shorthand for ((G,A), B̃, w) ∈ RDH.

5In our notation, see below, the message m is not actually in the exponent, but this is the name used since when
using multiplicative group notation, a commitment to m will be of the form Er ·Gm.

11

3. Knowledge of Pedersen commitment.

RPedKlwg = {((D, Â), (a, r)) : Â = PedComD(a; r)}

4. Pedersen commitment of a value.

RPedEqVal = {((D, Â, a), r) : Â = PedComD(a; r)}

5. Pedersen commitment of a value in the exponent.

RPedEqExp = {((D, Â,A), (a, r)) : Â = PedComD(a; r), A = G · a}

6. Knowledge of ElGamal commitment:

REGKlwg = {((E, Ã), (a, r)) : Ã = EgComE(a; r)}

7. ElGamal equals Pedersen:

REgEqPed = ((E, Ã,D, Â), (a, r̃, r̂)) : Ã = EgComE(a; r̃) ∧ Â = PedComE(a; r̂)

8. Knowledge of ElGamal scalar product

REgProdScalar = ((E, Ã, B̃), (r, c)) : B̃ = c · Ã + EgComE(0; r)

That is, prove that you know c such that B̃ is s commitment to c times the value committed
in Ã.

9. Product of ElGamal commitments.

REgProdEg = {((E, Ã, B̃, C̃), (rb, r0, b)) : B̃ = EgComE(b; rb) ∧ C̃ = b · Ã + EgComE(0; r0)}

That is, C̃ is a fresh commitment to the product of the values committed in Ã and B̃.

10. ElGamal commitment of a value.

REGEqVal = {((E, Ã, a), r) : Ã = EgComE(a; r)}

11. ElGamal commitment of a value in the exponent:

REGEqExp = {((E, Ã, A), (a, r)) : Ã = EgComE(a; r), A = G · a}

12

2.7 String Commitments

We use the standard commitment functionality.

Functionality 2.10 (Fcom—Commitment).

Parties: Pi.

Commit. Upon receiving (sid, commit, x, j) from party Pi:
Storesid||i(x) and send (sid, i) to Pj .

Open. Upon receiving (sid, decommit, j) from party Pi:
Set x = Retrieve(sid||i, j), and send (sid, decommit, i, x) to Pj .. .

Again, as a syntactic sugar, a call Fcom(sid, commit, x) stand for the parallel calls {Fcom(sid, commit, x, j)}j ̸=i,
and same for Retrieve.

2.7.1 Committed Non-Interactive Zero Knowledge

The following functionality allows non-interactively committing to a statement together with a
correctness proof.

Functionality 2.11 (FR
com-zk—Committed non-interactive zero-knowledge for relation R).

Parties: Pi.

Commit. Upon receiving (sid,ComProve, x, w, j) from a party Pi:
Storesid||i||j(x) and send (sid,ProofReceipt, i) to Pj .

Open. Upon receiving (sid,DecomProof, j) from a party Pi:
Let x = Retrieve(sid||i||j). Send (sid,DecomProof, i, x) to Pj if R(x,w) = true.. .

We apply a similar syntactic sugar to that applied for Fcom.

3 ECDSA Protocol

In this section, we present a protocol that realizes the ECDSA functionality FEcdsa, and prove its
security (Section 3.1). We start with the the non-threshold (i.e., n-out-of-n) case against adversaries
controlling all but one honest party. In Section 3.2, we present a variant of the protocol that uses
ElGamal commitments instead of Pedersen commitments. In Section 3.3 we extend the protocol
for adversaries controlling arbitrary number of parties, and in Section 3.4 we extend it for the
threshold case. In Section 3.5 we present a more efficient variant of the signing phase.

We state and prove the security of the protocol in a hybrid-model with access to ideal (leaky)
multiplication functionality, whose UC-realization is given in Section 4, and to zero-knowledge and
commitment functionalities, whose UC-realizations are given in Appendix A.

Our distributed ECDSA protocol is fairly simple, and its basic form (non-threshold, single
honest party) goes as follows: in the key-generation phase, the parties straightforwardly generate
additive shares of random signing key x ∈ Zq, each party holding a single share, and publish
X = x · G as the signature verification key. In the signing phase, on message m, the parties

13

generate shares of two random values k, ρ ∈ Zq, and jointly compute τ = ρ ·k and R = (r, ·) = k ·G.
They then compute β = ρ · (H(m) + x · r), and output (r, s = τ−1 · β) as the signature. To enforce
consistency, when the parties generate additive shares of a value, each party publishes a Pedersen
commitment to its share.

The formal definition of the protocol (for the simple setting) is given next, using several sub-
protocols that we defined below. Each of the parties maintains its state using a private data base,
that it naturally access using the Store and Retrieve commands.

Protocol 3.1 (Distributed ECDSA, non-threshold, single honest party).

Common input: D ∈ G. // A Pedersen Commitment key.

Key generation. On input (sid,Keygen), party Pi acts as follows:

1. Let oidx = sid||“x”.

2. The parties engage in CreateSharedVal(sid, D, oidx).

3. The parties engage in OutExpOfSharedVal(sid, D, oidx).

Let X be the common output.

4. Output X.

Signing. On input (sid,Sign, oidx,m), party Pi acts as follows:

1. Abort if oidx was not stored.

2. Let oidk = sid||1, oidρ = sid||2, oidρ·k = sid||3, oidρ·x = sid||4, oidr·ρ·x = sid||5, oidρ·m = sid||6
and oidβ = sid||7.

3. In parallel, the parties engage in: CreateSharedVal(sid, D, oidρ) and CreateSharedVal(sid, D, oidk).
//Let ρ and k denote the generated values.

4. In parallel, the parties engage in:

(a) MultSharedVals(sid, D, oidρ, oidk, oidρ·k).

(b) MultSharedVals(sid, D, oidρ, oidx, oidρ·x).

5. The parties engage in OutExpOfSharedVal(sid, D, oidk).

Let (r′,) be the common output, and let r = r′ mod q.

6. Each party invokes:

(a) ScalarMultOfSharedVal(D, oidρ·x, oidr·ρ·x, r).

(b) ScalarMultOfSharedVal(D, oidρ, oidρ·m, H(m)).

(c) AdditionOfSharedVals(D, oidr·ρ·x, oidρ·m, oidβ). // oidβ refers to ρ · (H(m) + x · r).

7. In parallel, the parties engage in:

(a) OutSharedVal(D, sid, oidρ·k); let τ be the common output.

(b) OutSharedVal(D, sid, oidβ); let β be the common output.

14

8. Output (r, s = τ−1 · β) mod q.
. .

The sub-protocols used above are defined below.

Create shared value. CreateSharedVal generates a Pedersen commitment of a uniformly chosen
value, where each party is holding a (private) share of this value.

Protocol 3.2 (CreateSharedVal).

Oracles: FRPedKlwg

zk .

Common input: D ∈ G and sid, oid ∈ {0, 1}∗.
Operation: Party Pi acts as follows:

1. Let Âi = PedComD(ai; ri), for (ai, ri)←
R
Z2
q.

2. Send (sid, (D, Âi), (ai, ri)) to FRPedKlwg

zk .

3. Upon receiving (sid, (D, Âℓ), ℓ) from FRPedKlwg

zk ,6 for all ℓ ∈ [n]\{i}, Storeoid({Âℓ}nℓ=1, ai, ri).
. .

Addition of shared values. AdditionOfSharedVals adds two previously stored values. Since
Pedersen commitments are additively homomorphic, this operation can be carried out locally.

Algorithm 3.3 (AdditionOfSharedVals).

Common input: D ∈ G, oida, oidb, oid ∈ {0, 1}∗.
Operation: Party Pi acts as follows:

1. Let ({Âℓ}nℓ=1, ai, r
A
i) = Retrieve(oida) and ({B̂ℓ}nℓ=1, bi, r

B
i) = Retrieve(oidb).

2. Storeoid({Âℓ + B̂ℓ}nℓ=1, ai + bi, r
A
i + rBi).

. .

Scalar multiplication of shared value. ScalarMultOfSharedVal multiplies of a previously stored
value by a scalar. Again, since Pedersen commitments are additively homomorphic, this operation
can be carried out locally.

Algorithm 3.4 (ScalarMultOfSharedVal).

Common input: D ∈ G, oid, oid′ ∈ {0, 1}∗ and α ∈ Zq.

Operation: Party Pi acts as follows:

1. Let ({Âℓ}nℓ=1, ai, ri) = Retrieve(oid).

2. Storeoid′({α · Âℓ}nℓ=1, α · ai, α · ri).
. .

6Here and after, each party should also verify that session id and instance it receives from the zero-knowledge
functionality are consistent with the common input and the previous steps of the protocol (e.g., in Protocol 3.2, each
party should verify that the value of sid and D are according to the common input). To keep the text more readable,
however, we omit these simple verification steps.

15

Output shared value. OutSharedVal outputs a previously stored value.

Protocol 3.5 (OutSharedVal).

Oracles: FRPedEqVal

zk .

Common input: D ∈ G and sid, oid ∈ {0, 1}∗.
Operation: Party Pi acts as follows:

1. Let ({Âℓ}nℓ=1, ai, ri) = Retrieve(oid).

2. Send (sid, (D, Âi, ai); ri) to FRPedEqVal

zk .

3. Upon receiving (sid, (D, Âℓ, aℓ), ℓ) from FRPedEqVal

zk for all ℓ ∈ [n]\{i}, output
∑

ℓ∈[n] aℓ.
. .

Output exponent of shared value: OutExpOfSharedVal outputs A = a · G for a previously
stored a.

Protocol 3.6 (OutExpOfSharedVal).

Oracles: FRPedEqExp

zk ,

Common input: D ∈ G and sid, oid ∈ {0, 1}∗.
Operation: Party Pi acts as follows:

1. Let ({Âℓ}nℓ=1, ai, ri) = Retrieve(oid).

2. Send (sid, (D, Âi, Ai), (ai, ri)) to FRPedEqExp

zk .

3. Upon receiving (sid, (D, Âℓ, Aℓ), ℓ) from FRPedEqExp

zk for all ℓ ∈ [n]\{i}, output
∑

ℓ∈[n]Aℓ.

. .

Multiplication of shared values. MultSharedVals multiplies a pair of previously generated
values and stores (additive) share of the outcome. The protocol below is merely a wrapper for the
following functionality.

Functionality 3.7 (FLeakyMult—Many-party leaky multiplication).

Parties: P1, . . . ,Pn.

Common input: sid ∈ {0, 1}∗, D ∈ G, {Âℓ, B̂ℓ}ℓ∈[n].

Pi’s input: (ai, r
A
i), (bi, r

B
i) ∈ Z2

q .

Operation:

1. Abort if for some ℓ it holds that Âℓ ̸= PedComD(ai, r
A
i) or B̂ℓ ̸= PedComD(bi, r

B
i).

2. Sample r1, . . . , rn uniformly at random in Zq.

Sample c1, . . . , cn uniformly at random in Zq conditioned on
∑

ℓ∈[n] cℓ = (
∑

ℓ∈[n] aℓ)·(
∑

ℓ∈[n] bℓ).

16

3. Output {Ĉℓ = PedComD(cℓ; rℓ)}ℓ∈[n] as the common output.

4. Send (rℓ, cℓ) to Pℓ for each ℓ ∈ [n].

After getting their outputs, the corrupted parties C ⊂ [n] can make the following calls (at most
one of each type):

Linear test: Send δ ∈ Zq and {(oAℓ , oBℓ) ∈ Z2
q}ℓ∈[n]\C . The functionality aborts if

∑
ℓ∈[n]\C(oAℓ · aℓ +

oBℓ · bℓ) ̸= δ.

Commitment replacement: Send {(r′ℓ, c′ℓ)}ℓ∈C . The functionality aborts if
∑

ℓ∈C cℓ ̸=
∑

ℓ∈C c
′
ℓ.

Otherwise, the value of Ĉℓ, for each ℓ ∈ C, in the common output is updated to PedComD(c′ℓ; r
′
ℓ).. .

That is, FLeakyMult ideally multiplies the shared inputs, and shares the result. The linear-test
call might leak to the corrupted parties whether a linear function over the honest parties’ inputs
equals some value. The commitment-replacement call allows the corrupted parties to modify their
commitment (though not their overall sum) based on the honest parties’ commitments. These
backdoors enable us to implements the functionality efficiently. A UC-realization of FLeakyMult,
assuming DDH is hard over G, is given in Section 4. Equipped with FLeakyMult, the multiplication
protocol is defined as follows.

Protocol 3.8 (MultSharedVals).

