
Observations on the Dynamic Cube Attack of

855-Round Trivium from Crypto'18

Yonglin Hao1, Lin Jiao1, Chaoyun Li2, Willi Meier3, Yosuke Todo4, and
Qingju Wang5

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
2 imec-COSIC, Dept. Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium

3 FHNW, Windisch, Switzerland
4 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan

5 SnT, University of Luxembourg, Luxembourg
haoyonglin@yeah.net, jiaolin_jl@126.com, chaoyun.li@esat.kuleuven.be

willi.meier@fhnw, qingju.wang@uni.lu, todo.yosuke@lab.ntt.co.jp

Abstract. Recently, another kind of dynamic cube attack is proposed
by Fu et al.. With some key guesses and a transformation in the output
bit, they claim that, when the key guesses are correct, the degree of the
transformed output bit can drop so signi�cantly that the cubes of lower
dimension can not exist, making the output bit vulnerable to the zero-
sum cube tester using slightly higher dimensional cubes. They applied
their method to 855-round Trivium. In order to verify the correctness of
their result, they even proposed a practical attack on 721-round Trivium
claiming that the transformed output bit after 721-rounds of initializa-
tion does not contain cubes of dimensions 31 and below. However, the
degree evaluation algorithm used by Fu et al. is innovative and com-
plicated, and its complexity is not given. Their algorithm can only be
implemented on huge clusters and cannot be veri�ed by existing theoretic
tools.
In this paper, we theoretically analyze the dynamic cube attack method
given by Fu et al. using the division property and MILP modeling tech-
nique.
Firstly, we draw links between the division property and Fu et al.'s dy-
namic cube attack so that their method can be described as a theoreti-
cally well founded and computationally economic MILP-aided division-
property-based cube attack. With the MILP model drawn according to
the division property, we analyzed the 721-round Trivium in detail and
�nd some interesting results:
1. The degree evaluation using our MILP method is more accurate than

that of Fu et al.'s. Fu et al. prove that the degree of pure z721 is 40
while our method gives 29. We practically proved the correctness
of our method by trying thousands of random keys, random 30-
dimensional cubes and random assignments to non-cube IVs �nding
that the summations are constantly 0.

2. For the transformed output bit (1 + s2901) · z721, we proved the same
degree 31 as Fu et al. and we also �nd 32-dimensional cubes have
zero-sum property for correct key guesses. But since the degree of
pure z721 is only 29, the 721-round practical attack on Trivium is

violating the principle of Fu et al.'s work: after the transformation
in the output bit, when the key guesses are correct, the degree of the
transformed output bit has not dropped but risen.

3. Now that the degree theoretic foundation of the 721-round attack
has been violated, we also �nd out that the key-recovery attack can-
not be carried out either. We theoretically proved and practically
veri�ed that no matter the key guesses are correct or incorrect, the
summation over 32-dimensional cube are always 0. So, no key bit
can be recovered at all.

All these analysis on 721-round Trivium can be veri�ed practically and
we open our C++ source code for implementation as well.

Secondly, we revisit their 855-round result. Our MILP model reveal that
the 855-round result su�ers from the same problems with its 721-round
counterpart. We provide theoretic evidence that, after their transfor-
mation, the degree of the output bit is more likely to rise rather than
drop. Furthermore, since Fu et al.'s degree evaluation is written in an
unclear manner and no complexity analysis is given, we rewrite the al-
gorithm according to their main ideas and supplement a detailed com-
plexity analysis. Our analysis indicates that a precise evaluation to the
degree requires complexities far beyond practical reach. We also demon-
strate that further abbreviation to our rewritten algorithm can result in
wrong evaluation. This might be the reason why Fu et al. give such a
degree evaluation. This is also an additional argument against Fu et al.'s
dynamic cube attack method.

Thirdly, the selection of Fu et al.'s cube dimension is also questionable.
According to our experiments and existing theoretic results, there is high
risk that the correct key guesses and wrong ones share the same zero-
sum property using Fu et al.'s cube testers. As a remedy, we suggest
that concrete cubes satisfying particular conditions should be identi�ed
rather than relying on the IV-degree drop hypothesis.

To conclude, Fu et al.'s dynamic cube attack on 855-round Trivium is
questionable. 855-round as well as 840-and-up-round Trivium should
still be open for further convincible cryptanalysis.

Keywords: Dynamic Cube attack, Division Property, MILP, Stream
Cipher, Trivium

1 Introduction

Cube attack, as well as its variants, is one of the general cryptanalytic techniques
of analyzing symmetric-key cryptosystems. It can be regarded as a generalization
of the chosen IV statistical attack on stream ciphers [1,2,3] or a combination
of higher order di�erential cryptanalysis and AIDA [4]. Cube attack is based
on the algebraic essence of ciphers. For a cipher with n secret variables x =
(x1, x2, . . . , xn) and m public variables v = (v1, v2, . . . , vm), we can regard the
algebraic normal form (ANF) of output bits as a polynomial of x and v, denoted
as f(x,v). For a randomly chosen set I = {i1, i2, ..., i|I|} ⊂ {1, . . . ,m}, f(x,v)

2

can be represented uniquely as

f(x,v) = tI · p(x,v) + q(x,v),

where tI = vi1 · · · vi|I| , p(x,v) only relates to vs's (s /∈ I) and the secret key bits
x, and q(x,v) misses at least one variable in tI . When vs's (s /∈ I) and x are
assigned statically, the value of p(x,v) can be computed by summing the output
bit f(x,v) over a structure called cube, denoted as CI , consisting of 2

|I| di�erent
v vectors with vi, i ∈ I being active (traversing all 0-1 combinations) and non-
cube indices vs, s /∈ I being static constants. Due to the close link between I and
CI , the index set I is also referred as cube without causing ambiguity. p(x,v),
also referred as the superpoly [5], may have non-random properties that can be
utilized for cryptanalysis. A direct key-recovery attack can be launched when the
superpoly is linear [5]. Other non-randomness such as constantness, neutrality,
linearity, bias et al. can also be used for distinguishing attacks [6]. After years'
development, various cube-based cryptanalysis methods have been proposed and
successfully applied to all kinds of ciphers, including stream ciphers [6,7,8,9,10],
hash functions [11,12,13], and authenticated encryptions [14,15].

At the beginning, the non-random properties of the superpoly can only be de-
tected with practical experiments, which largely limits its widespread. At Crypto
2017, Todo et al. draw links among integral property, higher-order di�erential
and cube attack, and further introduced the bit-based division property, a tool
for conducting integral attacks, into the realm of cube attack [16]. The division
property enable us to evaluate the non-random properties of the superpoly even
if large I's of sizes far beyond practical computation are used.

Division property is a generalization of the integral property and was �rst
proposed at EUROCRYPT 2015 [17]. With division property, the propagation
of the integral characteristics can be deduced more accurately and thus result
in the �rst theoretic key recovery attack on full MISTY1 [18]. The original di-
vision property in [17,18] can only be applied to word-oriented primitives. At
FSE 2016, the bit-based division property [19] was proposed. It enables the �rst
theoretic proof to the integral characteristics for bit-based block ciphers namely
SIMON32 and Simeck32. With division property, the propagation of the integral
characteristics can be represented by the operations on a set of 0-1 vectors iden-
tifying the bit positions with the zero-sum property. However, the sizes of the
0-1 vector sets are exponential to the block size of the ciphers making the deduc-
tion of the bit-based division property quite memory-consuming. Such a storage
crisis has been solved by Xiang et al. [20] at ASIACRYPT 2016 by utilizing the
MILP model. The operations on 0-1 vector sets are transformed to imposing
division property values (0 or 1) to MILP variables, and the corresponding in-
tegral characteristics are acquired by solving the models with MILP solvers like
Gurobi [21]. With this method, they are able to give integral characteristics for
block ciphers with large block sizes. Xiang et al.'s method has now been applied
to many other ciphers for improved integral attacks [22,23,24,25].

Todo et al.'s division property based cube attack in [16] adapt Xiang et
al.'s method by taking key bits into the MILP model. With this technique, a

3

set of key indices J = {j1, j2, . . . , j|J|} ⊂ {1, . . . , n} is deduced for the cube I
s.t. its corresponding superpoly p(x,v) can only be related to the key bits xj 's
(j ∈ J). With the knowledge of I and J , the ANF as well as the whole truth
table of the superpoly can be recovered in the o�ine phase with complexity
2|I|+|J|. Then, in the online phase, the adversary only need to sum over the cube
and identify the candidate secret keys by referring to the precomputed truth
table. Due to division property and the power of MILP solver, cubes of larger
dimension can now be used for key recoveries. By using a 72-dimensional cube,
Todo et al. propose a theoretic cube attack on 832-round Trivium. They also
largely improve the previous best attacks on other primitives namely Acorn,
Grain-128a and Kreyvium [16,26]. Based on Todo et al.'s work, Wang et al.
exploite several algebraic properties of superpoly which are useful for better key-
recovery cube attacks [27]. More speci�cally, they proposed three new techniques
namely: �ag technique, degree evaluation and term enumeration. With these new
techniques, the results in [27] are largely improved in comparison with those in
[26]. Besides the division property based cube method, it is also noticeable that
Liu et al. has also invented a new key recovery scenario on Trivium referred as
the on Trivium using a method referred as correlation cube attack [10]. Their
method can mount to 835-round Trivium using small dimensional cubes. Since
our work is based on the work of [27] so we will give more detailed descriptions
later.

The division property based cube attack, correlation cube attack as well as
most of the traditional method are purely cultivating the property of the stream
cipher. There is another kind of cube attack named the �dynamic cube attack�
where the non-random property of the transformed output is utilized. The most
famous dynamic cube attack results are aiming on full-round Gran-128 [28] and
855-round Trivium [29]. However, the theoretic foundation of the dynamic cube
attack is not so steady as that of the division property. Both [28] and [29] are
acquired by pure experiments, and there are plenty of theoretically unsolved
questions in them. In this paper, we only focus on [29].