Oracles: FLeakyMult.

Common input: D ∈ G and oida, oidb, oid ∈ {0, 1}∗.
Operation: Party Pi acts as follows:

1. Let ({Âℓ}nℓ=1, ai, r
A
i) = Retrieve(oida) and ({B̂ℓ}nℓ=1, bi, r

B
i) = Retrieve(oidb).

2. Send (sid, D, {Âℓ}, {B̂ℓ}, (ai, rAi , bi, rCi)) to FLeakyMult.

Let {Ĉℓ}nℓ=1 be the common output and (ci, r
C
i) be the private output.

3. Storeoid({Ĉℓ}nℓ=1, ci, r
C
i).

. .

Pedersen commitments of the secret key shares. Reading the security proof given below,
it is easy to verify that we are only using the hiding of the Pedersen commitment of the secret
key shares generated in the key-generation phase, to prevent malicious parties from controlling the
secret key value. For the rest of the protocol, we could replace these commitments (but not the
other commitments!) with the exponents of the shares (equivalently, with Pedersen commitments
of randomness 1). Such a change becomes handy when refreshing the distribution of the secret key
shares (while keeping the same secret key); it will not require the parties to generate, and prove
knowledge of, Pedersen commitment of their shares, but only to generate the exponentiations of
their shares.

17

Non-interactive signing. The above protocol naturally gives rise to the non-interactive signing
phase in which all but the execution of protocols ScalarMultOfSharedVal, AdditionOfSharedVals and
OutSharedVal is done in the preprocessing. The security of the resulting protocol, however, requires
the following (stronger) security assumption on the standalone ECDSA: the security holds if many
(“nonce”) r’s are published in advance, and the messages to be signed can be chosen (adversarially)
as a function of these r’s. See [GS22] for more details (they refer to the publication of the nonce
before the message to be signed was set as presignatures).

3.1 Security

In this section, we prove that Protocol Ecdsa UC-realizes the non-threshold FEcdsa (Function-
ality 2.6) against adversaries corrupting at least n − 1 parties. The following theorem assumes
that the common input D is sampled by FPedKeyGen, a functionality that returns a uniform D←

R
G.

The functionality FPedKeyGen can be implemented using a simple coin-flipping protocol followed by
applying a hash-to-curve mapping on the resulting string.

Theorem 3.9 (Security of Protocol 3.1). Assume the standalone ECDSA signature scheme is
existentially unforgeable over G,7 then on common input D ← FPedKeyGen(), Protocol 3.1 UC-
realizes the non-threshold FEcdsa against adversaries corrupting at least n− 1 parties, in the

(FRPedKlwg

zk ,FRPedEqVal

zk ,FRPedEqExp

zk ,FLeakyMult)-hybrid model.

Remark 3.10 (Security assumption). One might question the necessity of assuming the security of
the standalone ECDSA signature for proving Theorem 3.9 (in the hybrid model). This assumption
is not needed if we assume access to an ideal two-party multiplication oracle instead of FLeakyMult
(a functionality for which we do not have an efficient implantation), but seems to be necessary when
using FLeakyMult. Clearly, for the security of final (non-hybrid) protocol this distinction makes no
difference.

Proof. Fix an environment E and an adversary A corrupting the parties indexed by C ⊊ [n] with
|C| = n − 1 (recall that the all-corruption case is trivial), and for ease of notation assume that
C = [n − 1] . The ideal model simulator S for A is rather straightforward: it emulates a random
execution of the protocol between the parties controlled by A and the honest Pn, while the messages
of Pn are emulated as follows: the Pedersen commitments are generated arbitrarily (i.e., random
commitments to zero), and in the parts where some values are unmasked, either in the clear via
protocol OutExpOfSharedVal, or in the exponent via protocol OutExpOfSharedVal, the simulator
manipulates the common output to match the values it gets from the ideal functionality.

In the following assume that in addition to (r, s), the functionality FEcdsa outputs the value
of R = (r′, ·) = G · k used to generate the signature (see Algorithm 2.4). This is without loss of
generality since the value of R can be efficiently computed from the (r, s), the verification key and
the message to sign.8 The following simulator is using several subroutines that we define below.

For its own book-keeping, it maintains a data-structure that it naturally access using the S̃tore and

R̃etrieve commands.

7Actually, it suffices to assume that an adversary seeing polynomial many signatures cannot extract the signing
key.

8Let R1, R2 ∈ G be the two group elements of the form (r′, ·) with r′ ≡ r mod q (these elements can be found by
plugging r into the elliptic curve equation.) Return the group element Rj that satisfies s ·Rj = m′ ·G+ r′ ·X.

18

Algorithm 3.11 (S—Simulator for A).

Oracles: FEcdsa.

Input: D ∈ G.

Operation: Start emulating a random execution of Ecdsa on common input D with A controlling the
parties in C. For each input inp sent by the environment E, act as follows:

inp = (sid,Keygen):

• Send (sid,Keygen) to FEcdsa. Let X be the returned output.

1. Use sid to generate object id oidx according to the naming conventions given in Protocol 3.1.

2. Call S.CreateSharedVal(sid, D, oidx).

3. Call S.OutExpOfSharedVal(sid, oidx, X).

inp = (sid, Sign, oidx,m):

1. Abort the emulation if oidx was not stored.

2. Use sid to generate object ids oidk, oidρ, oidρ·k, oidρ·x, oidr·ρ·x, oidρ·m, oidβ, according to the nam-
ing conventions given in Protocol 3.1

• Send (sid, Sign, oidx,m) to FEcdsa. Let (R, ·, s) be the returned output.

3. In parallel,9call S.CreateSharedVal(sid, D, oidρ) and S.CreateSharedVal(sid, D, oidk).

4. In parallel, call S.MultSharedVals(sid, D, oidρ, oidk, oidρ·k) and S.MultSharedVals(sid, D, oidρ, oidx, oidρ·x).

5. Call S.OutExpOfSharedVal(D, sid, oidρ·k, R).

6. Call S.ScalarMultOfSharedVal(D, oidρ·x, oidr·ρ·x, r), S.ScalarMultOfSharedVal(D, oidρ, oidρ·m, H(m)),
and S.AdditionOfSharedVals(D, oidr·ρ·x, oidρ·m, oidβ).

7. Sample τ←
R
Zq.

8. In parallel, call OutSharedVal(D, sid, oidρ·k, τ) and S.OutSharedVal(D, sid, oidβ, τ · s).

The simulator sends abort to FEcdsa in case A send abort to Pn in the emulation.10
. .

The subroutines used by S are defined below.

Algorithm 3.12 (S.CreateSharedVal(D, sid, oid)).

1. Emulate the execution of CreateSharedVal(sid, D, oid) with Pn using uniform randomness.

- Let {aℓ, Âℓ}ℓ∈C and Ân, be the values of these variables sent by the corrupted parties and Pn

to FRPedKlwg

zk , respectively.

2. S̃toreoid({aℓ}ℓ∈C , {Âℓ}ℓ∈[n]).
9That is, the messages the simulators send to the corrupted parties are synchronized. If the honest party aborts

in one of the executions it does so also in all executions.
10Recall that we assume without loss of generality that a corrupted party never sends a message/make a call to

an ideal functionality that would make an honest party to abort, with probability one, rather it sends the party an
aborting message.

19

. .

Algorithm 3.13 (S.AdditionOfSharedVals(D, sid, oida, oidb, oid)).

1. Let ({aℓ}ℓ∈C , {Âℓ}ℓ∈[n]) = R̃etrieve(oida) and ({bℓ}ℓ∈C , {B̂ℓ}ℓ∈[n]n) = R̃etrieve(oidb).

2. S̃toreoid(({(aℓ + bℓ)}ℓ∈C , {Âℓ + B̂ℓ}ℓ∈[n]).
. .

Algorithm 3.14 (S.ScalarMultOfSharedVal(D, sid, oid, oid′, α)).

1. Let ({aℓ}ℓ∈C , {Âℓ}ℓ∈[n]) = R̃etrieve(oid).

2. S̃toreoid′(({α · aℓ}ℓ∈C , {α · Âℓ}ℓ∈[n]).
. .

Algorithm 3.15 (S.OutSharedVal(sid, oid, a)).

1. Let ({aℓ}ℓ∈C , {Âℓ}ℓ∈[n]) = R̃etrieve(oid).

2. Emulate the execution of OutSharedVal(sid, oid) while setting the value of an in the message

sent by FRPedEqVal

zk in response to Pn’s call to a′n = a−
∑

ℓ∈C aℓ.

(I.e., the message sent by FRPedEqVal

zk is set to (sid, n, (D, Ân, a
′
n)).)

. .

Algorithm 3.16 (S.OutExpOfSharedVal(sid, D, oid, A)).

1. Let ({aℓ}ℓ∈C , {Âℓ}ℓ∈[n]) = R̃etrieve(oid).

2. Emulate the execution of OutExpOfSharedVal(sid, D, oid), while setting the value value of An

sent by Pn and sent by FRPedEqExp

zk in response to its the call, to A′
n = A−

∑
ℓ∈C aℓ ·G.

(I.e., the message sent by FRPedEqExp

zk is set to (sid, n, (D, Ân, A
′
n)).)

. .

Algorithm 3.17 (S.MultSharedVals(sid, oida, oidb, oid)).

1. Let (·, {Âℓ}ℓ∈[n]) = R̃etrieve(oida) and (·, {B̂ℓ}ℓ∈[n]) = R̃etrieve(oidb).

2. Emulate the call to FLeakyMult with Pn using public input (sid, D, {Âℓ, B̂ℓ}ℓ∈[n]), and uses

arbitrary private inputs, e.g., (0, 0) and (0, 0), and FLeakyMult does not check that Pn’s
private inputs are consistent with the common input.

Send abort to all parties (as the answer of FLeakyMult) if A makes a non-zero linear-test call,

i.e., (oAn , o
B
n) ̸= (0, 0).

. .

20

Since S is non-rewinding, i.e., does not rewind A, we only need to prove that, with respect
to the same environment and uniformly chosen parameter D, the joint distribution of A’s view
and the honest party outputs in the real execution, is computationally indistinguishable from the
distribution of these values in the emulated execution: the view of the emulated A and the output of
the honest party in the ideal execution induced by the simulator (see Section 2.2 for justification).
In the following, we assume the corrupted parties never attempt to break the binding of a Pedersen
commitment: in all accepting calls to the different functionalities with respect to a committed

value Â, e.g., FRPedKlwg

zk , the party uses the same witness (a, r) with Â = PedComD(a; r). Since
the unforgeability of the of the standalone ECDSA, which implies that discrete-log is hard over
G, implies that Pedersen commitments are computationally binding for uniform public key D, the
above is without loss of generality: changing a party to sends aborts message to Pn before sending
a different opening to a commitment, has only negligible effect on the execution. We also assume
that A does not make linear test-call to FLeakyMult with all linear coefficient {(oAℓ , oBℓ } set to zero.

(Indeed, by definition, such a call FLeakyMult aborts iff δ ̸= 0, and thus can be easily emulated.)
We first prove that if A never makes a linear-test call to FLeakyMult, the distributions are

identical. Since Pedersen commitments are perfectly hiding, and since A does not make a linear-
test call, the only parts in A’s view that might be different are those related to the executions
of OutSharedVal and OutExpOfSharedVal sub-protocols. Specifically, the value of an and An in
these executions. By construction, these values in the real and emulated execution are identically
distributed, making the two views identically distributed. For Pn’s outputs, since, by assumption,
the corrupted parties never attempt to break the binding of the Pedersen commitments, the public
key and the signatures generated in the emulated execution are according to the values returned
by ideal key generation and signature functionality, making the two executions identical.

We complete the proof by showing that in the the real execution, a linear-test call aborts with
all but negligible probability (making the real execution statistically close to the emulated one).
Assume A makes a linear-test call in MultSharedVals done in Round 4a of the signing protocol.
Note that in this execution of MultSharedVals, the key sida refers to the value of ρ and sidb refers
to the value of k. Since until this step, the execution has leaked no information about the value
of ρn and kn, values that were uniformly sampled in Zq, the test-call aborts with all but negligible
probability. Assume that A makes test-call in an execution of MultSharedVals done in Round 4b
of the signing protocol. In this execution of MultSharedVals, the key sida refers to the value of ρ
and sidb refers to the value of x. The same argument as in the ρ · k case yields that unless oAn = 0,
the functionality aborts with all but non-negligible probability (this holds even if the value of x
is known to A). Assume that with non-negligible probability A makes a non-aborting test-call in
Round 4b of the signing protocol with oAn = 0 and oBn ̸= 0. We show that such A can be used to for
violating the security of the standalone ECDSA. For ease of notation, assume that E only invokes
the key-generation phase once (in the general case, we use one of these calls for the attack). We
start by showing how to use such E and A for extracting the secret signing key (in the multi-party
case) with non-negligible probability.

Algorithm 3.18 (ExtractorDist: signing key extractor for the distributed ECDSA).

Oracles: E, A.

Operation: Start a random execution of Ecdsa with A controlling the parties in C and the environ-
ment E. In the first execution of MultSharedVals done in Step 4b of the signing phase in which
oBn ̸= 0:

21

1. Let xn = δ/oBn (were δ is the value of this parameter in the linear-test call).

2. Let {xℓ}ℓ∈C be the the additive shares of the corrupted parties used in the (single) key-
generation phase (can be extracted as done by S).

3. Output
∑

ℓ∈[n] xℓ.

. .

It is easy to verify that ExtractorDist indeed finds the signing key with non-negligible probability.
Since, by the previous argument, S emulates A perfectly until the first testing call, applying the
simulator S on ExtractorDist yields an algorithm that extracts the singing key in the FEcdsa-hybrid
model. The latter algorithm can be straightforwardly transformed into an algorithm that wins the
standalone ECDSA game, i.e., breaks the security of the standalone ECDSA scheme.11

3.2 Using ElGamal Commitments

In some cases, see for instance Section 3.5, one might like to replace the perfectly hiding and compu-
tationally binding Pedersen commitments used in Protocol 3.1 with the computationally perfectly
and computationally ElGamal commitments (see Section 2.5). That is, the ElGamal-based pro-
tocol follows that lines of Protocol 3.1, were in addition to replacing the Pedersen commitments
with ElGamal commitments, the zero-knowledge proofs used for these commitments are replaced
with their ElGamal analogs (all proofs appear in Appendix A.1). Since the the randomness used
for generating the commitments is only used in the various zero-knowledge proofs, the security
proof of the ElGamal-based protocol follows the same lines to the one given above for Theorem 3.9.
Specifically, we replace the honest party’s commitments with commitments to zero. The compu-
tational hiding of the ElGamal commitments yields that adversary cannot tell this second variant
from the first one, and thus from the real execution. The same line of the proof of Theorem 3.9
yields that the variant above can be simulated given access to FEcdsa. Thus, the real execution can
be simulated.

3.3 Many Honest Parties

In this section, we slightly adjust Protocol 3.1 so that its security holds against adversaries corrupt-
ing less than n− 1 parties. Let the public view of a party denotes the public information it sends
and receives: inputs it received from the environment, messages it sends and receives, and outputs
of the common output ideal functionalities (all functionalities but FLeakyMult). More strictly, in
a key-generation phase, the public view refers to the current key-generation execution, and in a
signing phase, it relates to the key-generation execution in which the public key was created, and
the current signing execution. Note that since we assume no broadcast channel, the public view of
two honest parties might be different. An outputting round is a round in which the honest parties
are suppose to output a value. The slight adjustment of Protocol 3.1 is given below.

Protocol 3.19 (Distributed ECDSA, non-threshold).

1. In each round that proceeds an outputting round, each honest party sends a hash of its public
view to all parties. That is, H ′(v) where H ′ is an arbitrary collision-resistant hash function,
and v is its current public view.

11We remark that ExtractorDist can only be used for extracting the signing key when having access to an ECDSA
signer (for this key). Thus, it is not useful for finding discrete-log in the standard discrete-log game.

22

2. In each outputting round, an honest party first verifies that the hash of all other parties’ public
view is consistent with its own.

. .

3.3.1 Security

We prove that the above variant is secure against any number of corruptions.

Theorem 3.20 (Security of Protocol 3.19). Assume standalone ECDSA signature scheme is ex-
istentially unforgeable against adaptive chosen-message attacks over G, then on common input
D ← FPedKeyGen(), Protocol 3.19 UC-realizes the non-threshold FEcdsa, in the

(FLeakyMult,F
RPedKlwg

zk ,FRPedEqVal

zk ,FRPedEqExp

zk)-hybrid model.

Proof. Let A be an adversary for Π = (P1, . . . ,Pn), corrupting parties indexed by C. The proof for
|C| ≥ n − 1 is essentially like the one in Theorem 3.9, so we assume |C| < n − 1, let H = [n] \ C,
and assume for ease of notation that n ∈ H. The simulator S for A acts like the simulator for
single-honest-party case, Algorithm 3.11, with the following adjustments:

S.CreateSharedVal: Sample all honest parties’ input uniformly at random (and not just Pn’s).

S.AdditionOfSharedVals, S.ScalarMultOfSharedVal: Same like in the single honest party case, i.e.,
keep track off corrupted parties shares, and all parties commitments.

S.OutSharedVal: Choose the value of aℓ, for ℓ ∈ H \ {n}, uniformly at random (and set an based
on these choices and the corrupted parties shares).

S.OutExpOfSharedVal: Choose the value of Aℓ, for ℓ ∈ H \ {n}, uniformly at random (and set An

based on these choices and the corrupted parties shares).

S.MultSharedVals: Abort the emulation, send abort to all parties, if A makes (an extended) non-zero
linear-test call to FLeakyMult: i.e., (oAℓ , o

B
ℓ) ̸= (0, 0) for some ℓ ∈ H.

Aborts: Instruct FEcdsa to abort a party Pℓ if it receives an abort message.

A similar argument to that used in the single-honest-party case yields that in the real execution,
a non-zero linear-test call to FLeakyMult aborts with all but negligible probability. Hence, in the
following we assume without loss of generality that A never attempts to make such a call. We also
assume that it never happens that two hoenst parties have different public history, and yet it is
not reflected in the hash values exchanged. The very same argument as single-honest-party case,
also yields that A’s view including Pn’s outputs in the real and emulated execution are identically
distributed, so it only left to prove that the same holds when adding the other honest parties
outputs. Since an honest party only outputs a (non-aborting) value if it its public history until
(not including) this round is consistent with that of Pn, it follows that a non-aborting output of
this party in the real execution is consistent with its output of the ideal functionality, and this with
its output in the emulated execution.

23

3.4 Threshold Signatures

In this section we extend our scheme to the threshold case, i.e., t < n. The extension follows the
standard approach for achieving that, c.f. [Doe+19]: at the end of the key-generation phase, the
parties use standard means to transform their additive shares {xℓ}ℓ∈[n] of the signing key x, into
t-out-of-n shares of x. In the signing phase, the active parties (locally) transform their t-out-of-n
shares into additive t-out-of-t shares of x, and continue as in the non-threshold case we described
above. The protocol is defined below.

Protocol 3.21 (Distributed ECDSA, Threshold case).

Paramter: t ∈ [n− 1].

Common input: D ∈ G.

Key generation. On input (sid,Keygen), party Pi acts as follows:

1. Interact in key-generation phase of Protocol 3.19 (with the same common input).

Let ({X̂ℓ}ℓ∈[n], xi, rXi) be the value it stored in this call.

2. // Send commitments to the evaluations of a random (t−1)-degree polynomial pi with pi(0) =
xi, over the points in [n], and reveal pi(ℓ) to Pℓ.

(a) Sample uniformly a degree t − 1 polynomial pi with pi(0) = xi. Let {ci,j}j∈(t−1) be the
coefficients of pi. // Note that ci,0 = xi.

(b) For each j ∈ [t− 1], sample rCi,j←
R
Zq.

(c) Send {Ĉi,j = PedComD(ci,j ; r
C
i,j)}j∈[t−1] to all parties.

(d) // For each ℓ, compute a commitment to {pℓ(α)}α∈[n] using pℓ’s coefficients.

Upon receiving {Ĉℓ,j}j∈[t−1] from all ℓ ∈ [n]\{i}:

• for each ℓ, α ∈ [n], let B̂ℓ,α =
∑

j∈(t) Ĉℓ,j · αj, letting Ĉℓ,0 = X̂ℓ.

(e) // Send fresh commitments to {pi(α)}α and prove their correctness.

For each α ∈ [n]:

i. Send Ŷi,α = PedComD(pi(α); rYi,α) to all parties, for rYi,α←
R
Zq.

ii. Send (sid, (Ŷi,α − B̂i,α, r
Y
i,α −

∑
j∈(t) r

C
i,j · αj)) to FRDL

zk , letting rCi,0 = rXi .

(f) Upon receiving {Ŷℓ,α}α∈[n] from Pℓ and {(sid, ℓ, Ŷℓ,α−B̂ℓ,α)} from FRDL
zk , for all ℓ ∈ [n]\{i}:

send (pi(ℓ), r
Y
i,ℓ) to Pℓ, for all ℓ ∈ [n]\{i}. // Send the opening of Ŷi,ℓ to Pℓ.

(g) Upon receiving (pℓ,i, r
Y
ℓ,i) for all ℓ ∈ [n]\{i}: abort if Ŷℓ,i ̸= PedCom(pℓ,i; r

Y
ℓ,i) for some ℓ.

(h) For each ℓ ∈ [n], let Ŷℓ =
∑

j∈[n] Ŷj,ℓ.

// Ŷℓ is a commitment to
∑

j∈[n] pj(ℓ).

(i) Let yi =
∑

ℓ∈[n] pℓ,i and ri =
∑

ℓ∈[n] r
Y
ℓ,i.

// (yi, ri) is an opening of Ŷi.

3. Storeoidxtsh({Ŷℓ}ℓ∈[n], yi, ri), for oidxtsh = sid||“xtsh”.

24

Signing. On input (sid,Sign, oidx,m), party Pi acts as follows:

1. Let S ⊆ [n] be the set of active parties. Abort if |S| ≠ t.

2. //(Locally) Generate additive shares of x.

(a) For ℓ ∈ S, let oℓ =
∏

j∈S\{ℓ} j∏
j∈S\{ℓ}(j−ℓ) .

(b) Let ({Âℓ}nℓ=1, ai, ri) = Retrieve(oidx).

(c) Let (a′i, r
′
i) = oi · (ai, ri), and for each ℓ ∈ S let Â′

ℓ = oℓ · Âℓ.

3. //Sign using the additive shares.

(a) Storeoid′=sid||“y”({Â′
ℓ}ℓ∈S , a′i, r′i).

(b) Interact in the signing phase of Protocol 3.19, while in the call to MultSharedVals done
in Round 4b, use the object-id oid′ instead of oid = sid||“x”.

. .

Namely, at the end of the key-generation phase all parties hold (fresh) commitments to the
evaluation of a (t − 1)-degree polynomial p with p(0) = x. Party Pi holds the opening of p(i).
At the signing phase, the active parties locally transfer the above shares into additive shares, and
continue as in the non-threshold case.

3.4.1 Security

We argue that the above protocol is secure.

Theorem 3.22 (Security of Protocol 3.21). Assume standalone ECDSA signature scheme is exis-
tentially unforgeable over G, then on common input D ← FPedKeyGen(), Protocol 3.21 UC-realizes

FEcdsa in the (FLeakyMult,F
RPedKlwg

zk ,FRPedEqVal

zk ,FRPedEqExp

zk)-hybrid model.

Proof. The proof is almost identical to the proof of Theorem 3.20. The only interesting difference
is that in each emulation of the singing protocol, the simulator arbitrarily picks one of the active
honest parties Ph, and acts like Algorithm 3.11 (the non-threshold simulator) with party Ph taking
the role of party Pn, the commitments {Â′

ℓ}ℓ∈S taking the role of {Âℓ}ℓ∈[n] and {(a′ℓ, r′ℓ)}ℓ∈S\{h}
taking the role of {(aℓ, rℓ)}ℓ∈[n−1], for (a′ℓ, r

′
ℓ) = oℓ · (aℓ, rℓ), as the dishonest parties’ opening of the

commitments. The logic of the proof now follows the same lines as that of Theorem 3.20.