The dynamic cube attack in [29] impose direct transformation to the output
bit. The transformation requires correct guess to some key bits. They claim
that the transformed output bit has an algebraic degree much lower than the
original one so that zero-sum properties can be detected using cube testers with
particular dimensions. However, such a claim, similar to that of [28], has never
been theoretically proved. According to [29], the degree of the (transformed)
output bit is evaluated by enumerating IV-monomials using a huge cluster. But
the degree evaluation algorithm is written in an unclear manner, barricading
reader from realizing their algorithm and verifying its correctness. Furthermore,
the number of IV-monomials enumerated is also omitted in [29] so the complexity
of its degree evaluation is also unclear. In order to verify the correctness of their
method, the authors of [29] propose a practical attack on 721-round Trivium.

Our Contributions. In this paper, we introduce the division property to the
realm of dynamic cube attack and construct corresponding MILP model to eval-
uate the division property propagation for concrete dynamic cube attacks on

4

speci�c stream ciphers. For the method of [29], we describe its procedure using
division property and MILP model, which enable us to evaluate the degree of the
(transformed) output bit in a theoretically reliable manner. We give a detailed
analysis to their practical result on 721-round Trivium. It is surprising that the
practical example provided by themselves are violating almost all of their claims.

1. The transformed output bit has an algebraic degree higher than the original
one, violating the degree drop claim. This also reveals that their strategy for
constructing the transformation is questionable.

2. The degree evaluation towards the original output bit is wrong making the
degree evaluation algorithm questionable (this is also the reason why they
regarded the 721-round result as a support).

3. The key recovery is a complete failure: both correct and incorrect key guesses
have the same zero-sum property using their cube tester.

All of the disproofs listed above are veri�ed practically with C++ programs and
we open the source codes6 for veri�cations.

Besides anatomizing the practical 721-round result, we revisit Fu et al.'s
dynamic cube attack on 855-round Trivium. Our division property method in-
dicate that no degree drop occurs. In addition to the division property based
evaluations, we also provide other arguments against the 855-round result. Con-
sidering that the degree evaluation algorithm in [29] is described in a compli-
cated and unclear manner so that the complexity of IV-monomial enumeration
is unable to determined. As an additional contribution, we provide a detailed
description to the general process of the IV-monomial enumeration algorithm.
We provide detailed analysis and available reduction to the complexities. Ac-
cording to detailed analysis, the enumeration requires complexities far beyond
practical reach. We also demonstrate that further abbreviation will result in er-
ror in degree evaluation. This is also an argument against the method of [29].
Such arguments along with the failure of the 721-round result indicates that the
dynamic cube attack on 855-round Trivium is unlikely to be true. Since the
previous best theoretically reliable key-recovery result on Trivium has mount
to 839 rounds, the key recoveries on 840 and more rounds should still be open for
further cryptanalysis unless other theoretic evidence are provided by the authors
of [29].

In addition, according to our experiments and the existing theoretic �ndings
in [30], the selection of cube dimension in [29] is also questionable. The correct
key guess might share the same zero-sum property with the wrong ones following
the cube dimension selecting strategy in [29]. We also propose our remedy of
�nding concrete cubes whose summations have di�erent properties before and
after particular transformations. This can be regarded as a special case of IV-
degree drop.
Organizations. Section 2 provides the basic description to the division property.
For the Fu et al.'s dynamic cube method, we �rst introduce the idea of IV-
degree in Section 3. With the concept of IV-degree, the theoretic foundation of

6 https://github.com/peterhao89/Analyze721Trivium

5

https://github.com/peterhao89/Analyze721Trivium

their method can be described in a formal manner in Section 4. Based on such
a theoretic foundation, the MILP model derived from the propagation of the
division property is constructed in Section 4. With such theoretic preparations,
we give detailed analysis to [29]'s practical attacks on 721-round Trivium in
Section 6. We also detail their degree evaluation algorithm and analyze their
result on 855-round Trivium in Section 7. The discussion on cube dimension
selection strategy is in Section 8. Finally, we conclude the paper and point out
some future work in Section 9.

2 Preliminaries

2.1 Static Cube Attacks and Cube Testers

Considering a stream cipher with n secret key bits x = (x1, x2, . . . , xn) and m
public initialization vector (IV) bits v = (v1, v2, . . . , vm). Then, the �rst output
keystream bit can be regarded as a polynomial of x and v referred as f(x,v).
For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as cube
indices and denote by tI the monomial as tI = vi1 · · · vi|I| , the algebraic normal
form (ANF) of f(x,v) can be uniquely decomposed as

f(x,v) = tI · p(x,v) + q(x,v),

where the monomials of q(x,v)miss at least one variable from {vi1 , vi2 , . . . , vi|I|}.
Furthermore, p(x,v), referred as the superpoly in [5], is irrelevant to {vi1 , vi2 , . . . , vi|I|}.
The value of p(x,v) can only be a�ected by the secret key bits x and the assign-
ment to the non-cube IV bits vs (s /∈ I). For a secret key x and an assignment
to the non-cube IVs IV ∈ Fm2 , we can de�ne a structure called cube, denoted as
CI(IV), consisting of 2|I| 0-1 vectors as follows:

CI(IV) := {v ∈ Fm2 : v[i] = 0/1, i ∈ I
∧
v[s] = IV [s], s /∈ I}. (1)

It has been proved by Dinur and Shamir [5] that the value of superpoly p cor-
responding to the key x and the non-cube IV assignment IV can be computed
by summing over the cube CI(IV) as follows:

p(x, IV) =
⊕

v∈CI(IV)

f(x,v). (2)

According to [5], some secret key bits can be recovered when the superpoly
p(x, IV) is linear and the cube dimension |I| is small enough so that the cube
summation in (2) is practically implementable. Recently, both the superpoly-
linearity and cube-size limitations are now conquered. Theoretic key recoveries
can be carried out using a combination of the division property and the MILP
modeling technique [16,26]. These new techniques are able to identify the in-
volved key bits and upper bound the algebraic degree of the superpoly as we
detail later in subsection 2.2.

6

In order to launch successful key-recovery attackes, the division-property-
based cube attacks only requires the superpoly to be su�ciently simple: only
being related to very few key bits and having a comparatively lower algebraic
degree. But even if the superpoly becomes complicated, according to [6], some
non-random properties (such as zero-sum, bias, presence of neutral bits etc)
are also detectable using cube summations in (2) and can be used as e�cient
distinguishers, referred as the �cube testers�.

It is noticeable that the both original cube attack and the latest division-
property-based versions are only extracting properties in pure output stream
bits. Such kinds of cube attacks are sometimes referred as the �static� cube
attack. It is also possible to impose some transformations to the output s.t. the
successfully transformed output bits are vulnerable to particular cube testers.
The success of the transformation is decided by the correct guess of some key
guesses while for wrong guesses, no randomness can be detected. Such kinds
of cube attacks are referred as the �dynamic cube attack�. There are only 2
currently formally published applications of this method: on full Grain-128 given
by Dinur et al. in [28]; on 855-round Trivium given by Fu et al. in [29]. The
transformation used in the former application is by nullifying crucial state bits
with dynamic IV assignments while that of the latter is just multiply the output
bit with intermediate state bit itself. We focus on Fu et al.'s method in this
paper.

In the remainder of this paper, we refer to the value of the superpoly cor-
responding to the assignment IV in Eq. (2) as pIV (x) for short. We use CI as
the cube corresponding to arbitrary IV setting in Eq. (1). Since CI is de�ned
according to I, we may also refer I as the �cube� without causing ambiguities.
The size of I, denoted as |I|, is also referred as the �dimension� of the cube.

2.2 Bit-Based Division Property and its MILP Representation

The (Bit-Based) Division Property At 2015, the division property, a gener-
alization of the integral property, was proposed in [17] with which better integral
characteristics for word-oriented cryptographic primitives have been detected.
Later, the bit-based division property was introduced in [19] so that the prop-
agation of integral characteristics can be described in a more precise manner.
The de�nition of the bit-based division property is as follows:

De�nition 1 ((Bit-Based) Division Property). Let X be a multiset whose
elements take a value of Fn2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multiset X has the division property D1n

K , it ful�ls the fol-
lowing conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,
0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n
i=1 x

ui
i .

7

When the basic bitwise operations COPY, XOR, AND are applied to the el-
ements in X, transformations should also be made following the propagation
corresponding rules copy, xor, and proved in [17,19]. Since round functions of
cryptographic primitives are combinations of bitwise operations, we only need
to determine the division property of the chosen plaintexts, denoted by D1n

K0
.

Then, after r-round encryption, the division property of the output cipher-
texts, denoted by D1n

Kr , can be deduced according to the round function and
the propagation rules. More speci�cally, when the plaintext bits at index posi-
tions I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} are active (the active bits traverse all
2|I| possible combinations while other bits are assigned to static 0/1 values), the
division property of such chosen plaintexts is D1n

k , where ki = 1 if i ∈ I and
ki = 0 otherwise. Then, the propagation of the division property from D1n

k is
evaluated as

{k} := K0 → K1 → K2 → · · · → Kr,

where DKi is the division property after i-round propagation. If the division
property Kr does not have an unit vector ei whose only ith element is 1, the ith
bit of r-round ciphertexts is balanced.

However, when round r gets bigger, the size of Kr expands exponentially
towards O(2n) requiring huge memory resources. So the bit-based division prop-
erty has only been applied to block ciphers with tiny block sizes, such as Simon32
and Simeck32 [19]. This memory-crisis has been solved by Xiang et al. [20] using
the MILP modeling method.

Mixed Integer Linear Programming MILP is an optimization or feasibility
program whose variables are restricted to integers. A MILP model M consists
of variablesM.var, constraintsM.con, and an objective functionM.obj. MILP
models can be solved by solvers like Gurobi [21]. If there is no feasible solution
at all, the solver simply returns infeasible. If no objective function is assigned,
the MILP solver only evaluates the feasibility of the model.

The application of MILP model to cryptanalysis dates back to the year
2011 [31], and has been widely used for searching characteristics correspond-
ing to various methods. Besides integral characteristics with division property
[20], there are also di�erential [32,33], linear [33], impossible di�erential [34,35],
zero-correlation linear [34] characteristics etc.

Represent the Propagation of Division Property with MILP. In order
to describe the bit-based division property with an MILP model, Xiang et al.
�rst introduced a new concept division trail de�ned as follows:

De�nition 2 (Division Trail [20]). Let us consider the propagation of the

division property {k} def
= K0 → K1 → K2 → · · · → Kr. Moreover, for any

vector k∗i+1 ∈ Ki+1, there must exist a vector k∗i ∈ Ki such that k∗i can propa-
gate to k∗i+1 by the propagation rule of the division property. Furthermore, for

8

(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. Then, if there is a division trail

k0
Ek−−→ kr = ej (j = 1, ..., n), the summation of jth bit of the ciphertexts is

unknown; otherwise, if there is no division trial s.t. k0
Ek−−→ kr = ej , we know

the ith bit of the ciphertext is balanced (the summation of the ith bit is constant
0). Therefore, we have to evaluate all possible division trails to verify whether
each bit of ciphertexts is balanced or not. Xiang et al. proved that the basic
propagation rules copy, xor, and of the division property can be translated as
some variables and constraints of an MILP model. With this method, all possible
division trials can be covered with an MILP modelM and the division property
of particular output bits can be acquired by analyzing the solutions of the M.
After Xiang et al.'s work, some simpli�cations have been made to the MILP
descriptions of copy, xor, and in [22,16]. Recently, Wang et al. [27] improve copy,
xor, and by introducing the �ag technique and name their improved versions as
copyf, xorf, andf. We only use copyf, xorf, andf in this paper and they are
detailed in Section 2.3.

2.3 The Bit-Based Division Property for Cube Attack

When the number of initialization rounds is not large enough for a thorough
di�usion, the superpoly p(x,v) de�ned in Eq. (1) may not be related to all key
bits x1, . . . , xn corresponding to some high-dimensional cube I. Instead, there is
a set of key indices J ⊆ {1, . . . , n} s.t. for arbitrary v ∈ Fm2 , p(x,v) can only be
related to xj 's (j ∈ J). In CRYPTO 2017, Todo et al. proposed a method for
determining such a set J using the bit-based division property [16]. They further
showed that, with the knowledge of such J , cube attacks can be launched to
recover some information related to the secret key bits. More speci�cally, they
proved the following Lemma 1 and Proposition 1.

Lemma 1. Let f(x) be a polynomial from Fn2 to F2 and afu ∈ F2 (u ∈ Fn2) be
the ANF coe�cients of f(x). Let k be an n-dimensional bit vector. Assuming

there is no division trail such that k
f−→ 1, then afu is always 0 for u � k.

Proposition 1. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I and ki = 0 oth-

erwise. Assuming there is no division trail such that (eλ,kI)
f−→ 1, xλ is not

involved in the superpoly of the cube CI .

When f represents the �rst output bit after the initialization iterations, we

can identify J by checking whether there is a division trial (eλ,kI)
f−→ 1 for

9

λ = 1, . . . , n using the MILP modeling method introduced in Sect. 2.2. If the

division trial (eλ,kI)
f−→ 1 exists, we have λ ∈ J ; otherwise, λ /∈ J .

When J is determined, we know that for some proper assignment to the non-
cube IV ∈ Fm2 , the corresponding superpoly pIV (x) is a polynomial of xj , j ∈ J
rather than constant 0. In order to �nd such a proper IV , Wang et al. [27]
introduce the ��ag technique� so that the di�erent models are constructed for
di�erent IV and the proper one can be determined by solving the corresponding
MILP model.

Flag Technique. In the �ag technique of [27], the intermediate state bit s
correspond to 2 parameters s.val and s.F :

� s.val ∈M.var is the bit-based division property value described as a binary
variable of the MILP model.

� s.F ∈ {0c, 1c, δ} is the ��ag� value where 0c, 1c, δ speci�es whether the state
bit is constant 0, constant 1 or variable (active IV, unknown key bits, cube
IV's or non-cube IV bits with arbitrary value are all corresponding to �ag
value δ).

Corresponding to the bitwise EQUAL, XOR and AND operations, the �ag values
0c, 1c, δ has =, ⊕ and × operations. The = operation is natually 1c = 1c, 0c = 0c
and δ = δ. The ⊕ operation follows the rules:

1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x

δ ⊕ x = x⊕ δ = δ

for arbitrary x ∈ {1c, 0c, δ} (3)

The × operation follows the rules:
1c × x = x× 1c = x

0c × x = x× 0c = 0c

δ × δ = δ

for arbitrary x ∈ {1c, 0c, δ} (4)

Considering the e�ect of �ag, the MILP model description to the division prop-
erty propagation rules corresponding to COPY, XOR and AND operations have
become copyf, xorf, andf de�ned as follows:

Proposition 2 (MILP Model for COPY with Flag [27]). Let a
COPY−−−−→

(b1, b2, . . . ,
bm) be a division trail of COPY. The following inequalities are su�cient to
describe the propagation of the division property for copyf.

M.var ← a.val, b1.val, . . . , bm.val as binary.

M.con← a = b1.val + · · ·+ bm.val

a.F = b1.F = . . . = bm.F

We denote this process as (M, b1, . . . , bm)← copyf(M, a,m).

10

Proposition 3 (MILPModel for XOR with Flag [27]). Let (a1, a2, . . . , am)
XOR−−−→

b be a division trail of XOR. The following inequalities are su�cient to describe
the propagation of the division property for xorf.

M.var ← a1.val, . . . , am.val, b.val as binary.

M.con← a1.val + · · ·+ am.val = b.val

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

We denote this process as (M, b)← xorf(M, a1, . . . , am).

Proposition 4 (MILPModel for AND with Flag [27]). Let (a1, a2, . . . , am)
AND−−−→

b be a division trail of AND. The following inequalities are su�cient to describe
the propagation of the division property for andf.

M.var ← a1.val, . . . , am.val, b.val as binary.

M.con← b.val ≥ ai.val for all i ∈ {1, 2, . . . ,m}
b.F = a1.F × a2.F × · · · am.F
M.con← b = 0 if b.F = 0c

We denote this process as (M, b)← andf(M, a1, . . . , am).

With copyf, xorf, andf, the propagations of the division property correspond-
ing to any cryptographic primitives can be described in a precise manner.

Degree Evaluation. Another contribution of [27] is the degree evaluation
technique using the division property and MILP modeling. For an IV ∈ Fm2 s.t.
pIV (x) 6= 0, the ANF of pIV (x) can be represented as

pIV (x) =
∑
u∈Fn2

aux
u (5)

where au is determined by the values of the non-cube IVs. [27]'s degree evalua-
tion technique can determine an integer d s.t. for all u's with Hamming weight
satisfying hw(u) > d, there is constantly au = 0. Such a degree evaluation is
based on the following Proposition 5, which can be regarded a generalization of
Proposition 1.

Proposition 5. [27] Let f(x,v) be a polynomial, where x and v denote the se-
cret and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vkI = tI = vi1vi2 · · · vi|I| . Let kΛ be an n-dimensional bit vector.

Assuming there is no division trail such that (kΛ||kI)
f−→ 1, the monomial xkΛ

is not involved in the superpoly of the cube CI .

11

With such theoretic basis, the degree d of the superpoly pIV (x), can be eval-
uated using Algorithm 1. Note that IV can be concrete 0-1 vectors or NULL

indicating arbitrary IV ∈ Fm2 . Therefore, for IV = NULL, Algorithm 1 will give
the largest possible d for all IV ∈ Fm2 (d = maxIV ∈Fm2 {deg(pIV (x))}). Such de-
gree evaluation technique plays an important role in constructing the theoretic
foundation of dynamic cube attacks.

Algorithm 1 Evaluate upper bound of algebraic degree on the superpoly [27]

1: procedure DegEval(Cube indices I, speci�c assignment to non-cube IVs IV or IV = NULL)
2: Declare an empty MILP modelM.
3: Declare x be n MILP variables ofM corresponding to secret variables.
4: Declare v be m MILP variables ofM corresponding to public variables.
5: M.con← vi.val = 1 and assign the �ags vi.F = δ for all i ∈ I
6: M.con← vi.val = 0 for i ∈ ({1, . . . ,m} − I)
7: if IV = NULL then

8: Assign the �ags vi.F = δ for i ∈ ({1, . . . ,m} − I)
9: else

10: Assign the �ags of vi, i ∈ ({1, 2, . . . ,m} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

11: end if

12: Set the objective functionM.obj ← max{
∑n
i=1 xi}

13: UpdateM according to round functions and output functions
14: Solve MILP modelM
15: return The solution ofM.
16: end procedure

2.4 Unify the Speci�cation of Trivium

In [29], the description of Trivium is slightly di�erent from the traditional one.
In this part, we �rst unify the symbols of traditional Trivium description with
that of [29]. We �rst introduce Trivium in a traditional manner.

Trivium is an NLFSR-based stream cipher, and the internal state is repre-
sented by 288-bit state (s1, s2, . . . , s288). Fig. 1 shows the state update function
of Trivium. The 80-bit key is loaded to the �rst register, and the 80-bit IV is
loaded to the second register. The other state bits are set to 0 except the least
three bits in the third register. Namely, the 288-bit initial state, denoted as s0,
is represented as

(s01, s
0
2, . . . , s

0
93) = (x0, x1, . . . , x79, 0, . . . , 0),

(s094, s
0
95, . . . , s

0
177) = (v0, v1, . . . , v79, 0, . . . , 0),

(s0178, s
0
279, . . . , s

0
288) = (0, 0, . . . , 0, 1, 1, 1).