3.5 A More Efficient Protocol

In its current form, the signing phase takes six rounds, which consists of two parallel executions
of protocol CreateSharedVal (one round), two parallel executions of protocol MultSharedVals (one
round), execution of protocol OutExpOfSharedVal (one round) and two parallel executions of proto-
col OutSharedVal (one round). When taking into account the five-round protocol ManyPartyLeakyMult,
see Section 4, that implements the FLeakyMult functionality called by protocol MultSharedVals, we
end up in a 8-round protocol. However, in the price of modularity, the round efficiency of the sign-
ing phase can be reduced to six rounds. The modification is simple, we avoid the additional two

25

rounds paid for the execution of protocols CreateSharedVal and OutExpOfSharedVal, by executing
CreateSharedVal in parallel to the execution of the first round of protocol ManyPartyLeakyMult, and
execute OutExpOfSharedVal in parallel to the execution of the last round of protocol ManyPartyLeakyMult.
The security proof of this variant follows the very same line of that of the original variant. For im-
proving the computation cost, one might move to using ElGamal commitments with shared secret
key instead of Pedersen commitments, throughout the protocol. This change will save the costly
transformation between Pedersen to ElGamal commitments done in protocol ManyPartyLeakyMult,
but will slightly increase the communication cost of the other parts of the protocol. Finally, when
instantiating the weak two-party multiplication functionality using a two-round protocol, we get a
seven-round protocol (in the OT-hybrid model).

It is easy to see that in this number of rounds one can also squeeze the round required for
verifying on the common inputs in the embedded call to Protocol 4.6 (such a call is not needed at
the beginning of Protocol 4.3, which merely passes of its common input to Protocol 4.6), and the
single-round protocol for generating high-entropy session ids.

4 Many-Party Leaky Multiplication

In this section, we present protocol ManyPartyLeakyMult, a UC-realization of the FLeakyMult func-
tionality defined in Functionality 3.7. The implementation is using a two-party multiplication func-
tionality F2PC-Mult and multiplication equality test FPedMultEqTest, both defined below. The security
of protocol ManyPartyLeakyMult is analyzed in Section 4.1. The UC-realization of FPedMultEqTest is
given in Section 4.2. In Section 4.3, we present a weaker variant of F2PC-Mult, which has a known
efficient implementation, and prove that the security of protocol ManyPartyLeakyMult still holds
when using this variant. Finally, in Section 4.5 we present a more efficient variant of protocol
ManyPartyLeakyMult.

Starting with the helper functionalities, the two-party multiplication is defined as follows:

Functionality 4.1 (F2PC-Mult—Two-party multiplication).

Parties: P1,P2.

Common input: sid ∈ {0, 1}∗.
Pi’s input: ai ∈ Zq, and optional si ∈ Zq.

Operation:

1. Abort if both s1 and s2 are set.

2. If neither s1 and s2 is set, let i = 1 and sample s1←
R
Zq.

Else, let i be the index for which si is set.

3. Let i′ = {1, 2} \ {i} and let si′ = a1 · a2 − si.

4. For both ℓ ∈ [2]: send (sid, ℓ, sℓ) to Pℓ.

. .

(Recall that, by convention, all operations are carried in the relevant field/group. In particular,
si′ ∈ Zq.) That is, F2PC-Mult on input a1, a2 ∈ Zq returns a random additive share of a1 · a2. The
multiplication equality test is defined as follows:

26

Functionality 4.2 (FPedMultEqTest—Pedersen commitment multiplication equality test).

Parties: P1, . . . ,Pn.

Common input: sid ∈ {0, 1}∗ and D, {Âℓ, B̂ℓ, Ĉℓ}nℓ=1.

Pi’s input: ai, r
A
i , bi, r

B
i , ci, r

C
i ∈ Zq.

Operation: Abort if (at least) one of the following conditions does not hold:

1. For all ℓ ∈ [n]: {X̂ℓ = rXℓ ·D + xℓ ·G}(x,X)∈{(a,A),(b,B),(c,C)}.

2.
∑

ℓ∈[n] cℓ = (
∑

ℓ∈[n] aℓ) · (
∑

ℓ∈[n] bℓ).

. .

That is, FPedMultEqTest enables the parties, each holding commitments to ai, bi, ci, to verify
whether

∑
ℓ cℓ =

∑
aℓ·

∑
bℓ. Equipped with the above functionalities, protocol ManyPartyLeakyMult

acts as follows: let {Âℓ, B̂ℓ}ℓ∈[n] be the common input, let (aℓ, ·), (bℓ, ·) be the private inputs of Pℓ,
and let a =

∑
aℓ and b =

∑
bℓ. The protocol starts with the parties computing shares of a · b

using the two-party multiplication functionality F2PC-Mult to pairwise multiply aℓ · bh for every
ℓ ̸= h ∈ [n]. This step does not enforce the parties to use the correct (committed) inputs to the
two-party multiplications, so the result might be utterly wrong. In the next step, the parties call
multiplication equality test FPedMultEqTest to verify that the value generated in the first step equals
to a·b (according to the committed shares of a and b). Since the adversary might behave dishonestly
in the F2PC-Mult phase, the above test might leak some information about the honest parties’ input.
This leak is inherent for our implementation of the protocol, and is reflected in the functionality
FLeakyMult. Details below.12

Protocol 4.3 (ManyPartyLeakyMult—Securely computing FLeakyMult).

Oracles: FRPedKlwg

zk , F2PC-Mult, FPedMultEqTest.

Common input: sid ∈ {0, 1}∗, D ∈ G, {Âℓ, B̂ℓ}ℓ∈[n].

Pi’s input: (ai, r
A
i), (bi, r

B
i) ∈ Z2

q.

Operation: Party Pi acts as follows:

1. //Generate (additive) shares of
∑

ai ·
∑

bi.

(a) For each ℓ ̸= i ∈ [n]:

Send (sid||i||ℓ, ai) and (sid||ℓ||i, bi) to F2PC-Mult.

12One might wonder why our protocol has to use the two-party multiplication functionality, given that the par-
ties holds additive commitments of their shares. Indeed, the parties can use their shares to compute a (verified)
commitment of c = a · b. The problem is that the latter commitment cannot be opened to reveal the value of c.
This still holds even if instead of an (in-the-exponent) Pedersen commitments, one uses ElGamal in-the-exponent
commitment whose private key is shared among the parties. The ElGamal commitment to c can be jointly opened
to reveal the value of C = c · G, but (in most cases) the value of c cannot be extracted from C. To overcome that
we use the non-verified candidate value computed in the first step of the protocol (using the two-party multiplication
functionality). Once you have such a candidate, it is possible to check whether it is equal to the value inside the
Pedersen commitment (see Section 4.2).

27

Let dai,ℓ and dbi,ℓ denote the values Pi received from these two calls, respectively.

(b) Set ci = ai · bi +
∑

ℓ̸=i(d
a
i,ℓ + dbi,ℓ).

2. //Prove knowledge of committed values. (In parallel to the above round).

Send (sid, (D, Âi), (ai, r
A
i)) and (sid, (D, B̂i), (bi, r

B
i)) to FRPedKlwg

zk .

3. // Send a commitment to ci.

Upon receiving (sid, (D, Âℓ), ℓ) and (sid, (D, B̂ℓ), ℓ) from FRPedKlwg

zk for all ℓ ∈ [n]\{i}:

(a) Send Ĉi = PedComD(ci; r
C
i), for rCi ←

R
Zq, to all parties.

(b) Send (sid, (D, Ĉi), (ci, r
C
i)) to FRPedKlwg

zk .

4. // Verify that
∑

Ĉℓ is a commitment to
∑

ai ·
∑

bi.

Upon receiving (sid, (D, Ĉℓ), ℓ) from FRPedKlwg

zk for all ℓ ∈ [n]\{i}:

Send (sid, D, {Âℓ, B̂ℓ, Ĉℓ}ℓ∈[n]; (ai, r
A
i), (bi, r

B
i), (ci, r

C
i)) to FPedMultEqTest.

5. Output {Ĉℓ}ℓ∈[n] as the common output, and (ci, r
C
i) as the local output.

. .

4.1 Security

Theorem 4.4 (Security of Protocol 4.3). Assume discrete-log is hard over G, then on D ←
FPedKeyGen(), Protocol 4.3 UC-realizes Functionality 3.7 in the (FRPedKlwg

zk ,F2PC-Mult,FPedMultEqTest)-
hybrid model.

Proof. Fix an adversary A corrupting the parties indexed by C ⊊ [n] (recall that the all-corruption
case is trivial), let H = [n] \ C, and assume for ease of notation that n ∈ H. The following
random variables are defined with respect to the real execution of the protocol: for ℓ ∈ [n], let

(rAℓ , aℓ, Âℓ), (r
B
ℓ , bℓ, B̂ℓ), (r

C
ℓ , cℓ, Ĉℓ) be the values provided by Pℓ to the calls to FRPedKlwg

zk . If a
corrupted party sends different values to different honest parties, set it according to the values it
provides in the calls with Pn. For ℓ ∈ C and h ∈ H, let (aℓ,h, bℓ,h) be the values the corrupted party
Pℓ provides to F2PC-Mult in the two joint calls with Ph, and let (daℓ,h, d

b
ℓ,h) and (dah,ℓ, d

b
,h,ℓ) be the

output returned by these two joint calls to Pℓ and Ph, receptively. We write

(∑
ℓ∈[n]

aℓ
)
·
(∑
ℓ∈[n]

bℓ
)
=

(∑
ℓ∈C

aℓ
)
·
(∑
ℓ∈C

bℓ
)

︸ ︷︷ ︸
dC

+
(∑
ℓ∈H

aℓ
)
·
(∑
ℓ∈H

bℓ
)

︸ ︷︷ ︸
dH

+
(∑
ℓ∈H

aℓ
)
·
(∑
ℓ∈C

bℓ
)
+
(∑
ℓ∈C

aℓ
)
·
(∑
ℓ∈H

bℓ
)

︸ ︷︷ ︸
dH,C

(1)

Let c
def
=

∑
ℓ∈[n] cℓ. Assume

∑
ℓ∈C cℓ = dC +

∑
ℓ∈C,h∈H(daℓ,h + dbℓ,h), i.e., the corrupt parties send

arbitrary values F2PC-Mult when interacting with the honest parties, but otherwise compute the ci

28

correctly. In this case,

c = dC + dH +
∑

ℓ∈C,h∈H
(daℓ,h + dbℓ,h + dah,ℓ + dbh,ℓ) (2)

= dC + dH + dH,C +
∑
h∈H

ah ·
(∑
ℓ∈C

bℓ,h − bℓ
)

︸ ︷︷ ︸
δAh

+bh ·
(∑
ℓ∈C

aℓ,h − aℓ
)

︸ ︷︷ ︸
δBh︸ ︷︷ ︸

δH,C

.

So in the actual computation, it holds that

c = dC + dH + dH,C + δC,H +
(∑
ℓ∈C

cℓ
)
−dC −

∑
ℓ∈C,h∈H

(daℓ,h + dbℓ,h)︸ ︷︷ ︸
δc

(3)

Note that both δc and {δAh , δBh }, can be extracted from A’s view.
As in the proof of Theorem 3.9, we assume without loss of generality that a corrupted parties

never attempt to break the binding of a Pedersen commitment. It follows that if FPedMultEqTest does
not abort, then c =

(∑
ℓ∈[n] aℓ

)
·
(∑

ℓ∈[n] bℓ
)
, and thus

δc = −δH,C (4)

Equipped with the above understandings, the ideal model simulator S for A is defined as follows.

Algorithm 4.5 (S—Simulator for A).

Oracles: FLeakyMult.

Operation: On common input sid, D and {Âℓ, B̂ℓ}ℓ∈[n], emulate a random execution of ManyPartyLeakyMult
on this common input with A controlling the parties in C as follows:

Round 1: For each ℓ ∈ C and h ∈ H: sample the values of daℓ,h and dbℓ,h to return from the calls
to F2PC-Mult uniformly at random.

Round 2:

• For each ℓ ∈ C, send ((sid, D, {Âℓ, B̂ℓ}), ((aℓ, rAℓ), (bℓ, r
B
ℓ)) to FLeakyMult on behalf of Pℓ.

- Let {Ĉℓ}ℓ∈[n] be the common output of FLeakyMult.

Round 3: Use {Ĉℓ}ℓ∈H as the commitments sent by the honest parties, and set the messages that

FRPedKlwg

zk sends on behalf of the honest parties accordingly.

• Make a commitment-replacement call to FLeakyMult with inputs {(cℓ, rCℓ)}ℓ∈C.

Round 4:

• Make a linear-test call to FLeakyMult with input (δc, {δAh , δBh }h∈H).

• Instruct FLeakyMult to abort party Ph if the emulated Ph aborted.

29

. .

Since S is non-rewinding, we only need to prove that the joint distribution of A’s view and the
honest parties output in the real an emulated executions are computationally indistinguishable. By
the hiding of the Pedersen commitments and the definition of F2PC-Mult, the two views are identical
until Round 4. By Equation (4), the aborting decision taken in Round 4 in both executions is
the same (random) function of the A’s view in the first three rounds (determined by the private
inputs of the honest parties, which was not leaked yet). Hence, A’s views in the real and emulated
execution are identically distributed.