12

zi

Fig. 1. Structure of Trivium

For round number r = 1, 2, . . ., the state sr is computed from sr−1 by calling
the updating function, denoted as sr = Upd(sr−1) and de�ned as (6):

tr−11 ← sr−191 · s
r−1
92 ⊕ s

r−1
66 ⊕ s

r−1
93 ⊕ s

r−1
171

tr−12 ← sr−1175 · s
r−1
176 ⊕ s

r−1
162 ⊕ s

r−1
177 ⊕ s

r−1
264

tr−13 ← sr−1286 · s
r−1
287 ⊕ s

r−1
243 ⊕ s

r−1
288 ⊕ s

r−1
69

(sr1, s
r
2, . . . , s

r
93)← (tr−13 , sr−11 , . . . , sr−192)

(sr94, s
r
95, . . . , s

r
177)← (tr−11 , sr−194 , . . . , sr−1176)

(sr178, s
r
279, . . . , s

r
288)← (tr−12 , sr−1178 , . . . , s

r−1
287)

(6)

After R initialization rounds, Trivium output 1 key stream bit denoted as zR =
Output(sR) and computed from sR according to the output function as

zR = sR66 ⊕ sR93 ⊕ sR162 ⊕ sR177 ⊕ sR243 ⊕ sR288 (7)

Full version of Trivium has R = 1152 initialization rounds. After the initializa-
tion, one bit key stream is produced by every update function.

For [29], the sr0, s
r
1, s

r
2 for specifying the three bits newly generated at round

r, which are denoted as sr1, s
r
94, s

r
178 in (6). Therefore, the updating functions of

sr0, s
r
1, s

r
2, as is given in [29], are as follows:

sr0 = sr−662 + sr−1092 sr−1102 + sr−1112 + sr−690

sr1 = sr−660 + sr−910 sr−920 + sr−930 + sr−781

sr2 = sr−691 + sr−821 sr−831 + sr−841 + sr−872

(8)

In most parts in this paper, we unify the symbol back to the traditional man-
ner and use sr1, s

r
94, s

r
178 to represent the sr0, s

r
1, s

r
2 of [29] respectively. We only

temporarily use the notations sr0, s
r
1, s

r
2 of [29] in Section 7.1 for easier demon-

stration. It is also noticeable that the 80 key/IV bits are indexed as 0, . . . , 79 in
accordance with [29].

13

3 The Concept of IV-Degree

For a cryptographic primitive with secret key bits x = (x1, . . . , xn) and IV bits
v = (v1, . . . , vm), all its intermediately generated bits (including intermediate
state bits and output bits) can be regarded as polynomials on ring F2[x,v]
whose ANF can be represented as (9)

f(x,v) =
∑

u∈Fm2

auv
u (9)

where au ∈ F2[x] = F2[x1, . . . , xn] is the coe�cient of the IV monomial vu. We
de�ne the IV-degree of f(x,v) as De�nition 3.

De�nition 3. (IV-Degree) Let x = (x1, . . . , xn) and v = (v1, . . . , vm) be key
and IV variables. De�ne the polynomial f(x,v) as (9). The IV-degree of f ,
denoted as degIV (f), is de�ned as the minimum integer s.t. for arbitrary u ∈ Fm2
with hamming weight hw(u) > degIV (f), the corresponding coe�cient au's are
constant 0 (au ≡ 0).

Apparently, for a monomial a1a2 · · · aj , its IV-degree satis�es that

degIV (a1a2 · · · aj) ≤
j∑
t=1

degIV (at) (10)

We'll show in the following part how such a de�nition can grasp the idea of [29].

4 Describing the Theoretic Foundation of Fu et al.'s
Method using IV-Degree

In [29], the output bit zR is regarded as the form as follows:

zR = stiP1 + P2 (11)

where sti refers to an intermediate state bit newly generated at round t (the
position i can only have 3 choices i ∈ {1, 94, 178}) and P1, P2 are other terms
with complicated ANF. They �nd that by multiplying (1+sti) with z

R, the term
P1 can be eliminated since

(1 + sti)z
R = (1 + sti)P2 (12)

If the IV-degree of P1 is much higher than that of (1 + sti) · P2 and sati�es

degIV ((1 + sti)P2) < degIV (s
t
iP1), (13)

arbitrary cube I's of dimension |I| ≥ degIV ((1 + sti) · P2) + 1 can be used as
zero-sum distinguishers for (1 + sti) · zR.

The inequality (13) is the theoretic foundation of the method in [29]. Once
such a degree-drop assumption fails, the key-recovery will simultaneously fail

14

because some wrong key guesses will share the same zero-sum property as the
correct ones. We will later show that once such an inequality is violated, the
key-recovery attack in [29] is no longer available because some particular wrong
key guesses can share the same zero-sum property as the correct ones.

Let the output zR de�ned as (11) and the transformed output is de�ned as
(12). We assume that the state bit sti is of IV-degree degIV (s

t
i) = λ so the ANF

of sti can be represented in the form of (9) as:

sti =
∑

u∈Fm2 ,hw(u)≤λ

guv
u (14)

and the secret information need to be guessed are simply a set of coe�cient
gu satisfying gu ∈ Fn2 [x1, . . . , xn]\{0, 1}. We de�ne the secret information as a
vector

G =
{
gu : De�ned as (14)

∧
gu ∈ Fn2 [x1, . . . , xn]\{0, 1}

}
. (15)

Each element of G is simply indexed by the subindex u as G[u] = gu. In the key
recovery attack, the adversary should �rst guessG asG′. IfG′ = G, the state bit
sti can be correctly computed as (14) and the transformed output is exactly (12).
For the wrong guess, this simply means that the di�erence ∆ := G ⊕G′ 6= 0,
or in other words, the set U(G′) de�ned as (16) is not empty.

U(G′) = {u ∈ Fm2 : G′[u] = G[u] + 1} . (16)

Therefore, for the wrong guess G′, the state bit recovered can be expressed as

ŝti = sti +
∑

u∈U(G′)

vu = sti + ξ. (17)

Apparently, degIV (ξ) ≤ degIV (s
t
i) = λ and all the IV-monomial vu in ξ should

also appear in the ANF of sti. With the ŝti de�ned in (17), the transformed output
bit has become

(1 + ŝti)z
R = (1 + sti)P2 + ξP2 + ξstiP1 (18)

According to the de�nition of ξ in (17), we know that the IV-degree of ξP2

satis�es

degIV (ξP2) ≤ degIV ((1 + sti)P2)

Therefore, comparing the wrong-key-guess derived transformed output bit in
(18) with that derived from the correct key guess in (12), the correct key can
only be distinguished when the IV-degrees satsify

degIV ((1 + sti)P2) < degIV (ξs
t
iP1) ≤ λ+ degIV (s

t
iP1) (19)

When (13) is true, it is obvious that (19) holds for arbitrary G′ 6= G. If (13) is
violated, we can prove in Proposition 6 that a proportion of wrong key guesses
cannot be �ltered.

15

Proposition 6. Supposing that (13) is violated so that

degIV ((1 + sti)P2) ≥ degIV (s
t
iP1). (20)

Let the integer η de�ned as

η = degIV ((1 + sti)P2)− degIV (s
t
iP1) (21)

and assume that η ≥ 0. Then, all the wrong guess G′'s satisfying

max {hw(u) : u ∈ U(G′)} ≤ η (22)

will share the same zero-sum property with the correct key guess G when using
cubes of dimension degIV ((1 + sti)P2) + 1.

Proof. According to the de�nition of U(G′) in (16), (22) simply means that the
IV-degree of ξ satisfy that degIV (ξ) ≤ η. Therefore, we know that

degIV (ξs
t
iP1) ≤ degI V (ξ) + degIV (s

t
iP1) ≤ degIV ((1 + sti)P2)

Therefore, the degree of transformed output bit corresponding to the wrong key
guess G′ share the same IV-degree with the correct guess G. Therefore, such
wrong guess G′'s cannot be distinguished from the correct ones, which complete
the proof. ut

In fact, stiP1 is simply part of the pure output bit zR according to (9). Therefore,
in practice, as long as we can prove degIV (z

R) ≤ degIV ((1 + sti)P2), we have
already proved (20) and violated (13) because degIV (s

t
iP1) ≤ degIV (z

R). We'll
use this later in Section 6.

5 MILP Modeling for Fu et al.'s Dynamic Cube Method

As can be seen, the original output zR is generated the initial state s0 by taking
the following steps:

1. For j = 1, . . . , R, call the updating function for new state sj = Upd(sj−1);
2. Call the output function for zR = Output(sR).

We prove that the degree of (1+ sti) · zR (i ∈ {1, 94, 178}) is equal to (1+ sti) · ẑR
where ẑR is alternative output bit generated in a di�erent manner de�ned in
Proposition 7.

Proposition 7. The evaluated output (1 + sti) · zR can be regarded as the fol-
lowing:

1. For j = 1, . . . , t, call the updating function for new state sj = Upd(sj−1);
2. Store sti in an additional register and replace st with ŝt, where ŝti = 0 and

ŝtj = stj for j 6= i.

3. For j = t+1, . . . , R, call the updating function for new state ŝj = Upd(ŝj−1);

16

4. Call the output function for ẑR = Output(ŝR) and multiply it with (1 + sti).

Proof. According to (11), after replacing sti with constant 0, the output ẑR has
now become ẑR = 0 · P1 + P2 = P2. Therefore, the multiplication (1 + sti) · zR =
(1 + sti) · ẑR = (1 + sti) · P2. ut

The division property propagation corresponding to this procedure can be de-
scribed with a MILP model generated from Algorithm 3. It takes as inputs initial
round R and the integers (t, i) decided by sti, and returns the MILP model M
along with MILP variables v = (v0, . . . , v79) and o, corresponding to the division
property values of the IV bits and output bit (1 + sti) · ẑR respectively. So we
denote the procedure of Algorithm 3 as (M,v, o) = TriviumModel(R, i, t).

With (M,v, o), we should further add constraints and objective functions to
the modelM according to di�erent cube selections. The detailed procedure can
be summarized as follows:

1. We �rst check whether the �ag o.F = δ. If o.F = 0c or 1c, the transformed
output (1 + sti) · zR is constant which has zero-sum property for arbitrary
cubes. If o.F = δ, we need to further add constraintM.con← o.val = 1.

2. We construct a set of IV indices I whose elements are available for con-
structing cubes. In other words, the cube I's should always satisfy I ⊆ I.
We assign the �ag values vj .F = δ for j ∈ I and update the MILP model
M by de�ning the objective function:

M.obj ← max
∑
j∈I

vj .val (23)

3. For the remaining IV indices j ∈ I, update the model byM.con← vj .val =
0 and assign the �ag vj .F 's to 0c or 1c according to a 0-1 vector IV ∈ F80

2

decided by di�erent attacking scenarios.

Finally, we solve the modelM and acquire the IV-degree degIV ((1+ sti) · zR) =
M.obj de�ned in (23). For Trivium, the whole process can be summarized as
Algorithm 4.

Algorithm 2MILP model of division property for the core function of Trivium.
1: procedure Core(M,x, i1, i2, i3, i4, i5)
2: (M, yi1 , z1)← copyf(M, xi1)

3: (M, yi2 , z2)← copyf(M, xi2)

4: (M, yi3 , z3)← copyf(M, xi3)

5: (M, yi4 , z4)← copyf(M, xi4)

6: (M, a)← andf(M, z1, z2)
7: (M, yi5)← xorf(M, a, z2, z3, z4, xi5)

8: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do

9: yi = xi
10: end for

11: return (M,y)
12: end procedure

17

Algorithm 3 MILP model of division property for Trivium with transformed
output (1 + sti) · zR
1: procedure TriviumModel(round R, integers (t, i) corresponding to sti where i ∈ {1, 93, 178})
2: Prepare empty MILP ModelM
3: M.var ← vj .val for j ∈ {0, 1, . . . , 79}. . Declare Public Modi�able IVs
4: M.var ← xj .val for j ∈ {0, 1, . . . , 79}. . Declare Secret Keys

5: M.var ← s0j .val for j ∈ {1, 2, . . . , 288}
6: s0j = xj−1.val, s

0
j+93 = vj−1.val for i = 1, . . . , 80.

7: M.con← s0j .val = 0 for j = 1, . . . , 93, 174, . . . , 288. . All non-active bits are assigned to
division property value 0

8: s0j .F = δ for j = 1, . . . , 80. . Assign the �ags for key bits

9: s0j .F = 0c for j = 81, . . . , 285 and s0j .F = 1c for j = 286, 287, 288. . Assign the �ags for
constant state bits

10: for r = 1 to t do
11: (M,x) = Core(M, sr−1, 66, 171, 91, 92, 93)
12: (M,y) = Core(M,x, 162, 264, 175, 176, 177)
13: (M, z) = Core(M,y, 243, 69, 286, 287, 288)
14: sr = z ≫ 1
15: end for

16: Declare a new variableM.var ← ŝti.val and assign its �ag value as ŝti.F = 0c.

17: Impose constraint asM.con← ŝti.val = 0.

18: Store sti and de�ne ŝt as

ŝ
t
j =

{
s
t
j , j 6= i

ŝ
t
i, j = i

19: for r = t+ 1 to R do

20: (M,x) = Core(M, ŝr−1, 66, 171, 91, 92, 93)
21: (M,y) = Core(M,x, 162, 264, 175, 176, 177)
22: (M, z) = Core(M,y, 243, 69, 286, 287, 288)
23: ŝr = z ≫ 1
24: end for

25: for all j ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do

26: M.con← ŝRj .val = 0

27: end for

28: (M, o′)← xorf(M, ŝR66, ŝ
R
93, ŝ

R
162, ŝ

R
177, ŝ

R
243, ŝ

R
288)

29: Declare a new variableM.var ← b.val and assign its �ag value as b.F = 1c.
30: Impose constraint asM.con← b.val = 0.
31: (M, c)← xorf(M, sti, b)
32: (M, o)← andf(M, c, o′)
33: return (M, o,v)
34: end procedure

6 Application to the 721-Round Attack in [29]

In this part, we apply our method in Section 5 to the practical dynamic cube
attack on 721-round given in [29]. According to [29], all 40 IV bits with odd
indices 1, 3, . . . , 79 and the 3 IV bits even indices 58, 64, 72 should be assigned
to constant 0 and should not be selected as cube indices so we have I of size 37
de�ned as

I = {0, 2, . . . , 56, 60, 62, 66, 68, 70, 74, 76, 78} (24)

and IV = (0, 0, . . . , 0). They claimed that the IV-degree of z721 is degIV (z
721) =

36 and after the transformation in the output bit, the IV-degree drops to degIV ((1+
s29094) · z721) = 31. Note that the I for evaluating degIV (z

721) in [29] is slightly
di�erent from that of degIV ((1+s

290
94)·z721), we will detail this later and pointing

out that such a di�erence cannot violate our conclusion.

18

Algorithm 4 Evaluating the IV-degree degIV ((1 + sti) · zR) of Trivium
1: procedure IVDegTrivium(round R, integers (t, i) corresponding to sti where i ∈ {1, 94, 178}, the

available cube index candidates I, the assignment to non-cube IV bits IV ∈ F80
2)

2: (M,v, o) = TriviumModel(R, i, t). . Call Algorithm 3
3: if o.F = 0c or 1c then

4: return degIV ((1 + sti) · z
R) = 0.

5: end if

6: for j ∈ I do

7: Assign the �ag value of vj as vj .F = δ
8: end for

9: Update the modelM.obj ←
∑
j∈I vj .val.

10: for j ∈ {0, . . . , 79}\I do

11: Assign the �ag value of vj as

vj .F =

{
0c, IV [j] = 0

1c, IV [j] = 1

12: end for

13: SolveM and get the value of the objective functionM.obj.
14: return degIV ((1 + sti) · z

R) =M.obj
15: end procedure

6.1 Compare the Preciseness of IV-Degree Evaluation

Before they go into the IV-degree evaluation to the dynamic cube attack, the
authors of [29] �rst give an evaluation to the IV degree of pure output bit of
z721 I and IV . The evaluation they gave degIV (z

721) = 36 with I containing
all the even IV indices as:

I ′ = {0, 2, . . . , 78} (25)

In order to compare the bounds drawn with their method and the with ours,
we propose the IV-degree evaluation algorithm to pure zR of R-round without
the transformation in the output bit as Algorithm 5. In fact, the setting of IV
bits (both division property values and �ag values) in Algorithm 5 and objective
function setting is identical to that of Algorithm 4. It only di�ers in the sub-
routine Algorithm 3 where the e�ect of sti is eliminated. In fact, for evaluating
degIV (z

721) is equivalent to proving that the zero-sum property exist for all I's
with dimension |I| > degIV (z

721).
With I ′ de�ned as (25) and IV = (0, . . . , 0), we call Algorithm 5 that re-

turns degIV (z
721) = 31, lower than [29]'s 36. In order to verify the correctness of

our evaluation, we randomly picked thousands of 32-dimensional cube I's using
indices in I ′ (along with random keys and random assignments to IV [j] for
j ∈ I ′\I) and sum z721. We �nd that all 32-dimensional cubes have zero-sum
property when sum z721 over them under randomly chosen keys and randomly
assigned non-cube IV bit values. This evaluation has proved that our MILP mod-
eling method can provide sharper IV-degree upper bound than the complicated
degree evaluation algorithms of [29].

Of course, in order to verify the theoretic foundation (13), we need to verify
the degree drop for the same I and IV settings. With I de�ned as (24) and IV =
(0, . . . , 0), we call Algorithm 5 that returns degIV (z

721) = 29. We verify the
correctness of our degree evaluation with su�ciently many randomly constructed

19

30-dimensional cube I's using indices in I and sum z721. All the random settings
have given zero-sum property proving the correctness of our degree evaluation
degIV (z

721) = 29. But for 29-dimensional cube I ⊆ I, there exist 1-summations
for some random keys. This evaluation has not only proved our sharper upper
bound, but also violate the theoretic belief in (13). In other words, after the
transformation in the output bit, the IV-degree has not decreased but increased.
So the 721-round example is not supporting the correctness of [29] but standing
against it.

Algorithm 5 Evaluating the IV-degree degIV ((1 + sti) · zR) Trivium
1: procedure IVDegTriviumPure(round R, the available cube index candidates I, the assignment to

non-cube IV bits IV ∈ F80
2)

2: Prepare empty MILP ModelM
3: M.var ← vj .val for j ∈ {0, 1, . . . , 79}. . Declare Public Modi�able IVs
4: M.var ← xj .val for j ∈ {0, 1, . . . , 79}. . Declare Secret Keys
5: for j ∈ {0, . . . , 79}\I do . Initialize the �ags of IV bits
6: Assign the �ag value of vj as

vj .F =

{
0c, IV [j] = 0

1c, IV [j] = 1

7: end for

8: Update the modelM.obj ←
∑
j∈I vj .val.

9: M.var ← s0j .val for j ∈ {1, 2, . . . , 288}
10: s0j = xj−1, s

0
j+93 = vj−1 for i = 1, . . . , 80.

11: M.con← s0j .val = 0 for j = 1, . . . , 93, 174, . . . , 288. . All non-active bits are assigned to
division property value 0

12: s0j .F = δ for j = 1, . . . , 80. . Assign the �ags for key bits

13: s0j .F = 0c for j = 81, . . . , 285 and s0j .F = 1c for j = 286, 287, 288. . Assign the �ags for
constant state bits

14: for r = 1 to R do

15: (M,x) = Core(M, sr−1, 66, 171, 91, 92, 93)
16: (M,y) = Core(M,x, 162, 264, 175, 176, 177)
17: (M, z) = Core(M,y, 243, 69, 286, 287, 288)
18: sr = z ≫ 1
19: end for

20: for all j ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do

21: M.con← sRj = 0

22: end for

23: (M, o)← xorf(M, sR66, s
R
93, s

R
162, s

R
177, s

R
243, s

R
288)

24: if o.F = 0c or 1c then

25: return degIV ((1 + sti) · z
R) = 0.