Moving to the honest parties’ output, since the common outputs of the parties, including the
aborting decisions, is reflected in the real and emulated views, it is left to prove that this still holds
when adding the private outputs {(rCh , ch)}h∈H of the honest parties (assuming no abort). Since

the value of rCh is determined by ch and Ĉh, where the latter appears in the A’s view, we focus only
on the value of the {ch}h∈H. By definition, in both executions

∑
h∈H ch = c−

∑
h∈C ch, so we finish

the proof by showing that in both executions the value of {ch}h∈H is uniformly distributed under
this restriction. This is clearly the case in the emulated execution. For the real execution, recall
that each pair of honest parties are engaged in (two) calls to F2PC-Mult, and the randomness used
by F2PC-Mult to determine the output of these calls is not exposed to the adversary. Hence, we can
think as if before outputting the {ch}h∈H, a random shift sh is added to each ch with

∑
h∈H sh = 0,

making the distribution of {ch}h∈H uniform under the restriction that
∑

h∈H ch = c−
∑

h∈C ch.

4.2 Multiplication Equality Test

In this section, we present protocol PedMultEqTest, a UC-implementation of FPedMultEqTest (the
Pedersen multiplication equality test). In high level, protocol PedMultEqTest goes as follows: let
{(aℓ, rAℓ), (bℓ, r

B
ℓ), (cℓ, r

C
ℓ)} be the private inputs of the parties. The parties first transform their

Pedersen commitments into ElGamal commitments whose private key is shared among them. They
then use these commitments to generate an ElGamal commitment of

∑
aℓ ·

∑
bℓ −

∑
cℓ and open

(using the shared private key) to see is it is indeed zero. This approach, as written above, is
not zero knowledge since it leaks information about the value of

∑
aℓ ·

∑
bℓ −

∑
cℓ (the ideal

functionality only tells whether it is zero or not). To overcome it, the parties first multiple the
resulting commitment by a random value (not known to any subset of the parties), so that a
non-zero value is mapped to a uniform value. Details below.

Protocol 4.6 (PedMultEqTest—Securely computing FPedMultEqTest).

Oracles: FRDL
com-zk,F

REGKlwg

zk ,FREgEqPed

zk ,FREgProdEg

zk ,FRDH
zk .

Parties: P1, . . . ,Pn.

Common input: sid ∈ {0, 1}∗, D, {Âℓ}nℓ=1, {B̂ℓ}nℓ=1, {Ĉℓ}nℓ=1.

Private input of Pi: (ai, r
A
i), (bi, r

B
i), (ci, r

C
i).

Operation: Party Pi acts as follows:

1. //Generate common ElGamal public key with shared private key.

(a) Send (sid,ComProve, Ei = ei ·G, ei) to FRDL
com-zk, for ei←

R
Zq.

30

(b) Upon receiving (sid,ProofReceipt, ℓ) from FRDL
com-zk for all ℓ ∈ [n]\{i}:

send (sid,DecomProof) to FRDL
com-zk.

(c) Upon receiving (sid,DecomProof, Eℓ, ℓ) from FRDL
com-zk for all ℓ ∈ [n]\{i}: let E =

∑n
ℓ=1Eℓ.

2. //Generate ElGamal commitment to ai, bi, ci and prove their correctness.

For each (x,X) ∈ {(a,A), (b, B), (c, C)}, in parallel,

(a) Send X̃i = EgComE(xi; r
X̃
i), for rX̃i ←

R
Zq, to all parties.

(b) Send (sid, (E, X̃i, D, X̂i), (xi, r
X̃
i , rXi)) to FREgEqPed

zk .

3. // Generate ElGamal commitment to (
∑

aℓ) · (
∑

bℓ)− (
∑

cℓ).

Upon receiving (sid, (E,D, X̃ℓ, X̂ℓ), ℓ) from FREgEqPed

zk for all ℓ ∈ [n]\{i}:

(a) Let B̃ =
∑

ℓ B̃ℓ.

(b) Send F̃i = EgRerandE(ai · B̃; rFi), for rFi ←
R
Zq, to all parties.

(c) Send (sid, (E, B̃, Ãi, F̃i), (r
Ã
i , r

F
i , ai)) to FREgProdEg

zk .

(d) Upon receiving (sid, (E, B̃, Ãℓ, F̃ℓ), ℓ) from FREgProdEg

zk for all ℓ ∈ [n]\{i}:
let Ỹ =

∑
ℓ F̃ℓ −

∑
ℓ C̃ℓ.

4. //Generate a commitment Z̃ to a random multiple of the value committed in Ỹ .

(a) Send Z̃i = oi · Ỹ + EgComE(0; rZi), for (rZi , oi)←
R
Z2
q, to all parties.

(b) Send (sid, (E, Ỹ , Z̃i), (r
Z
i , oi)) to FREgProdScalar

zk .

(c) Upon receiving (sid, (E, Ỹ , Z̃ℓ), ℓ) from FREgProdScalar

zk for all ℓ ∈ [n]\{i}, let Z̃ =
∑

ℓ Z̃ℓ.

5. //Verify that Z̃ = (Z̃L, Z̃R) is a cmt to 0 (i.e., Z̃R = (
∑

ℓ eℓ) · Z̃L).

(a) Send Wi = ei · Z̃L to all parties.

(b) Send (sid, i, (Z̃L, (Ei,Wi), ei) to FRDH
zk .

(c) Upon receiving (sid, (Z̃L, Eℓ,Wℓ), ℓ) from FRDH
zk for all ℓ ∈ [n]\{i}, let W =

∑
ℓWℓ.

(d) Abort if Z̃R ̸= W .

. .

4.2.1 Security

In this section, we state and prove the security of Protocol 4.6 for adversaries corrupting at least
n− 1 parties, and in Section 4.2.2 we extend it for arbitrary number of corruptions.

Theorem 4.7 (Security of Protocol 4.6, single honest party). Assume DDH is hard over G, then
Protocol 4.6 UC-realizes Functionality 4.2 against adversaries corrupting at least n− 1 parties, in

the (FRDL
com-zk,F

REGKlwg

zk ,FREgEqPed

zk ,FREgProdEg

zk ,FRDH
zk)-hybrid model.

31

Proof. Let A be an adversary corrupting the parties in C. Since the all-corruption case is trivial, we
assume without loss of generality that |C| = n−1, and assume for ease of notation that C = [n−1].
Not knowing the private inputs of Pn, the following simulator emulates the messages of Pn that are
hidden in ElGamal commitments, according to arbitrary inputs. It then sets (non-hidden) value of
Wn sent in Round 5, to match the output of FPedMultEqTest.

Algorithm 4.8 (S—Simulator for A).

Oracles: FPedMultEqTest.

Operation: On common input (sid, D, {Âℓ}nℓ=1, {B̂ℓ}nℓ=1, {Ĉℓ}nℓ=1), emulate a random execution of
PedMultEqTest on this common input with A controlling the parties in C and arbitrary (valid)
inputs for Pn, while modifying the messages of the honest party Pn and those sent in response to
its calls by the ideal functionalities as follows:

Round 1:

- Let {eℓ}ℓ∈C be the values sent by the corrupted parties to FRDL
com-zk(·, n).

Round 2: Change the value of (Ân, B̂n, Ĉn) according to the common input.

- Let {(aℓ, rAℓ), (bℓ, r
B
ℓ), (cℓ, r

C
ℓ)}ℓ∈C be the values sent by the corrupted parties to FREgEqPed

zk (·, n).

• For each ℓ ∈ C: send (sid, D, {Âh}h∈[n], {B̂h}h∈[n], {Ĉh}h∈[n]), (aℓ, rAℓ), (bℓ, r
B
ℓ), (cℓ, r

C
ℓ)) to FPedMultEqTest

on behalf of party Pℓ.

Round 5: //Generate a value for Wn to match the output of FPedMultEqTest.

If FPedMultEqTest returned true, change the value of Wn to Z̃R −
∑

ℓ∈C eℓ · Z̃L.

Else, change it to a uniform value in G.

• If the emulated Pn aborts, sends abort to FPedMultEqTest.

. .

Since S is non-rewinding, we only need to prove that the joint distribution of A’s view and the
output of Pn in the real an emulated executions are computationally indistinguishable. Actually,
since (by construction) Pn accepts in the ideal execution only if does so in emulated view of A, we
only need to show that for A’s view. Since we assume DDH, the ElGamal commitments used in
the protocol are computationally hiding. Thus, it suffices to show that the values of Wn sent by
Pn in Round 5, the only non hidden value in A’s view, in the two executions are computationally
indistinguishable (given the rest of the view).

For both the real and emulated executions, let {eℓ}ℓ∈C be the shares of the private key sent
to FRDL

com-zk(·, n) by the corrupted parties in Round 1, let {(aℓ, bℓ, cℓ)}ℓ∈C be the values sent by the

corrupted parties to FREgEqPed

zk (·, n) in Round 2 and let (an, bn, cn) be the, relevant part, of the
private input of Pn. Assume that (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) =

∑
ℓ∈[n] cℓ. By construction, the value

of Wn in both executions is equal to Z̃R −
∑

ℓ∈C eℓ · Z̃L. Hence, Wn is a deterministic function of
A’s view, yielding that the distributions remain computationally indistinguishable also given this
value. For the case (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) ̸=

∑
ℓ∈[n] cℓ, we show that in the real execution the

value of Wn is computationally indistinguishable from a uniform element of G (given the rest of

32

A’s view). This concludes the proof since Wn in the emulated execution is uniformly distributed
in G (independently of the rest of the view). Assume there exists an adversary A, a distinguisher
D, and a set of inputs for PedMultEqTest with (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) ̸=

∑
ℓ∈[n] cℓ, such that D can

tell whether the value of Wn in A’s view was replaced by a uniform element of G. We show that
under this assumption, the following algorithm breaks DDH.

Algorithm 4.9 (DDH-Breaker).

Input: (E,R, T) ∈ G3.

Operation: Start emulating a random execution of PedMultEqTest on the claimed inputs, while mod-
ifying the messages of the honest party Pn, and those on its behalf by the ideal functionalities, as
follows:

Round 1–3: Modify the value of En to E −
∑

ℓ∈C Eℓ.

// So now the shared public key chosen by the protocol is equal to E.

- Let Ỹ be the value computed by Pn in Round 3d, and let rY be the discrete log of ỸL, i.e.,
rY ·G = ỸL.

(Since ỸL is independent of E, the value of rY can be efficiently computed from the values all
parties sent to the zero-knowledge functionalities in rounds 2–3.)

Round 4: Modify the value of Z̃n to (R,U), for U←
R
G.

- Let {(oℓ, rZℓ)}ℓ∈C be the values the corrupted parties sent to FREgProdScalar

zk (·, n) in Round 4b.

Round 5: Modify the value of Wn to T + (
∑

ℓ∈C r
Z
ℓ + oℓ · rY) · E.

Output the prediction of D on the generated view.
. .

Since (
∑

ℓ∈[n] aℓ) · (
∑

ℓ∈[n] bℓ) ̸=
∑

ℓ∈[n] cℓ, the value of Z̃n sent by Pn in the real execution is an
encryption of a uniform value. Hence, the first four rounds in the emulation done by DDH-Breaker
are distributed exactly like these rounds in the real execution (on these inputs). Let {Z̃ℓ}ℓ∈[n] be the

values sent by the parties in Round 4 (of the emulation) and let Z̃ = (Z̃L, Z̃R) =
∑

ℓ∈[n] Z̃ℓ. Let e

and r be the discrete-log of E and R, respectively. By construction, Z̃L = r·G+
∑

ℓ∈C(rZℓ +oℓ·rY)·G.

Hence, if T = (e · r) ·G, then Wn = T +
∑

ℓ∈C(rZℓ + oℓ · rY) ·E = e · Z̃L, as it should be in a random
execution of the protocol on these inputs. Where if T is a uniform (and independent) element of G,
then so is Wn. Thus, DDH-Breaker tells (E = e·G,R = r·G, (e·r)·G) from (E = e·G,R = r·G, u·G),
for uniform e, r, u←

R
Zq. Namely, it breaks DDH over G.

4.2.2 Many Honest Parties

In this section, we state and prove the security of Protocol 4.6 to adversaries corrupting arbitrary
number of parties.

Theorem 4.10 (Security of Protocol 4.6). Assume DDH is hard over G, then Protocol 4.6 UC-

realizes Functionality 4.2 in the (FRDL
com-zk,F

REGKlwg

zk ,FREgEqPed

zk ,FREgProdEg

zk ,FRDH
zk)-hybrid model.