26: end if

27: for j ∈ I do

28: Assign the �ag value of vj as vj .F = δ
29: end for

30: SolveM and get the value of the objective functionM.obj.
31: return degIV ((1 + sti) · z

R) =M.obj
32: end procedure

20

6.2 Revisiting Key-Recovery Attack on 721-Round Trivium Given
in [29]

By calling Algorithm 4, we are able to prove the same IV-degree evaluation
degIV ((1 + s29094)z721) = 31. But the degree drop assumption (13) has already
been violated, the theoretic foundation to the key-recovery attack is no longer
steady. We further show that the 721-round result cannot recovery any key
bit because all wrong key guess G′'s share the same zero-sum property with
the correct G when using 32-dimensional cubes. This is a direct application to
Proposition 6.

We regard z721 according to (9) as z721 = s29094 P1 + P2. As has been proved
in Section 6.1, we have degIV (z

721) = 29. By calling Algorithm 4, we know that
degIV ((1 + s29094)z721) = 31. Apparently, we have

degIV (s
290
94 P1) ≤ degIV (z

721) = 29 ≤ degIV ((1+s
290
94)z721) = degIV ((1+s

290
94)P2) = 31

Therefore, we know that the η = 2 according to its de�nition as (21) in Proposi-
tion 6. By analyzing the ANF of s29094 , its IV-degree is exactly degIV (s

290
94) = η =

2. Therefore, according to Proposition 6, all of the wrong key guesses and indis-
tinguishable using 32-dimensional cubes. The key-recovery attack on 721-round
Trivium in [29] is a complete failure with no key bit recovered at all. We verify
this with su�ciently many experiments. Their claim �for wrong guesses, the
result is 1 with probability 1

2 � is de�nitely delusional as can be experimentally
disproved7.

Although [29]'s method draws the correct evaluation degIV ((1+s
290
94)·z721) =

31, we believe it's only a coincidence and that the IV-degree of pure z721 is su�-
ciently low. We'll show in Section 7.2 that when the IV-degree grows su�ciently
high, a precise evaluation to the IV-degree following [29]'s idea requires imprac-
tical complexities and further abbreviations can result in serious mistakes.

7 Analyze the 855-Round Trivium Result of [29]

According to the analysis in Section 6, three lessons should be learnt:

1. The strategy used in [29] for picking sti is incorrect. The selected s
t
i cannot

bring decrease but increase to the IV-degree of output bit.
2. The degree evaluation algorithm of [29] is questionable. The evaluation to

pure output is wrong.
3. The availability of key-recovery attack is questionable. Because the IV-degree

drop assumption has been violated, wrong keys guesses can have the same
zero-sum property as the correct ones.

Therefore, the 855-round Trivium has already become doubtful. For 855-round
Trivium, [29] select s21094 for output bit transformation. The cube index candi-
dates are I = {0, . . . , 79}\{30, 48, 60, 74, 75} so we have |I| = 75. The assignment

7 https://github.com/peterhao89/Analyze721Trivium

21

https://github.com/peterhao89/Analyze721Trivium

to {30, 48, 60, 74, 75} is also constant 0 so IV = (0, . . . , 0). With such settings,
we run Algorithm 4 only to �nd degIV ((1+ s

210
94) · z885) = 75. We also run Algo-

rithm 5 and �nd degIV (z
885) = degIV ((1 + s21094) · z885) = 75. Both evaluations,

along with the three lessons learnt from Section 6, indicate that the 855-round
attack in [29] is unlikely to be true.

In subsection 7.1, we give theoretic evidence that, for 855-round Trivium,
the IV-degree of the output bit is likely to increase rather than decrease with
their transformation. In subsection 7.2, we revisit Fu et al.'s degree evaluation
algorithm and rewrite it in a more clear manner, showing that a precise evalua-
tion requires complexities far beyond practical reach and further abbreviations
will bring incorrect evaluation.

7.1 The IV-Degree is More Likely to Increase Rather than Decrease

We temporarily use the notations of [29] (also in Section 2.4) in this part for
simpler demonstration. Since s2101 is used to transform z855, we can represent
z855 according to (11) as follows:

z855 = s2101 P2 + P3

Therefore, we should focus on the propagation of s2101 . According to (8), s2101 can
only propagate to 5 intermediate state bits generated in further rounds, namely
s2881 , s2792 , s2922 , s2932 , , s2942 . Among the 5 bits, s2101 propagate to s2881 , s2792 , s2942

through XOR operation and s2922 , s2932 through AND operation. Therefore, we
can denote them as V = (V0, . . . , V4) de�ned as follows:

V0 = s2791 = s2101 + L0, V1 = s2882 = s2101 + L1, V2 = s2942 = s2101 + L2,

V3 = s2922 = a · s2101 + L3, V4 = s2932 = b · s2101 + L4

(26)

where a, b, L0, . . . , L4 are all functions of intermediate state bits whose ANFs
can be explicitly expressed according to (8). Furthermore, with detailed study
of their ANFs, we �nd that we �nd that a, b, L1, . . . , L4 have higher IV-degrees
than s2101 (Lemma 2).

Lemma 2. When IV bits at positions 30,48,60,74,75, the IV-degrees of a, b, L0, . . . , L4

de�ned in (26) are all larger than that of s2101 .

Proof. We explicitly deduced the ANFs of a, b, L0, . . . , L4, s
210
1 using Sage pro-

gram [36] and evaluate their IV-degrees. We �nd that degIV (a) = 3, degIV (b) =
4, degIV (L0) = 5, degIV (L1) = 6, degIV (L2) = 8, degIV (L3) = 5, degIV (L4) =
5 and degIV (s

210
1) = 2, which complete the proof. ut

With V de�ned as (26), we can denote the ANF of z885 as follow:

z855 =
∑
u∈F5

2

Qu · V u (27)

22

where the coe�cient Qu's are irrelevant to V0, . . . , V4 and since s2101 is only
propagated to V1, . . . , V4, it is equivalent to say that Qu's are irrelevant to s

210
1 .

We denote L = (L0, . . . , L4) and, according to Proposition 7, after the trans-
formation, the output becomes

(1 + s2101) · z855 = (1 + s2101) ·
∑
u∈F5

2

Qu ·Lu (28)

With Lemma 2 and detailed analysis to the ANFs, we �nd that for all u ∈ F5
2,

the IV-degree of each monomial satis�es degIV ((1 + s2101) · Lu) ≥ degIV (V
u).

Therefore, the transformation in [29] is unlikely to lower the IV-degree of z855

due to the well designed updating function of Trivium. On the contrary, since
Qu's are irrelevant to s

210
1 , the IV-degree is more likely to increase rather than

decrease after the transformation of [29].

7.2 The Precise IV-Degree of 855-Round Cannot be Practically
Evaluated

In this part, we analyze the degree evaluation algorithms in [29]. We prove that
the precise evaluation to the IV-degree of 855-round Trivium is much higher
than practical reach and further abbreviations will result in false evaluations.

In fact, in [29], the IV-degree is evaluated by enumerating all the monomial
vu appearing in the ANF of the output bit denoted as z (either z = zR or
z = (1 + sti) · zR) hereafter. When we read [29], the description of the degree
evaluation process is too complicated to follow and there are a lot of important
details omitted by simply using ambiguous sentences such as
�Further degree reduction for t > 4 is hard to be obtained using PC for
loop executing Algorithm 3. Some man-made work should be involved
to obtain further degree reduction. �
Furthermore, the enumeration of monomials require huge memory to store the
IV-monomials and a lot of time to evaluate the IV-monomials in the newly gen-
erated bits. But [29] did not provide the exact upper bound to the memory/time
complexity and how many IV-monomials are computed. They simply claim that
a huge cluster is used. The source code of their experiment is also unavailable
making it hard to verify the correctness of their implementation.

According to the idea of [29]'s degree evaluation algorithms, we provide a
clearer description to how to do the IV-monomial enumeration and give the cor-
rect IV-degree. Furthermore, the time/memory complexities of the enumeration
can be evaluated in a theoretic way. According to the theoretic analysis, the
enumeration cost is far beyond practical reach for 855-round Trivium. We also
provide example that further abbreviation towards our described method will
result in ignorance to particular high degree monomials and therefore wrongly
evaluated IV-degrees.

Since the ANF of z is extremely complicated, we have to represent it as the
summation of many monomials composed of intermediate state bits so that the

23

IV-degree evaluations can be carried out on each monomials independently. For
example, when z is represented as

z = b1b2b3 + c1c2c3c4 (29)

where bi, cj are all intermediate state bits and their IV monomials are practically
computable.8 Then, we have degIV (z) = max{degIV (b1b2b3),degIV (c1c2c3c4)}
So the evaluation of degIV (z) is equivalent to evaluating degIV (b1b2b3) and
degIV (c1c2c3c4) separately. Note that for z after su�ciently many rounds of ini-
tializations, some monomials will contain more than 20 practically representable
state bits (such as z = b1 · · · b20 + c1 · · · c21 + . . .). But in this part, we only use
(29) to demonstrate the main ideas of IV-monomial enumeration.

In [29], instead of direct evaluation to degIV (z), an targeted integer d is
prede�ned so that the following proofs can concentrate on degIV (b1b2b3) ≤ d
and degIV (c1c2c3c4) ≤ d.9 To be more speci�c, they use d = 69 for 855-round
Trivium. We take the evaluation of degIV (b1b2b3) ≤ d as an example. When the
ANF of the monomial b1b2b3 is practically computable, the IV-degree is acquired
explicitly. When

∑3
i=1 degIV (bi) ≤ d, we know degIV (b1b2b3) ≤ d according to

(10). When
∑3
i=1 degIV (bi) > d, a more precise evaluation to degIV (b1b2b3),

as well as an IV-degree reduction are required. This is the critical technique
but [29] simply state as �Some man-made work should be involved to obtain
further degree reduction�. Therefore, we provide a detailed description here on
how degree reduction can be carried out with as low complexity as possible.

Let the number of available IV bits ism. Denote the IV bits as v = (v1, . . . , vm).
The state bits b1, b2, b3 are �rst represented as a list of 0-1 strings in Fm2 , corre-
sponding to the IV-monomial vu's in (9) satisfying au 6= 0. We de�ne the list of
0-1 strings corresponding to state bit b = f(x,v) as

T (b) := {u ∈ Fm2 : the coe�cient au in (9) is non-zero} (30)

Apparently, the IV-degree degIV (b) is equivalent to the largest hamming weight
of u ∈ T (b):

degIV (b) = max
u∈T (b)

{hw(u)} (31)

The the multiplication of two state bits b1 and b2, the corresponding T (bc) can
be computed from T (b1) and T (b2) as

T (b1 · b2) = {u ∈ Fm2 : u = u1 ∨ u2 where u1 ∈ T (b1),u2 ∈ T (b2)} (32)

As can be seen, if there is u1,u
′
1 ∈ T (b1) satisfying u1 � u′1, then for arbitrary

u2 ∈ Fm2 , there is (u1 ∨ u2) � (u′1 ∨ u2). Since degIV (b1b2) only relate to the

8 If the ANF of bi (or cj) is too complicated so that the IV monomials are not prac-
tically computable, they will further represent bi (cj) as superpoly of intermediate
state bits generated in earlier stages of initialization. After such a representation, the
number of intermediate state monomials of z increases but each monomial can be
regarded as the multiplication of practically representable intermediate state bits.

9 The d for two degree monomial b1b2 here is equivalent to the DEG(b1) +DEG(b2)−
dt(b1b2) in [29].

24

elements with larger hamming weight, it is safe for us to remove u′1 and only
keep u1 in T (b1) so that the size of the T can be reduced. This is done by Fu
et al. with the �Repeated-IV term Removing Algorithm� (Algorithm 4 in [29]).
We can rewrite such �Repeated-IV term Removing Algorithm as Algorithm� as
6. Apparently, the complexity of Algorithm 6 is O(|T |2).

Algorithm 6 Reducing the size of the list T (b)
1: procedure ReduceT(The list T = T (b) corresponding to state bit b de�ned as (30))
2: Reorder the elements in T as T = {u1,u2 . . . ,uL} according to hamming weight s.t.

hw(u1) ≥ hw(u2) ≥ . . .uL.
3: Assign u1, . . . ,uL a �ag initially assigned to value 0: ui.F = 0, i = 1, . . . , L.
4: for i = 1, . . . , (s− 1) do
5: if ui.F 6= 0 then

6: continue.
7: end if

8: for j = i+ 1, . . . , L do

9: If ui � uj , assign the �ag value uj .F = 1.
10: end for

11: end for

12: Eliminate all uj ∈ T having non-zero �ag values

T ′ ← T \{u ∈ T : u.F = 1}

13: return T ′.
14: end procedure

[29] has only considered (or at least only explicitly demonstrated) the situa-
tion when two state bits are multiplied believing the multiplication of more state
bits are the same thing, which result in the mistake in degree evaluation. We �nd
that when more bits are multiplied, we many evaluations can be ignored T ′s.
For example, when computing T (b1b2b3) and the prede�ned degree evaluation d
satis�es that

d− degIV (b2)− degIV (b3) ≥ 0

then, all elements u ∈ T (b1) with hamming weight lower than d− degIV (b2)−
degIV (b3) can be safely ignored. Therefore, for the general situation, we show in
Algorithm 7 how to make the correct judgement to whether degIV (b1 · · · bs) = d
with the knowledge of prede�ned evaluation d and (size reduced)10 lists T (b1), . . . , T (bs).
Here, we require that s ≥ 2. With the T ′s computed by Algorithm 7, we know
that

degIV (b1 · · · bs) = max{hw(u) : u ∈ T ′s }

so the judgement f is correct. In fact, Algorithm 7 can not only make the cor-
rect judgement on whether degIV (b1 · · · bs) = d but obtaining a proportion of
T (b1 · · · bs) containing the largest hamming weight elements as well.

However, the complexities of the term enumeration are still high even with
the size reductions above. For arbitrary m, when the degree of a intermediate

10 It means that the Repeated-IV term Removing Algorithm of [29] has been carried
out on all the lists T (b1), . . . , T (bs). This only a�ects the e�ciency rather than the
accuracy of Algorithm 7.

25

Algorithm 7 Computation of T (b1b2 · · · bs) from T (b1), . . . , T (bs)
1: procedure CompT(prede�ned integer d regarded as the evaluation to degIV (b1 · · · bs); the (size

reduced) lists T (b1), . . . , T (bs))
2: Compute the IV-degrees degIV (bj) for j = 1, . . . , s as dj = maxu∈T (bj)

{hw(u)}
3: Initialize T ′1 ← T (b1).
4: for j = 1, . . . , (s− 1) do
5: Initialize T ′j+1 ← φ

6: for (u,w) ∈ T ′j × T (bj+1) do

7: Compute u′ = u ∨w.
8: if j + 2 ≤ s and hw(u ∨w) ≥ max{0, d−

∑s
t=j+2 dt} then

9: Update T ′j+1 ← T
′
j+1

⋃
{u′}

10: end if

11: if j + 2 > s and hw(u′) ≥ d then

12: Update T ′j+1 ← T
′
j+1

⋃
{u′}

13: end if

14: end for

15: Reduce the size T ′j+1 ← ReduceT(T ′j+1) by calling Algorithm 6.

16: end for

17: De�ne a �ag {, f = 1 if maxu∈T ′s
{hw(u)} ≤ d and f = 0 otherwise.

18: return (T ′s , f).
19: end procedure

state bit b grows to cm/2b, the size of T (b) can grow to its peak of
(

m
cm/2b

)
(all

cm/2b-degree monomials are involved). For the 855-round [29], we have m = 75
and the peak is 271.55. When higher degree terms are generated afterwards,
Algorithm 6 still requires the same time complexity to remove the redundant
IV monomials. Therefore, a precise evaluation of IV-degree using IV-monomial
enumeration as Fu et al. seems impractical in the �rst sight, and further evidence
are required to verify the correctness of their degree evaluation algorithms, or
�man-made work� in their own words .

Although [29] does not reveal their �man-made work� to further lowering the
complexities, according to the evaluation in the 721-round attack, we believe
that it involves the removal of low-degree monomials. However, once low-degree
monomials are removed in earlier stage, the number of high-degree monomials
generated in later rounds will decrease. For the 721-round version where the
original output has not reached the highest degree, the degree evaluation may
still be correct because the correct judgement can be made as long as 1 31-
degree monomial is generated and there are

(
37
31

)
candidates to choose from. But

for 855-round version, the original output has already reached the highest degree
so there is only 1 highest degree candidate to choose from. Therefore, the low-
degree monomial removal will become wrong judgement to the �nal IV-degree.
For example, we consider the situation when d = 70, b1, b2, b3 are de�ned as:

b1 = x1v0v1 · · · v66v69 + x2v1v2 · · · v68, b2 = x3v0, b3 = x4v67v68

So the corresponding list T 's are

T (b1) = {(
66⊕
j=0

ej)⊕ e69,

68⊕
j=1

ej}, T (b2) = {e0}, T (b3) = {e67 ⊕ e68}

Apparently, we have degIV (b1b2b3) = 70 = d and T (b1b2b3) contains an element

of hamming weight 70:
⊕69

j=0 ej . But the multiplication of b1b2 will generate a

26

69-degree IV-monomial v0v1 · · · v68 and a 68-degree term v0 · · · v66v69. If the low-
degree term is removed for saving memory complexity, the �nal T (b1b2b3) will
result in only 1 element

⊕68
j=0 ej making the degree evaluation degIV (b1b2b3) <

d = 70. Therefore, further size reduction to list T 's will result in risk of wrong
evaluation to the IV-degree. This might be the reason why the authors of [29]
thought the key-recovery attack on 855-round were to be available.

Note that the analysis of the part has not only made the degree evaluation
in [29] questionable. It is also noticeable that such degree evaluation technique
has also been used in another dynamic cube attack result in [37]. Therefore, the
result of [37] might be equally questionable.

8 Other Comments on Fu et al..'s Dynamic Cube Method

Besides the problems demonstrated in Section 6 and 7, the randomly picking
cubes of dimension λ = degIV ((1 + sti)z

R) + 1 for �ltering wrong key guesses
is also a questionable practice, even if (13) were satis�ed. Following the nota-
tions in Section 4, for correct guess G and wrong guess G′, we can rewrite the
transformed output in (18) as (33) and (34) as follows:

(1 + sti)z
R = f(x,v) =

∑
u∈Fm2

auv
u (33)

(1 + ŝti)z
R = f̂(x,v) =

∑
u∈Fm2

âuv
u (34)

Even if degIV ((1 +
ˆ̂sti)z

R) ≥ λ, it only means that for some of the
(
m
λ

)
possible

u ∈ Fm2 of hamming weight hw(u) = λ satisfying âu 6= 0. It is quite probable
that âu = 0 for most λ-hamming-weight u's in (34). In this case, randomly
picked λ-dimensional cubes will have zero-sum property with high probability
for both wrong and correct key guesses. Such a phenomenon has already been
pointed out and studied in [30] where the proportion of λ-degree monomial
vu's having non-zero coe�cients are de�ned as the �density� of λ-dimensional
cubes. The authors of [30] proved theoretically and practically that the higher-
dimensional cubes have lower density than the lower-dimensional ones. Take the
721-roundTrivium as an example: even if the wrong guess make the transformed
output having IV-degree reaches 32, the randomly chosen 32-dimensional cube
summations should make zero-summations with probability much larger than 1

2 .
Therefore, when (13) is satis�ed and degIV ((1+ ŝ

t
i)z

R) is only slightly higher
than λ = degIV ((1+ s

t
i)z

R)+1, the density of λ-dimensional cube in 34 is likely
to be low and there is high probability that the correct key guess cannot be dis-
tinguished from the wrong ones. The best solution is to specify su�ciently
many cubes satisfying the following conditions simultaneously:

1. For the correct guess, the cube summation of the transformed
output is constant 0.

2. For the wrong guess, the cube summation of the transformed out-
put is randomly 0 or 1.

27

This is equivalent to prove that there is u ∈ Fm2 satisfying au = 0 in (33) and
âu 6= 0 in (34). Such a phenomenon can be regarded as a algebraic degree drop
in the superpoly corresponding to a concrete cube rather than a IV-degree drop:
once an IV-degree drop happen, all cubes of particular dimensions can be used
for zero-sum distinguishers in key-recovery attacks; for algebraic degree drop in
superpoly, we need to �nd such �good� cubes one by one and there should be
evidence showing that the algebraic degree drop do happen in the superpolies,
for example, using the degree evaluation of [27] (Algorithm 1). Our remedy can
only be regarded as a �special case of IV-degree drop� when all IV candidates
are involved in a cube I.