33

Proof. Let A be an adversary corrupting the parties in C. By Theorem 4.7, we can assume that
|C| < n− 1. Let H = [n] \ C, and assume for ease of notation that n ∈ H. We adjust the simulator
S defined in Algorithm 4.8 into a simulator Ŝ that emulates the messages of Ph with h ∈ H \ {n},
as follows: in the first four rounds, Ŝ emulates all Ph messages like S emulates the messages of Pn,
here with respect to (Âh, B̂h, Ĉh). In Round 5, Ŝ always modifies the value of Wh to a uniform (and
independent) element in G. Finally, if an emulated party aborts, it instructs the ideal functionality
to abort this party.

By construction, an honest party accepts in the ideal execution only if it does so in emulated view
of A. Hence, we only need to prove that A’s view in the real and ideal executions are computationally
indistinguishable. Like in the single honest party case, assuming DDH, all but the messages sent
in Round 5 of the emulated execution are computationally indistinguishable from the real one.
Furthermore, the very same proof also yields that in the case (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) ̸=

∑
ℓ∈[n] cℓ,

the values of {Wh}h∈H in the real execution are (jointly) indistinguishable from uniform, and hence
indistinguishability also holds in this case. So it is left to handle the case (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) =∑

ℓ∈[n] cℓ. Since, in the real and emulated executions, Wn is a deterministic function of the rest of

A’s view: Z̃R −
∑

ℓ∈C eℓ · Z̃L −
∑

h∈H\{n}Wh, we can safely ignore its contribution. We finish the
proof showing that, without the value of Wn, the values of {Wh}h∈H\{n}, given the rest of the view,
are indistinguishable from uniform. Indeed, without the value of Wn, the ElGamal commitments
used in the protocol are hiding from A’s point of view.13 Hence, a simple reduction yields that A
cannot distinguish the above case (where (

∑
ℓ∈[n] aℓ) · (

∑
ℓ∈[n] bℓ) =

∑
ℓ∈[n] cℓ) from the case that

(
∑

ℓ∈[n] aℓ) · (
∑

ℓ∈[n] bℓ) ̸=
∑

ℓ∈[n] cℓ. Thus, since A cannot distinguish {Wh}h∈H\{n} from uniform
in the latter case, it cannot do so also in the former.

4.3 Weak Two-Party Multiplication

In this section, we present a weaker variant of the prefect two-party multiplication functionality
F2PC-Mult, see Functionality 4.1, and prove that replacing F2PC-Mult in Protocol 4.3 with this weaker
variant, does not hurt its security. The advantage of using the weaker variant is that Haitner
et al. [Hai+22] presented an OT-based implementation of this weak functionality that is almost as
efficient as the best known OT-based semi-honest two-party multiplication.14

We use the following definitions: for two vector x, y ∈ Zm
q , let ⟨x, y⟩ =

∑
xi · yi and x ∗ y =

(x1 · y1, . . . , xm · ym). and let Ham(x, y) = |{i : xi ̸= yi}|. A vector is polychromatic if it is not close
to being mono-chromatic (i.e., having the same element in all its coordinates).

Definition 4.11 (polychromatic vector). A vector d ∈ Zm
q is t-polychromatic if for every y ∈ Zq it

holds that Ham (d, yn) ≥ t.

Given the above definitions, the weak two-party multiplication functionality is defined as follows:

Functionality 4.12 (F2PC-WeakMult—Two-party weak multiplication).

13We could not use this simple argument in the previous reductions, since hiding against an adversary who knows
Wℓ = eℓ · Z̃L for all ℓ ∈ [n], where e =

∑
eℓ is the secret key, is not captured by the security of the ElGamal

commitment.
14[Hai+22] do not prove the UC-security of their implementation for this functionality. However, since the simulator

in their security proof is non-rewinding and since their protocol has an implicit start synchronization phase, their
protocol UC-realizes the functionality in consideration (in the OT-hybrid model).

34

Security parameter: κ ∈ N. Let m = ⌈log q⌉+ κ.

Common input: sid ∈ {0, 1}∗.
P1’s input: a ∈ Zq, and optional d ∈ Zm

q .

P2’s input: b ∈ Zq, and optional s2 ∈ Zq.

Operation:

Abort if d is set but not κ/2-polychromatic.

If d is not set, act according to F2PC-Mult(sid, a, (b, s2)).

Else:

1. Sample (v, t)←
R
Zn
q × {91, 1}m such that ⟨v, t⟩ = b.

2. If s2 is not set let s2←
R
Zq.

3. Output ((s1, v), s2) for s1 = a · b− s2 + ⟨v, d ∗ t⟩.
. .

Haitner et al. [Hai+22] proved the following characterization of the above functionality.

Lemma 4.13 ([Hai+22], Lemma 4.3). Let q > 2 be a prime number, let κ ∈ N and m
def
= ⌈log q⌉+κ.

Let d ∈ Zm
q , let ℓ = miny∈Zq{Ham(d, ym)}, let λ = min{ℓ, κ− 5, log q,m/3}, and let (V ,T)←

R
Zm
q ×

{91, 1}m. Then for every b ∈ Zq, with probability 1− 2−λ/2+3 over v←
R
V |⟨V ,T ⟩=b, it holds that

H∞(⟨v, d ∗ T ⟩ | ⟨v,T ⟩ = b) ≥ λ/2 + 4.

It follows that party P1 can either act “honestly” in F2PC-WeakMult, by not setting the optional
vector d, and thus effectively acts like in the perfect multiplication. Otherwise, it makes the output
of P2 unpredictable from P1 point of view, having min-entropy ≈ κ/4 conditioned on P1’s view,
and this unpredictability holds even when given P2’s input. (P2 has exactly the same power on the
outcome like it has in the perfect multiplication).

4.3.1 Using Weak Two-Party Multiplication in Protocol 4.3

We claim that Protocol 4.3 remains secure when using F2PC-WeakMult instead of F2PC-Mult.

Theorem 4.14 (Security of Protocol 4.3, when using weak two party multiplication). Assume
discrete-log is hard over G. Then on common input D ← FPedKeyGen(), Protocol 4.3 UC-realizes

Functionality 3.7 in the (FRPedKlwg

zk ,F2PC-WeakMult,FPedMultEqTest)-hybrid model.

Proof. The only source of difference from using F2PC-WeakMult instead of F2PC-Mult might come from
the party taking the part of P1 in the call to F2PC-WeakMult uses a κ/2-polychromatic vector (see
Definition 4.11). Lemma 4.13 yields that if a a corrupted party sends a κ/2-polychromatic, then
the value of

∑
h∈H ch becomes unpredictable from the adversary’s point of view (even it is given

the honest parties inputs). We conclude that if such a vector was sent in the real execution, then
with all but negligible probability FPedMultEqTest returns false.

35

Given the above, we modify the simulator described in Algorithm 4.5 so that in Round 1 it
versifies that none of the calls to F2PC-WeakMult was done with a κ/2-polychromatic vector (it aborts
the execution is such a call was made). By the above, and the security of the protocol when using
F2PC-Mult, the real and emulated executions are computationally indistinguishable also when using
F2PC-WeakMult.

4.4 Using ElGamal Commitments

As in Section 3, the perfectly hiding and computationally binding Pedersen commitments used in
the above protocols can be replaced with the computationally hiding and perfectly binding ElGamal
commitments. The security proof of this variant follows from that of the Pedersen commitments
based protocols given above, using the same adaptation we describe in Section 3.2.

4.5 A More Efficient Protocol

In its current form, protocol ManyPartyLeakyMult takes three rounds. When combined with the
five rounds implementation of FPedMultEqTest done in protocol PedMultEqTest, see Protocol 4.6, and
the two-round implementation of F2PC-WeakMult, given by [Hai+22], makes it an 8-round protocol.
However, in the price of modularity, the round efficiency of the signing phase can be reduced to
five rounds.

First, we reuse the shared ElGamal keys generated in Protocol 4.6, and omit the ElGamal key-
generation round from the counting. Next, we combine protocol PedMultEqTest into ManyPartyLeakyMult,
and move to using ElGamal commitments right from the beginning of protocol ManyPartyLeakyMult.
Finally, we start the calculation the F̃ℓ’s done in Round 3 of PedMultEqTest, right after the first
round of ManyPartyLeakyMult is over. Overall, this makes it a five-round protocol. It is not hard
to see that the security proof of the original protocol can be adjusted to argue the security of this
variant.

5 Experimental Results

We implemented our protocol in C++ and ran it locally on an 2.3 GHz, 8-Core, Intel(R) i9. We
ran experiments from 3 to 20 parties; each execution was run 16 times, and took the average. The
results can be seen in Figure 1. This version uses the weak-two party multiplication of [Hai+22].
For the zero-knowledge POK protocols, we used the [Fis05] transformation. As can be clearly seen,
the signing time is practical (especially for cryptocurrency applications): from 206ms for 3 parties,
to about 1sec for 11 parties and less than 4sec for 20 parties. We remark that since we run on
eight cores, there is a non-realistic slowdown when the number of parties exceeds 8 (since there
is more than one party on each core). We also mention that the stated running time includes
creating OT pairs from scratch, where a more efficient approach is to save a few such pairs from
the last invocation and in the new invocation, only interact in the faster OT extension protocol. A
comparison of the signing time of our protocol and three other protocols can be found in Figure 2.
You can clearly see that our protocol outperforms the others by a factor of 4-5.

36

Figure 1: Key generation and signing time of our protocol. The running times, in milliseconds, for key
generation (bottom line in blue) and signing (top line in red) for 2-20 parties. (See details in Table 1.)

Number of Parties Key generation Signing
Parties

3 5 206

4 6 254

5 6 340

8 13 653

11 19 1138

14 28 1803

17 41 2662

20 55 3657

Table 1: Key generation and signing time of our protocol, in milliseconds.

37

Figure 2: Signing time comparison, in milliseconds, with the protocols of Gennaro and Goldfeder [GG18;
GG20] and Canetti, Makriyannis, and Peled [Can+20b] (see details in Table 2).

Number of Our protocol [GG18] [GG20] [Can+20b]
Parties

3 206 960 991 1183

4 254 1432 1418 1566

5 340 1900 1879 1879

8 653 3327 3306 3098

Table 2: Comparison of signing times, in milliseconds, between our protocol (Intel, 2.3 GHz, 8-Core,
i9), [GG18; GG20] (Intel, 2.3 GHz, i5), and [Can+20b] (Intel, 2.8 GHz, 4-Core, i7). All times were
measured without communication cost. The running time for CMP20 is for the pre-signing, and
the running time for [GG18] is as reported in [GG20] (the times reported in [GG18] itself do not
include zero-knowledge proofs necessary for security).

38

References

[Bla+13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. “Analy-
sis and improvement of Lindell’s UC-secure commitment schemes”. In: International
Conference on Applied Cryptography and Network Security (ACNS). 2013, pp. 534–
551 (cit. on p. 50).

[Bon+17] Dan Boneh, Rosario Gennaro, and Steven Goldfeder. “Using level-1 homomorphic en-
cryption to improve threshold dsa signatures for bitcoin wallet security”. In: Interna-
tional Conference on Cryptology and Information Security in Latin America (LATIN).
2017, pp. 352–377 (cit. on p. 4).

[Boy86] Colin Boyd. “Digital multisignatures”. In: Cryptography and coding (1986), pp. 241–
246 (cit. on p. 4).

[Can+20a] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. “UC non-interactive, proactive, threshold ECDSA with identifiable aborts”.
In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security. 2020, pp. 1769–1787 (cit. on p. 7).

[Can+20b] Ran Canetti, Nikolaos Makriyannis, and Udi Peled. UC Non-Interactive, Proactive,
Threshold ECDSA. Tech. rep. 2020/492. Cryptology ePrint Archive, 2020 (cit. on
p. 38).

[Can01] Ran Canetti. “Universally composable security: A new paradigm for cryptographic
protocols”. In: Annual Symposium on Foundations of Computer Science (FOCS).
2001, pp. 136–145 (cit. on p. 8).

[CH89] RA Croft and SP Harris. “Public-key cryptography and re-usable shared secrets”. In:
Cryptography and coding (1989), pp. 189–201 (cit. on p. 4).

[Cur] Curv (cit. on p. 4).

[Dal+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shul-
man. “Securing DNSSEC Keys via Threshold ECDSA from Generic MPC”. In: Com-
puter Security - ESORICS 2020 - 25th European Symposium on Research in Computer
Security, Proceedings, Part II. 2020, pp. 654–673 (cit. on p. 7).