9 Conclusion

In this paper, we describe the dynamic cube attack on Trivium given in [29]
using division property and MILP model. We detail the practical example given
in [29] on 721-round Trivium only to �nd that such a practical example is not
supporting but violating the theoretic basis of their dynamic cube method. It
also prove that the new complicated degree evaluation technique with �some
man-made work� given in [29] is questionable. In order to simplify the degree
evaluation technique in [29], we rewrite the main algorithms in a more readable
manner revealing that the theoretic complexities of their method is higher than
practical reach. Therefore, unless further evidence are provided, the key-recovery
attack on 855-round (as well as lower-round) Trivium should still be open for
further cryptanalysis. Furthermore, future works should focus on speci�c cube
selections making correct key guesses distinguishable from wrong ones, rather
than simply analyzing the IV-degrees.

Acknowledgments. We would like to thank the authors of [29], namely Xi-
aoyang Dong, Ximing Fu and Xiaoyun Wang for their helpful sharing. Although
it's a pity that they do not agree all of our deductions and refuse to be co-authors,
we are still willing to convey our sincere gratefulness to them.

References

1. Saarinen, M.O.: Chosen-iv statistical attacks on estream ciphers. In Malek, M.,
Fernández-Medina, E., Hernando, J., eds.: SECRYPT 2006, Proceedings of the
International Conference on Security and Cryptography, Setúbal, Portugal, August
7-10, 2006, SECRYPT is part of ICETE - The International Joint Conference on
e-Business and Telecommunications, INSTICC Press (2006) 260�266

2. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recov-
ery attacks on stream ciphers. In Vaudenay, S., ed.: Progress in Cryptology -
AFRICACRYPT 2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Proceedings. Volume 5023 of Lecture
Notes in Computer Science., Springer (2008) 236�245

28

3. Englund, H., Johansson, T., Turan, M.S.: A framework for chosen IV statistical
analysis of stream ciphers. In Srinathan, K., Rangan, C.P., Yung, M., eds.: Progress
in Cryptology - INDOCRYPT 2007, 8th International Conference on Cryptology in
India, Chennai, India, December 9-13, 2007, Proceedings. Volume 4859 of Lecture
Notes in Computer Science., Springer (2007) 268�281

4. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV di�erential at-
tack. IACR Cryptology ePrint Archive, Report 20107/413 (2007) http://eprint.
iacr.org/2007/413.

5. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In Joux,
A., ed.: EUROCRYPT. Volume 5479 of LNCS., Springer (2009) 278�299

6. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In Dunkelman, O., ed.: FSE. Volume
5665 of LNCS., Springer (2009) 1�22

7. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In Joux,
A., ed.: FSE. Volume 6733 of LNCS., Springer (2011) 167�187

8. Fouque, P., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In Moriai, S., ed.: FSE. Volume 8424 of LNCS.,
Springer (2013) 502�517

9. Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.:
Investigating cube attacks on the authenticated encryption stream cipher ACORN.
In Batten, L., Li, G., eds.: ATIS. Volume 651 of CCIS., Springer (2016) 15�26

10. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation Cube Attacks: From Weak-Key
Distinguisher to Key Recovery. In Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT
2018 Part II. Volume 10821 of Lecture Notes in Computer Science., Springer (2018)
715�744

11. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks
and cube-attack-like cryptanalysis on the round-reduced Keccak sponge function.
In Oswald, E., Fischlin, M., eds.: EUROCRYPT Part I. Volume 9056 of LNCS.,
Springer (2015) 733�761

12. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional Cube Attack on
Reduced-Round Keccak Sponge Function. In Coron, J., Nielsen, J.B., eds.: EURO-
CRYPT Part II. Volume 10211 of Lecture Notes in Computer Science., Springer
(2017) 259�288

13. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on keccak
keyed modes with milp method. In: ASIACRYPT, Springer (2017) (to appear).

14. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ASCON.
IACR Trans. Symmetric Cryptol. 2017(1) (2017) 175�202

15. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like attack on round-reduced initializa-
tion of ketje sr. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 259�280

16. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In Katz, J., Shacham, H., eds.: CRYPTO Part III.
Volume 10403 of LNCS., Springer (2017) 250�279

17. Todo, Y.: Structural evaluation by generalized integral property. In Oswald, E.,
Fischlin, M., eds.: EUROCRYPT Part I. Volume 9056 of LNCS., Springer (2015)
287�314

18. Todo, Y.: Integral cryptanalysis on full MISTY1. In Gennaro, R., Robshaw, M.,
eds.: CRYPTO Part I. Volume 9215 of LNCS., Springer (2015) 413�432

19. Todo, Y., Morii, M.: Bit-based division property and application to SIMON family.
In Peyrin, T., ed.: FSE. Volume 9783 of LNCS., Springer (2016) 357�377

29

http://eprint.iacr.org/2007/413
http://eprint.iacr.org/2007/413

20. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In Cheon, J.H., Takagi, T., eds.: ASIACRYPT Part I. Volume 10031 of LNCS.,
Springer (2016) 648�678

21. Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer. http://www.gurobi.com/
22. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for prim-

itives with non-bit-permutation linear layers. IACR Cryptology ePrint Archive,
Report 2016/811 (2016) http://eprint.iacr.org/2016/811.

23. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. IACR Cryptology ePrint Archive,
Report 2017/860 (2017) http://eprint.iacr.org/2017/860.

24. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Improved integral attack on HIGHT.
In Pieprzyk, J., Suriadi, S., eds.: ACISP 2017, Part I. Volume 10342 of LNCS.,
Springer (2017) 363�383

25. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permuta-
tions. In Smart, N., ed.: CT-RSA 2018. Volume 10808 of LNCS., Springer (2018)

26. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. IACR Cryptology ePrint Archive, Report 2017/306
(2017) http://eprint.iacr.org/2017/306.

27. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. Cryptology
ePrint Archive, Report 2017/1063 (2017) https://eprint.iacr.org/2017/1063.

28. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
veri�ed attack on full Grain-128 using dedicated recon�gurable hardware. In Lee,
D.H., Wang, X., eds.: ASIACRYPT. Volume 7073 of LNCS., Springer (2011) 327�
343

29. Fu, X., Wang, X., Dong, X., Meier, W.: A Key-Recovery Attack on 855-round
Trivium. In Shacham, H., Boldyreva, A., eds.: CRYPTO 2018, Part II. Volume
10992 of LNCS., Springer (2018) 160�184

30. Hao, Y.: Predicting the number of di�erent dimensional cubes: theoretically evalu-
ate the secure bound of cryptographic primitives against the balance testers. IET
Information Security 10(3) (2016) 142�151

31. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Di�erential and linear cryptanalysis
using mixed-integer linear programming. In Wu, C., Yung, M., Lin, D., eds.:
Inscrypt. Volume 7537 of LNCS., Springer (2011) 57�76

32. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) di�erential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Sarkar, P.,
Iwata, T., eds.: ASIACRYPT Part I. Volume 8873 of LNCS., Springer (2014) 158�
178

33. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L.: Towards
�nding the best characteristics of some bit-oriented block ciphers and automatic
enumeration of (related-key) di�erential and linear characteristics with prede�ned
properties (2014) http://eprint.iacr.org/2014/747.

34. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for
impossible di�erentials and zero-correlation linear approximations (2016) http:

//eprint.iacr.org/2016/689.
35. Sasaki, Y., Todo, Y.: New impossible di�erential search tool from design and

cryptanalysis aspects - revealing structural properties of several ciphers. In Coron,
J., Nielsen, J.B., eds.: EUROCRYPT Part III. Volume 10212 of LNCS., Springer
(2017) 185�215

30

http://www.gurobi.com/
http://eprint.iacr.org/2016/811
http://eprint.iacr.org/2017/860
http://eprint.iacr.org/2017/306
https://eprint.iacr.org/2017/1063
http://eprint.iacr.org/2014/747
http://eprint.iacr.org/2016/689
http://eprint.iacr.org/2016/689

36. Developers, S.: SageMath, The Sage Mathematics Software System. (01 2016)
37. Fu, X., Wang, X., Chen, J., Stevens, M., Dong, X.: Improved attack on full-round

grain-128. Cryptology ePrint Archive, Report 2017/412 (2017) https://eprint.
iacr.org/2017/412.

31

https://eprint.iacr.org/2017/412
https://eprint.iacr.org/2017/412

	Observations on the Dynamic Cube Attack of 855-Round Trivium from Crypto'18
	Introduction
	Preliminaries
	Static Cube Attacks and Cube Testers
	Bit-Based Division Property and its MILP Representation
	The (Bit-Based) Division Property
	Mixed Integer Linear Programming
	Represent the Propagation of Division Property with MILP.

	The Bit-Based Division Property for Cube Attack
	Flag Technique.
	Degree Evaluation.

	Unify the Specification of Trivium

	The Concept of IV-Degree
	Describing the Theoretic Foundation of Fu et al.'s Method using IV-Degree
	MILP Modeling for Fu et al.'s Dynamic Cube Method
	Application to the 721-Round Attack in cryptoeprint:2018:198
	Compare the Preciseness of IV-Degree Evaluation
	Revisiting Key-Recovery Attack on 721-Round Trivium Given in cryptoeprint:2018:198

	Analyze the 855-Round Trivium Result of cryptoeprint:2018:198
	The IV-Degree is More Likely to Increase Rather than Decrease
	The Precise IV-Degree of 855-Round Cannot be Practically Evaluated

	Other Comments on Fu et al..'s Dynamic Cube Method
	Conclusion