[Des87] Yvo Desmedt. “Society and group oriented cryptography: A new concept”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). 1987, pp. 120–127 (cit. on p. 4).

[DF89] Yvo Desmedt and Yair Frankel. “Threshold cryptosystems”. In: Annual International
Cryptology Conference (CRYPTO). 1989, pp. 307–315 (cit. on p. 4).

[Doe+18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. “Secure two-party thresh-
old ECDSA from ECDSA assumptions”. In: 2018 IEEE Symposium on Security and
Privacy (SP). 2018, pp. 980–997 (cit. on p. 6).

[Doe+19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. “Threshold ECDSA
from ECDSA assumptions: the multiparty case”. In: IEEE Symposium on Security
and Privacy (SP). 2019, pp. 1051–1066 (cit. on pp. 6, 24).

[Fir] Fireblocks. www.fireblocks.com (cit. on p. 4).

39

[Fis05] Marc Fischlin. “Communication-efficient non-interactive proofs of knowledge with on-
line extractors”. In: Annual International Cryptology Conference (CRYPTO). 2005,
pp. 152–168 (cit. on pp. 36, 41).

[Fre+18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. “Fast
distributed RSA key generation for semi-honest and malicious adversaries”. In: Annual
International Cryptology Conference (CRYPTO). 2018, pp. 331–361 (cit. on p. 4).

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identification
and signature problems”. In: Annual International Cryptology Conference (CRYPTO).
1986, pp. 186–194 (cit. on p. 41).

[Fuj21] Eiichiro Fujisaki. “Improving practical UC-secure commitments based on the DDH as-
sumption”. In: IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences (2021) (cit. on p. 50).

[Gen+01] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. “Robust thresh-
old DSS signatures”. In: Information and Computation 164.1 (2001), pp. 54–84 (cit.
on p. 4).

[Gen+16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. “Threshold-optimal DSA/ECDSA
signatures and an application to Bitcoin wallet security”. In: International Conference
on Applied Cryptography and Network Security (ACNS). 2016, pp. 156–174 (cit. on
pp. 4, 5).

[GG18] Rosario Gennaro and Steven Goldfeder. “Fast multiparty threshold ECDSA with fast
trustless setup”. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2018, pp. 1179–1194 (cit. on pp. 6, 7, 38).

[GG20] Rosario Gennaro and Steven Goldfeder. One Round Threshold ECDSA with Identifi-
able Abort. Tech. rep. 2020/540. Cryptology ePrint Archive, 2020 (cit. on p. 38).

[GS22] Jens Groth and Victor Shoup. “On the security of ECDSA with additive key derivation
and presignatures”. In: Theory of Cryptography (TCC). 2022, pp. 365–396 (cit. on
p. 18).

[Hai+22] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. “Highly
Efficient OT-Based Multiplication Protocols”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT). 2022
(cit. on pp. 34–36).

[Kus+10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. “Information-theoretically secure
protocols and security under composition”. In: SIAM Journal on Computing 39.5
(2010), pp. 2090–2112 (cit. on p. 8).

[Lin11] Yehuda Lindell. “Highly-efficient universally-composable commitments based on the
DDH assumption”. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT). 2011, pp. 446–466 (cit. on p. 50).

[Lin21] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: Journal of Cryptology
34.4 (2021), pp. 1–38 (cit. on pp. 4, 6).

40

[LN18] Yehuda Lindell and Ariel Nof. “Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody”. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
2018, pp. 1837–1854 (cit. on pp. 1, 5).

[MR04] Philip MacKenzie and Michael K Reiter. “Two-party generation of DSA signatures”.
In: International Journal of Information Security 2.3 (2004), pp. 218–239 (cit. on p. 4).

[Ped91] Thomas Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret”. In: Annual International Cryptology Conference (CRYPTO). 1991 (cit. on p. 10).

[Por] Porticor. www.porticor.com (cit. on p. 4).

[SA19] Nigel P. Smart and Younes Talibi Alaoui. “Distributing Any Elliptic Curve Based Pro-
tocol”. In: Cryptography and Coding - 17th IMA International Conference, IMACC,
Proceedings. 2019, pp. 342–366 (cit. on p. 7).

[Sch89] Claus-Peter Schnorr. “Efficient identification and signatures for smart cards”. In:
Annual International Cryptology Conference (CRYPTO). 1989, pp. 239–252 (cit. on
p. 42).

[Sec] Unbound Security. www.unboundsecurity.com (cit. on p. 4).

[Sep] Sepior. www.sepior.com (cit. on p. 4).

[SG98] Victor Shoup and Rosario Gennaro. “Securing threshold cryptosystems against chosen
ciphertext attack”. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT). Springer. 1998, pp. 1–16 (cit. on
p. 4).

[Sho00] Victor Shoup. “Practical threshold signatures”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT). Springer.
2000, pp. 207–220 (cit. on p. 4).

A Implementing Auxiliary Functionalities

In this section, we discuss the implementations of the functionalities we use in Sections 3 and 4.2.
We start with the zero-knowledge functionalities, Appendix A.1, and then handle the commitment
functionalities, Appendix A.2.

A.1 Zero Knowledge

In this section, we present zero-knowledge proof-of-knowledge sigma protocols for the relations
for which we use proof-of-knowledge (POK) zero-knowledge functionalities. In the random-oracle-
model, one can use the transformation of [Fis05] to zero-knowledge with non-rewinding extraction,
to get a non-interactive protocol that UC-realizes the zero-knowledge functionality in consideration.
One can also just apply the plain Fiat-Shamir transform [FS86] and hope the resulting protocol is
UC-secure, but there is no rigorous justification for this assumption.

We present sigma protocols for the following relations (all with respect to to the fix q-size group
G, fixed G ∈ G and G̃ = G×G):

41

1. Knowledge of discrete log.

RDL = {(A,B,w) : B = w ·A}

The sigma protocol for this relation is just the standard Schnorr proof [Sch89], whose cost
is one (G) exponentiation for the prover and two for the verifier, and communication cost is
one element G and one element of Zq.

2. DH tuple:

RDH = {(Ã = (A1, A2), B̃ = (B1, B2), w) : B̃ = w · Ã}

This is just knowledge of discrete log over the group G̃ = G×G.

3. Knowledge of Pedersen commitment.

RPedKlwg = {((D, Â), (a, r)) : Â = PedComD(a; r)}

The sigma protocol for this relation is described in Appendix A.1.1.

4. Pedersen commitment of a value:

RPedEqVal = {((D, Â, a), r) : Â = PedComD(a; r)}

Since PedComD(a; r) = r ·D+a ·G, it holds that Â is a commitment to a if PedComD(a; r)−
a ·G = r ·D. Therefore, proving that PedComD(a; r) is a commitment to a reduces to proving
the knowledge of the discrete log of (Â− a ·G) relative to D.

5. Pedersen commitment of a value in the exponent:

RPedEqExp = {((D, Â,A), (a, r)) : Â = PedComD(a; r), A = G · a}

The sigma protocol for this relation concatenates, with the same challenge e and answer z, a
proof of knowledge for the discrete log PedComD(a; r)−A relative to D, and for the discrete
log of A relative to G.

6. Knowledge of ElGamal commitment:

REGKlwg = {((E, Ã), (a, r)) : Ã = EgComE(a; r)}

The sigma protocol for this relation is described in Appendix A.1.2.

7. ElGamal equals Pedersen:

REgEqPed = ((E, Ã,D, Â), (a, r̃, r̂)) : Ã = EgComE(a; r̃) ∧ Â = PedComE(a; r̂)

The sigma protocol for this relation is described in Appendix A.1.3.

42

8. Knowledge of ElGamal scalar product:

REgProdScalar = ((E, Ã, B̃), (r, c)) : B̃ = c · Ã + EgComE(0; r)

The protocol for this relation is described in Appendix A.1.4.

9. Product of ElGamal commitments:

REgProdEg = {((E, Ã, B̃, C̃), (rb, r0, b)) : B̃ = EgComE(b; rb) ∧ C̃ = b · Ã + EgComE(0; r0)}

The sigma protocol for this relation is described in Appendix A.1.5.

10. ElGamal commitment of a value:

REGEqVal = {((E, Ã, a), r) : Ã = EgComE(a; r)}

Since EgComE(a; r) = (r·G, r·E+a·G), it holds that Ã is a commitment to a if EgComE(a; r)−
(0, a ·G) = (r ·G, r ·E). Therefore, proving that (ÃL, ÃR) = Ã is a commitment to a reduces
to proving the knowledge of the discrete log of ÃR − a ·G relative to ÃL.

11. ElGamal commitment of a value in the exponent:

REGEqExp = {((E, Ã, A), (a, r)) : Ã = EgComE(a; r), A = G · a}

Let (ÃL, ÃR) = Ã. The sigma protocol for this relation concatenates, with the same challenge
e and answer z, a proof of knowledge for the discrete log ÃR −A relative to ÃL, and for the
discrete log of A relative to G.

Notational conventions. In the following we use r, s, t ∈ Zq to denote random coins uses for
the ElGamal and Pedersen commitments, and a, b, c, z ∈ Zq for committed values.

A.1.1 Knowledge of Pedersen Commitment

We present a zero-knowledge sigma protocol for the relation

RPedKlwg = {((D, Â), (a, r)) : Â = PedComD(a; r)}.

Protocol A.1 (sigma protocol (P,V) for RPedKlwg).

Security parameter: κ ∈ N.
Common input: (D, Â).

P’s input: (a, r).

Operation:

1. P: Sends X̂ = s ·D + b ·G, for b, s←
R
Zq.

2. V: Send e←
R
{0, 1}κ.

3. P: Send (z = b + e · a, t = s + e · r).

• V accepts if PedComD(z; t) = X̂ + e · Â.

. .

43

Completeness. Since

PedComD(z; t) = t ·D + z ·G = (s + e · r) ·D + (b + e · a) ·G = X̂ + e · Â,

V always accepts in an all-honest execution.

Special soundness. Assume there exists (X̂, e, e′, z, t, z′, t′) such that e ̸= e′ (i.e., mod q) and
both (X̂, e, b, t) and (X̂, e′, b′, t′) are accepting transcripts. Hence,

t ·D + z ·G = X̂ + e · Â and t′ ·D + z′ ·G = X̂ + e′ · Â

Subtracting the equations from each other, we have

(t− t′) ·D + (z − z′) ·G = (e− e′) ·A

and thus

Â = (t− t′) · (e− e′)−1 ·D + (z − z′) · (e− e′)−1 ·G (5)

(Note that since e ̸= e′, the value (e− e′)−1 exists and can be efficiently computed.)
Hence, r = (t − t′) · (e − e′)−1 and a = (z − z′) · (e − e′)−1 form a valid opening of Â =

PedCom(a; r) = a ·G + r ·D.

Honest-verifier zero knowledge. Given e, the simulator samples t, z←
R
Zq, computes

X̂ = t ·D + z ·G− e · Â

and outputs (X̂, t, z).
Assume there exist (a, r) such that Â = r ·D + a ·G. Then

X̂ = (t− e · r) ·D + (z − e · a) ·G

Since s = t − e · r and b = z − e · a are uniformly distributed over Zq, we deduce that the output
distribution of the simulator is identical to the honest verifier view on such input.

A.1.2 Knowledge of ElGamal Commitment

We present a zero-knowledge sigma protocol for the relation

REGKlwg = {((E, Ã), (a, r)) : Ã = EgComE(a; r)}

Protocol A.2 (sigma protocol for REGKlwg).

Security parameter: κ ∈ N.
Common input: (E, Ã).

P’s input: (a, r̃).

Operation:

44

1. P: Sends B̃ = EgComE(b; s̃), for b, s̃←
R
Zq.

2. V: Send e←
R
{0, 1}κ.

3. P: Send (z = b + e · a, t̃ = s̃ + e · r̃).

• V accepts if B̃ + e · Ã = EgComE(z; t̃).

. .

Completeness.

B̃ + e · Ã = (s̃ ·G, s̃ · E + b ·G) + e · (r̃ ·G, r̃ · E + a ·G)

= ((s̃ + e · r̃) ·G, (s̃ + e · r̃) · E + (e · a + b) ·G)

= EgComE(z; t̃)

V always accepts in an all-honest execution.

Special soundness. Assume there exists (B̃, e, e′, z, t̃, z′, t̃′) such that e ̸= e′ and both (B̃, e, z, t̃)
and (B̃, e′, z′, t̃′) are accepting transcripts. Hence,

B̃ + e · Ã = (t̃ ·G, t̃ · E + z ·G)

and

B̃ + e′ · Ã = (t̃′ ·G, t̃′ · E + z′ ·G)

Subtracting the equations from each other, we have

(e− e′) · Ã = ((t̃− t̃′) ·G, (t̃− t̃′) · E + (z − z′) ·G)

Thus,
Ã = (e− e′)−1 · ((t̃− t̃′) ·G, (t̃− t̃′) · E + (z − z′) ·G)

Taking a = (z − z′) · (e− e′)−1, r̃ = (t̃− t̃′) · (e− e′)−1 and r̂ = (t̂− t̂′) · (e− e′)−1, we have that
Ã = EgComE(a; r̃), as required.

Honest-verifier zero knowledge. Given e, the simulator chooses random z, t̃←
R
Zq, computes

B̃ = EgComE(z; t̃)− e · Ã

and outputs (B̃, z, t̃).
Assume there exists (a, r̃) such that Ã = EgComE(a; r̃). Then

B̃ = EgComE(z − a · e; t̃− e · r̃)

Since b = z− e · a and s̃ = t̃− e · r̃are uniform in Zq, we deduce that the output distribution of the
simulator is identical to the honest verifier view on such input.

45

A.1.3 ElGamal Equals Pedersen

We present a zero-knowledge sigma protocol for the relation

REgEqPed = ((E, Ã,D, Â), (a, r̃, r̂)) : Ã = EgComE(a; r̃) ∧ Â = PedComD(a; r̂) .

Protocol A.3 (sigma protocol for REgEqPed).

Security parameter: κ ∈ N.
Common input: (E, Ã,D, Â).

P’s input: (a, r̃, r̂).

Operation:

1. P: Sends (B̃ = EgComE(b; ŝ), B̂ = PedComD(b; s̃)), for b, ŝ, s̃←
R
Zq.

2. V: Send e←
R
{0, 1}κ.

3. P: Send (z = b + e · a, t̃ = s̃ + e · r̃, t̂ = ŝ + e · r̂).

• V accepts if B̃ + e · Ã = EgComE(z; t̃), and B̂ + e · Â = PedComD(z; t̂).

. .

Note that that the above protocol is just proof of knowledge for a Pedersen commitment and a
proof knowledge for ElGamal commitment put together, using the same z.

Completeness.

B̃ + e · Ã = (s̃ ·G, s̃ · E + b ·G) + e · (r̃ ·G, r̃ · E + a ·G)

= ((s̃ + e · r̃) ·G, (s̃ + e · r̃) · E + (e · a + b) ·G)

= EgComE(z; t̃)

and

B̂ + e · Â = ŝ ·D + b ·G + e · (r̂ ·D + a ·G)

= (ŝ + e · r̂) ·D + (e · a + b) ·G
= PedComD(z; t̂),

V always accepts in an all-honest execution.

Special soundness. Assume there exists (B̃, B̂, e, e′, z, t̃, t̂, z′, t̃′, t̂′) such that e ̸= e′ and both
(B̃, B̂, e, z, t̃, t̂) and (B̃, B̂, e′, z′, t̃′, t̂′) are accepting transcripts. Hence,

B̃ + e · Ã = (t̃ ·G, t̃ · E + z ·G), B̂ + e · Â = t̂ ·D + z ·G

and

B̃ + e′ · Ã = (t̃′ ·G, t̃′ · E + z′ ·G), B̂ + e′ · Â = t̂′ ·D + z ·G

46

Subtracting the equations from each other, we have

(e− e′) · Ã = ((t̃− t̃′) ·G, (t̃− t̃′) · E + (z − z′) ·G)

and
(e− e′) · Â = (t̂− t̂′) ·D + (z − z′)G

Thus,
Ã = (e− e′)−1 · ((t̃− t̃′) ·G, (t̃− t̃′) · E + (z − z′) ·G)

and
Â = (e− e′)−1 · (t̂− t̂′) ·D + (z − z′) ·G.

Taking a = (z − z′) · (e− e′)−1, r̃ = (t̃− t̃′) · (e− e′)−1 and r̂ = (t̂− t̂′) · (e− e′)−1, we have that
Ã = EgComE(a; r̃) and Â = PedComD(a; r̂), as required.

Honest-verifier zero knowledge. Given e, the simulator chooses random z, t̃, t̂←
R
Zq, computes

B̃ = EgComE(z; t̃)− e · Ã = and B̂ = PedComD(z; t̂)− e · Â,

and outputs (B̂, B̃, z, t̃, t̂).
Assume there exists (a, r̃, r̂) such that Ã = EgComE(a; r̃) and Â = PedComD(a; r̂). Then

B̃ = EgComE(z − a · e; t̃− e · r̃)

and
B̂ = PedComD(z − a · e; t̂− e · r̂)

Since b = z − e · a, s̃ = t̃ − e · r̃, and ŝ = t̂ − e · r̂ are uniform in Zq, we deduce that the output
distribution of the simulator is identical to the honest verifier view on such input.

A.1.4 Knowledge of ElGamal Scalar Product

We present a zero-knowledge sigma protocol for the relation

REgProdScalar = ((E, Ã, B̃), (r, c)) : B̃ = c · Ã + EgComE(0; r)

Protocol A.4 (sigma protocol for REgProdScalar).

Security parameter: κ ∈ N.
Common input: (E, Ã, B̃).

P’s input: (r, c).

Operation:

1. P: Send X̃ = g · Ã + EgComE(0; s), for g, s←
R
Zq.

2. V: Send e←
R
{0, 1}κ.

3. P: Send (z = g + e · c, t = s + e · r).

• V accepts if X̃ + e · B̃ = z · Ã + EgComE(0; t)

. .

47

Completeness. Since

z · Ã + EgComE(0; t)− e · B̃ = (g + e · c) · Ã + EgComE(0; s + e · r)− e · (c · Ã + EgComE(0; r))

= (g + e · c) · Ã + (s + e · r) · (G,E)− e · (c · Ã + r · (G,E))

= g · Ã + s · (G,E)

= X̂,

V always accepts in an all-honest execution.

Special soundness. Assume there exists (X̂, e, e′, z, t, z′, t′1) such that e ̸= e′ and both (X, e, z, t)
and (X, e′, z′, t′) are accepting transcripts. Hence,

e · B̃ = z · Ã + t · B̃ − X̃

and
e′ · B̃ = z′ · Ã + t′ · B̃ −X

Subtracting the equations from each other, we have

(e− e′) · B̃ = (z − z′) · Ã + (t− t′) ·G

Taking r = (z − z′) · (e − e′)−1 and c = (t − t′) · (e − e′)−1, we have that B̃ = c · Ã + r · (G,E) as
required.

Honest-verifier zero knowledge. Given e, the simulator samples z, t←
R
Zq and computes

X̃ = z · E + z2 · Ã− e · Ã′

If there exist (c, r) such that B̃ = c · Ã + r · (G,E), then

X̃ = (z − e · r) · (G,E) + (z2 − e · c) · Ã

Since g = z − e · r and s = z2 − e · d are uniform in Zq, we deduce that the output distribution of
the simulator is identical to the honest verifier view on such input.

A.1.5 Product of ElGamal Commitments

We present a zero-knowledge sigma protocol for the relation

REgProdEg = {((E, Ã, B̃, C̃), (rb, r0, b)) : B̃ = EgComE(b; rb) ∧ C̃ = b · Ã + EgComE(0; r0)}

Protocol A.5 (sigma protocol for REgProdEg).

Security parameter: κ ∈ N.
Common input: (E, Ã, B̃, C̃).

P’s input: (rb, r0, b).

Operation:

48

1. P: Send (X̃ = EgComE(f ; sf), Ŷ = f · Ã + EgCom(0; s0)), for f, sf , s0←
R
Zq.

2. V: Send e←
R
{0, 1}κ.

3. P: Send (z = f + e · b, t1 = sf + e · rb, t2 = s0 + e · r0).

• V accepts if EgComE(z; t1) = X̃ + e · B̃, and z · Ã + EgComE(0; t2) = Ỹ + e · C̃.

. .

Completeness. Since

EgComE(z; t1) = (t1 ·G, z ·G + t1 ·D) = X̂ + e · B̂

and
z · Ã + EgComE(0; t2) = (f + e · b) · Ã + t2 · (G,E) = Ỹ + e · C̃,

V always accepts in an all-honest execution.

Special soundness. Assume there exist (X̃, Ỹ , e, e′, z, t1, t2, z
′, t′1, t

′
2) such that e ̸= e′ and both

(X̃, Ỹ , e, z, t1, t2) and (X̃, Ỹ , e′, z′, t′1, t
′
2) are accepting transcripts. Hence,

(t1 ·G, t1 ·D + z ·G) = X̃ + e · B̃ and z · Â + t2 · (G,E) = Ỹ + e · C̃

and
(t′1 ·G, t′1 ·D + z′ ·G) = X̃ + e′ · B̃ and z′ · Â + t′2 · (G,E) = Ỹ + e′ · C̃.

Subtracting the equations from each other, we have

((t1 − t′1) ·G, (z − z′) ·G + (t1 − t′1) · E) = (e− e′) · B̃

and
(z − z′) · Ã + (t2 − t′2) · (G,E) = (e− e′) · C̃.

Thus,
B̃ = (e− e′)−1 · ((t1 − t′1) ·G, (z − z′) ·G + (t1 − t′1) · E)

and
C̃ = (e− e′)−1((z − z′) · Ã + (t2 − t′2) · (G,E))

Setting b = (z− z′) · (e− e′)−1, rb = (t1− t′1) · (e− e′)−1 and r0 = (t2− t′2) · (e− e′)−1, we have that

B̃ = EgComE(b; rb) ∧ C̃ = b · Ã + EgComE(0; r0), as required.

Honest-verifier zero knowledge. Given e, the simulator chooses random z, t1, t2←
R
Zq, com-

putes
X̃ = EgComE(z; t1)− e · B̃ and Ỹ = z · Ã + EgComE(0; t2)− e · C̃.

and outputs (X̃, Ỹ , z, t1, t2).
Assume there exists (rb, r0, b) such that B̃ = EgComE(b; rb)∧ C̃ = b · Ã+ EgComE(0; r0). Then

X̃ = ((t1 − e · rb) ·G, (z − e · b) ·G + (t1 − e · rb) · E) = EgComE(z − e · b; (t1 − e · rb))

and similarly
Ỹ = (z − e · b) · Ã + EgComE(0; t1 − e · r0)

Since f = z − e · b, sf = t1 − e · rb, s0 = t2 − e · r0 are uniform in Zq, we deduce that the output
distribution of the simulator is identical to the honest verifier view on such input.

49

A.2 String Commitments

Any UC-secure commitment scheme, e.g., [Lin11; Bla+13; Fuj21], UC-realizes Fcom. In the
random-oracle model, Fcom can be trivially realized (with static security) by simply defining
c = Com(x, sid, i, j) = SHA256(x||sid||i||j, r) with r←

R
{0, 1}κ and SHA256: {0, 1}∗ 7→ {0, 1}256 is

the SHA256 hash function, and sending c to Pj .

A.2.1 Committed Non-Interactive Zero Knowledge

Given non-interactive zero-knowledge proofs of knowledge, FR
com-zk can be securely realized by hav-

ing the prover commit to the statement together with its proof, using the ideal commitment func-
tionality Fcom.

50

	Introduction
	Background and Prior Work
	Our Results
	Cryptocurrency Wallets and Custody
	Concurrent and Subsequent Work

	Preliminaries
	Notation
	Universal Composability (UC)
	The ECDSA Signature Scheme
	The Standalone Scheme
	The Multiparty Ideal Functionality

	Pedersen Commitments
	ElGamal Commitments
	Zero Knowledge
	String Commitments
	Committed Non-Interactive Zero Knowledge

	ECDSA Protocol
	Security
	Using ElGamal Commitments
	Many Honest Parties
	Security

	Threshold Signatures
	Security

	A More Efficient Protocol

	Many-Party Leaky Multiplication
	Security
	Multiplication Equality Test
	Security
	Many Honest Parties

	Weak Two-Party Multiplication
	Using Weak Two-Party Multiplication in prot:ManyPartyMult

	Using ElGamal Commitments
	A More Efficient Protocol

	Experimental Results
	Implementing Auxiliary Functionalities
	Zero Knowledge
	Knowledge of Pedersen Commitment
	Knowledge of ElGamal Commitment
	ElGamal Equals Pedersen
	Knowledge of ElGamal Scalar Product
	Product of ElGamal Commitments

	String Commitments
	Committed Non-Interactive Zero Knowledge

